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We introduce a new family of networkmodels, called hier-
archical network models, that allow us to represent in an
explicit manner the stochastic dependence among the dyads
(random ties) of the network. In particular, eachmember of
this family can be associated with a graphical model defin-
ing conditional independence clauses among the dyads of
the network, called the dependency graph. Every network
modelwith dyadic independence assumption can be general-
ized to constructmembers of this new family. Using this new
framework, we generalize the Erdös-Rényi and β -models to
create hierarchical Erdös-Rényi and β -models. We describe
various methods for parameter estimation as well as simula-
tion studies for models with sparse dependency graphs.
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1 | INTRODUCTION

The statistical analysis of network data is concernedwithmodeling relational data taking the form of random graphs,
or networks, where the nodes represent units in a population of interest and the random ties (i.e. dyads) encode the
complex of interactions among them.

Manywell-known networkmodels and, in fact, mostmodels that can be fit to large networks either rely on the often
unrealistic but theoretically convenient assumption of dyadic independence, that is probabilistic independence among
the dyads, or induce complete dependence among the dyads. Developing networkmodels that explicitly accounts for
more complex forms of marginal or conditional independencies among the dyads, also called the independence structure
of the network, has proved to be quite difficult, both for computational and theoretical reasons. As a result, most of the
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2 SADEGHI AND RINALDO

networkmodels proposed in the literature and used in practice allow only for a minimal degree of control over the type
and strength of stochastic dependence among dyads.

On the other hand, in the field of graphical models, there is a vast body of work on the independence structure of
sets of random variables. In graphical models, graphs, generally calledMarkov dependency graphs or simply dependency
graphs consist of vertices that correspond to random variables and edges that correspond to some types of conditional
dependencies between their endpoints; see for example Lauritzen (1996). Throughout, in order to avoid confusion,
we use the terms “node" and “tie" for networks, and “vertex" and “edge" for dependency graphs, whereas a potential
random tie is called a “dyad". In order to distinguish between different possible conditional independencies among
random variables, different typologies of dependency graphs have been proposed in the graphical model literature,
each of which corresponding to a particular class of models. One of themost popular class of graphical models is that
of undirected graphmodels (Darroch et al., 1980), which assume conditional independence between random variables
corresponding to two non-adjacent vertices in the dependency graph given all other variables (vertices of the graph).

There is a natural duality between networks and dependency graphs: dyads of the network are (binary) random
variables, and hence can be considered to be vertices of a dependency graph. Edges of the dependency graphwould
then determine the conditional independence among these variables, i.e. the independence structure among the dyads
of the network. This duality was first noted and used for modeling purposes in the seminal work of Frank and Strauss
(1986), where network dyads are modeled using a very specific type of dependency graph that assumes dyads to
be conditionally independent if they do not share a node; see also Chapter 7 of Lusher et al. (2012). Recently, this
duality was used for sampling andmodel fitting in certain networkmodels in Thiemichen and Kauermann (2017), or for
modeling exchangeable randomnetworks in Lauritzen et al. (2018, 2019). Also, there have been other approaches to deal
with certain “local" types of dependency in networks by using nodal attributes, i.e. extra information on the individuals
presented by nodes of the network (Schweinberger andHandcock, 2012) and Fellows andHandcock (2012).

Themain goal of this paper is to leverage the duality between networks and dependency graphs in order to propose
new, tractable and interpretable network models that allow for specific independence structures. We accomplish
this by generalizing existing and well-known network models that rely on the dyadic independence assumption to
hierarchical log-linear models that additional conform to a given set of conditional independencies among the dyads.
Towards that end, weworkwith undirected graphical models, which imply that our proposed networkmodels are of
linear exponential family form and, therefore, are instances of the class of exponential random graphmodels (ERGMs); see
Holland and Leinhardt (1981) (but see also its discussion, Fienberg andWasserman, 1981) and Frank and Strauss (1986),
and, for recent developments, Hunter and Handcock (2006); Robins et al. (2007). As baseline models, we consider
both the Erdös-Rényi models, defined by Erdös and Rényi (1959) and studied vastly in the literature of networks and
random graph theory and the β -models, defined by Blitzstein and Diaconis (2010); Chatterjee et al. (2011) and studied
by Rinaldo et al. (2013). We call the resulting models the hierarchical Erdös-Rényi and hierarhical β model respectively.
Our approach could also accommodate, in the same manner, for the class of p1 models, introduced by Holland and
Leinhardt (1981) for directed networks.

