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Abstract 

Internet of Things (IoT) has become a central part of our connected world. Apart 

from the devices in our home, many IoT devices are located in remote areas 

supporting all kinds of industrial, agricultural and scientific applications. Networks 

providing connectivity that cover in the scale of kilometre squares are crucial for 

these remote deployments. The extensively used star topology is not perfect for 

the rural environment as the coverage is limited by the placement of the central 

hub which also contributes to be a single point of failure. Mesh networks are 

clearly more appealing in this regard, but scalability has always been an issue for 

mesh networks, especially in terms of routing. Energy provisioning can also be 

challenging in the remote IoT deployments, as the devices can be left in isolated 

fields for a long period of time. In this thesis, we addressed the routing problem 

of mesh-based remote sensor IoT networks by introducing a distributive energy-

aware reinforcement learning (RL) based routing algorithm. The proposed 

algorithm makes routing decisions by holistically considering the energy 

consumption of the network. This aims to maximise the durability of the entire 

network while preserving usability. Through the comparisons of simulated results 

in the failure rate, energy efficiency and carrier band usage rate of the networks 

supported by the proposed RL algorithm and the other applicable algorithms in 

the long-range remote IoT networks, we identified the strength of the RL routing 

algorithm for the remote sensor networks. This thesis also presents a detailed 

analysis of the RL routing algorithm progressively to demonstrate the 

effectiveness of the algorithm. 
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Impact Statement 

The routing algorithm this thesis proposed provides possibilities for the 

deployment of fully meshed sensor networks in extremely remote areas. The 

networks can rely much less on the service operators provided and are more 

resilient to the changes of the environment as the introduced AI will adjust the 

routing of the network accordingly. The simulation results provide evidence and 

experience when applying the proposed method in other similar situations.  

The performed research benefits the academia through the development on 

reinforcement learning, the appliance of AI can be expanded to more specific 

applications such as routing in wireless mesh networks. The remote monitoring 

mesh network itself can also be used in academia for research of other disciplines 

as the coverage and usability of the network can be expanded with the algorithm 

proposed in this thesis. With a more reliable and usable IoT sensor network with 

wider coverage, places that never been able to be studied can be reached. Hence, 

more studies can be conducted with the usage of the produce of this thesis. 

When it comes to benefits outside academia, the energy-aware network can 

provide longer durability and better coverage outside the control of the network 

operators. This will reduce the cost for the users and organisations who need to 

deploy their devices in remote areas. Other than that, with the improved mesh 

network adaptability discussed in the proposed algorithm, different scales of 

WSNs can be deployed around our world, providing a better understanding of our 

living environment. Thus, make our world a little better.
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Chapter 1 Introduction 

The first electromagnetic telegraph sent by Francis Ronalds in 1816 [1] marked 

a new era of communication using an invisible electromagnetic field instead of 

visible objects. By using the electronic pulses to convey messages, information 

can be passed on for a long distance in a short time. The adaptation of 

electromagnetic signals has removed the physical barriers that had limited 

humans from effectively performing remote area monitoring and communication. 

In the age of digitization, ALOHAnet, started in the 1970s, was the pioneer 

wireless network [2]. Over nearly 50 years after that, many wireless technologies 

have been proposed and implemented, such as the 802.11 WLAN protocols and 

mobile networks. Each of these technologies is designed to serve a certain 

purpose and there has not been any universal wireless solution so far, especially 

for the network that enables remote monitoring without human involvement. The 

concept of the Internet of Things (IoT) has been started since John Romkey 

developed the Internet-connected toaster in 1989 which could be switched on and 

off remotely using the Internet [3], as well as the famous remote monitoring IoT 

experiment was the Trojan Room coffee pot in the University of Cambridge [4]. 

Then the term IoT was put forward later by Kevin Ashton in 1999 [5].  

Soon after that, widely deployed IoT devices have deeply changed how the 

industry of manufacturing, agricultural and numerous other applications, 

particularly those covering a wide remote area, work. Machine-to-Machine (M2M) 

communications and long-range wireless technologies enabled automatic data 

collection to data utilisation that is truly revolutionising the world. According to 

Business Insider Intelligence [6], there will be more than 40 billion IoT devices 

connecting to the Internet by 2023. The number will only drastically grow in the 

future as the demand accelerates and the industry progresses.  

The type of IoT network discussed in this thesis is wireless sensor networks 

(WSNs). By employing different kinds of sensors, WSNs that can monitor the 

environment have been developed and used in different applications for many 
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years [7]. The sensors collect information about the physical quantity of certain 

objects as well as events that happen in the environment. WSNs usually consist 

of nodes that have one or more sensors that can measure different environmental 

conditions like ambient temperature, movement, etc. The nodes in a WSN also 

have the other components particularly the radio transceiver with access to the 

antenna, internally or externally, the microprocessor and the energy source such 

as a battery, external power supply or energy harvesting device [8]. 

To connect the nodes together and to the Internet for data gathering and 

processing, WSN network technologies vary drastically according to the purpose 

and scale it serves. One of the most common technologies in this area is short-

range wireless solutions, such as Wi-Fi, Bluetooth and Zigbee. These short-range 

technologies are great to provide connectivity to many IoT applications in urban 

areas. Wi-Fi has been widely used in indoor IoT applications as the coverage of 

WLAN can provide fast and stable connectivity for the devices that require 

considerable throughput and security [9]. One such application is security 

cameras for homes and offices. By using Wi-Fi as the connectivity solution, 

devices can have a secure, stable, and fast connection to the Internet or the 

intranet of the deployment [10]. Bluetooth has been used for peripheral devices 

for a long time because of its low power consumption [11]. ZigBee has been used 

for home automation IoT networks [12] by many established manufacturers such 

as Philips and Hive. 

An alternative connectivity solution for IoT applications is the Low Power Wide-

Area Networks (LPWANs). LPWANs are designed for long-range IoT 

communication scenarios from the ground up [13], which means they are 

positioned between the coverage of mobile and short-range wireless networks. 

They are suitable for M2M communications rather than directly interfacing with 

users [14]. LPWANs make the trade-off of data rate for lower power consumption 

and longer communication range. The GSMA, one of the driving forces of 

LPWANs, has launched the ‘Mobile IoT Initiative’ in June 2015 to promote LPWAN 

commercial solutions using licensed spectrum. Two major licensed-spectrum 

based LPWAN technologies supported by the GSMA are Narrowband IoT (NB-

IoT) [15] and Long Term Evolution for Machines (LTE-M, also known as eMTC) 

[16]. Both technologies are based on the existing infrastructures owned by the 
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mobile operators. The difference between NB-IoT and LTE-M networks is the 

former uses narrow maximum baseband for ultra-low complexity devices while the 

latter utilises wider bandwidth to provide higher data rates (up to 1 Mbps), lower 

latency and better location services [17]. The services of these networks are 

subscription-based which incurs a fee for using the networks, thus increasing the 

operational cost. 

Other LPWAN technologies do not use the licensed spectrum to cover wide 

areas, one of such networks is LoRa [18]. By implementing chirp spread spectrum 

(CSS) modulation, LoRa trades data rate for sensitivity within a fixed channel 

bandwidth. The exceptional sensitivity enables LoRa devices to provide a long 

transmission range, with a stated range of more than 10 km using maximum 

spread factor 12 that has an indicated physically transmitting bit rate of 250 bps. 

It even reached an extreme 702 km point-to-point transmission in an experiment 

[19] as well as 3 km coverage in a field test in the dense suburban area [20]. Since 

LoRa uses license-free sub-gigahertz ISM bands, it also offers subscription-free 

services which can significantly reduce operation cost of IoT networks. 

Sigfox is another prominent LPWAN solution using the sub-GHz ISM bands. 

Unlike LoRa's choice of spread spectrum approach, Sigfox uses Ultra Narrow 

Band modulation to exchange messages between the node and the base station. 

The bandwidth used to convey Sigfox messages is 100 Hz and have a data rate 

of 100 or 600 bps [21]. Using this technology, the Sigfox network is able to reach 

up to 40km in rural areas [22]. The topology of Sigfox is a one-hop star, and the 

network requires its operator to build the infrastructure (base stations) and the 

network is operated using a paid subscription model. 

 The Remote Monitoring Network Environment 

In the remote areas described in this thesis, using the mobile network is 

considered as a challenge even in developed countries like the UK. Figure 1.1 

[23] shows the mobile data network coverage offered by the only NB-IoT national 

provider in the UK, Vodafone [24]. It can be observed that there are large areas 

in the north of Scotland as well as some part of northern England showing no 

coverage. Another major mobile network operator, EE, also has limited 4G/5G 

coverages in those areas, as shown in Figure 1.2 [25].  
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In developing countries, remote areas are even less covered. During the field 

trip of testing the IoT networks [26] in BaZheXiang area, Sichuan in west China 

shown in Figure 1.3 in 2017, we found the coverage of the mobile network at the 

test site and villages around was very limited and unstable. 

 

 

 

Figure 1.1 Vodafone mobile service availability in the UK [23].  
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Figure 1.2 EE mobile service availability in the UK [25]. 

 
Figure 1.3 Field test site in China [26]. 
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Figure 1.4 Terrain of monitoring sites during the field trip in China [26]. 

Beyond the coverage of the network, there are other critical challenges of the 

network that need to be addressed. Here listed four important ones in the order 

of importance that we keep our focus in this thesis: 
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• Firstly, power efficiency is one of the most important elements of remote 

monitoring networks. The site where the remote monitoring sensors deployed 

usually has no power supply from the grid which means the devices are sorely 

battery powered from the network perspective. Additionally, due to the remote 

geographically isolated location, the sensor nodes to be discussed in this 

thesis are usually left unattended and cannot be maintained regularly. 

• Secondly, availability is crucial for all remote monitoring networks. The 

collected data from the sensors need to be wirelessly transmitted as other 

wired means, such as coaxial cables or optical fibres are considered expensive 

and labour intensive Besides, being an M2M communication network, the 

nodes may also need to be remotely configured or manipulated for the 

maintenance of the network. 

• Thirdly, scalability is also important for such networks. As the coverage of the 

network grows, more devices can be deployed in the area for better monitoring. 

The network ought to be able to handle the change of the network configuration 

when new nodes are attached to the network as well as nodes with no battery 

are removed from the network at any time. This change of scale of the network 

happens all the time and the network will need the scalability to handle it. 

• Finally, throughput and delay are sometimes important in the remote 

monitoring networks, since the purpose of such networks is monitoring certain 

areas, sometime the regular access and quality of service may be requisite, 

particularly in some of the nature disaster prevention and emergency 

applications. The data generated from the sensors can be stored and sent to 

the server regularly. The size of the data is also significantly smaller than other 

applications over the Internet, such as video conferencing. This characteristic 

of the network can ease the requirement for throughput and delay of the 

network. 

During the field trip in China [26], we found the challenging geographical terrain 

for wireless communications in remote monitoring networks requires the 

technology to have a long communication range and deep penetration capability. 

The sheer distances between possible locations of monitoring sites where the 

sensor nodes are located impose such a challenge. As shown in Figure 1.4, the 
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point-to-point distance between the monitoring site (data collection zone) to the 

data centre (the main water dam) is about 11.36 km. The distance between other 

monitoring sites can be even farther than this as the field test is for the 

transmission from the first data collection zone back to the main water dam. In 

other long-range environment monitoring networks in the remote areas, such as 

water monitoring [27] [28], and rural air monitoring [29]. The distances between 

monitoring nodes can be similar or even greater. This requirement of long range 

between nodes, in addition to the limited mobile network coverage and power grid 

supply, makes the automation of remote monitoring more challenging. 

The climate of the deployment area is also crucial when the nodes in the network 

are battery powered and the only way to recharge the batteries is solar power. 

The sunlight hours of the test site will directly impact the charging cycles of the 

nodes, because of the more hours of sunlight per day, the shorter the battery 

recharging cycle. The national weather service of the UK, the Met Office, has the 

details of the number of hours of sunlight gathered from the weather stations 

across the country [30]. We have collected the monthly average sunlight hours 

across the UK from 1981 to 2010, as shown in Table 1.1: 

 

Table 1.1 Average sunlight hours in the UK from 1981 to 2010 

Period of Time Average sunlight (hrs) Average daily sunlight (hrs) 

Annual 1372.8 3.76 

Longest (May) 185.9 6.00 

Shortest (December) 40.8 1.32 
 

 

 Limitations of other forms of wireless network  

 Short-range wireless networks 

Short-range wireless networks are effective for what the name suggests, short-

range communications in IoT networks. The coverage of these networks is very 
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limited due to the focus on short range applications. Bluetooth, for example, uses 

frequencies in the 2.4 GHz ISM band and utilises frequency hopping in a 

predetermined order at regular intervals to highly resistant to narrow-band 

interference. This allows Bluetooth devices to have a maximum transmission 

range of 100m when using an output power of 20 dBm [31]. Zigbee has the ability 

to conduct cross-band communication across both 2.4GHz and sub-GHz bands. 

This allows the maximum transmission range up to 1km when the network 

operates in the sub-GHz bands. These technologies are more suitable for 

monitoring in urban areas when the population of the nodes is much denser and 

internet gateways can be easily found nearby. 

People use boosted long range Wi-Fi repeaters for long distance 

communications for high bandwidth requirements. They can be used to connect 

widespread physical sites to the same network or fill in mobile network dead zones 

in remote areas. Lukac, et al. have used 23 dBm 2.4 GHz Wi-Fi radio, a 3m mast 

with a 15dBi gain YAGI antenna to reach 15-20 km communication range at 

ground level [32]. However, this setup is not feasible for the remote monitoring 

nodes in the context of this thesis as the 3m mast with 15dBi YAGI antenna can 

hardly be deployed in the remote areas for its size as well as a 23 dBm 2.4 GHz 

Wi-Fi radio will consume too much energy in the battery operated off-grid sites. 

Commercial Wi-Fi long range boosters have also been used to provide a line of 

sight long range transmission using directional antennas [33]. This type of solution 

is even harder to be deployed in remote monitoring sites as it not only requires 

line-of-sight connection with the uplink gateway but also needs to elevate antenna 

which is difficult when the monitoring site is in a valley or below the gateway. 

Short-range network based IoT network solutions are more suitable for more 

densely populated areas where it has the power and infrastructure deployed 

beforehand. They are also great for higher data rate monitoring tasks. But in the 

context of this thesis, they are not the best choice. 

 Cellular mobile networks 

Traditional mobile networks and the GSMA promoted licensed spectrum 

LPWANs can also be deployed for remote monitoring networks. These networks 

use the licensed spectrum to provide services, centred around ‘cells’ from base 
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stations and other infrastructure provided by the network operators. As shown in 

Figure 1.1 and Figure 1.2, mobile networks have covered most of the area around 

the UK. By using the licenced frequency spectrum, the mobile networks have a 

much better channel performance when compared to technologies using the ISM 

bands as it is maintained by the operator [34]. This enables the network to have 

a better capacity, uses less power, and have a larger coverage area as base 

stations can be added and frequencies can be reused [35]. 

However, in the context of the thesis, remote areas that need monitoring are 

usually not inhabited. This means it is not cost efficient to provide data network 

services to these areas with traditional mobile (GSM/3G/4G/5G) networks, as the 

costs of building and maintaining the new base stations are high [36]. As shown 

in Figure 1.1 and Figure 1.2, some of the remote areas in the UK are not yet 

covered with 4G networks even after 7 years the first 4G network was 

commercially launched [37]. 

NB-IoT and LTE-M are designed to provide LPWAN services using licensed 

bands. NB-IoT is designed to enable support for IoT devices using new physical 

layer signals and channels. Commercial NB-IoT network has already been 

deployed nationally in the UK by Vodafone [24]. Adhikary, et al. evaluated that 

NB-IoT networks can provide the same target SNR with an extra 20 dB tolerance 

of maximum coupling loss over the existing LTE networks. This translates to a 

coverage enhancement of 20 dB for the network while co-existing with the LTE 

networks in the covered areas [38]. However, as NB-IoT is a subscription-based 

service, the cost of using the network can be significant when the network scales 

up and the number of sensor nodes increases. Additionally, NB-IoT and LTE-M 

share the same base stations of the existing mobile network, the coverage 

limitation still applies to both technologies. At the moment, LTE-M networks are 

not yet commercially available in the UK, it will not be discussed in detail here. 

Hence, extending remote monitoring and sensing networks in rural areas, NB-IoT 

and LTE-M are not the best solutions. Besides, both NB-IoT and LET-M support 

the mobility of the IoT devices, which is not applicable in the context of this thesis. 

 License exempt (ISM) band LPWANs 

By employing sub-GHz ISM frequency bands (863–870 MHz in Europe), LoRa 
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and Sigfox provide long range IoT services with low power consumption. Sigfox 

has a paid subscription business model [39] like the mobile network services, 

whereas LoRa provides a free to use radio technology with the freedom to 

establish own networks [18]. However, both networks use the star topology at its 

core, using a gateway to connect all the end nodes. This causes the same 

problem as the other forms of networks. In order to expand the network coverage, 

the gateway locations and the establishment of connections of the existing 

network are crucial. In the case of Sigfox, the coverage is all managed by the 

company itself. It becomes very difficult to predict if the remote sensing areas are 

covered by the network or not, as it is determined by the company. Whereas the 

coverage of LoRa networks can be established by the users, the gateways of the 

network must be connected to the Internet by either wired or other kinds of 

wireless networks, which also can be challenging in the place of remote areas. 

In all of these network technologies discussed in this section, the star topology 

is at the core. Challenges such as location and deployment of the centre hub of 

the network become pivotal in connecting all the remote sensor nodes. To 

accommodate the need for remote monitoring networks, the alternative mesh 

topology should be power efficient, widely available and easily scaled.  

 The need for the mesh topology  

From the book of Wireless Mesh Networks [40] by I. Akyildiz, X. Wang, a 

wireless mesh network (WMN) is defined as a wireless communications network 

made up of radio nodes organised in a mesh topology instead of the star topology 

used in most of the networks. The nodes inside a WMN are connected to each 

other directly, unlike in the star networks, where all the devices are connected to 

a central hub. Interconnections between nodes inside a WMN are effective 

wireless ad hoc networks. Consequently, any wireless technology that supports 

multi-ad hoc connectivity can be used to establish a WMN. 

WMNs are being used in many applications to provide connectivity services. The 

IEEE has established 802.15.4/802.15.5 working groups for Low-Rate WPAN and 

WPAN based mesh network as well as the 802.11s standard for Wi-Fi based mesh 

networks. 
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The difference between star topology and mesh topology networks in the remote 

monitoring scenario are displayed in Figure 1.5. Infrastructure is essential in the 

star networks, which has the disadvantages described in Section 1.3. Whilst in 

the mesh networks, the connectivity to the cloud can be provided by more than 

one sensor node in the network, and the interconnectivity can send all the data 

through those sensor nodes acting as a gateway. 

 

 

a. A star topology network 

 

 

b. A mesh topology network 
.  

Figure 1.5 Topologies of remote monitoring IoT networks 
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This decentralised and distributed nature of the WMN networks makes it very 

appealing for remote monitoring networks. The elimination of the centre point of 

failure also improves the availability of the network. The adaptability of nodes 

being gateways enables the self-forming nature of the network which works best 

in the scenarios which the uplink to the Internet is limited like the remote 

monitoring and sensing networks.  

People have discussed employing mesh topology in wireless sensor networks 

to form wireless mesh sensor networks (WMSNs) for some years. But there are 

yet any established standards or workshops to establish one. Rodenas-Herraiz, 

et al. have reviewed a series of WMSN proposals, noticeably using the IEEE 

802.15.5 Wireless Personal Area Network (WPAN) mesh network standards [41]. 

They have concluded that the WMSN proposal using IEEE 802.15.5 standard 

using the low-rate technologies using IEEE 802.15.4 specification stood out from 

a series of other WMSN solutions. However, this proposal relied on low-rate, short 

range networks, due to the personal network nature from the 802.15 WPAN 

working group. This rendered the proposal only working in short-range WMSN 

scenarios. The WMSN using LPWAN technology with multi-ad hoc connectivity 

support such as LoRa enables WMSN with a larger coverage and better 

efficiency. Additionally, the capability of self-organisation and self-configuration 

of the network can be used to support incremental deployment of sensing nodes 

inside a WMSN. However, the modelling of the long-range WMSNs remains to be 

done. 

Another issue of the limitation of establishing WMSNs is its scalability. WMNs 

are often considered as non-scalable because they are likely to be suffered from 

interferences as well as suffering from changes in the network known as mobility 

[42] [43]. Nevertheless, this is not the case for applications discussed in this 

thesis. In the remote sensing and monitoring scenarios, such as soil quality 

monitoring networks in the farms and air quality monitoring networks in the urban 

areas, the monitoring sensors are mostly immobile in the network. Therefore, the 

topology of the network is relatively static with the only change in the network 

being the addition of nodes from an extra deployment or recovering from power 

drought as well as reduction due to battery power drought or sensors failure. The 

scalability problem of the scenario has no mobility involved. Therefore, with proper 
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routing and network self-reestablishment, the WMN based remote monitoring 

network can be scalable. Adding nodes from the network can be considered 

attaching another network onto the existing network where the interconnecting 

nodes are gateways between the two networks. As there is little mobility occurred 

in the WMSN, once the connection has been established, the scale of the network 

has been expanded. 

 Routing in WMSNs 

Routing in the star networks, such as the Ethernet, is done by using Short Path 

First algorithms. The Internet Protocol (IP) uses Open Shortest Path First (OSPF) 

to route its single autonomous system (AS). The OSPF works inside an 

autonomous system such as a local area network (LAN) to route the data packet 

to the right gateway. The OSPF implements Dijkstra’s algorithm to calculate the 

shortest route to a destination through the network based on the cost of the route. 

It calculates the cost of the route based on weighted link-cost parameters, i.e. 

bandwidth, delay, and load. The weights are configured by the network 

administrators. [44] OSPF can also detect topology alterations caused by link 

failures and recalculate a new loop-free route in a short time [45]. However, it is 

designed to target the routes in a hierarchical network such as LAN. 

When it comes to WMNs, OSPF is not applicable. Without the hierarchical in the 

topology, the shortest path cannot be easily calculated without centralised storage 

of the topology. Proactive link-state routing protocols such as Optimized Link 

State Routing Protocol (OLSR) are more suitable for decentralised mesh networks 

[46]. OLSR uses HELLO and topology control (TC) messages to discover and 

propagate the link-state of every node in the mesh network. The routing is done 

by calculating the shortest hop forwarding path between nodes using the link-

state information on each node. However, the scalability of the OLSR is an issue 

as with each new node added into the network, more hello and TC messages 

need to be sent in the network to keep the link state information on each node 

updated. Furthermore, OLSR does not consider link quality when choosing a 

route. In the case of the remote monitoring networks, OLSR has no support for 

energy awareness, which is highly important. Additionally, as a proactive routing 

protocol, OLSR requires the usage of battery and computational power to send 
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Hello messages in order to propagate routing information. This further excludes 

OLSR from IoT mesh networks, as devices are usually kept sleeping while idling 

to conserve energy. 

To perform routing for remote monitoring networks, the algorithm needs to be 

energy aware. This awareness is the key to finding an energy efficient route that 

not only benefits the sending and receiving nodes but also keeps the entire 

network more usable. It also needs to be dynamically updated and optimised 

when the packets are transmitting in the network. Lastly, it should be scaled with 

the addition and reduction of the nodes to support the scenario we describe in the 

earlier part of this section. 

With all the requirement of the routing problem in WMSNs, an algorithm that has 

extra intelligence capability is a beneficiary, especially when considering the 

dynamic consumption model of different monitoring nodes. The introduction of 

using artificial intelligence to route the WMN IoT only comes naturally. 

 Machine Learning and Reinforcement Learning 

Artificial Intelligence (AI) refers to the “cognitive” functions demonstrated by 

machines through learning from outside inputs instead of being programmed 

beforehand in the context of problem-solving. AI has been discussed and 

researched from the Dartmouth Workshop in 1956. Computer scientists 

demonstrated a computer that learns checkers strategies, solving word problems 

in algebra, proving logical theorems and speaking English [47]. However, the 

limitation of the computing power at the time slowed the progress down and led 

into an ‘AI winter’ era [48]. Not until the late 1990s and 21st century, AI has re-

emerged as a useful tool in multiple areas including logistics, data mining, medical 

diagnosis and other areas [49]. The great evolution of computational power with 

Moore's law enables the AI algorithms to work much better. The demand for 

solving specific problems in different fields, i.e. statistics, economics and 

mathematics, using such technologies also greatly increased during that period 

of time. The possibility of application of AI greatly expanded since. Recently, AI 

has become a field with numerous applications. 

As discussed in Section 1.4, AI can play an important role when deciding the 
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optimum route of the packet. With the correct route selected, less stress will be 

imposed on the battery of the nodes that has a heavier duty as a sensor and a 

packet relaying node. The algorithm should be able to balance power 

consumption and network performance based on the need for the network. 

Machine learning (ML) is an important research subset of AI. Without using pre-

programmed explicit instructions, ML uses patterns and inference from the 

information input of the algorithm, producing statistical mathematically models 

and results that computers can use to perform similar tasks after that effectively 

[50]. The generalisation from experience or data is a core objective of a learner 

algorithm. This means that the learner algorithm will be able to handle new, 

unseen examples/tasks accurately based on the experience or data it gathered 

earlier during the learning period with certain training data set. The data used to 

train ML algorithms can be obtained from different sources, such as pre-defined 

training data sets, random related data sets or even previously used data can be 

re-used to retrain the AI for better accuracy and efficiency. 

There are three main different approaches in the field of ML: supervised learning 

(SL), unsupervised learning (USL) and reinforcement learning (RL). Each one of 

the approaches has its unique requirement on input and output as well as the type 

of problem the algorithm is applied to solve. 

The first method of the ML approach is SL. SL uses example input-output pairs 

to train the model to perform as expected [51]. The training data set contains 

examples input as well as output. Each example consists of the desired output 

value associated with a certain set of input data. The desired outputs are labelled 

for the algorithm to find the link between it and the input. Hence the name of the 

approach is called supervised learning. The SL algorithm produces an inferred 

function that maps the input and output data from the training data set. This 

function will then be used against unseen input of the same problem, and ideally, 

the function can produce a result output as expected. 

Unlike SL, USL does not rely on labelled input/output pairs. It uses cluster 

analysis to discover commonalities among training data [52] The method will store 

the commonalities and act on oncoming new data based on the presence or 

absence of such commonalities to determine the action after receiving the data. 
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Neural networks are usually used in USL to provide artificial neurons that can be 

fired together using Hebbian theory to change the weighting of the connection. 

The change of the weighting will determine the action that will be taken by the 

algorithm. Since the data has not been labelled, the method is referred to as 

unsupervised learning because of the lack of human intervention of the training 

data. 

Finally, people use RL to help make better decisions. Using dynamic 

programming, RL is about finding a balance between exploration and exploitation 

[53]. This means that the RL algorithms are both utilising the learnt experience 

from the past and the available options to find an optimal decision for certain 

problems. The reinforcement problem is usually modelled as a Markov decision 

process (MDP). MDP transforms stochastic decision-making situations involving 

random outcomes into a mathematical model that can be optimised to find the 

best solution [54]. RL can also use the Boltzmann exploration process to balance 

exploration and exploitation to add dynamic to the algorithm to avoid ignorance 

[55]. In RL, the algorithm is looking for the best outcome of each decision made. 

Each iteration of the running of the algorithm will contribute to that goal by 

providing appropriate feedback. 

When considering the routing efficiency of the packet through the network, each 

node will need to decide of which the next node. This decision will not only affect 

the transmission of the current packet, but also the subsequent future packets as 

the nodes along the route will need to consume energy to transmit it. The entire 

routing decision in a mesh network can be seen as a collection of many small 

decisions that in the long term affect the usability and energy efficiency of the 

entire network. This decision-making process matches well with the RL model. 

Hence, by applying suitable RL into the routing algorithm will enable the nodes to 

learn from their experience and make a better decision in the long term. This 

utilises intelligence into the entire routing process and the operation of the 

network. 

However, the RL algorithm has its own limitations. Firstly, RL takes time and 

effort before the decision-making functions. Without previously learnt knowledge, 

the node can also make random guesses and expect the feedback from that 
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experience to make a difference in a short period of time. Therefore, when there 

is a large number of nodes in the mesh network, it will take a longer time and 

consume more energy of each node in the network before the network becomes 

energy aware, because of a lot of random choices have to be made before the 

sensible ones emerge. Nevertheless, the remote monitoring networks are not 

designed to work as a huge number of sensors in a confined area and are 

deployed for a long period of operation. This will eliminate the scalability concern 

of employing the RL algorithm into the network. Additionally, the added complexity 

and overhead to the nodes are also a concern of using RL for routing. But in the 

context of this thesis, the simple calculation to update the routing table will not 

bring about excessive overhead as the simplicity of the network ruled out the 

concern of the complication. 

 Energy Awareness in the Networks 

Energy awareness of the network in this thesis means that the network has the 

ability to use the energy-related information gathered from nodes during the time 

of operation. This information typically includes the energy levels of each 

individual node, the energy consumption of the entire network, and the potential 

energy expenditure of selecting a certain route. Being a distributed network, 

energy awareness of the network suggests that the nodes can make routing 

decisions based on the energy consumption at their own knowledge. Each 

decision will add up to result in the usability of the entire network in the long term. 

This is very important in the context of this thesis, as it targets the remote 

networks that usually have a limited source of energy. These networks are 

deployed in rural areas where mostly are off-grid. Being energy aware means that 

the network is able to make energy efficient routing decisions. 

The introduction RL enables remote monitoring networks to be energy-aware 

using AI. Over the course of the deployment and usage of the network, the AI will 

gradually store energy information about the network and optimise subsequent 

operations with better energy efficiency. Unlike SL and UL, AI created by RL 

learns the environment with experience instead of a large training set. The 

deployments of each network are unique to each case, providing an effective 

training set to fit all deployments is nearly impossible. Without the training, other 
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AI algorithms to predict and response to the changes in the network precisely is 

difficult. RL, with its balanced exploration and exploitation decision algorithm, can 

mitigate this problem, especially when the experience it gathers is sufficient over 

time. In the proposed algorithm, the routing table of each node is populated and 

updated whenever a transmission is happening to that node. This is performed by 

using a model-free RL algorithm based on temporal difference (TD) learning. The 

updated routing tables are able to produce better routes under the updated 

conditions. 

 Research Contribution 

Wireless IoT networks and made using sensors to monitor remote areas 

possible. This capability can greatly benefit various disciplines of scientific areas 

from agriculture to geography. However, the current wireless network 

technologies used in IoT networks, such as cellular networks and WLAN 

networks, have constrained various potential applications being deployed. The 

coverage offered by these networks are usually limited to the deployment of the 

service providers, and in many cases, remote areas may not be in their best 

interest to be covered. In addition, the commonly utilised star topology in most 

existing wireless networks can also lead to reliability concerns when deploying 

the sensors to the rural areas. Maintaining the operation of the network is difficult 

because of the existence of a single point of failure in the network. 

To resolve this research problem and create a more efficient wireless IoT 

network, we proposed a reinforcement learning routing algorithm in wireless mesh 

IoT networks. We first introduced mesh topology into wireless networks in the 

scenario of monitoring rural areas using IoT networks to provide better coverage. 

Instead of focusing on the throughput and delay in the network, we then tackled 

the energy efficiency quandary of the network by utilising reinforcement learning 

in the routing algorithm. Hence, the durability and usability of the network are 

greatly improved over traditional wireless mesh networks, as shown in the 

simulations conducted in Chapter 4 of this thesis. 

The expansion of the coverage of WLAN networks and improvement of 

throughput are the main studied areas in most current studies on wireless mesh 

networks. However, the discussions of IoT mesh networks are relatively rare in 
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the field, especially the work on the usability of the network. Because of the need 

for multiple relays when delivering a packet, the total energy consumption is 

higher in the WMNs than the traditional star networks. Therefore, by improving 

the energy efficiency of the network, the general durability and usability of the 

network can be considerably enhanced over a longer period of time. It also 

magnifies the benefit from this enhancement in the case of applications in remote 

wireless sensing and monitoring. By using RL instead of feedback loops like 

traditional routing algorithms, the algorithm is able to utilise the experience of the 

entire working life of the network compared to the short-term response from the 

feedback from the feedback loop that are commonly used in other routing 

algorithms. By taking the energy status of the entire network into account, the RL 

routing algorithm has shown improvement in all metrics including failure rates, 

energy efficiency and carrier band usage rate (CBUR) that we used in the 

simulations over the benchmark algorithm. 

This improvement has proven the research contribution of this thesis in the field 

of remote sensing networks. The thesis presents how energy awareness can play 

a crucial part when deploying remote sensor networks and has pointed out a new 

method of energy aware routing for such IoT networks. 

 

 Research Publications 

This proposed RL routing algorithm has produced the following research 
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- Y. Liu, K.-F. Tong and K.-K. Wong, “Reinforcement learning based routing for 

energy sensitive wireless mesh IoT networks,” IET Electronics Letters, 2019. 

- Y. Liu, K.-F. Tong, X. Qiu and Y. Liu, “Wireless Mesh Networks in IoT Networks,” 

in Conference: 2017 International Workshop on Electromagnetics: Applications 

and Student Innovation Competition (iWEM) , London, 2017. 

- Y. Shen, L. Cai, Y. Liu, X. Ding, X. Qiu, Y. Liu and K.-F. Tong, “On the Antenna 

for Long Range Low Power Geographical Monitoring IoT Network,” in European 

Conference on Antennas and Propagation, Nagoya, 2018 
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 Thesis Overview 

The organisation of this thesis is as follows. After the introduction of this chapter, 

Chapter 2 reviewed other research works on WMNs, WSNs, AI and RL, as well 

as routing in WMNs. While in Chapter 3, we modelled the remote sensing network 

that the RL routing algorithm is targeted at. This model of the network included 

the wireless channel, the nodes, the links between the nodes, the transmissions 

and the feedback during the operation of the network. This model set the scene 

for the reinforcement learning to learn from which further discussed in Chapter 4. 

We also introduced the temporal difference learning, which this RL algorithm is 

based on, as well as some key parameters presented in the algorithm in the same 

chapter. A flowchart that described the routing decision process is also provided 

in this chapter for a better understanding of the process. 

In Chapter 5, we presented the method we used in the simulations that evaluated 

the performance of the network. We assessed both an upper-bound and lower-

bound method that are used in the simulation. 

In Chapter 6, the thesis presented the comprehensive results of a series of 

simulations to examine different parameters related to RL algorithm and the 

environment of the network. By comparing the results of the RL routing algorithm 

against two benchmark algorithms, it established the effectiveness of the 

algorithm in different environments. It also showed how different parameters 

affect the performance of the algorithm. We concluded the chapter with a set of 

simulations with the optimal parameters gained from previous sections, to 

demonstrate the advantages of employing the RL routing in WMSNs. 

Finally, Chapter 7 showed the conclusion drew from the building, testing and 

result of the algorithm. It also defined the possible future development on the 

algorithm after the completion of this thesis. 
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Chapter 2 Literature Review 

While there have been many existing works in the field of WMN and WSN over 

the years, the routing algorithms which consider the energy constraint in remote 

monitoring sensor network are rare. The introduction of machine learning (ML) 

into routing algorithms is also not a new approach, however, few have set their 

focus on wireless mesh sensor networks (WMSN) networks. In this chapter, we 

reviewed the related works in 1. wireless mesh network (WMN), 2. wireless sensor 

network (WSN), 3. Machine learning (ML) and 4. routing solutions for WMSNs, to 

highlight the gap in the literature where the reinforcement learning routing 

algorithm aims to fill. 

 Wireless Mesh Networks 

 Wireless Mesh network standards 

The IEEE 802 Standards Committee is responsible for networking standards 

development and maintenance [56]. Two major IEEE standardised WMN types 

are 802.11s Wi-Fi mesh networks and 802.15.5 Wireless Personal Area Network 

(WPAN) mesh networks. The former one based on the Wi-Fi standard, using ad 

hoc Wi-Fi as the connection between mesh stations. The 802.11s networks are 

MAC-based multi-hop solutions, hence it operates transparently to any higher-

layer protocols [57]. However, as discussed in Section 1.2.1, using the short-

range technology as the underlying backbone is not suitable for the networks with 

the constraint on energy, therefore mesh network using 802.11s standard is not 

considered the best suit for this thesis. On the other hand, 802.15.5 networks are 

based on the low power personal network technology 802.11.4, which has a 

limited single hop range, e.g. Zigbee has a range of 50-100 feet between devices 

[58]. This limitation on the single hop range constraints the application of these 

technologies in the context of the remote monitoring environment of this thesis, 

as described in Section 1.1 [41]. Therefore, a new WMN solution is specifically 

developed to support remote monitoring mesh networks. 
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 Works on Wireless Mesh Networks  

In 2004, Akyildiz et al. [40] researched different system architectures including 

Infrastructure/Backbone WMNs, Client WMNs and Hybrid WMNs. It was also 

summarised the characteristics of these WMN architectures as listed below: 

1. Multi-hop wireless network: It can facilitate higher throughput in the same 

distance using multiple hops with shorter links, reducing interference and 

have better frequency reuse. 

2. Self-forming, self-healing, and self-organization: The network can be built 

gradually and maintained easily, reducing the cost. 

3. Mobility: It depends on the status node. Mesh networks can support both 

stationary and mobile nodes. 

4. Multiple network access: The access to the internet from the nodes can be 

done using different connections. 

5. Multiple power consumption constraints: The power constraints of the 

network depending on the type of application, the routing protocol needs to 

meet such constraints. 

6. Compatibility and interoperability: The network needs to be compatible and 

interoperable with other networks to provide services. 

 It then listed some potential commercial applications of WMNs, such as 

broadband home networking, community and enterprise networking, building 

automation and health and security monitoring systems. However, it didn’t include 

WMNs in the WSNs forming the WMSNs. This is possible because when the paper 

was published WSN networks were not largely available due to the limitation of 

the long-range low power radio technology at the time. But one of the most 

important facts this paper pointed out is that WMNs have the ability of adapting 

and inter-operate with different network technologies. The paper has set the 

scene for further study of WMNs and inspired this thesis. 

DaCosta described a brief history of WMNs in Chapter 15 First, Second and 

Third Generation Mesh Architectures in the book Emerging Technologies in 

Wireless LANs [59]. This history iterates the technologies has been used in past 

WMNs, as well as new technologies that have the potential to be deployed. 



 38 

Especially the third generation WMN described in the chapter indicates a fully 

software oriented WMN without the regard of specific wireless technologies. This 

software-oriented approach pointed out the feasibility of employing WMN in 

simple sensor nodes. 

The Serval project [60], developed by Gardner-Stephen, is an Android app using 

Wi-Fi equipped smartphones to form WMNs. A software-based routing algorithm 

is used in the Serval WMN to provide the network services. It was derived from 

the mesh potato device of The Village Telco project. [60] Initially developed as a 

mesh-based telephone network, data service was soon added into the network. 