We also provide a method based on the gradient descent algorithm to estimate the maximum of the likelihood
function for hierarchical Erdös-Rényimodels. In principle, thismethod canbegeneralized toother families of hierarchical
models, but the computational difficulties should be examined inmore detail. We also provide simulation studies to
apply the proposed method for the maximum likelihood estimation, and to compare hierarchical Erdös-Rényi with
Erdös-Rényi.

In the next section, we formally define networks and dependency graphs, introduce the independence structures
for undirected dependency graphs, and illustrate the duality between networks and dependency graphs.

In Section 3.1, we introduce hierarchical log-linearmodels for undirected graphicalmodels, and demonstrate how to
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use them to define hierarchical networkmodels.In Section 3.2, we apply the Erdös-Rényi parametrization to hierarchical
networkmodels, defined in Section 3.1, write themodels in exponential family form, and provide the corresponding
normalizing constant in closed form in the sense that they do not depend on summation over all networks. In Section
3.3, we conduct a similar study as in section 3.2 for the β -model parametrization instead of Erdös-Rényi’s. In Section 4,
we study themaximum likelihood estimation and provide algorithms for this purpose for (sparse) dependency graphs
for hierarchical Erdös-Rényi. We also provide relevant simulation studies, which show that themodels significantly take
the simulated dependencies in the networks into account.

In Section 5, we present several problems related to the proposed models for further work. In particular we
briefly discuss model selection for the dependency graph, and the existence of themaximum likelihood estimator for
thesemodels, as well as the selection of dependency graphs. We finally discuss analogousmodels based onmarginal
independence.

2 | NETWORKS AND DEPENDENCY GRAPHS

Graphical models (see, e.g. Lauritzen, 1996) are statistical models expressing conditional independence statements
among a collection of random variablesX = (X1, . . . ,X |N |) indexed by a finite setN . A graphical model is determined
by a dependency graphD = (N , F ) over the indexing set N , whose edge set F (whichmay include edges of undirected,
directed or bidirected type) encodes conditional independence relations among the variables, orMarkov properties. For
a non-empty set A ⊂ N , let XA = (Xi , i n ∈ A) be the corresponding sub-vector of X . Given disjoint subsets A, B and
C of N , withA and B non-empty, we express the clause thatXA is conditional independent ofXB givenXC using the
notationA ⊥⊥ B | C . In particular, ifC is the empty set, this will reduce to simply marginal independence ofXA andXB ,
written asA ⊥⊥ B .

For an undirected graphD , where all edges are depicted as full lines, if, for any two non-adjacent vertices i and j , it
holds that i ⊥⊥ j |V \ {i , j }, i.e. i and j are conditionally independent given the rest of the vertices thenwe say that the
pairwise Markov property is satisfied. If, for any three disjoint subsetsA, B andC of the vertex set,A ⊥⊥ B | C when every
path betweenA and B has a vertex inC thenwe say that the global Markov property is satisfied. It is known that these
two conditions are equivalent for positive densities; see Pearl (1988); Lauritzen (1996).

For example, in the undirected graph of Fig. 1(a), the pairwise Markov property implies that i ⊥⊥ k | {j , l } and the
globalMarkov property implies that {i , l } ⊥⊥ k | j .

F IGURE 1 An undirected dependency graph.

We define a random network to be the random graphG = (V , E ), where the node setV consists of labeled individuals
and the random tie set E , also called the set of dyads, consists of binary random variables taking values in {0, 1}. In a
realization of a random network, nodes i and j are connected if the random variable corresponding to the tie i j takes
the value 1, and they are disconnected otherwise.