The data was handled using an ad hoc transfer method called the MeshMS [61]. 

This method uses a store-and-forward protocol to achieve an infrastructure-free 

micro-blogging ready network service. It has demonstrated the feasibility of 

delivering text messages more than 10,000 km. The achievement of the project 

and the simple technology used have inspired the idea of the algorithm developed 

in this thesis. The simple routing or numbering for telephoning system in this 

project, namely Serval Distributed Numbering Architecture as shown in Figure 

2.1, is not suitable for the use in the remote monitoring networks in this thesis 

because it is over complicated as each transmission requires a flood a query to 

the entire network. 

 

Figure 2.1 Call Resolution in the Serval Distributed Numbering Architecture [60] 
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One of the issues of WMNs is scalability, as discussed in Section 1.3. Sampaio, 

et al. reviewed the scalability and path stability issues in the IEEE 802.11s WMN 

networks [43]. It was reported that the multi-hop nature and the 802.11 network 

legacy limited the scalability of the 802.11s WMNs. The path selection protocol 

Hybrid Wireless Mesh Protocol (HWMP) defined in 802.11s is sensitive to the 

number of nodes which imposes the further limitation to its application in remote 

monitoring. Being a Wi-Fi-based standard, 802.11s and HWMP is a short-range 

network technology and not designed for the use in wide area monitoring 

networks. This hints at the possibility of introducing a new routing approach for 

such networks.  

Jun, et al. [62] discussed the evaluation method for the exact capacity of a 

stationary WMN for network provisioning. The assumptions and scenarios 

described in the paper are very similar to the scene set for this thesis. But a chain 

topology was used to simplify the network structure in the model, it is not feasible 

in the network discussed in this thesis as the dynamic status of the nodes does 

impact the decision of the routing. However, the method discussed in the paper 

provided a useful reference for the modelling of the network in Chapter 3.  

Many other works in the field of WMN have also been considered and are 

referenced for the implementation of this thesis. Bejerano [63] described a method 

that could connect the static WMNs to the backbone network efficiently. The 

method divided the network into several sub-trees for data delivery using 

clustering algorithms. This division of the network also considered the QoS factors 

of the transmission. The connections between the WMN and the infrastructure 

maximised the cluster throughput under the given QoS constraint. With the 

connections, the nodes in the remote monitoring networks could deliver the data 

to the Internet efficiently. Data transmission in the network could be performed 

using a publish/subscribe mechanism as described by Adi, et al. in [64]. This 

paper tackled the inefficiency of data collection problem using the traditional 

client/server model. The method decoupled certain data processors and collectors 

by applying the publish/subscribe model. The flowchart of the method is shown in 

Figure 2.2. This method has proven to be more reliable in the unstable network 

such as WMNs and has better scalability through parallel operations. This method 

can be employed in the remote monitoring networks for the collection because of 
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these attributes described above. 

 

 

Figure 2.2 The push/subscribe model system flowchart [64] 

 

Zhou-kangas [65] used NS-3 to model and simulate 802.11s Wi-Fi-based 

WMNs. The routing protocol described in the thesis used the 802.11s 

recommended HWMP. It was found out that the network efficiency indicator 

factors including throughput, delivery rate decreased with the increase of the 

higher application data rate, but the delay grew. The author also concluded that 

the antenna configuration played an important role in the performance of the 

networks. Jiao, et al. [66] have modelled the transmission in a two-hop network 

as shown in Figure 2.3. In the paper, it proposed a Multiple Relay Points (MRP) 

selection method to replace the Multipoint Relay (MPR) defined in OLSR for 

multiple hop design. The selection model was also based on the media access 

control (MAC) sublayer of the data link layer in the Open Systems Interconnection 

(OSI) model. The MRP selection method was compared with the MPR based 

method and it was concluded significant improvement in terms of throughput was 
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achieved. The modelling of the transmission in this work has partially inspired the 

model of this thesis. Jain, et al. [67] has studied the impact of interference on 

multi-hop wireless network performance. In this thesis, we have considered the 

interference in the model of remote monitoring networks in Chapter 3, and in the 

simulations, we chose to put the focus on other critical parameters instead of the 

impact of interference in the remote monitoring network at the present stage as 

explained in Section Chapter 5. 

 

 

Figure 2.3 System model for two-hop cooperative communication [66] 

 

 Wireless Sensor Networks 

 Modelling WSNs 

The remote monitoring network is one kind of WSNs that is dedicated to working 

under the environment described in Section 1.1. Modelling the network is one of 

the most important steps when designing the routing algorithm. The approach 

some other network technologies modelling the network and the environment is a 

great reference to the thesis. An open ISM band LPWANs that has been widely 

used and discussed is LoRa technology.  

Bouguera, et al. [68] modelled the LoRa and LoRaWAN based Wireless sensor 
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networks. In the work, it was focused on LoRaWAN protocol as the sensor nodes’ 

battery life in the WMNs is significantly influenced by the wireless technology. The 

modelled the sensor node is shown in Figure 2.4. The selected transceiver chip 

is SX1272 from Simtech. It evaluated the impact of the parameters have on the 

energy consumption including spreading factors (SF), coding rate (CR) and 

payload size. It was concluded with a list of optimised parameters for energy 

consumption on different communication ranges. Additionally, transmission power 

is considered being more important than SF when it comes to the impact on 

energy consumption. Three different scenarios with a two-way transmission 

between the gateway and sensor nodes with uplink, downlink and error link 

situations were compared. It was found that a higher data rate with a shorter range 

resulted in the better autonomy of the nodes when it comes to LoRaWAN Modes. 

The proposed energy model was used to estimate the lifetime of the sensor nodes 

with the acknowledgement transmission on the LoRaWAN. The network model 

presented in the paper provided useful information for the modelling of the 

sensors and the structure of the network in this thesis. 

 

 

Figure 2.4 Sensor node architecture in Bouguera’s model [68] 

 

Another IoT network which based on LoRa and LoRaWAN model was proposed 

by Wixted, et al. [69] They have tested the LoRa network coverage in Glasgow 



 43 

city using two devices with the same antennas. One of the devices was deployed 

on the roof of the university building, while the other one equipped with a GPS 

receiver keeps moving and recording the location information and the 

communication quality. It was found that the transmission range in the city of 

Glasgow was about 2km, with the hill in the middle. The packet loss in the system 

was also measured. A field test was carried out in the mountainous area in China 

for this thesis [26]. 

A transmission power optimisation based on an energy consumption model for 

the WSN is proposed by Mohammed, et al. [70]. The model is to measure the total 

energy of a successfully transmitted one bit of data needed from a source node 

to a destination node. The calculated energy included the chance of the offset for 

the failure transmission using the possibility of success. It also included all the 

cost of overheads in different layers in the network to calculate the average 

energy consumed per bit by transmissions over the AWGN channel. An optimised 

transmission power strategy is then given using the model with different 

modulation approaches, including BPSK, M-PSK and M-QAM. As it is an 

analytical model for evaluating the energy consumption in the WSN, it is used as 

a reference for designing the cost function of the algorithm.  

An analysis of the energy consumption model of energy harvesting network was 

conducted by Song, et al. in [71]. The paper used a ZigBee-based short-range 

WSN to analysis three major parameters in the WSN: 1. The consumption of 

powering up; 2. The consumption of acknowledgements; and 3. The consumption 

of routers. The results showed that the main power consumption in the ZigBee-

based energy harvesting network was the first two power sources. This work is 

used in the consideration of the energy consumption model in this thesis as the 

powering up and acknowledgement are both included with the remaining power 

when the calculation of the cost of each leg of the transmission. 

Path loss is one of the most significant figures to analyse the characteristics of 

wireless networks. Kurt et al. investigated several models of path loss and their 

uses in WSNs [72]. Particularly, they pointed out that the constraints of the 

propagation in WMNs can be summarised as 1. Low antenna heights; 2. Low 

transmission power; 3. Stationary network topology; and 4. Directivity of antennas. 
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They then analysed and compared different models under various scenarios and 

frequencies. They have noted that the free-space and two-ray parallel-polarization 

models are not suitable for the path loss estimation for WSNs. This conclusion is 

based on both models not providing accurate estimations of any metrics in their 

research. When it comes to the applications in 868 MHz, they have identified the 

best results have given by the one-slope model. We used a modified free-space 

propagation model in the process of this thesis as it has provided consideration 

of the effects of the channel rather than only the attenuation. Additionally, the 

model simplified the measure requirement in the one/two-slope log normal models 

for the ease of the calculation of the simulation. Hence, we considered the model 

as the model of choice in this thesis.  

The interference of operational LoRa network can be found when transmission 

collides in time, frequency and spread factor but not with the expansion of the 

range, according to a study by Georgiou. O and Raza. U [73]. The degradation in 

performance of LoRa networks gauged in uplink outage probability when load 

increases is exponential, limiting the network scalability. It was concluded that 

one of the reasons for this degradation is the single gateway uplink system model 

which causes a considerable amount of collisions in due to interference the tested 

network. This thesis implemented the LPWAN network in a meshed fashion to 

avoid congested nodes to reduce such degradation happening. Another LPWAN 

network study was carried out by Gregora, et al. [74] in order to find the optimal 

location of deploying the LoRa gateway in a building by testing the packet loss 

rate of each location. Similarly, we considered packet loss in the failure rate in the 

simulations of this thesis and used it as an indicator when comparing the algorithm 

with the benchmarks. 

A deterministic path loss model of the WSN networks in the urban environment 

was studied using satellite images of Cambridge, Massachusetts by Herring. K, 

et al [75]. By finding the most efficient placement of the transceivers, a reference 

path loss coefficient a with the range of 2 to 5 was tested. In addition, the air-to-

ground links can also be modelled with a > 2 with the Gaussian random 

components. In the wideband microcell outdoor propagation model [76] with 

different transmitter height and path conditions, the path loss coefficient was 

provided. In this thesis, we used a = 2.8 in the simulation to reflect the rural 
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environment that the remote monitoring network operates. 

 Energy Awareness in WSNs 

When considering the energy consumption of the node in a WMN, Murali, et al. 

[77] have put forward a generalised model. The modelling of the consumption is 

crucial when considering energy awareness as it is how the energy is used in the 

calculation to be used in the algorithm. The structure of a sensor node in this 

paper is shown in Figure 2.5. The model in this paper is based on the network 

level in the OSI model which matches the design of the algorithm of the thesis, 

The purpose of the model in the paper is for use in the energy management 

systems of WMNs, however, we also used the idea of this model when building 

the model of this thesis.  

In Murali’s model, nodes belong to some particular clusters with a particular 

cluster head (CH) of each cluster. They differentiated the CH with other nodes in 

the network, similar to what the reinforcement learning routing algorithm considers 

the SN, DN, and INs. The energy consumed during entire action, such as 

transmission, is a weighted sum of nodes, as the cost functions used in the 

reinforcement learning routing algorithm. 

 

Figure 2.5 Sensor node architecture in Murali’s model [77] 

An energy harvesting powered sensor node model was developed by Ruan et 

al. [78]. This model used node-based design to manage energy consumption. By 
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Abstract—Energy is one of the scarcest resources in Sensor 
Networks. Though there has been lot of work done in 
considering energy efficiency and the plausibility of energy 
harvesting at the level of a single node, seldom has it been 
discussed at a topology or network level. In this paper we 
examine the key aspect of energy management in Wireless 
Sensor Networks (WSN’s) at a network level. A particular 
clustering based approach is taken into account. A model 
taking into account the high energy consumption processes 
in nodes is then derived using the two parameters of relative 
hop number and a certain usage pattern ratio. The energy 
consumed by the network as a whole is compared vis-à-vis 
the solar energy that may be harvested. The practicality of 
an energy neutral operation is also explored for the given 
topology.  
 
Index Terms— Wireless Sensor Networks; Energy aware; 
Wireless Networks; Cluster 

I.  INTRODUCTION 

Wireless Sensor Networks (WSNs) are envisioned to 
perform complex tasks without human intervention [1]. 
The reliability of these systems depends upon their 
resilience to maintenance. The energy supply is a major 
design constraint in these systems and their lifetime is 
limited by the battery supply [2].  In most of the sensor 
nodes, the size of the battery is very large. When a sensor 
node is used in applications such as data gathering for 
environmental monitoring, combat field surveillance etc. 
using a large sized battery may not be technically or 
economically viable. The problem may be solved by 
automatically feeding the node from its environment, 
such as solar power, microbial fuel cells, and vibrations 
and acoustic noise [2]. In this work, we consider a 
wireless sensor network implementing a certain routing 
methodology and examine the energy constraints and the 
plausibility of achieving an energy neutral operation. 

The general structure of a wireless sensor node is 
shown in Fig 1. The solar cell supplies energy to battery 
that powers the processing unit. The processing element 
processes the incoming data and transmits them in the 
form of packets via the transceiver. The task of buffer 
management is to hold the incoming data waiting for 
channel access and to help in packet scheduling.   

  An energy harvesting device like solar cell converts 
solar energy into electricity to be supplied to a sensor 
node. However, such a device cannot deterministically 
supply power to the system, due to its inherent limitations 
[3]. Also, an energy harvesting device can produce 

energy only at a limited rate [4]. When applying power 
management in energy harvesting scenario, we thus end 
up with trying to optimize the rate at which the energy 
shall be utilized by the nodes, instead of trying to 
optimize the residual energy alone, as is the case with 
battery-only powered nodes. Ideally, such energy 
harvesting mechanisms must lead to an energy-neutral 
system [3]. Hence, whenever we use energy harvesting, 
we must also use appropriate energy saving mechanisms 
to reduce energy consumption at a sensor node. These 
energy saving mechanisms can be deployed at different 
layers of protocol stack [4].  

Energy saving protocols at network layer considers 
energy constraints, path length, survivability, etc. for 
sensor centric routing [5]. In the MAC layer, energy 
saving techniques like limiting the idle listening time, 
avoiding overhearing, avoiding packet collisions, etc. are 
used [6]. Another mechanism used to save energy in the 
MAC layer is the use of energy efficient packet 
scheduling [7]. In this paper, we are mainly dealing with 
energy saving at routing layer.       

The remainder of the paper is organized as follows. 
Section II reviews the related research in energy 
consumption in WSNs. In Section III, we discuss the 
network topology. In Section IV, we present our energy 
consumption model. Section V describes the energy 
budget, and section VI describes the simulation 
considerations and results. Section VII concludes the 
paper. 
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Figure 1.  Structure of a sensor node 
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implementing the sleeping cycles with the energy harvesting cycles, the nodes 

manage the energy mismatch between the energy demands of the device and the 

energy gathered through harvesting. This is partly used in the consideration of 

the charging cycles and energy model design of this model as the nodes in this 

thesis are also relying on energy harvesting sources. However, the model of this 

thesis takes a simplified model of this method to give the focus on energy 

awareness at a network level. Another evaluation of WSN platform has been 

conduction by Antonopoulos et al. in [79] as a reference to the power consumption 

model as well. 

 WSN integration and other WSN works 

The integration of WSNs technology and other wireless network technologies 

are also beneficial when considering the model of the edge the network, such as 

gateways. In the model of this thesis described in Chapter 3, we considered some 

of the sensor nodes to be the possible gateway. It is very important to understand 

the design of the gateway and how it is integrated with other networks. In this 

section, we studied some other works to help make that decision when modelling 

the network. 

Navarro-Ortiz, et al. [80] discussed the integration of LoRaWAN and the cellular 

network for industrial IoT applications. The paper has shown an interesting idea 

to build a seamless fusion integration solution to merge the services between 

LoRaWAN networks as well as cellular networks. It modified the LoRaWAN 

gateway to work as an eNodeB in the Evolved Packet Core (EPC) framework on 

a 4G Long-Term Evolution (LTE) network by implementing LTE signalling on the 

gateway. The proof of concept testbed network enabled LoRaWAN end-node 

devices to send data through LoRaWAN and LTE core network while maintaining 

transparently as well as keeping its LoRa end-to-end security. The gateways of 

the remote monitoring network described in this thesis also need to be reliably 

connected to the internet. The possible remote location of deployment of the 

sensor nodes which operate as the gateway in this paper is assumed to have only 

the connectivity to the cellular network and have no access to other Internet 

connectivity. Hence, the work of this paper has proven the technological feasibility 

of the remote monitoring network with limited Internet connectivity and LPWAN 
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coverage. 

One of the motivations of performing the work in this thesis is to improve the 

energy efficiency of rural remote monitoring to provide a longer and deeper 

understanding of the environment without outage. It is as beneficial for the society 

as the smart city projects such as Smart WSN-based Infrastructural Framework 

for smart Transactions (SWIFT) architecture introduced by Nandury [81]. The 

work modelled the IT infrastructure of a smart city network working with IoT 

devices. Especially, the section of smart environment monitoring integration with 

the Node context analysis can be used in the future work of remote monitoring 

networks to help the responsiveness of the reaction of the data from the network. 

Mehmood, et al. [82] surveyed (machine-to-machine) M2M communications 

using cellular LTE-A as well as future 5G networks. The existing and future 

cellular networks were assumed to be ready-to-use when it comes to mobile M2M 

communication. It has been identified that using cellular networks has challenges 

such as inefficiency in using the physical layer, manufacturing low-cost modules, 

and limited battery life of end nodes. It was suggested that relay-based data 

aggregation schemes can be used in cellular M2M networks to reduce overhead 

as well as the network congestion. This is similar to the scenario described in the 

context of this thesis with LPWAN networks. 

The coverage of different IoT networks was studied by Lauridsen. M, et al. [83]. 

It was simulated a probability coverage model of a 7800 km2 area and compared 

the coverage of GPRS, NB-IoT, LoRa and SigFox based on the network operator 

Telenor. NB-IoT provides the best coverage while the GPRS is the worst. But the 

legacy LTE system will interfere with the NB-IoT when the distance between the 

sites increases, thus increasing the outage. We have considered a similar 

interference situation when modelling the network. 

A LoRa based LPWAN architecture called OpenChirp [84] also inspired the 

modelling of the network when it comes to using a LoRa-like technology to 

simulate the real-world usage. In their proposal, Dongare, et al. have 

demonstrated a proof-of-concept of open LPWAN network. 

Jones, et al. [85] have identified the power conservation requirement to be 
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implemented at the higher levels in the protocol stack rather than the physical 

layer. This is because the physical layer technologies are designed with best 

power efficiency based on their designs. It was also mentioned that the viability 

of the wireless services depends crucially on the power efficiency of the protocol. 

In this thesis, we consider the energy consumption on the network layer to route 

the network as this paper suggested.  

Bouguera, et al. [68] also mentioned that the processing power, such as speed, 

of the microcontroller and how often they are brought out from sleep mode in the 

nodes affects the energy consumption of the lifetime of the network. We take the 

approach that minimises the extra overhead for routing of the microcontroller 

when routing to accomplish a higher overall usability of the entire network.  

An application of such monitoring networks is animal monitoring in the farms. 

Benaissa, et al. [86] identified that the fading model of the off-body sub-GHz 

wireless channel in the barns can be characterised by a one-slope log-normal 

path loss model. The path loss exponent a is about 2 is also gained inside the 

barn as low shadow fading effect in the barn. 

Fan [87] proposed an EnergyxDelay value as a metric for the performance 

evaluation of high energy-efficiency and low transmission delay sensor network. 

The value is the product of energy consumption and transmission delay between 

the sensor nodes and the base station. The authors also discussed the application 

of such a metric in a distributed topology. However, as the main focus of this 

paper was of the base-station-based star network and one of the main 

considerations of the author was the delay which is considered less important in 

the context of this thesis, the EnergyxDelay value was not used in the algorithm 

of this thesis. The logic and idea behind still used as a reference here. 

Many other works related to the WSN have been performed over the years, this 

section just can cover the most significant works that either inspired the work of 

this thesis or used as a reference when designing the models and the simulations 

in this thesis. 

 Machine Learning in Wireless Sensor Networks 

The introduction of ML into wireless networks can benefit resource utilization in 
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the network and increase the lifespan of the network. WSNs require more 

sophisticated routing solutions and be energy efficient at the same time. Jiang, et 

al. [88] has summarized some patterns that can incorporate ML in the Wireless 

Networks which includes routing. Mohammad, et al. [89] reviewed a number of 

different machine learning methods in WSNs in the period of 2002-2013. This 

review helps to guide the thesis in the direction of using the ML in routing. 

One possible area path selection using ML in the WSN was in the MAC layer. 

Chu, et al. [90] presented a Q-Learning and ALOHA based MAC protocol called 

ALOHA-QIR. This protocol takes advantage of both ALOHA and Q-Learning to be 

a simple design and low energy consumption while keeping a low collision rate. It 

used Q-value stored in each node to reserve the air timeslot for the MAC of the 

network. However, the initial collision rate can be higher than normal ALOHA as 

the nodes are learning the network. Similarity can be found in the routing 

algorithm presented in this thesis. 

Another work on the MAC layer was the Self-Adapting MAC Layer (SAML) by 

Sha, et al. [91]. The SAML is designed to address the compatibility issue of 

different MAC protocols in the WSNs by employing a reconfigurable MAC 

architecture, that uses ML to find the best suitable MAC protocol based on the 

network conditions. The learning process can be found in the decision tree shown 

in Figure 2.6. It uses a series of network indicators to decide which is the best 

MAC algorithm. The indicators include the inter-packet interval (IPI), the received 

signal strength indication (RSSI), the priority of QoS requirement (Energy, 

Latency, Packet Delivery Rate (PDR)) and the network traffic pattern. The work 

has shown an improvement of overall performance but introduced additional 

complexity. Hence, in this thesis, we consider our solution as network layer based 

to avoid this compatibility issue like this. 
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Figure 2.6 SAML MAC algorithm decision tree [91] 

 

As early as 1994, Boyan and Littman has proposed a Q-Learning based routing 

algorithm for the wired network [92]. The algorithm did not require prior knowledge 

of the network topology and traffic patterns. It did not need a centralised 

controlling system. The simulation results have shown that this adaptive routing 

performed better than traditional routing algorithms in the dynamically changing 

wired network. It was also mentioned in the future work of the paper that the 

routing table values was replaced by a function approximation which is similar to 

what this thesis’s routing metric likeliness approach. 

Hu, et al. [93] proposed a Machine-Learning-Based routing protocol for 

underwater WSNs called QELAR. By employing Q-Learning, Q value tables 

instead of routing tables are stored in the nodes. The Q-Value is calculated based 

on the expected lifetime of the node. Similar to the idea of this thesis, it trades 

latency and throughput for energy efficiency. But the consideration of the 

approach is quite different and the comparison between a geographic routing 

Vector-based-forwarding (VBF) and the algorithm is not suitable for the simulation 

of this thesis, as the VBF requires the measurement of the incoming signal angle 

which requires an added-on device on every node. 

Another Q-Learning based WSN Routing algorithm (AdaR) was proposed by 

Wang P, et al. [94]. The algorithm is configurable to different goals for different 
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uses of the network. It achieved a better performance than the naïve Q-Learning 

mentioned in [92]. However, the added overhead of supporting different goals are 

not ideal for the limited resourced WSN nodes, and the selection of the next nodes 

are purely based on the Q-Value with simple e greedy exploration whereas in this 

thesis the Boltzmann exploration is used for a better balance of exploration and 

exploitation. The AdaR can be found sensitive to the learning rate. Therefore, an 

algorithm that is less sensitive to the change in the learning rate is desirable. 

Other works in WSN with ML utilisation include a biomedical sensor network 

routing protocol with QoS support by Liang, et al. [95]. Machine learning was used 

in the estimation of the QoS properties in all routes to find the best suitable route 

for the given QoS transmission based on the biomedical applications. Boushaba, 

et al. used a new routing metric called RLBPR to balance the load the gateways 

in WMNs using reinforcement learning [96]. These works are relevant to the 

algorithm proposed in this thesis. However, the protocol in [95] is limited to 

biomedical applications as the network model are tied to that scenario while the 

proposal in [96] of using RLBPR is similar to what has been used in this thesis, 

but the different emphasis constitutes the different idea of the way using the 

reinforcement learning, the one in [96] addressed on the load balance in the 

network while the one in this thesis on the energy efficiency and usability of the 

entire network. 

Two exploration model for reinforcement learning-based cognitive radio 

spectrum sharing networks were introduced by Mitchell, et al. [97]. The main 

objective of this work was to efficiently use the available spectrum using software 

defined radio. By randomly reserving the spectrum and pre-partitioning the 

spectrum pool, both methods can increase the efficiency of spectrum efficiency. 

This idea of random reservation and pre-partitioning were considered in the 

selection of exploration and exploitation of the algorithm in this thesis. However, 

the traditional Boltzmann exploration can simplify the process and create less 

deviation from the focus of the thesis, hence, we still chose Boltzmann exploration 

as the method in this thesis. 

In an expanding cellular network scenario, the management of the changing 

cells can be a challenge, Bennis et al. [98] proposed a reinforcement learning 
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based solution to establish a decentralized and self-organizing mechanism for 

such objective. The base stations have only the local knowledge which gathered 

from the feedback from the connections. The idea is similar to the design of the 

reinforcement learning routing algorithm. 

Another reinforcement learning method has been introduced for the wireless 

networks, notably the adaptive exploration strategies by Hwang, et al. [99] can 

benefit the efficiency of the learning process. However, the additional computation 

power is not suitable for the power constraint sensor network. Therefore, we used 

a fixed exploration strategy in the algorithm. The Q-Learning algorithm also used 

in routing in the map as shown in [100] by Guo, et al. The additional Q table upon 

the routing table is not ideal when it comes to the sensor network, so we use 

simpler TD-based learning in the algorithm. Another example of using Q learning 

in wireless mesh networks was by Vazifehdan et al. [101]. With consideration of 

the residual energy instead of the recharging cycle, we found the method too 

complex for the sensor network.  

 

 WMN Routing Approaches 

 Proactive routing protocols 

The proactive routing protocols maintain the routing information by storing an 

up-to-date routing metric in a routing table in each node. One of the biggest 

challenges for these protocols is propagating the changes in the network. 

Protocols usually use broadcasting to conduct such tasks. However, different 

protocols differ in the approach to how the broadcast handled. 

One of the most common proactive routing protocols in WMNs is Optimized link 

state routing protocol (OLSR) [102]. It is an ad hoc network optimized version of 

the link state protocol, hence the name. It uses periodical HELLO messages to 

sense the neighbours of the nodes. Topology Control (TC) packets are used to 

exchange topology information between neighbours. Then, Multi Point Relays 

(MPRs) are used to relay the information of the routes between certain nodes in 

the network which will be calculated using the shortest path first method. 
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However, for the links without the MPRs, the path is discovered over time. 

Another early routing protocol is the Fisheye state routing [103]. The nodes in 

Fisheye state routing only maintain a limited knowledge of network, just like the 

reinforcement approach we used in this thesis. The link states are only updated 

in a smaller scope, as shown in Figure 2.7. 

 

 

Figure 2.7 Scope of a fish eye routing system [103] 

 

Another basic WMN routing protocol is called Wireless Routing Protocol (WRP) 

[104]. In WRP, each node keeps three tables: routes, distances and link costs. An 

additional message re-transmission list is also maintained in the network. These 

tables are periodically updated by update messages with its neighbours or when 

the link state changes. WRP is fast converging and involves fewer table updates. 

However, large memory storage is required in each node for maintaining the 

tables. Thus, scalability is impaired by this requirement. It also proves not fit for 

the WMSNs as the required large storage is not usually available in these devices 

in the network. 

Destination-Sequenced Distance Vector (DSDV) [105] is also an early routing 

protocol for the WMNs. One similar point between the DSDV and the 
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reinforcement learning routing algorithm is that both algorithms keep the first node 

on the shortest path to every destination node in the network. However, DSDV 

also keeps a set of current neighbours whereas the reinforcement learning routing 

algorithm keeps all the possible next-hops in the table. The DSDV, like other 

proactive routing protocols, is updated using periodically broadcasting messages. 

The update is triggered when the nodes changes status. It advertises the change 

to all neighbours. This can limit the mobility of the nodes where constant update 

is needed when one of the nodes is moving. The delay of propagation of 

information can also cause problems, due to the information is only updated 

periodically. 

 Reactive Routing protocols 

Ad hoc On-Demand Distance Vector (AODV) [106] can be considered as the 

reactive adoption of the DSDV. Only the active paths routing information is 

maintained in the AODV routing table. The routing table maintains the possible 

next-hop at each node. This is to reduce the controlling messages in DSDV and 

overhead on traffic, which have impacts on scalability and performance. This 

brings about one disadvantage of the AODV, the efficiency can be affected as the 

path is not always up to date. The active neighbour nodes in a path are also 

periodically sending HELLO message to maintain the active status of the path. If 

one of the nodes does not receive the message, the path will be deemed inactive 

and be deleted. This creates another disadvantage of the AODV, which wastes 

the bandwidth for the HELLO messages. AODV has been used by default in the 

Zigbee ad hoc networks. The reinforcement learning routing algorithm overcomes 

these disadvantages by learning the information of the network over time, 

especially in a low mobility sensor network.  

TORA (Temporally Ordered Routing Algorithm) is a source initiated on-demand 

routing protocol [107]. It aims to reduce the overhead of adaption of local 

topological changes in the network by limit message propagation. Each node only 

stores its adjacent nodes information and the local topology. The routing is done 

through a series of node searching. TORA also support multiple paths between 

two nodes. It works in a similar way to the reinforcement learning routing 

algorithm. However, reinforcement learning makes the algorithm inherently more 
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adaptive than TORA. 

Similarly, the Dynamic Source Routing Protocol (DSR) [108] also uses source 

routing to deliver packets. The network is completely self-governed with no 

administration supported. It is very simple and efficient as transmission only 

happens when there is no known route between two nodes, then the route 

discovery mechanism is initiated. This simplicity brings about the limitation of the 

maintenance of broken links. Besides, the set-up delay can be higher than the 

proactive routes as the packet need to find a route first. The reinforcement 

learning routing algorithm has the same problem of the set-up delay, however, in 

the non-delay sensitive WMSNs, it is not a problem. The maintenance of the 

broken links can be avoided, as it is learnt by the algorithm. 

A distance routing effect algorithm for mobility (DREAM) [109] is an ad hoc 

network routing protocol taking distance effect and mobility rate as main metrics 

of the routing decisions. Distance effect is the effect of the distances between 

nodes on the routing decision. The fact that the respective speed reduces with 

distance, the frequency of routing table updates is determined by both distance 

effect and the mobility rate of the nodes involved in the route. The DREAM is 

aimed to provide a loop-free path, and with the support of multiple routes 

available, it is also robust. 

The Better Approach To Mobile Ad hoc Networking (B.A.T.M.A.N.) [110] is a 

WMN routing protocol that has the decentralization design. No node has all the 

information about the network, therefore, no knowledge about the best route 

through the network is stored. The routes are dynamically created from node to 

node, just like the reinforcement learning routing algorithm. 

Babel is another routing protocol based on DSDV, AODV with different loop 

avoidance method [111]. However, it uses the hop-count on wired networks and 

a variant of expected transmitted count on wireless links. It is simple and effective 

as the IETF has created a standard version of Babel and used it in the Homenet 

working group [111]. However, it is a very general routing protocol and does not 

learn the topology change over time, unlike the reinforcement learning routing 

algorithm. 
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 Other works in WMN routing 

Murray, et al. [112] investigated some popular routing protocols including OLSR, 

BATMAN, and Babel for multi-hop ad hoc networks. The paper discussed other 

factors that influence the performance of routing efficiency, such as addressing 

and scalability, the ability to run on restricted CPU, bandwidth and unreliable link 

resources. The study found that the overhead of the routing protocol is the most 

significant factor when it comes to small multi-hop ad hoc networks and WMNs. 

Zeiger, et al. studied using wireless ad hoc networks to control robots by 

comparing four ad hoc routing protocols to find out the possibility of using the 

WMN in a real-world scenario with robot controlling system [113] This is based on 

the vision of the requirement of highly dynamic network topologies for the future 

robot operation. Four different routing protocols have been investigated for this 

purpose, namely, the reactive routing protocols AODV and DSR, the OLSR and 

B.A.T.M.A.N. In the paper, a tele-operation scenario has been used to compare 

the four ad hoc routing protocols. Alternative routes can hardly be found by 

B.A.T.M.A.N., AODV and OLSR when the controller connection needs to be 

rerouted. The DSR has shown the adaptability in this test, and similarly, the 

reinforcement learning routing algorithm may also perform impressively if 

included. 

Tang, et al. [114] have proposed using a real-time deep learning method to 

conduct intelligent traffic control instead using routing protocols in WMNs. By 

exploiting deep Convolutional Neural Networks (deep CNNs) with uniquely 

characterized inputs and outputs of the network, lower average delay and packet 

loss rate has been achieved in simulation. However, the large dataset of 

transmissions in the network representing all possible scenarios needs to be 

prepared to train the CNN. In the remote monitoring network, the frequency of 

transmission is not very high in compare to other WMNs. The unexpected change 

of the network from both the nodes and the environment may also impair the 

effectiveness of the method. Hence, this method is more suitable for relatively 

stable WMNs with a high frequency of data exchange, which is not the type of the 

network discussed in this thesis. 

Both More, et al. [115] and Nandakumar, et al. [116] proposed routing protocol 
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for wireless Ad hoc network with energy efficient and Traffic and energy aware. 

These two methods are more suitable for high power WMNs such as mobile 

networks, so energy and traffic awareness can be used more frequently. While in 

the scenario of the remote monitoring sensor networks, the traffic and mobility are 

not main concerns when it comes to routing, hence, it is not as important as the 

methods described in these papers. 

Han, et al. [117] used a software define WSN to solve the routing optimization 

problem. The network model they used is a hierarchical tree model as shown in 

Figure 2.8. The main focus of this algorithm is extending the network lifetime and 

improving energy efficiency, similar to the purposed of the proposed algorithm in 

this thesis. The method they used is by adopting a centralized control plane to 

apply software define network techniques to distribute the routing information to 

all nodes from the controller on the top of the hierarchy, effectively a gateway. 

They divided nodes into energy levels and the controller could alter the topology 

by dynamically changing the weight of the branches to change the routing 

behaviour. This centralised approach is suitable for the network with a clear 

gateway so that it can be characterised in a hierarchical fashion, which is not best 

suitable of the scenario of this thesis. However, the consideration of energy 

awareness is an important reference for this thesis. 

 

Figure 2.8 Hierarchical tree in Han’s routing algorithm. [117] 

nodes of the high-load father node to achieve load shunting.
This kind of local optimization strategy is also often used
for static load balancing of traditional WSN. Since the load
and energy of sensor nodes in WSN are closely related,
load balancing is also beneficial to improve energy efficiency.
However, the algorithm does not make good use of global
network information. In [13], energy of nodes is divided into
several energy levels, and an energy space model is used
for routing optimization. The division of energy reduces the
transmission of control information between nodes and the
controller. Inspired by this, we propose a global routing opti-
mization algorithm called EAMWPA, which optimizes routing
in the process of sensing data aggregation based on sensing
energy levels of sensor nodes to achieve energy efficiency,
and make the simulation comparison with the shortest path
algorithm and the local energy balance algorithm based on
[12].

The paper is organized as follows: In Section II, we illustrate
the models used and some related assumptions. The details of
the proposed algorithm are discussed in Section III. In Section
IV, we carry on the simulation experiment and analyze the
simulation results. Finally, the full paper is summarized in
Section V.

II. MODELS AND ASSUMPTIONS

A. Network Model
The SDWSN network model (as shown in Fig. 1) is adopted

in this paper. Similar to the sink node in traditional WSN,
the controller has a wireless transceiver module by which can
communicate with sensor nodes. The sensing data of sensor
nodes is transmitted to the controller through multi-hop paths,
and the entire network presents a hierarchical tree structure
in the light of different hops to the controller. Besides, the
sensor nodes report information of their own and neighbors,
such as node status, link status, forwarding table and so on,
to the controller, and the controller can change the network
routing through assigning forwarding rules to sensor nodes.
When paths from multiple nodes to the controller go through a
common node, this node consumes energy fast for forwarding
a large amount of traffic, and becomes a “hot” node. Therefore,
how to reduce the energy consumption of the “hot” node, and
balance the whole network energy globally and then prolong
the network lifetime is the focus of this paper. We assume that
the network has the following characteristics

1) Sensor nodes are randomly and evenly deployed in a
square area.

2) The controller and sensor nodes stay still after deploy-
ment.

3) Sensor nodes are isomorphic and energy limited, while
the controller’s energy is not limited.

4) The network topology remains stable until a node be-
comes dead or a new node joins.

5) Sensor nodes periodically send collected data to the
controller.

6) The distance between nodes can be estimated according
to the received signal strength indication (RSSI).
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Fig. 1. SDWSN Network Model

During the topology discovery phase, each sensor node
periodically broadcasts and replies to topology discovery
packets for creating a neighbor list. The list that contains
ids and distance of the neighbor nodes is flooded to the
controller. Taking advantage of the neighbor list of each node,
the controller generates an adjacency matrix A that reflects
the network topology structure. Based on a certain routing
algorithm, the controller generates the forwarding rule for each
node so that each node can communicate with the controller
via a multi-hop path. For simplicity, we use the Floyd shortest
path algorithm for initial route in this paper.

Fig. 1 shows two wireless routes: One is control route that
controller controls the sensor nodes. Considering the control
packet is normally small, and control information tails off
after the network is stable, we ignore the energy consumption
of control in this paper, and the control routing keeps the
shortest path with no adjustment. Of course, the algorithm
should reduce the forwarding of control information as much
as possible. The other is data route that nodes periodically
upload sensing data to the controller. A considerable portion
of energy is consumed in the forwarding and aggregation of
data packets. It is necessary to optimize the routing reasonably
in order to balance the energy consumption of each node and
prolong the network lifetime.

B. Energy Model
This paper adopts the first-order radio energy consumption

model in [14]. The energy required for a node to send k bits
data to distance d is expressed as:

Et =

{
Eelec × k + εfs × k × d2, d ≤ d0
Eelec × k + εmp × k × d4, d > d0

(1)

Eelec is the energy consumption of node transceiver circuit
for receiving or transmitting one bit data, εfs and εmp are
power consumption coefficients needed for power amplifica-
tion in free channel and multi-path fading channel respectively.
d0 denotes the distance threshold to decide which radio model
is used. The energy required for a node to receive k bits data
is

Er = Eelec × k (2)

2017 IEEE/CIC International Conference on Communications in China (ICCC)



 58 

Hao, et al. studied low duty-cycled WSNs [118]. The authors aimed at a 

minimum end-to-end energy consumption with the reasonable delay bound as the 

low duty cycles introduced large delays. The proposed geographic routing 

protocol uses packet holding before relaying and forwarding the packet to the 

destination to increase energy efficiency. The scenario described in the paper is 

closed to the one in this paper, but as the sensor node modelled in this thesis, the 

limited storage and processing power made this packet holding behaviour nearly 

impossible in the remote monitoring networks. However, the induction of Markov 

decision process as well as the reinforcement learning came after that described 

in this paper, influenced the method selection of this thesis.  