Now suppose that we are interested in networks with n = |V | nodes. Then, for a random network G (which is
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a complete random network in the sense that all dyads are existent) on n nodes, it holds that its number of dyads is
|E | =

(n
2

) := m . Conditional independencies among the dyads ofG can then be expressed through a dependency graph
D onm vertices, each vertex corresponding to a dyad inG . Wewill only be concernedwith certain types of conditional
independencies, which we introduce next. Let i , j , k , and l be labels for the nodes of the random networkG . We say that
a dependency graph satisfies theMarkov dependence property if when ties i j and k l do not share a common node inG
then i j � k l inD , i.e. vertices i j and k l are not adjacent. Notice also that the definition requires only non-neighboring
ties ofG to be non-adjacent vertices inD and not vice versa; therefore, the dependency graphs we propose could be any
subgraph of the line graph ofG : the line graph L(G ) of a graphG is the intersection graph of the tie set E , i.e. its vertex
set is E and e1 ∼ e2 if and only if e1 and e2 have a common endpoint (West, 2001, p. 168). For example, for networks
with 4 nodes, all dependency graphs that satisfy theMarkov dependence property are the subgraphs of the dependency
graphD depicted in Fig. 2. In addition to begin amenable to theoretical analysis, there are practical justifications for
adopting such restrictions; see the discussion in Section 5.

The type of restrictions on the dependency graphs described above is directly inspired by theMarkov properties
for networks put forward by Frank and Strauss (1986) in their seminal paper. Our modeling choice is, however, different
in the two following ways: 1) In Frank and Strauss (1986), a unique dependency graph (namely the line graph of the
complete graph is used tomodel networks. Here, on the other hand, wemodel any possible subgraph of the graph used
in Frank and Strauss. Therefore, we deal with different possible independence structures that might occur for networks.
2) In Frank and Strauss (1986), they assume exchangeability among the dyads of the network in order to reduce the
number of parameters, whereas here we combine the graphical model with the known networkmodels in the literature
to obtain fewer parameters. This also ensures that ourmodels inherit the desired properties of the baseline network
model.

As we shall see in the next section, we are particularly interested in the cliques, i.e. complete subgraphs, of the
dependency graph. A triangle in networkG is a subgraph consisting of nodes i , j , k and ties i j , j k , i k . A r -star inG is a
subgraph consisting of nodes i , i1, . . . , ir and ties i i1, . . . , i ir ; we call the node i the hub of the starC , andwrite i = hub(C ).

The following observation plays an important role in the paper: underMarkov dependence property, cliques inD
correspond to stars and triangles in the random networkG : A clique of size 1, i.e. a vertex inD , is of form i j , and hence
corresponds to the tie i j inG , i.e. a 1-star; a clique of size 2, i.e. an edge inD , is of from i j , i k , and hence, because of the
Markov dependence property, corresponds to the 2-star with hub i and other nodes j , k inG ; a clique of size 3 that is of
form i j , i k , i l inD corresponds to a 3-star inG ; and a clique of size r , r ≥ 4, corresponds to an r -star inG . A clique of size
3 that is of form i j , i k , j k inD corresponds to a triangle inG ; we call such cliques ofD hubless.
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F IGURE 2 A random networkG with 4 nodes and its corresponding line graphD .
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Henceforth in this paper, we assume that a dependency graph is given, and the independence structure for the
network is determined by this corresponding dependency graph.

3 | NETWORK MODELS BASED ON UNDIRECTED HIERARCHICAL MODELS

3.1 | Undirected graphical models for networks

Henceforth, let Gn be the set of all possible realizations of a network on n nodes. We do not distinguish between the
observed network x ∈ Gn itself and the binary vector of its dyads x = (x12, . . . , x1n , x23, . . . , x2n , . . . , xn−1,n ) ∈ {0, 1}m ,
where every dyad is between two labeled nodes with labels i and j andm =

(n
2

) .
Our goal is to model P (x ), the probability of observing x , given an undirected dependency graphD on the set of

m dyads conforming to the Markov dependence property defined in the previous section. For this purpose, we will
use hierarchical log-linear models, which have been comprehensively studied for modeling undirected graphs in the
graphical models literature; see Lauritzen (1996); Bishop et al. (2007). In detail, let C be the set of all cliques inD , and
let C0 = C ∪ {∅}. A hierarchical log-linear model corresponding to C0 can bewritten as

log(P (x )) = ∑
C∈C0

uC (x ), x ∈ {0, 1}m , (1)

where each uC (x ) = uC (xC ) is an appropriate function of x ∈ {0, 1}m that depends only on the coordinates in C . In
particular, u∅ is a constant function ensuring that∑x∈{0,1}m P (x ) = 1. The hierarchical assumption requires that, if a
term uA(x ) is set to zero for all x , so are all the terms uB (x ) such thatA ⊆ B . Hence, themaximal cliques correspond to
themaximal interaction terms not set to zero. These are also called the generators of themodel.