By using 802.11s Wi-Fi-based WMNs, Sun, et al. proposed a routing metric for 

the Wi-Fi IP networks with load-balancing and energy-awareness [119]. This 

metric is aimed to be used in the wireless multimedia sensor networks that require 

high data throughput but in the coverage of the WLAN network. The energy-

awareness in this metric and the modification of the routing metric for increased 

efficiency of the routing has influenced the approach of this thesis. 

He, et al. [120] proposed a joint solution for using energy awareness with 

Simultaneous Wireless Information and Power Transfer (SWIPT) networks. By 

combining routing the packet with power information in the network layer; 

choosing the transmission mode in the MAC layer and energy allocation in the 

physical layer, the authors established a full stack of protocols for SWIPT 

networks. The work has been proven useful in the simulations and the idea of 

transmitting power in a multi-hop energy-constrained network was very different 

from other solutions. It has not been considered as useful in the situations of this 

thesis. The physical distances between the nodes in the context of this thesis is 

on the scale of kilometres, while in the [120] was metres. This difference made 

the power delivery wirelessly impossible, hence the method. But the idea of using 

routing not only to transmit the data but also guide the power delivery is certainly 

can be studied in the future work of remote monitoring networks. 

Another method of routing selection of the WSNs is proposed by Zhang, et al. 

[121]. In their paper, a link weight and forward energy density based next hop 

selection mechanism has been utilised. The main consideration in their protocol 
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is the Forward Energy Density (FED) calculated based on the energy value of the 

source node and all of its neighbours combined and the forward transmission area 

(FTA) of the node. FTA is defined by the nodes it will forward the packet to as 

shown in Figure 2.9. The introduction of FTA limited the possibility of the selection 

of the next hop to the direction of the selection of the next hop. This method is 

based on the geological knowledge of the nodes which is not in the consideration 

of the scenario of this thesis. However, the inclusion of energy provisioning is 

similar to the way the algorithm is designed. 

 

Figure 2.9 Forward transmission area of a node [121] 

Other works also affected the choice of routing method used in the reinforcement 

learning routing algorithm. It includes the turn model for adaptive routing proposed 

by Glass. C, et al. [122]; The Context-aware Adaptive Routing (CAR) protocol by 

Micro Musolesi [123]. The CAR protocol is designed for mobile ad hoc networks 

using unicast communication for delay-tolerant usages. Additionally, the 

compassion between proactive and reactive routing approaches for wireless 

sensor networks by Koliousis, et al. [124]; The performance of a variety of routing 

protocols comparison by Broch, et al. [125] between DSDV, TORA, DSR, OLSR 

and AODV. The choice of simulation benchmarks in Chapter 5 is also considered 

the results of the works mentioned above. 
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Fig. 3. Forward transmission area.

As time goes on, the amount of data becomes larger with the in-
crease of nodes. In this definition, edge weight represents
the communication capacity. In (18), when is long, the
data transmission tends to choose a short-distance link. Sim-
ilarly, when is large, the communication link is busy,
the data transmission choose low-load link firstly. Energy plays
a key role in edge weight, when the residual energy of and
is sufficient, (the edge from to ) is stronger for data

transmission.

B. Establishment of the Model

Definition 4: The forward transmission area of node is
. Fig. 3 shows that is a circle with Sink as the center

and as the radius, is a circle with as the center,
and as the radius:

(20)
(21)

where is the set of nodes that have communication link
with node is the set of nodes of that have an edge
with node , and is the distance of node and node .
Fig. 3 shows that, in WSN clustered hierarchical routing pro-

tocols, sometimes nodes of a cluster are closer to the sink than
the cluster head is, but it should transmit data to the head node.
If this backward transmission is frequent (in fact, about 1/2 of
the possibility), it must result in a waste of energy.
This paper proposes a communication protocol that uses for-

ward transmission area according to the position of sink and
the final data flow direction. In Fig. 1, the arc of ruled out
the possibility of node ’s backward transmission, which ensure
that there will be no loops. contains all of the nodes that
directly connected with node . As an area that satisfy the two
requirements, is the overlap section of the two circles,
which contains all of the possible next nodes under topology
and routing algorithm of this paper.

Fig. 4. Minimum area of .

Theorem 1: Based on (21), the area of is
and is given by

(22)

Proof: In fact, ,
the area of sector is , the area of arch is , and here
is a symbol of sector. According to the Cosine Theorem, we

have

(23)

According to Helen Theorem , we have

(24)

Thus

(25)

(26)

(27)

(28)

Case 1: As shown in Fig. 4, if the sink is a neighbor of node
, sink will be the furthest neighbor it is the final information
source of the whole network. Thus, , according to (20),
and the minimum area of is .
Case 2: As shown in Fig. 5, if tends to infinity, the max-

imum area of is . When the radius of is in-
finity, its arc that passes the center of tends to be a straight
line, approximately dividing equally. Thus, the limitation of

can be half the area of . Theorem 1 is proven.
Lemma 1: The area of fulfills the inequality

(29)

where is the communication radial limitation of the normal
sensor nodes.
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 Summary 

In this chapter, we have reviewed a series of works on WMNs, WSNs, ML in 

wireless networks and current routing in WMNs. We have not yet identified any 

routing protocols nor algorithms that are designed for the remote monitoring 

sensor networks. This will verify the contributions of the proposed algorithm in the 

application scenario. The works discussed in this chapter have either inspired the 

design of the reinforcement learning routing algorithm or have a direct influence 

on certain decisions made when designing the algorithm. 
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Chapter 3 Network Modelling 

The proposed reinforcement learning algorithm is designed for mesh topology 

from the ground up by the model of the network itself. We model the network 

operating in a finite area with a finite number of nodes distributed inside the area 

randomly in this algorithm. Hence, we defined the service area of the target 

network by assuming the finiteness of the network in the model. We then model 

the connection between the nodes in the network. In this model, we consider that 

any two nodes are adjacent when they are in a certain range and can establish 

an ad hoc connection between each other. This also models the connections in 

the network as we define the link as the connection between these nodes. 

However, not every two nodes in the range can establish a link between each 

other in this model because of the possible obstacle in between or zero battery 

power in either of the nodes. 

 The model of the wireless channel 

As the network is set to be in the rural areas, we assume no coverage of all 

other kinds of wireless network services in the ISM band of choice. We also 

consider that the channel has certain interference (I	)	and background white noise 

(N	). Hence, we can use the full capacity of the channel to reach the given rate of 

transmission. We can then calculate the maximum transmission rate (R	) at the 

given Signal to Interference and Noise Ratio (SINR	 ) of the channel based on 

Shannon–Hartley theorem and Shannon’s noisy-channel coding theorem as 

shown in (3.1). 

 

 𝑅 = 𝐵𝑊 ∗ 𝑙𝑜𝑔0(1 + 𝑆𝐼𝑁𝑅) (3.1) 

 

where BW is the bandwidth of the carrier used in the transmission. To calculate 

the SINR of the transmissions, we modelled the channel as a fading channel with 

the path loss exponent α as well as the channel gain coefficient h. We also define 



 62 

the distance between the transmitter and the receiver as d. We denoted the 

transmitting power used in the transmission as Pt. We then can calculate the SINR 

using (3.2). 

 

 
𝑆𝐼𝑁𝑅 =

𝑃t ∗ 	 |ℎ|0

(𝐼 + 𝑁) ∗ 𝑑@ (3.2) 

 The model of the network 

The networks discussed in this thesis consists of a certain number of nodes, 

with the links between them. There are no pre-defined gateway nodes, as we 

consider all nodes equal and the Internet connection can be available at any given 

nodes at any time. Hence the elimination of single point of failure. Figure 3.1 

shows an example of a network modelled using this method. 

 

 

  Sensor nodes 

A simplified model of the structure of a sensor node in the context of this thesis 

is shown in Figure 3.2. Each sensor node is considered being powered by an 

internal battery with a fixed capacity of Pmax, as the sole power source. At any 

point, we consider that the remaining energy in the battery is known as Pnow. For 

 

Figure 3.1 An Example of modelled network 
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the sustainability of the node in the remote area, we assume all the nodes are 

connected to a solar-powered charger for recharging the battery. For the simplicity 

of the model, we emulate the charging process by resetting the Pnow to its 

maximum value (Pmax	) after the period of a pre-defined charging cycle (CC	) with 

the unit of time. The length of the CC depends on the given climate condition of 

the model and is calculated in Section 1.1 accordingly. 

 

 

Current solar panels are small enough and capable of powering up the sensor 

nodes. Here we provide a commercial example of such solar panel that is 

accessible as well as affordable for such networks [126]. The size of this panel 

can be fitted onto most enclosures of the sensor nodes and the power output of 

the panel (Pcharge) is sufficient to charge the nodes consistently. There are many 

better solar panels in the industry, but such one can serve as a reference for 

evaluating the charging cycle. The battery gets recharged tcharge hours each day. 

Nowadays, most mobile devices use Li-ion batteries which have a very high 

charging efficiency and have a small discharge loss [127]. We consider that the 

 

Figure 3.2 Structure of a sensor node 
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discharge loss is 0 because it is relatively small when compared with the 

operational discharge. We denote efficiency of the charging circuit as hcharge. We 

then can calculate the CC in the unit of days using (3.3): 

 

 𝐶𝐶 =
𝑃max

𝑃charge × 𝑡charge × 𝜂PQRSTU
 (3.3) 

 

During the operation of the nodes, there may have several possible phases that 

consume the battery power: 

1. Data collection; 

2. Data processing; 

3. Sleeping; 

4. Transmitting; 

5. Receiving; 

The data collection phase means the sensor is working to collect the data 

needed. However, due to the huge possible variety of sensor applications can be 

used in the remote monitoring network, it is difficult to precisely model the power 

consumption of this phase. Besides, the transmission power is much greater than 

the working power consumption of the sensors. For example, LoRa radio chip 

SX1278 requires a typical supply current in transmitting mode of 120mA when the 

RF gain is 20 dBm, while in the receiving mode, it requires 11.5mA [128]. Where 

an example of this total dissolved solids (TDS) water quality sensor [129] has a 

working current of the entire module, including the probe, is 3-6 mA. Moreover, 

most of the time, the sensor will be in the sleeping phase to conserve battery, and 

the power consumption is minimal. Thus, we consider mainly the transmitting 

power when calculating the cost of each point-to-point transmission in the 

algorithm. However, we do factor the percentage of remaining power of the node 

(the ratio of	 Pnow	 /	 Pmax) into the cost function of the algorithm which will be 

discussed in Section 3.2.2. Anyway, it is possible to include the power 

consumption of the sensors in the data collection phase in the calculation to reflect 

the cases of high-power sensor consumption when necessary. However, we put 
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the focus of this thesis on the more dominate transmission power in the present 

stage to have a better understanding of the impact of the decision of routing on 

the operation of the network. 

Each node has a routing table stored in its control unit. The routing table keeps 

track of all the possible routes from that node to all possible nodes in the mesh 

network. It starts of the destination column and also has a next node column as 

oppose to gateway column in the traditional IP routing tables [130]. The node 

keeps track of all its adjacent nodes using the next node column. As the network 

is not subdivided into subnets, there’s also no need for a netmask column where 

can be found in IP routing tables. The Routing Metric (RM) values of each route 

can be found in the next column. The RM values indicate the likeliness of selecting 

the next node in the same row when routing to the designation node. Here we use 

the likeliness instead of the possibility of selection is because we use the 

Boltzmann exploration process to balance exploration and exploitation behaviour 

for the best result of the reinforcement learning, which will also be discussed in 

Section 4.2.1 of this chapter. A visited column keeps track of how many times the 

node being visited, and this information is also used in the reinforcement learning 

process. An example of a Routing table of node 1 is presented in Table 3.1. 

 

Table 3.1 An example of the routing table 

Destination Possible Next Node Routing Metric Times Visited 

3 4 1 131 

4 3 1.42 22 

4 5 1.71 31 

4 6 3.18 80 

5 4 2.13 68 

5 6 0.13 2 

6 4 4.98 186 

6 5 0.05 3 
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 Links between nodes  

The connections between the nodes are called links in the context of this thesis. 

Each link in the topology is bidirectional which means transmission can be 

initiated from either end of the link. If there is a link between two certain nodes, 

they are called adjacent nodes. The power consumption of transmitting from the 

source node (SN) to the adjacent next node (NN) at a given rate R in the channel 

with the parameters of interference I, noise N, the channel gain coefficient h, and 

path loss exponent α can then be calculated using (3.4) based on equations (3.1) 

and (3.2): 

 

 
𝑃X =

(2
Z
[\ − 1) ∗ (𝐼 + 𝑁) ∗ 𝑑@

|ℎ|0  (3.4) 

 

where d	is the distance between the SN and the NN. 

When a transmission happens from the SN to the Destination Node (DN), a route 

is decided on the fly as the network condition may change at any moment. The 

SN will first randomly pick an NN from its routing table in the column of the 

corresponding Destination with the possibility calculated by using the Boltzmann 

process (3.5):  

 

 
𝑝(𝑁𝑁_) = 	

𝑒Za(bbc)/d

∑ 𝑒Za(bbf)/d_
ghi

 (3.5) 

 

where p(NNn) represents the likeliness of the nth possible NN (NNn) of the given 

DN being selected by the SN from the routing table. We also use a hyper-

parameter t to control the spread of the SoftMax distribution of all the possible 

routes, as discussed in Section 4.2.1. The NN then picked by the SN using a 

simple random process with all the possibilities to the same DN. The calculation 

of the cost (C	) of this point-to-point transmission between SN and NN is calculated 
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using (3.6): 

 

 𝐶 = 𝑊i𝑃X −𝑊0 𝑙𝑜𝑔(𝑃kb) −𝑊l 𝑙𝑜𝑔(𝑃bb) (3.6) 

 

where W1,	W2,	and	W3	are some pre-defined positive weights which depend on 

the required learning behaviour, and Pt represents the transmission power used 

in the corresponding leg of transmission calculated using (3.4). The weights are 

defined manually through a serial of trials. PSN and PNN are the power percentages 

of the transmitting and receiving nodes of SN to NN transmission, respectively. 

These two power percentages of the nodes are calculated by the fraction of the 

remaining power of each respective node Pnow over their full capacity Pmax. We 

then apply a log function on each power percentages to provide a value that is 

negative infinite when the Pnow is 0 and the value is 0 when the power is full (Pnow	
= Pmax). In this fashion, the cost of going through the node which has a very low 

battery level is very high. By using this cost function, the algorithm takes not only 

the Pt but also the PSN and PNN into account in the learning process, which enables 

the learning algorithm to adapt to the changes of energy states of the nodes 

involved in this end-to-end transmission. This can result in the ability of the 

algorithm to adjust the routing strategy accordingly. Traditionally cost function of 

routing algorithms in IP networks only fact in only the number of hops of each 

route [130], the consideration of these power parameters is where machine 

learning ability improves over the standard IP routing when it comes to the 

performance of the network over time. 

 Transmissions 

We define a transmission as an action of transferring one data packet from a 

source node (SN) to a destination node (DN) through several intermediate nodes 

(INs) along a certain route (in contrast to a link) in the mesh network [131]. As 

mentioned in Section 3.2.1, all nodes are treated equally and have an equal 

chance to be the SN, DN or IN in this scenario. 

A leg of the transmission is defined as a point-to-point link between SN to the 
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IN or any IN to the next IN or the last IN to the DN. We attach a visited nodes 

variable in the header of the packet to keep track of the path that the transmission 

has taken to avoid looping. When moving forward from the SN to DN, every IN 

will be added to the visited nodes variable one at a time. The visited nodes in the 

header will be removed from the possible NN list in the routing table when one 

node decides the next node. We apply the same loop-detecting process in every 

leg of the transmission. If any IN cannot find any possible NN to the DN due to no 

possible NN have power or all possible NNs have been removed during the loop-

detecting process, then this leg will be deemed unsuccessful.  

We then roll back the transmission to the previous IN (or SN) and try another 

possible NN. We count the times of the retry (NR) and if the NR reaches a preset 

maximum number (NRmax) or all possible NNs from the SN has been tried before 

NR reaches NRmax, we then consider the entire transmission unsuccessful. A 

successful transmission means the packet reaches DN from SN with NR less than 

NRmax. After the transmission finished, we then can evaluate the total cost Ctotal of 

the entire transmission from SN to DN using (3.7): 

 

 
𝐶total =p𝐶g

_

ghi

 (3.7) 

 

where Ci is the cost of the ith individual point-to-point link of the entire 

transmission, where C1 is the initial transmission from the SN to the IN1 and Cn is 

the final leg of the transmission, which is from the INn to the DN. Ctotal is the cost 

of the entire route of the transmission. Then we can work out the Path Quality 

(PQ) value of this transmission which will use the reinforcement learning algorithm 

to update the routing table of each node in the path after the feedback from the 

DN to SN. The PQ value is calculated with a success bonus (SB	) value depending 

on the success of the transmission using (3.8a): 
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 𝑃𝑄 = 	𝑆𝐵 − 𝐶total (3.8a) 

 𝑆𝐵 = t𝑆𝐵𝑉,													𝑖𝑓	𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑖𝑠	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	0,													𝑖𝑓	𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑖𝑠	𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙  (3.8b) 

 

The two-part PQ equation (3.8a) calculates the PQ value using the total route 

cost Ctotal as well as the SB	 If the transmission is successful a configurable pre-

defined positive SB value (SBV) will be added to a successful transmission to 

compensate the total cost values. Zero SB will be given to the unsuccessful 

transmissions, and in this case, PQ	will be negative to discourage the routing using 

the same path in the future. 

 Packet header and feedback 

The only added parameter in the header of the IP packet [130] is the visited 

nodes variable. It can be added in the start of the data payload of each packet to 

keep the compatibility of the IP routing protocols used outside the mesh network. 

With minimum addition to every packet, the negative impact of mesh routing is 

minimised. As discussed in this chapter, the added header contains the nodes 

information are very small as each node in the visited nodes list can be 

represented as a number, the total overhead of such addition information can be 

only several bytes in size. Considering the IP packet carrying the sensor data are 

usually much bigger than this as the data, we decide to neglect the impact of such 

minor addition to the packet. 

The feedback of the transmission is propagated from the DN back to the SN 

using the reverse order of INs along the route if the transmission is successful. 

The feedback information is the PQ value from the IN to the DN. The PQ value of 

that part of the transmission is calculated as if the transmission is from that IN to 

the DN. When the transmission is unsuccessful, the feedback with negative PQ 

value will be propagated from the node of failure back towards the SN in the same 

fashion. Finally, after each node in the transmission receives the feedback, it 

updates the RM value of the DN on the row. The actual NN used in the 

transmission in its routing table using reinforcement learning method will be 

described in Chapter 4. 
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 Summary 

In this chapter, we have modelled the crucial elements of the remote monitoring 

wireless mesh network. This includes the radio channel it uses; the sensor nodes 

work in the network, the links between sensor nodes, the routes of each packet 

travels and transmissions of the operation of the network. We also defined the 

calculation of some of the most important parameters that are used in the 

algorithm, such as SINR,	 Pt,	 CC	 and	 C. In addition, we discussed how the 

information of each transmission is stored and propagate throughout the operation 

of the network by defining the header of each packet and the feedback. With all 

these parameters and information in place, we can now focus on the 

reinforcement learning part of the algorithm, which makes this algorithm stand out 

from other routing algorithms. 
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Chapter 4 Reinforcement Learning in 
the Network 

The updating of the routing table of the previous routing protocols for WMSNs 

is usually done by altering the next node after receiving the updated information 

from the link state messages such as periodical HELLO messages in the OLSR 

[46]. Another widely used mesh routing protocol, The Better Approach To Mobile 

Ad hoc Networking (B.A.T.M.A.N.) uses Transmission Quality (TQ) to determine 

route selection. As the authors explained in [132], TQ makes B.A.T.M.A.N. quality 

aware. However, the update of the TQ still uses a traditional way of overwriting, 

and the route selection is also by selecting the maximum TQ. This may produce 

a better result when the information of the network is present at the node, but the 

lack of adaptability from learning the unknown part of the network still renders it 

suboptimal when deployed in the ever-changing environment of the remote 

monitor networks. 

As mentioned in Section 1.1, the environment of remote monitoring networks 

can be hard to predict. Not only are the available locales for the deployment of 

sensor nodes but also the changes of the power level of each node due to the 

weather and transmission over time. The algorithm needs the ability to adapt to 

the newest changes in the network as well as has the ability to use the previous 

knowledge of the network to make the best routing decision, in order to maximise 

the usability of the network. This requires a ‘memory’ of each node to keep track 

of what has happened over time and has the ability to absorb new information 

gathered from the feedback of each transmission. However, with the limited ability 

of the computational power and memory available at each sensor node, a large 

database is not feasible to be stored within the node. As discussed in Section 1.6, 

reinforcement learning is a good choice to be employed in the algorithm to enable 

such ability. 
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 Temporal difference learning 

In this thesis, we employed a temporal difference (TD) based learning method 

to conduct updating the routing metrics in the routing table of each node when a 

transmission finished and received the feedback from the terminal node (DN when 

the transmission is successful, or the last IN when it is unsuccessful). We also 

use the Boltzmann exploration method to balance exploration and exploitation 

when selecting the node based on the TD learning calculated routing metrics as, 

explained in Section 3.2.2. 

TD learning is one of the most common reinforcement learning methods. It uses 

the differences between the expected value and the actual outcome value of a 

certain action during the process over successive steps to update the agent 

progressively [55]. This difference is called the temporal difference. The learning 

process is to gradually reduce the TD by setting appreciate parameter to reflect 

the learning process. TD learning does not require a training data set to train the 

machine learning algorithm like unsupervised learning. Instead, the learning agent, 

in this case, the sensor node, uses the result of a sequence of states to learn to 

predict the expected value of a variable occurring. This learnt value will also 

influence the environment, called the state, it is detailed in [133].  

TD learning is an appropriate method to support the routing requirements in the 

remote monitoring networks as the best routing decisions needs to be predicted 

from the feedback of the previous transmissions while the decision will impact the 

energy level of each node along the route. Besides, by only storing the latest 

prediction value and update every time using the feedback of the transmission, 

this learning method requires a minimum extra storage as only two parameters 

are added to the routing table of sensor nodes. Apart from the RM value, another 

parameter used in the routing table of this algorithm is a time of visited variable 

storing the times that the route has been selected. This variable is used to confirm 

that all the possible NNs to the DN are tried before the calculation of the new RM 

value. So long as one or more of the variables for all the NNs to DN is 0, an equal 

chance random process will select the NN, instead of using the Boltzmann 

exploration. This is to make sure the learning is not biased towards the first 

selected NN. Thus, it saves both computational power and storage of the nodes 
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that are also crucial for the usability of the network. (4.1) shows how the algorithm 

calculates a new RM value based on the previous prediction and the feedback 

from the transmission: 

 

 𝑅𝑀∗(𝑁𝑁) = 𝑅𝑀(𝑁𝑁) + 𝛽(𝑃𝑄 + 𝛾𝑅𝑀(𝑁𝑁′) − 𝑅𝑀(𝑁𝑁)) (4.1) 

 

In (4.1), RM*(NN)	denotes the updated new RM value at the node for selecting 

the route toward DN via node NN; RM(NN) represents the current RM for the same 

selection; PQ is the path quality value obtained from the feedback of the current 

transmission. It represents the actual outcome of the action of selecting the 

current route. RM(NN’) represents the expected RM value of the selected NN of 

the route. The RM(NN’) is calculated by averaging all the RM values of all the 

possible NNs in this leg of transmission. This represents the expected value of 

the action of selecting the route. We then use some control parameters to control 

the process of learning, where g denotes the discount rate and b is the learning 

rate. We call the 𝑃𝑄 + 𝛾𝑅𝑀(𝑁𝑁′) part of the (4.1) the TD target. The TD target 

indicates the precision of how the algorithm has learnt the network. The smaller 

the value of the TD target gets, the more precise the learning algorithm has 

prediction the best route of the transmission. 

 Parameters of learning process 

As can be seen in (4.1), there are two parameters that determine the outcome 

of the value the TD learning process. They are the updating discount rate g, and 

the learning rate b. In this thesis, we also discuss another important parameter in 

the routing decision process, which is the exploring hyper-parameter t. We use t 

to control the balance between exploiting the learnt knowledge of the network and 

exploring the possibility of using other routes. By controlling this process, we can 

make sure that all the possible routes are considered over time. All 3 of these 

parameters have different impacts on how the reinforcement learning progresses 

over time and further influence the performance of the network. 
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 Exploring hyper-parameter t 

As seen in (3.5), we used the Boltzmann exploration to balance the process of 

exploring and exploiting. The exploring hyper-parameter t is used to control how 

the output the (3.5) by converting the RM values into the likeliness of the selection. 

The Boltzmann exploring process uses the spread of the SoftMax distribution of 

the output of the equation to conduct this purpose [55]. This is achieved by 

applying a SoftMax function to normalise the values and compress them into the 

values summed 1. [134] With a higher t value (𝜏 →∞), all possibility tends to be 

the same, just like a random process, whereas with a lower t value (𝜏 → 0), the 

likeliness tends to reflect the real difference between the possible selection. 

Especially when t = 0, the highest likeliness selection will have a chance of 1. By 

controlling the t value in (3.5), we can adjust the balance between exploring new 

or low RM value nodes or exploiting the best-known node.  

 Discount Factor g 

The discount factor g is multiplied to the expected RM value in the (4.1). Its value 

is in the range of g ∈ [0, 1). This is because if g is greater than 1, the output values 

will diverge as a large expected value will be added to the actual value get from 

feedback. By directly acting with the expected RM value, g is used to control the 

importance of future rewards versus the immediate ones [135], which exist in the 

form of PQ value. A larger g value will result in a greater emphasis on the expected 

future value. Whereas a smaller g value will lead the algorithm considering heavily 

on current immediate value and may ignore the future impacts of the selection. 

The balance of g value will also change the balance of the performance of the 

algorithm and a larger value is expected as the purpose of the algorithm in the 

long-term usability of the network. 
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 Learning rate b 

The learning rate b is also known as the step size. b is multiplied to the new 

information calculated from the new PQ value as well as the temporal difference. 

It alters the extent of the new information added onto the current information. 

Hence, it determines the speed of learning. When b has a value of 0, the algorithm 

learns nothing as it keeps using the old value and ignores the newly learnt 

information. A small b value results in a slow learning process or may even 

permanently stuck if a high training error is associated. A high b value makes the 

algorithm emphasises on the new information but when the b value is too high, it 

may result in numerical overflow as the knowledge rapidly moves away from the 

origin [134]. An optimum b value paired with the appropriate balance between 

exploration and exploitation will make the learning algorithm most efficient. 

 The routing decision process 

The routing decision process of the algorithm is illustrated in the flowchart in 

Figure 4.1. All the routing process happens with in one single node in the network. 

This local decision process makes the algorithm totally distributed. With this 

nature of the algorithm, each individual node learns the network individually and 

when one of more nodes becomes offline, the rest of the nodes in the network still 

have their own information about the network and will eventually learn the 

changes that happened in the network. This eliminated not only the problem of 

having a single point of failure in the star networks but also makes the network 

more adaptive. 

The process begins from the SN choosing an NN from the routing table using 

the Boltzmann exploration described in (3.5). Then the SN will be added to the 

visited variable in the packet header. If the chosen NN is the DN, the transmission 

is successful as the data has been delivered to the DN, and the feedback and 

updating process will occur as described in section 3.3. Otherwise, all the nodes 

in the visited variable in the header will be removed from the routing table of NN 

before it selects its next NN. The process will continue repeating itself with new 
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NNs until the DN has been selected or when one of the NN’s routing tables has 

no available nodes to select. When there are no more available nodes to be 

selected as the new NN, the algorithm will calculate the number of retries (NR) 

and compare it to the maximum allowed retry count (NRmax). If NR is smaller than 

NRmax, the algorithm will go back to the previous node and retry the process and 

1 will be added to NR. If the NR is equal to or larger than NRmax, the routing will 

be considered failed. Once the routing process is finished, regardless of success 

or failure, feedback with the value calculated in (3.8a) will be transmitted to the 

nodes involved during the process. 

 

 

Figure 4.1 RL routing algorithm decision process 
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 Summary 

In this chapter, we discussed the reinforcement learning method utilised in this 

algorithm, namely temporal difference learning. We discussed several key 

variables play important roles in the process of conducting the reinforcement 

learning algorithm, such as exploring hyper-parameter, discount rate and learning 

rate. Furthermore, we have also discussed the implementation of reinforcement 

learning process in the algorithm and the workflow of the routing decision using 

the updated routing table. 
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Chapter 5 Network Simulations 

To evaluate the performance of the reinforcement learning routing algorithm, we 

established a series of simulations with different learning variables to assess the 

performance of the reinforcement learning routing algorithm against the two 

benchmark routing algorithms.  

First, we established a simulation environment that is based on that of the 

remote wireless mesh monitoring network model discussed in the Chapter 3. We 

started by defining the characteristics of the channel used in the simulations. 

When determining the path loss exponent a, we considered the network as a far-

field communication scenario. Given that the network is being remotely deployed, 

the typical a value between of 2.7 to 3.5 was selected for describing the open 

area mobile radio environment [136] [76]. In the simulations in this thesis, we 

assumed the empirical a value of 2.8 for the environment of the remote monitoring 

network’s low multi-path channel as describe in the Section 2.2.1. Similarly, the 

network is likely to have little fluctuation due to the infrequent human activities in 

the place where it is operational, we also assumed a fixed channel gain h of 2. 

The ambient noise (N) of the channel was assumed at the level of -130 dBm for 

the same reason. Besides, having a clear radio spectrum means that the adjacent-

channel interference (ACI) does not exist, and the only interference can happen 

is co-channel interference (CCI) when two or more transmissions arrived at the 

same node at the same time. We can also utilise non-overlapping channels for 

simultaneous transmissions, this assumption is technically feasible. We also 

understand that these assumptions may not best describe the practical dynamic 

communication environment, therefore further detailed study of these specific 

parameters will be performed in the future work.  In this thesis, we focus more on 

the failure rate, energy efficiencies and carrier band usage rate (CBUR) serving 

as the foundation for the future work. 

We set up a series of simulations to compare the performance of the 

reinforcement learning routing algorithm against the lower bound benchmark, i.e. 
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the random routing algorithm and the upper bound benchmark, i.e. the centralised 

shortest path first routing algorithm. The computer we used for the simulation has 

been listed in Table 5.1. 

Table 5.1 The computer used for the simulations in this thesis 

Computer Model iMac (27-inch, Mid 2011) 

CPU Intel® Core™ i5-2400 (4 Cores, @3.10 GHz) 

RAM 16GB DDR3 @ 1333MHz 

Graphics AMD Radeon HD 6970M with 1GB GDDR5 

Storage 128GB SSD + 2TB HDD 

OS Mac OS 10.13.5 High Sierra 

MATLAB MATLAB 2019a 
 

 

 

For each parameter we investigated, we ran the simulations over 3 different 

scales of networks with 7, 20, 50 nodes within an area of 20*20 km2 space to 

represent different scales of networks on the computer with the specification listed 

in Table 5.1. The choice of such area and scale was considering the accessibility 

of the internet from either cable or mobile networks in remote areas so that the 

data collected by the nodes can be uploaded. The 3 different scales of nodes 

represented low, medium, and high density of node coverage in that area. These 

3 densities can be considered small, medium and large scale of the network, as 

the complexity of the network increases as more nodes are involved. Each 

simulation consisted of 52560 timeslots of 10 minutes each to simulate the one-

year total operational time of the network. We executed each simulation of each 

scale of network for 5 times and averaged the results of these simulations for 

better precision. The transmissions happen randomly, with a 20% chance to 

initiate in any timeslot. Each timeslot was capped with initiating 3 maximum 

transmissions. This made a total approximate number of 31,500 transmissions in 
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each simulation. The difference the maximum transmission range of each node in 

the simulation was studied in Section 6.3. However, in all other simulations, we 

fixed the range to 10km. We also studied the performance of the network under 

different charging cycles to reflect different weather conditions. In all other 

simulations, a fixed charging cycle of 5 days (720 timeslots) is implemented. 

Regarding the fixed parameters about the node, we assumed that the battery 

size of each node (Pmax) was 15 Wh. We chose this value based on the constraint 

of the size of the sensor node. The battery capacity of a smartphone with good a 

battery life, such as Huawei Mate 20 Pro [137], was used as a reference here. 

That smart phone has a typical battery capacity of 4200 mAh, operating at 3.7V, 

the energy it stores can be calculated by 4200mAh*3.7V = 15.54Wh. 

We also chose the transmission bandwidth (BW	 ) to be 125 kHz as it is the 

minimum transmission bandwidth of LoRa to reflect the extreme case. We also 

chose a fixed transmission rate (R	 ) of 5 kbps for all the transmissions in the 

simulations. The choice of this transmission rate is in line with the LoRa network 

with spread factor 7 in 125 kHz bandwidth [18]. In order to avoid looping and 

infinite retries when finding routes, we also have defined the maximum number of 

retry NRmax = 10 in all simulations. We also fixed the weight (W1,W2 and W3) used 

in the cost function (3.6) to emphasize on the transmitting power first and then the 

remaining power of the receiver, before the power of the sending node. This will 

lead the algorithm to pick a route with less chance of failure, as the receiver has 

more power left for forwarding the packet on. We used these numbers based on 

our previous trials on the algorithm. All the empirical fixed parameters used in the 

simulation can be found in Table 5.2: 

Table 5.2 Fixed parameters used in the simulation 

BW (kHz) N (dBm) a  h I R (kbps) 

125 -130 2.8 2 0 5 

Pmax (Wh) NRmax W1 W2 W3  

15 10 1 0.1 0.3  
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 Comparison with the random routing method 

Currently, one of the most common routing algorithms for wireless networks is 

Optimized Link State Routing (OLSR). OLSR uses Multipoint relays (MPRs) to 

relay messages between nodes [138]. MPRs are updated with the 2-hop 

neighbour information when receiving HELLO messages of the OLSR protocol 

periodically from other nodes. The HELLO messages with link-state information 

are usually flooded when the routing table is initialised, or new nodes have been 

added into the network. MPRs select intermediate nodes in the routes depending 

on the source. The selection usually is performed by selecting a random 

neighbour to pass the information onwards. 

In this thesis, we used a random route selection process in the simulation to 

emulate the similar behaviour in the OLSR without the periodical HELLO message 

to update the routing table. This random routing algorithm can be considered as 

a simplified version of OLSR for the IoT network studied in this thesis. In each 

transmission, the SN and INs were picked a random next node from the routing 

table with equal probability. The visited variable in the header and the NRmax used 

in the reinforcement learning algorithm has also been applied to the random 

routing to avoid looping and too many retries. This created a fair comparison with 

the reinforcement learning algorithm. 

This random routing was considered as a lower bound benchmark for the 

comparison because the OLSR it based is considered being the traditional 

wireless ad hoc routing algorithm. Hence, the comparison between the random 

routing and reinforcement learning based methods can demonstrate how the 

information from the feedback of previous route selection impact on the efficiency 

of the future node selections. In short, we considered the random routing 

algorithm as a reasonable lower bound benchmark for the performance of the 

reinforcement learning based algorithm. 
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 Comparison with the centralised SPF methods 

We used a centralised shortest path first (CSPF) routing as the upper bound 

benchmark in comparison with the proposed reinforcement learning based routing 

algorithm. Being a centralised method, this CSPF assumes all the information of 

the network is known to all nodes at all time, and the routing is done by using 

Dijkstra’s algorithm to calculate the shortest path from any SN to any DN using 

the same cost function as the reinforcement learning based routing. The CSPF 

method preloaded the best route every time the transmission is initialised and is 

expected to show a great margin when compared to the reinforcement learning 

based routing as well as the random routing. The CSPF is an ideal method, as it 

requires prior knowledge of the topology of the network in order to generate the 

routing table for each node. The updating of the routing tables can also be 

complicated for the low power consumption microprocessors in the sensor nodes 

because all the most effective routes need to be recalculated and updated to keep 

the network efficient as often as the network changes. Otherwise, nodes can be 

overloaded and get out of service due to battery drought if no rerouting is 

performed. This iterative updating of the routing tables of every node in the 

network will incur significant time and energy consumption. 

Table 5.3 shows the comparison between initialising and update a routing table 

for reinforcement learning and updating the CSPF routing table by regenerate the 

entire table as mentioned in this section. Figure 5.1 demonstrates the time 

required to perform a single action of each method of 3 different scales of 

networks with 7, 20, 50 nodes respectively. With a longer computational time, it 

requires more energy for the microprocessor to perform the action, therefore, 

more gross energy will be consumed in the network. Though the differences 

between each action shown in Table 5.3 were not significant, as the total time 

needed was less than 1s. However, considering the CSPF routing need to update 

all the nodes in the network every time the transmission finished, while the RL 

routing just update the nodes along the route, the difference of total computational 

time required during the one-year operation simulation will be magnified with the 

number of transmissions and the number of nodes. We plotted this comparison in 

Figure 5.1 to demonstrate the vast difference in each scale of the network. 
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Table 5.3 Time of initialization and updating routing table for RL algorithms and 

generating SPF routing tables. 

Scale of the 
network 

Initializing a routing table 
for RL algorithm(s) 

Update an entry 
for RL algorithm (s) 

Regenerate a CSPF 
routing table (s) 

7 nodes 0.033395 0.020031 0.068354 

20 nodes 0.036594 0.018697 0.135501 

50 nodes 0.078826 0.019745 0.789133 
 

 

In the simulation of circa 30,000 transmissions we used in this thesis, with an 

assumed average number of links of each route of 10 in the 50-node network, the 

CSPF requires 1.183 million seconds of total update time as opposed to less than 

6 thousand seconds spent using reinforcement learning method. This difference 

is so significant that renders the CSPF impractical to be used in real life for the 

remote monitoring WMSNs even it can give the absolute best route every single 

time. 
 

 

Figure 5.1 Average total computational time required for updating the routing 
tables (in logarithmic scale) 
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Despite the impossibility of using the CSPF method in the real IoT scenarios, 

we still used this method as the upper bound benchmark in the simulations as it 

represents the ideal case performance of the network can reach when all the 

constraints are removed from the physical layer.  

The comparison between the reinforcement learning routing algorithm and the 

benchmarks over different scales network showed the strength and limitations of 

the algorithm in different situations of the IoT network. It also demonstrated how 

the configuration of the algorithm impacts network performance. 

 Summary 

In this chapter, we set the scene for the simulations to prove the usefulness of 

the algorithm. We first listed all the parameters that needs to be used in the 

simulation, we then described the need for comparison between the reinforcement 

learning routing algorithm and the two benchmark algorithms, namely the Random 

Routing and Central Shortest Path First algorithms. Finally, we discussed the 

reason that the CSPF algorithm may have good results, but it is unrealistic to be 

used real world. 
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Chapter 6 Results and Discussion 

In this chapter, we looked into several parameters in the reinforcement learning 

routing algorithm that might have an impact on the performance of the network 

under different circumstances. These parameters covered the learning process, 

node variations as well as network topologies. We compared the results of a 

series of simulations of reinforcement learning routing algorithm with different 

parameters against both the CSPF and the random routing benchmarks to 

establish the potential of the reinforcement learning routing algorithm. 