We should first warn the reader not to confuse thesemodels with hierarchical exponential random graphmodels,
proposed by Schweinberger andHandcock (2012). Here, as will be seen in this section, the goal is to use hierarchical
log-linear models tomodel networks with dependencies among the dyads.

Since dyads are binary variables, themodel (1) can be parametrized as follows. Set, for eachC ∈ C0 and x ∈ {0, 1}m

uC (x ) = γC
∏
c∈C

xc , (2)

were γC ∈ Ò. Thus, for every clique, there exists only one parameter, γC = uC (1C ).There are 2m − 1 equations (for every
x ∈ Gn subject to the probabilities adding up to 1) and |C | parameters in themodel. It is easy to show that among all
dependency graphswithm vertices, the complete graph yields the largest number of parameterswith 2m −1 parameters.
Combining (1) and (2) yields the log-linear representation

P (x ) = ũ exp{∑
C∈C

γC
∏
c∈C

xc }, x ∈ Gn , (3)

where ũ = u∅ is the normalizing constant, ensuring that the probabilities add up to 1.
The representation (3) holds, of course, for any arbitrary binary graphical model. In the present setting however,

where each point x correspond to a network realization and the dependency graph satisfies theMarkov dependency
property defined above, themodel (3) can be interpreted using network statistics: Recall that underMarkov dependence
property, cliques in D correspond to stars and triangles in the random networkG . Indeed, in the representation (3),
for each cliqueC , the term∏

c∈C xc is non-zero if and only if the subgraph ofG corresponding to the dyads {c ∈ C } is
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either a triangle of a star.
For example for the dependency graph in Fig. 3, we have that

P (x ) = ũũ12(x )ũ13(x )ũ23(x )ũ12,13(x )ũ13,23(x ) = ũ exp{γ12x12 + γ13x13 + γ23x23 + γ12,13x12x13 + γ13,23x13x23 }.

12

13

23

F IGURE 3 A dependency graph corresponding to a network with node set {1, 2, 3}.

In the next sections, we use the abovemodel to generalize the Erdös-Rényi and β -models in order to deal with the
independence structure implied by the dependency graphs. This is done by putting constraints on the parameters γC in
(3) that come from thementioned networkmodels. Themethod is independent of the choice of the networkmodels and
can be applied to other networkmodels that assume dyadic independence.

3.2 | Hierarchical Erdös-Rényi models

In Erdös-Rényi models, it is assumed that ties occur independently, and the probabilities pi j of observing a tie between
nodes i and j are all equal to p . Hence the probability of observing a network is

P (x ) =
∏
i<j

pxi j (1 − p)1−xi j = (1 − p)(
n
2)

∏
i<j

exp{xi j log( p

1 − p )}, x ∈ Gn .

In order to come upwith an Erdös-Rényi typemodel that captures the independence structure implied by a givenD , we
generalize this model in the sense that themodel for the baseline, where the dependency graph is the null graph, i.e. a
graphwith no edges, is the same as themodel above. This implies that, in this case, one can consider ũi j = eqxi j , where
q = log(p/(1 − p)), and leave (1 − p)(n2) in the normalizing constant ũ .

In order to define the hierarchical Erdös-Rényi model, we set the following constraints on parameters in themodel
in (3) that conformwith the constraints in Erdös-Rényi model. The remaining parameters after setting the constraints
are denoted by the vector of parameters q and a single parameter t .

γC =

{
q (r ), if C = {i i1, i i2, . . . , i ir };
t , if C = {i j , i k , j k }.

(4)

An interpretation of the parameters is provided below. The hierarchical feature of themodel is such that q (r ) = 0 implies
that q (r+1) = 0. In the saturatedmodel, which corresponds to the line graph of the random network Kn , the number of
parameters is n , and for dependency graphs withmaximal clique of size d < n , the number of parameters is d + 1.
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In the example of Fig. 3, under this model, we have

P (x ) = ũ exp{q (1)x12 + q (1)x13 + q (1)x23 + q (2)x12x13 + q (2)x13x23 }.

This, for example, implies that 12 ⊥⊥ 23 | 13, as is also implied by the dependency graph, since

P (x ) = ũ exp{q (1)(x12 + x13) + q (2)x12x13 } exp{q (1)x23 + q (2)x13x23 }.

Let d be the size of the largest clique inD . By using (4), (3) can bewritten in exponential family form:

P (x ) = exp{
d∑
r=1

q (r )s (r )
C(r )
(x ) + t s′τ (x ) −ψ(q , t )}, x ∈ Gn , (5)

where C(r ) is the set of all cliques with r vertices inD , q (r ) ∈ Ò, and s (r )
C(r )
(x ) is the number of r -stars in x whose edges

form amember of C(r ); similarly, τ is the set of all cliques with 3 vertices inD of form {i j , j k , i k }, and s′τ (x ) is the number
of triangles in x whose edges form amember of τ .

Notice that s (1)
C(1)
(x ) is simply the number of ties of x since all vertices ofD are considered cliques.

Therefore, since parameter q (r ) corresponds to higher order interactions (of dimension r ) in the dependency graph,
it can be interpreted as propensity for the network to possess specific r -stars related to the cliques of the dependency
graph. Hence, q (1) can be interpreted in the sameway as the parameter q in Erdös-Rényi. Similarly, t can be interpreted
as propensity for the network to possess triangles related to the dependency graph. Indeed, the sufficient statistics are
correlatedwith each other, and the value 0 for a parameter, say q (r ) , means that given the value of other parameters, the
number of cliques of size r is close to the average number of possible cliques of size r .

Notice also that for the saturatedmodel, we have that

P (x ) = exp{
n−1∑
r=1

q (r )s (r )(x ) + t s′(x ) −ψ(q , t )}, x ∈ Gn ,

where s (r )(x ) is the number of r -stars; and s′(x ) is the number of triangles.
For example, themodel corresponding to the graph in Fig. 3, can bewritten in exponential family form as

P (x ) = exp{q (1)e(x ) + q (2)s (2){{12,13},{13,23}}(x ) −ψ(q )}.

Obtaining the normalizing constant in a closed form, for models in exponential family, in principle allows us to apply
optimizationmethods for obtaining themaximum likelihood estimator. Notice that except in very few cases (such as
Erdös-Rény and β -models), the normalizing constant in ERGMs is typically not in closed from.

Here we sum over all possible values of the binary vector x in (3) after inserting the parameters in (4), and set it
equal to 1 in order to calculate the normalizing constantψ(q , t ):

ψ(q , t ) = log(1 +
n(n−1)/2∑
r=1

∑
H ∈D(r )

exp{
min(d ,r )∑
r ′=1

c(r
′)(H )q (r ′) + c′(H )t }), (6)

whereD(r ) is the set of all subgraphs ofD with r vertices, and c(r ′)(H ) is the number of cliques of size r ′ inH ; and similarly
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c′(H ) is the number of cliques of size 3 inH of form (i j , j k , i k ). This could be written asψ(q ) = log((1 + eq (1) )(n2) + f (q )),
where the term log(1 + eq (1) )(n2) corresponds to cliques of size 1, which are the vertices of the dependency graph. By
neglecting the other term in the logarithm, we obtain the normalizing constant for the Erdös-Rényi model.

For example, for the dependency graph in Fig. 3, we obtain

ψ(q ) = log(1 + 3eq + e2q + 2e2q+q
(2)

+ e3q+2q
(2) ).

3.3 | Hierarchical β -models

Next, we apply an approach analogous to the one described in the previous section to the β -model. The directed
version of β -model is the p1-model (Holland and Leinhardt, 1981), and the following approach can further generalize for
p1-model with fewminor additional technicalities. For brevity, we have not included this in this paper.