We investigated the result of the average failure rate (%), the average carrier 

band usage rate (CBUR) (bit/Hz) and average energy efficiency (bit/kJ) of each 

set of simulations with difference scales of the network. The reason for the 

selection of these result outputs is that they present different aspects of how the 

algorithm is performing against benchmark algorithms. The failure rate shows how 

reliable the transmission is at the network level. The CBUR indicates how the 

transmission occupies the spectrum over sending data. This shows the spectral 

efficiency of the algorithm over a long period of time, and how much airtime it is 

required in the process. Finally, the energy efficiency shows how much energy 

needs to transmit a bit of data. As the total data transmitted in the network is fixed, 

the higher the energy efficiency, the longer the network lasts. Hence, the network 

is more sustainable. 

The failure rate (lfail) is defined as (6.1): 

 

 𝜆fail =
𝑁failed
𝑁total

 (6.1) 

 

where	Nfailed represents the number of failed transmissions and Ntotal	is the total 

number of transmissions. As this is the network level failure rate, unlike the failure 

rate in upper level in the stack, there will be no re-transmission on the network 

level, and it depends on the radio environment of the network. We consider 10% 
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for the large network is reasonable. For the smaller networks, we take 5% as the 

benchmark.  

We also define the CBUR hcarrier and energy efficiencyhenergy in (6.2) and (6.3), 

respectively: 

 

 𝜂�RSSgUS =
𝐷transmitted
𝐵𝑊 ∗ 𝑁𝐶used

 (6.2) 

   

 𝜂U_UST� =
𝐷transmitted
𝐸total

 (6.3) 

 

where Dtransmitted is the total amount of data transmitted from the SNs to DNs of 

all successful transmissions during an entire simulation, NCused represents the 

total number of used carriers, and Etotal is the total energy consumed in the 

simulations for calculating the energy efficiencyhenergy. Etotal is evaluated by 

summing up the consumed energy of each node during each charging cycle, as 

shown in (6.4). 

 

 
𝐸total = 	p (

bcharging	cycle

�
p (𝐸max − 𝐸left)

bnodes

�
) (6.4) 

 

where Ncharging	cycle stands for the number of charging cycles has been passed 

since the start of the simulation, and Nnodes denotes the total number of nodes in 

the network in the simulation. 

As we defined all the result outputs we investigated in this chapter, we can use 

them to investigate the impact of each parameter used in the network on its 

performance. 
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 The impact of the network parameters 

As we described in Section 3.2.2, the reinforcement learning routing algorithm 

uses the Boltzmann exploration to balance exploration and exploitation of the 

results of the learning process to balance the need for taking advantage of current 

knowledge of the network and explore for new routes in case of link failure. The 

Boltzmann exploration process that generates the possibility of selecting a 

particular next node p(NNn) was calculated using (3.5). Here we list it again as 

(6.5): 

 

 
𝑝(𝑁𝑁_) = 	

𝑒Za(bbc)/d

∑ 𝑒Za(bbf)/d_
ghi

 (6.5) 

 

During the learning process of the algorithm, we used the TD-learning based 

method to calculate the new routing metric (RM	) value of each node towards the 

DN using the path quality (PQ	) value obtained from the network feedback as (4.1) 

Here we list it again as (6.6): 

 

 𝑅𝑀∗(𝑁𝑁) = 𝑅𝑀(𝑁𝑁) + 𝛽(𝑃𝑄 + 𝛾𝑅𝑀(𝑁𝑁′) − 𝑅𝑀(𝑁𝑁)) (6.6) 

 

where RM*(NN)	denotes the updated new RM; RM(NN) represents the current 

RM; RM(NN’) represents the expected RM value of the selected NN of the route. 

The parameter in the reinforcement learning we studied in this thesis included 

the Boltzmann exploration hyper-parameter (t), the discount factor (g) and the 

learning rate (b). We then established an optimal learning configuration of the 

algorithm for remote wireless mesh sensor network (WMSN) scenarios to 

evaluate the optimal performance of the reinforcement learning routing algorithm 

against the benchmarks. 
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 Boltzmann exploration hyper-parameter (t ) 

We used the exact same method to randomly generate networks for the 

simulations of each scale. The number of transmissions for the small-scale 7-

node networks was 31611, for mid-sized 20-node networks was 31497, where for 

the large-scale 50-node networks was 31605. These simulations were also 

performed with 5 different t values (0.1, 0.2, 0.5, 0.8 and 1). 

 

 

Figure 6.1 Average failure rates of simulations with different t values 

 

Figure 6.1 shows the results of the average failure rate using the same set of 

topologies and transmission settings with different Boltzmann exploration hyper-

parameter (t) values. We averaged all the failure rates results of a series of 5 

simulations. As shown in Figure 6.1, the average failure rate of the transmissions 

was raised as the number of nodes increased. The result of the failure rate of 50-

node large scare networks is much higher than the smaller scale networks. This 

phenomenon was expected as more nodes in the network will result in more legs 

in each transmission. Hence, there is a higher chance of generating route loops, 

which leads to failed transmissions. However, among all 3 different scale networks 
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with the values we tested, we found that the optimum t value was 0.5. It resulted 

in the lowest average failure rate in all 3 scales of networks. As the t value 

controls the spread of possibility, this result can be explained with a small value 

of t, the algorithm will be more exploitive of the learnt information, more likely to 

rely on the same route. This may exhaust the battery of the nodes on that route 

and is less responsive to the changes in the network. In contrast, a large t value 

will even out the different of the likeliness routing metrics stored in the routing 

table. This will result in a more explorative behaviour, making the route selection 

more random rather than taking advantage of learnt information about the 

network. We found that the t value of 0.5 strikes the best balance both exploration 

and exploitation in the tested networks with the best result. With the algorithm in 

place, all the failure rates met the target we set in the beginning part of this 

chapter, which is lower than 5% for the 7-node and 20-node network and 10% for 

the 50-node network. 

We then compare the reinforcement learning routing algorithm with the t value 

of 0.5 against the upper bound CSPF and lower random routing benchmarks in 

all 3 scales of networks. The results are shown in Figure 6.2. 

 

Figure 6.2 Average failure rates of simulations with reinforcement learning, random 

routing algorithms. 
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Figure 6.2 shows the comparison of the average failure rate between the RL 

routing algorithm with the t value of 0.5 against the random routing algorithm. The 

result of the CSPF algorithm was omitted here as it scored a constant 0% failure 

rate at all times. We found that the average failure rate of reinforcement learning 

routing algorithm is much lower than that of the random routing algorithm in both 

situations of all 3 scales of networks, only at only around 1/5 for the 20-node 

networks and 1/3 for the 7-node and 50-node networks. This is because of the 

learning algorithm use the learnt information to avoid lower powered nodes as the 

RM values are updated with the cost function (3.6) where the remaining power of 

both nodes are also taken into account. The possibility of selecting the low 

powered route is reduced. Especially with a reasonable t value to balance 

exploration and exploitation to take advantage of possible alternative routes. 

Without this knowledge of the network, random routing can only randomly pick the 

route, resulting in a higher failure rate. The CSPF algorithm eliminated the failed 

transmissions as it manages the entire network, and the best available route is 

always utilised. Figure 6.2 also shows the change the RL algorithm brings to the 

result by making the network meet the failure rate target. 

 

Figure 6.3 shows the result of average energy efficiency of the series of t values 

(0.1, 0.2, 0.5, 0.8 and 1) in the same set of simulations, where Figure 6.4 

illustrates the comparisons between when the best result of t = 0.5 from Figure 

6.3 and Figure 6.1 are applied to the RL routing algorithm against benchmark 

algorithms in the simulations of networks with different scales. 
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Figure 6.3 Average energy efficiencies of simulations with different t values. 

 

Figure 6.4 Average energy efficiencies of simulations with reinforcement learning, 

random routing and CSPF algorithms. 
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being the lower bound benchmark, was trailing behind both other algorithms. The 

difference between the random routing algorithm and the reinforcement learning 

routing algorithm was less prominent in the 7-node network. This is due to the 

less available links between nodes leads to a lack of choice for the routes for the 

RL routing algorithm to learn from. For the larger scale networks, the 

reinforcement learning routing algorithm had outperformed the lower benchmark. 

Among the different t values in the reinforcement learning routing algorithm, the 

energy efficiency of both t = 0.5 and t = 0.8 were consistently higher than all other 

t values. In the 7-node network scenario, the performance of all t values were 

quite comparable, the same reason as the lack of choice mentioned when 

compared with random routing. In the large 50-node network simulation. t  = 0.1 

and t = 1 were much lower than other values as too much exploration may behave 

like random routing while too much exploitation will also exhaust nodes along a 

certain route, leading to worse results. Generally, from the result of this simulation 

the performance of all five simulations of reinforcement learning routing algorithm 

were better than the random routing benchmark in average energy efficiency. 

 

 

Figure 6.5 Average CBUR of simulations with different t values. 
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Figure 6.6 Average CBUR of simulations with reinforcement learning, random 

routing and CSPF algorithms. 

 

Figure 6.5 and Figure 6.6 show the results of the average CBUR of the 

simulations to illustrate the spectral efficiency of the RL routing algorithm. Despite 

the great difference between the upper bound method and other methods shown 

in Figure 6.6, among all the learning methods with different t values, the results 

for the t value of 0.5 are still outperformed other values. However, a less 

noticeable improvement of the RL routing over the random in average CBUR than 

average energy efficiencies and average failure rates can be found in Figure 6.6. 

This can be explained by the focus of the route selection that the RL routing 

algorithm makes is more towards energy efficiency than spectral efficiency. This 

might result in the route not being the route with fewest hops, which has the 

highest CBUR. As the cost function of the RL routing algorithm is considering the 

impact of energy consumption and longevity of the nodes, the algorithm may 

choose a longer route to minimise that cost. In the network model, each hop 

requires a unit of bandwidth. Hence, the CBUR decreased as the longer routes 

are taken and the number of hops increased. In the network model, each hop 

requires a unit of bandwidth. This result can be observed in Figure 6.6. However, 
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the CSPF has the knowledge to choose the most efficient route, and that selection 

is kept updated, therefore, result in the best average CBUR.  

In all, the t value did impact the performance of the reinforcement learning 

routing algorithms offered in the IoT networks. As found in all results, the 

exploration and exploitation balanced t value of 0.5 was the better choice here 

for all 3 scales of networks, as discussed in Section 4.2.1. 

 Discount factor (g ) 

As mentioned in Section 4.2.2, the discount factor (g) controls the balance of the 

use of knowledge of reward from past and future in the reinforcement learning 

routing algorithm. It is considered as a measure of how far ahead in time the 

algorithm looks. The value of g is between 0 and 1. 

In this series of simulations, 31516 randomly generated point-to-point 

transmissions were used in 7-node small-scale networks. 31601 transmissions 

were used in 20-node mid-size networks, and 31433 transmissions were for the 

50-node large networks.  

 

 

Figure 6.7 Average failure rates of simulations with different g values 
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Figure 6.8 Average failure rates of simulations with reinforcement learning, random 

routing algorithms. 
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advantages of g = 0.8 is less prominent as the smaller values of g results are more 

comparable. However, g = 0.8 still showed the best overall performance among 

tested g values. 

 

Figure 6.9 Average energy efficiencies of simulations with different g values. 
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The energy efficiency results shown in Figure 6.9 and Figure 6.10 are quite 

similar to the failure rate results shown in Figure 6.7 and Figure 6.8. While the 

CSPF method kept its performance advantage, we noticed a significant 

improvement that the learning can bring about over the random routing algorithm 

from Figure 6.10. Moreover, the value of g = 0.8 had also been proven that it is 

more energy efficient than all other g values, especially in the large-scale 

networks for the same reason from the failure rates found in Figure 6.7. Whereas 

the smaller networks, the discount factor plays a less influential role as the 

convergence of route selection can be reached much quicker as there are fewer 

routes to choose from for each node. The influence from different balances 

between exploration and exploitation was much more prominent than here. 

The results of simulations for CBUR of the network are shown in Figure 6.11 

and Figure 6.12. Figure 6.12 also shows the advantage of having a centralised 

information over distributed knowledge. However, the efficiency advantage of the 

value of g = 0.8 has dropped significantly in comparison to failure rate and energy 

efficiency compared to other g  values. This can be interpreted as the most energy 

efficient route may not be the most carrier band efficient as mentioned in the 

discussion in Section 4.2.1. However, it still preformed one of the best results in 

the simulations. The routing choice of the reinforcement learning routing algorithm 

was based on the cost function, which focuses on the energy consumption 

between the nodes. This value considers not only the energy consumption of the 

nodes involved in the transmission but also the remaining battery information of 

them. The variation of this remaining battery information during the simulation 

may divert alternative route with longer hops, hence higher carrier bandwidth 

usage. This may result a less efficient route but avoiding overloading certain 

nodes in the network which reduces usability. Hence, it keeps the entire network 

more useable in the long term. 
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Figure 6.11 Average CBUR of simulations with different g values. 

  

 

Figure 6.12 Average CBUR of simulations with reinforcement learning, random 

routing and CSPF algorithms. 
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In summary, among all g values, 0.8 was found to be the most suitable for the 

performance of the RL routing algorithms in the context of remote monitoring IoT 

mesh networks, as discussed in Section 4.2.2. 

 Learning rate (b ) 

The learning rate b also plays a key role in the reinforcement learning algorithm 

used in this thesis. It determines the rate of newly acquired information replacing 

the known old information. This is done, as shown in (6.6), by multiplying b with 

the difference between new and old RM values. The RL routing algorithm is a 

time-based learning schedule as the learning rate alters how much old information 

are taken in each iteration when updating the routing table.  

In this series of simulations, we used 31781 randomly generated point-to-point 

transmissions in 7-node networks. 31398 transmissions were used in 20-node 

networks, and 31611 transmissions were for the 50-node networks. 

 

 

Figure 6.13 Average failure rates of simulations with different b values 
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As shown in Figure 6.13, a larger b value has a tendency of having a lower 

failure rate when the scales of networks are not too big. However, this cannot be 

applied to the 50-node network as the failure rate of b = 1 was almost the worst 

in the series of simulations. The larger learning rates changes the RM values in 

the routing table much quicker than the smaller b values. This leads to a numerical 

overflow as the RM value of earlier selection may be greatly changed from the 

original value. This can be an advantage when the scale of the network is smaller, 

as the limitation of the selection of routes will lead to a more efficient converged 

final route selection. With fewer choices of routes, this results a better 

performance when the network is really small. But in the bigger networks, this 

means the route selection is constantly changing like random routing, because of 

more choices of adjacent nodes for each node offer by the large networks. Each 

time one node being chosen, the corresponding route metric is updated, but with 

the new information will overflow the old information, leading away from 

convergence. Therefore, the extreme value of b = 1 was much worse than b = 0.8 

in the large-scale networks. Another noteworthy trend can be seen in Figure 6.13 

is that the failure rate when b = 0.1 is smaller than b = 0.2. This can be explained 

as very small b values do not affect the long-term route selection that significant, 

and the result more influenced by the random generated model in this situation. 

 

Figure 6.14 Average failure rates of simulations with reinforcement learning, random 
routing algorithms. 
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Figure 6.14 presented the comparison of the RL routing algorithm with b = 0.8 

against the random routing benchmark. Similar to what can be found when 

discussing Boltzmann exploration hyper-parameters and discount factors, the RL 

routing algorithm with a reasonable parameter setting performed much better in 

failure rate in comparison to random routing with almost all situations met the 

target we set in the first part of this chapter. Even in the case of 50-nodes, the 

result is marginally lower than the target. However, considering the random 

routing had nearly double the failure rate of the RL routing algorithm, this can be 

caused by the network situation being more complicated than the previous 

simulations, which are also randomly generated. The CSPF continues to be the 

none-failing method which has also been omitted here. 

 

 

Figure 6.15 Average energy efficiency of simulations with different b values. 
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Figure 6.16 Average energy efficiencies of simulations with reinforcement 

learning, random routing and CSPF algorithms. 
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Figure 6.17 Average CBUR of simulations with different b values. 
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Figure 6.18 Average CBUR of simulations with reinforcement learning, random 

routing and CSPF algorithms. 
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recharged, the PTN and PRN are reset to 1. This behaviour will change the cost of 

each leg of the transmission accordingly when a recharge happens. The example 

solar panel [126] mentioned in Section 3.2.1 is able to provide a 1W charging 

output at 5.5V. The efficiency of typical battery charging circuit for laptop/palmtop 

computer during high charge current is 90% [139]. In this thesis, we considered 

the charging efficiency of the charger in the sensor node hcharge. as 80% as the 

charging process is not in a high charge current situation. We also assumed no 

other power consumption such as power leakage in the process for the ease of 

calculation in the simulation. 

According to the climate data provided by the met office [30], we calculated the 

average daily sunlight hours in Table 1.1 in Chapter 1. Throughout a year, the 

average hour of sunlight in the UK is 3.76 per day, and 6.00 per day during the 

longest sunlight month (May), while only 1.32 per day when it is the shortest 

month (December). We can then use this data to calculate the charging cycle (CC	) 

in the unit of days we use in the simulation for the environment of the UK using 

the equation (6.8): 

 

 𝐶𝐶days =
�max

�charge×������ 
  (6.8) 

 

Where CCdays stands for charging cycles measured in days, Pmax	was 15Wh for 

each node in the simulations in this thesis, Pcharge was 1W in the case of the 

example solar panel mentioned earlier, hcharge for the charging efficiency, which 

was 0.8 in this case. We then calculated the charging cycle of the average, best 

case and worse case for the simulation is 3.125, 4.98 and 14.20 days respectively. 

To roundup for the ease of representation, we choose 3 days, 5 days and 15 days 

in the simulation. This selection of charging cycles represented the actual climate 

conditions in the context of deployment of remote monitoring devices for the rural 

areas in the U.K. We then converted the CCdays into CCtimeslots that can be used in 

the simulation using the following equation (6.9): 
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 𝐶𝐶timeslots = 	𝐶𝐶days × 𝑁timeslot	per	day  (6.9) 

 

where Ntimeslot	 per	 day represents the number of timeslots per day, and in this 

simulation is 144 for the 10 minute-timeslot mentioned in Chapter 5. Hence, the 

CCtimeslots is 432, 720 and 2160 for the best, average and worst climate scenario, 

respectively. We then used these CCtimeslots in the simulation with optimal learning 

parameters we concluded in Section 6.1. We plotted the results of the comparison 

between failure rates of reinforcement learning routing and random routing under 

different charging cycles in Figure 6.19. 

 

 

 

Figure 6.19 Average failure rates with different charging cycles 
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As shown in Figure 6.19, with the increase of the charging cycle, the failure rate 

of both the random routing and the reinforcement learning routing algorithm 

increased accordingly. However, the random routing algorithm suffered a greater 

impact on the 50-node network with more than 30 percent transmission failed with 

the 2160-timeslot charging cycle. It also failed 12.33% and 15.86% of all 

transmissions even with the 432 and 720-timeslot charging cycle respectively on 

the 50-node network. In the smaller networks, the failure rates were lower for the 

random routing, but with the 2160-timeslot charging cycle, it still had a 25.13% 

failure rate on the 50-node network. This made random routing unusable when 

the network is large and charging cycle is long, such as a large-scale monitoring 

network in the unpredictable climate of the rural areas. The same trend can also 

be found for the reinforcement learning routing algorithms as well, however, the 

reinforcement learning routing algorithm was significantly more resilient to such 

extension of the charging cycle. The worst result appeared in the 50-node network 

with a 2160-timeslot charging cycle. 15.4% of failure rate for the size of the 

network and the length of the charging cycle was much more usable than the 

random routing. In this case, the network become quite unusable as the failure 

rate is 50% higher than the target we set in the earlier part of this chapter. 

However, given the fact that 2160 timeslots are equivalent of 15 days, this failure 

rate is not that bad as the number suggested. The entire month of December has 

only 2 of this 15-day charging circles. Just like previous simulations, the CSPF 

algorithms always kept 0 failure of all simulation because of the up-to-date 

knowledge of the network which has been omitted in this figure. The results here 

demonstrated the advantage of the reinforcement learning routing over the 

traditional random routing for the remote monitoring IoT networks in the context 

of the climate of the U.K. 
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Figure 6.20 Average energy efficiency with different charging cycles 
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algorithm. When the charging cycle changed from 432 to 720 timeslots, the 

average energy efficiency of the random routing had dropped 31.6% while the 

reinforcement learning routing had only 8.1%. The decrease from the 720-timeslot 

and the 2360-timeslot were 62.4% and 50.1% respectively. The biggest decrease 

of the random routing was more than 58.4% from 432 to 720 timeslots in the 20-

node network and 66.3% from 720 to 2360 timeslots  in the 50-node network whilst 

for the reinforcement learning routing algorithm was only 15% from 432 to 720 

timeslots in the 7-node network and 58.2% from 432 to 720 timeslots in the 7-

node network. It is notable that the RL routing algorithm only better than the 

random routing marginally in 7-node network simulations, because of the lack of 

availability of selection of routes. The difference between the random routing and 

reinforcement learning routing algorithm in the larger networks and with longer 

charging cycles were much more significant when the learnt information is able to 

put into use. It is also noticeable that in case the 432-timeslot, 50-node network 

that the random routing has slightly better performance than the RL routing. This 

can be explained when the charging circle is so short and the network work is so 

simple, the network has not much information to be learned from. Nodes are 

mostly at its maximum power states and the routes are very simple. This resulted 

in this singularity. Except that, this general trend proves the benefit deploying RL 

routing over the random routing. The much less overhead RL routing brings about 

in comparison to the huge required computational power of the CSPF stated in 

Chapter 5 also proves the value of RL routing algorithm for the realistic remote 

monitoring sensing scenarios. 
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Figure 6.21 Average CBUR with different charging cycles 
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 The impact of the maximum communication range of the 
nodes in the network 

The different maximum communication range (MR) value of each node in the 

network affects the interconnectivity between nodes in a network. With a longer 

MR, a node can have more potential adjacent nodes. The complexity of the 

topology of the network will inherently change with different MRs. Given the same 

node, MR can be determined by the different environment the network operates 

in reality. Alternatively, the MR can also be presented in a fashion of limit the 

maximum transmission power of each node, but we chose using MR as the metric 

to study is because of the different MRs can deliver clearer representations of the 

change of topology of networks before the simulations start. Besides, the 

maximum transmission power can also be inferred by the maximum range as the 

range of the transmission is positively correlated with the transmission power as 

discussed in (3.4). 

 

 

a. A 7-node network with maximum communication range of 8 km 
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b. A 7-node network with maximum communication range of 10 km 

 

c. A 7-node network with maximum communication range of 15 km 
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d. A 20-node network with maximum communication range of 8 km 

 

e. A 20-node network with maximum communication range of 10 km 



 117 

 

f. A 20-node network with maximum communication range of 15 km 

 

g. A 50-node network with maximum communication range of 8 km 
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h. A 50-node network with maximum communication range of 10 km 

 

i. A 50-node network with maximum communication range of 15 km 

Figure 6.22 Examples of the different maximum communication ranges of 

randomly generated networks in a 20*20 km area. 
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As shown in Figure 6.22, we generated a series of 9 networks in the same area 

(20 km * 20 km) with different numbers (7, 20, 50) of nodes and different MR (8km, 

10km and 15km) of connections between the nodes. The purpose of this study 

was to measure the adaptability of the algorithm to the scales of networks for the 

different environment against the benchmark networks. The complexity of 

networks with the same number of nodes differs from each other in the 

simulations. However, in the simulation, the network generator will connect every 

node into the network initially by relocating singleton nodes. As can be found in 

Figure 6.22a, the interconnectivity of the 7-node network with 8km MR is very 

limited. Some of the nodes even have only one single connection to other nodes, 

this means that if the only connected node fails, the node will become a singleton 

node and all transmissions to or from that node will fail until the next charging 

cycle. The networks with a larger MR or number of nodes are more 

interconnected, this phenomenon is less expected. In the network shown in Figure 

6.22i the nodes are mostly interconnected, forming a nearly full-mesh network. 

This can make the route selection of the nodes difficult to balance so many 

possibilities, the data required to learn is much more comprehensive. 

 

Figure 6.23 Average failure rates with different maximum communication ranges 
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From Figure 6.23, we observed that the networks with 8km of MR scored worst 

among all networks, regardless of the use of reinforcement learning routing 

algorithm when it comes to the average failure rate. Even in the 7-node small-

scale network, this shortage of interconnectivity significantly reduced the ability 

of the network to deliver a low failure rate, hence the usability. This makes both 

algorithms failed to meet the target. However, the reinforcement learning routing 

algorithm did help to reduce the failure rate in comparison to random routing when 

the MR is 8km as the results of failure rates in 7-node and 50-node networks are 

only half of that of the random routing and only 1/3 in the 20-node network. Due 

to the lack of connectivity in the network, the limited choices of available adjacent 

nodes made the routing and re-routing when some nodes are failed very difficult. 

Therefore, nodes can be easily overloaded and become unavailable until the next 

charging cycle. While the reinforcement learning routing algorithm migrated this 

issue by avoiding nodes with less energy, but without this ability, the random 

routing suffered from a high failure rate in all the situations. With the addition of 

the maximum range, the connectivity increases significantly in both algorithms. 

However, the reinforcement learning routing algorithm still outperformed the 

random routing algorithm in all simulations and the difference in failure rate 

between the two increased as the interconnectivity becomes higher with the 

except the extreme interconnectivity shown in the 50-node network with the MR 

of 15km. This can be explained as the oversaturated choice of routes makes the 

learning process much slower. 
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Figure 6.24 Average energy efficiencies with different maximum ranges 

 

 

Figure 6.25 Average CBUR with different maximum ranges 
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Figure 6.24 and Figure 6.25 presents the average energy and CBUR of these 

simulations. As can be seen, the energy efficiency of both random routing and 

reinforcement learning routing algorithm increase as the MR increases in all 3 

scales of the networks. Particularly, in the 7-node networks, both algorithms show 

great improvement from 8km to 10km in MR. The energy efficiency of the 

reinforcement learning routing algorithm increases 51.9% while the random 

routing raises 76.47%. This can clearly be understood as the decrease of the 

failure rate as well as more available routes contribute to this improvement. 

However, the CBUR do not have the same degree of improvement, especially in 

the reinforcement learning routing algorithm. When MR increased from 8km to 

10km, all 3 scales of networks have shown a slight decrease in terms of CBUR. 

This is because that the more interconnected network may benefit the failure rate, 

but more complicated routes are available, the CBUR suffers as more legs are 

needed to accomplish a transmission. Hence, higher consumption of carrier 

bands occurs. The CSPF as it uses the best route all the time, therefore no 

positive nor negative effect can be noticed. The reinforcement learning routing 

algorithm showed an advantage over the random routing in all MR values of all 

networks, proved the effectiveness of the algorithm. 

 

 

 The reinforcement learning algorithm comparison 

From the results above, we can find an optimised set of reinforcement learning 

parameters for the remote IoT mesh network simulation models considered in this 

study. The parameters from the simulations are listed in Table 6.1 as we found 

out in the earlier simulations. We also recap the other related parameters used in 

these series of simulations in the Table 6.2. 
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Table 6.1 The reinforcement learning parameters for the simulation with best 

results 

t g b 

0.5 0.8 0.8 
 

 

 

 

Table 6.2 Other parameters used in the simulation 

BW 

(kHz) 

N 

(dBm) 
I a  

h 

(fixed) 
NRmax 

Pmax 

(Wh) 

R 

(kbps) 

CC 

(timeslots) 

Max. 

Range (km) 

125 -130 0 2.8 2 10 15 5 720 10 

 

 

 

We then went through another set of 5 simulations of a year time duration (52560 

timeslots) with all the best parameters we found in the simulations conducted in 

this chapter listed in Table 6.1 and Table 6.2 to establish how the reinforcement 

learning routing algorithm perform using an optimised set of parameters against 

the benchmark algorithms in the given remote IoT deployment environment. The 

total number of transmissions we used in this set of simulations was 31587 for the 

7-node network, 31481 for the 20-node network, and 31871 for the 50-node 

network. We then plotted the results as follows: 
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Figure 6.26 Average failure rates of the reinforcement learning, random 

routing and CSPF algorithms. 

 
 
As demonstrated in Figure 6.26, the average failure rate of the RL routing 

algorithm is apparently lower than the random routing algorithm in all 3 different 

scales of networks. All these simulations, using RL routing algorithm has met the 

failure rate targets we set in the beginning of this chapter, whereas using the 

random routing, only in the case of 7-node network has met the same targets. 

With the scale of the network increases, the margin of average failure rate 

between the reinforcement learning algorithm and random routing algorithm 

increased, which has proven the value of employing reinforcement learning in 

routing the remote monitoring IoT networks as explained in Section 3.2.3. 

We then investigated average energy efficiency and CBUR of the reinforcement 

learning routing algorithm in comparison to the benchmarks in the simulation. 

Figure 6.27 and Figure 6.28 present the results of the comparison, we can 

summarise that the RL routing algorithm performed better than the random routing 
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algorithm in all 3 series of simulations in both energy efficiency and CBUR again. 

When it comes to average energy efficiency, the reinforcement learning routing 

algorithm shows great improvement over the random routing, especially in the 20-

node and 50-node networks. Even in the simple small-scale 7-node network, the 

reinforcement learning routing algorithm still marginally more energy efficient than 

the random routing. This has also proved the RL routing algorithm is more energy 

efficient than the random routing algorithm. The reason for this improvement is 

that during the long period of simulation, the reinforcement learning algorithm 

learnt how the energy changes in the nodes in the network and route the 

transmission accordingly. This made the RL routing algorithm energy aware. As 

mentioned in Section 5.2, though the CSPF algorithm is much superior in all kind 

of performance, the low efficiency of updating the network and the complicity it 

involves ruled it out from implementation in any kinds of real world remote IoT 

networks. When it comes to the spectral efficiency from the CBUR chart, the 

improvement is much less profound as the RL routing algorithm is based on the 

energy information from the nodes. The benefit of the slight better spectral 

efficiency came with the great improvement in the side of energy. In both cases, 

the CSPF method has shown a lower result in the case of 20-node networks. This 

can also be explained as the complexity and the density of nodes helped the 

central knowledge the CSPF to perform better in the denser networks.  
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Figure 6.27 Average energy efficiencies of the reinforcement learning routing, 

random routing and CSPF algorithms. 

 

Figure 6.28 Average CBUR of the reinforcement learning, random routing and 

CSPF algorithms. 
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Finally, we plotted the progressive timeline of the failure rate, energy efficiency 

and carrier band efficient of the series of 5 simulations of 50-point large-scale 

network using the reinforcement learning routing algorithm conducted in Figure 

6.29, Figure 6.30 and Figure 6.31. In addition to the actual number of the 

simulation results, we also plotted trendlines to show the continuity of the trend of 

that set of data. We can observe in Figure 6.29, the trend of the failure rate l can 

be described as following a logarithmic trend with the time of t given in (6.10) 

𝜆 = 	−0.164 ln(𝑡) + 7.019 (6.10)  

As shown in the equation, the failure rate goes down gradually, which means 

over time, as the RL routing algorithm learns the network, the network becomes 

more reliable. Similarly, in Figure 6.30, we can draw (6.11) as its logarithmic 

trendline to conclude that the energy efficiency is increasing overtime. The energy 

efficiency starts improving quickly, but gradually slows down at a higher level. 

These trends show the progress of learning of the algorithm over the course of 

simulation or, in other words, the lifetime of the network.  

𝜂U_UST� = 	35.764 ln(𝑡) + 762.85 (6.11)  

Finally, a linear trend following the (6.12) can be found in the CBUR chart shown 

in Figure 6.31. 

𝜂�RSSgUS = 	10¨©𝑡	 + 	2.1948 (6.12)  

The change of the CBUR is much less prominent. As we found in other 

simulation earlier in the network, the RL routing algorithm is learning on the 

energy pattern rather than the spectral efficiency can explain this phenomenon.  

On the actual data of the failure rate shown in Figure 6.29, it starts with huge 

fluctuation in the early stage of the simulation. This is due to the RL routing 

algorithm has not yet learnt to manage the routing with sufficient data. As time 
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progresses, the failure rate has reduced overtime and stabilised in the later part 

of the simulation as the RL routing algorithm gains a better knowledge of the 

network. The similar data pattern can also be found in both Figure 6.30 and Figure 

6.31. The energy efficiency increased as the RL algorithm progressively learning 

the network providing a more consistent selection on route with better success 

rate. We can also observe that the CBUR has shown a similar pattern to the failure 

rate but with a lower degree of fluctuation. However, the improvement the RL 

routing algorithm provides for the spectral efficiency is limited as we explained 

earlier. 

Additionally, we can also observe the data of the failure rate that the rate is also 

related to the charging cycle used here, 720 timeslots as the fluctuations of the 

data has a pattern of up and down every 720 timeslot. The failure rate went down 

every time the nodes gets recharged and up after that until next charging cycle. 

Energy efficiency also changed as the recharging process will make the route 

selection to the actual best route as all the previously exhausted nodes were back 

online after the recharge. 

 

Figure 6.29 Time series and its trend of average failure rate for the 50-node 

mesh IoT networks using Reinforcement Learning Routing Algorithm. 
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Figure 6.30 Time series and its trend of energy efficiency for the 50-node mesh 

IoT networks using Reinforcement Learning Routing Algorithm. 

 

Figure 6.31 Time series and its trend of CBUR for the 50-node mesh IoT 

networks using Reinforcement Learning Routing Algorithm. 
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 Summary 
In this chapter, we have conducted a series of simulations to study the effects 

of 3 different parameters of reinforcement learning, namely the Boltzmann 

hyperparameter t, the discount factor g and the learning rate b. the performance 

of the network in three criteria including failure rate, energy efficiency and carrier 

band usage rate. 5 different possible values of each parameter are simulated in 

each episode of simulation. We then found the value with best result of each 

parameter.  

 We then compared the reinforcement learning routing algorithm directly against 

two benchmarks. We found that the reinforcement learning routing algorithm 

performed considerably better than the lower bound random routing algorithm. 

From all these data we found out the RL routing algorithm did help the network to 

meet the target we set in the chapter, whereas in most cases, the benchmark 

random routing algorithm failed to meet. Finally, we used the timeline of the 

simulation with the optimised parameters of the algorithm to illustrate the progress 

of the learning in failure rate, energy efficiency and CBUR. We concluded that 

employing RL in routing has a positive effect on the energy efficiency performance 

of the remote monitoring IoT networks. 
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Chapter 7 Conclusion 

This thesis, we proposed a reinforcement learning routing algorithm that can 

reduce the failure rate, improve energy efficiency and carrier band usage rate of 

wireless mesh networks for rural environment monitoring. This kind of network 

addresses the need for a network that can provide connectivity effectively in the 

scale of kilometre squares in the rural without the pre-installed infrastructure. By 

introducing reinforcement learning, the algorithm is able to learn from the 

feedback information from each transmission and compare and store the 

information of the enviornment and the usage pattern of the power for better future 

routing decisions.  

Firstly, we conducted extensive research and analysis of the environmental 

requirement for the remote monitoring networks and the available wireless 

technologies. We concluded that LPWANs with mesh topology were the choice 

for such tasks. We then introduced artificial intelligence into the routing using 

machine learning in the algorithm to enable long-term energy awareness. Such 

energy awareness can be reflected on the routing decision made by the algorithm 

as the algorithm learning about the network. 

Secondly, we carried out a comprehensive literature review for related fields of 

study including wireless mesh networks, wireless sensor networks, machine 

learning in wireless sensor networks and other wireless mesh network routing 

solutions. We identified the need for a new routing algorithm that is specifically 

designed for remote monitoring sensor networks.   

Furthermore, we modelled the remote monitoring networks with attributes of the 

key components including the channel, the nodes, the links, the transmissions, 

and the feedback that used for the machine learning. We also discussed and 

implemented the reinforcement learning method used in the algorithm. We also 

defined several key parameters to be studied in the further investigation. 

Finally, we conducted a series of simulations to compare the effects of the key 

parameters on the effectiveness of the algorithm. We also compared the 



 133 

performance of the reinforcement learning routing algorithm with an upper bound 

and a lower bound benchmark. We proved the effectiveness of the algorithm by 

setting the performance target for algorithms to meet. We found that the RL 

routing has successfully met the target, whereas the benchmark algorithm has 

failed to meet the target.  

We gathered a set of parameters with the best performance for the RL algorithm 

under the simulated environment. We found that the RL routing algorithm with 

these selected parameters to have a substantial improvement over the benchmark 

in all three criteria we studied. In summary, we concluded that the result has 

indicated that the proposed RL routing algorithm has addressed the need for the 

network.  

 

 Future work  

Based on the research conducted in this thesis, there are several assumptions 

that can be studied further in the future. The assumptions include the interference, 

the channel parameters, charging cycles and transmission patterns. With the 

considerations on these assumptions, a more comprehensive model of the 

network can be built. Hence, more specified routing strategies can be developed 

and implemented for further researches.  

Firstly, future works can consider the inclusion of both internal and external 

interferences. The interference has been considered zero in the simulations of 

this thesis, but in the real network situations, it exists. Internal Co-channel 

Interference can be studied to take simulation transmissions in adjacent nodes 

into consideration. The algorithm can divert the route selection to make better use 

the space in the network and even the energy consumption between all the nodes. 

Additionally, external Adjacent-Channel Interference should also be considered. 

Though the routing algorithm should be considered physical-layer technology-

independent, the existence of congestion of the spectrum the underlying physical-

layer technology will impact the energy consumption and performance of 

transmissions in the network. The learning process can consider that for more 

accurate channel prediction for the selection of routes. 
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Secondly, the fixed channel parameters used in the model, and the simulations 

also can be further studied. Location-specific parameters can be used in the 

simulation for more precise network planning. Dynamic channel parameters can 

also be introduced to the model to reflect the changing channel in the network.  

Furthermore, the charging cycles we selected in this thesis is based on the 

average sunshine hours in the UK. The nodes may have other kinds of power 

sources, or different nodes may have different power cycles, such as grid-power 

nodes. With the introducing dynamic power model including the charging cycles, 

the different levels and the types of power source for each node, the power source 

planning can be carried out before the deployment of the network. 

Finally, future researches of transmission patterns in the remote monitoring 

network can also benefit from the base of this thesis. We used randomly 

generated transmissions in the simulation with randomly picked SNs, DNs, and 

starting times. This may not reflect how data is flowing inside the network as the 

transmissions in the network in the real world usually have a certain pattern. This 

pattern may make the route projection more precise and the energy consumption 

planning more accurate as the learning algorithm can predict the direction of the 

transmission to provide better channel provisioning. 

Many other types of works can be carried out on the basis of this thesis to make 

us build a better remote monitoring network and produce more meaningful data 

that benefit the world. 
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