In β -models, it is also assumed that ties occur independently, and the probability pi j of observing a tie between
nodes i and j is parameterized as follows:

pi ,j =
eβi +βj

1 + eβi +βj
, [i , j , β1, . . . , βn ∈ Òn ,

where βi can be interpreted as the propensity of node i to have ties. The probability of observing a network is

Pβ (x ) =
∏
i<j

p
xi j
i j
(1 − pi j )1−xi j =

∏
i<j

e (βi +βj )xi j
1

1 + e (βi +βj )
, x ∈ Gn .

In this case, themodel above, which is themodel for the baseline, can be considered to be ũi j = e (βi +βj )xi j and 1/(1 +
e (βi +βj )) can be left in the normalizing constant ũ .

Now again suppose that there is a dependency graph D that satisfies the Markov dependence property, and is
modeled by the hierarchical model (3).

We have observed in Section 2 that cliques inD correspond to stars and triangles inG . In order to define the hierar-
chical β -model, we set the following constraints on the parameters in themodel in (3) that conformwith the constraints
in the β -model. The remaining parameters, after setting the constraints, are denoted by vectors of parameters (β )i and
a single vector of parameter ηi .

γC =


β
(1)
i

+ β (1)
j
, if C = {i j }

β
(r )
i
, if C = {i i1, i i2, . . . , i ir }, r ≥ 2

ηi + ηj + ηk , if C = {i j , i k , j k }.
(7)

An interpretation of the parameters is provided below. As before, β (r )
i
are hierarchical in the sense that if β (r )

i
= 0

then β (r+1)
i

= 0. In the saturated model, the number of parameters is n2, but when the maximal clique size in the
dependency graph is of size d , the number of parameters is n · d .

In the example of Fig. 3, under this model, we have

P (x ) = ũ exp{(β (1)1 + β (1)2 )x12 + (β
(1)
1 + β (1)3 )x13 + (β

(1)
2 + β (1)3 )x23 + β

(2)
1 x12x13 + β

(2)
3 x13x23 }. (8)
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This, for example, implies that 12 ⊥⊥ 23 | 13, as is also implied by the dependency graph, since

P (x ) = ũ exp{(β (1)1 + β (1)2 )x12 + (β
(1)
1 + β (1)3 )x13 + β

(2)
1 x12x13 } exp{(β (1)2 + β (1)3 )x23 + β

(2)
3 x13x23 }.

By using (7), (3) can bewritten in exponential family form:

P (x ) = exp{
n∑
i=1

n∑
r=1

β
(r )
i
d
(r )
i ,C(r )
i

(x ) + ηi di ,τi (x ) −ψ(β , η)}, x ∈ Gn ,

where C(r )
i
is the set of all cliques with r vertices inD such that all their vertices share i , and d (r )

i ,C(r )
i

(x ) is the number of
r -stars in x with hub i such that its endpoints pairing with i form amember of C(r )

i
; similarly, τi is the set of all cliques

with 3 vertices inD of form {i j , j k , i k }, and di ,τi (x ) is the number of triangles in x that contain i and two other vertices
such that they form amember of τi .

Notice that d (1)
i ,C(1)
i

(x ) is simply the degree of node i since all vertices ofD are considered cliques.
Therefore, the parameter β (r )

i
can be interpreted as the propensity of node i in the network to be the hub of specific

r -stars related to the cliques of the dependency graph. Hence, β (1)
i
can be interpreted in the sameway as the parameter

βi in the β -model. Similarly, ηi can be interpreted as propensity for node i in the network to possess triangles related to
dependency graph.

For the saturatedmodel, themodel is

P (x ) = exp{
n∑
i=1

n∑
r=1

β
(r )
i
d
(r )
i
(x ) + ηi d ′i (x ) −ψ(β , η)}, x ∈ Gn ,

where d (r )
i
(x ) is the number of r -stars with i as the hub; and d ′

i
(x ) is the number of triangles that contain i . In this case

the sufficient statistics d (r )
i
(x ) are determined for r ≥ 2 by d (1)

i
(x ). However, sufficient statistics in the submodels

of the saturatedmodel, d (r )
i ,C(r )
i

(x ), can be arbitrary. For dense dependency graphs, the correlation between sufficient
statistics can be high, and in some cases theremight even be linear dependencies. Verifying this requires a case by case
verification, generally, but for sparser dependency graphs this is not an issue.

For example, themodel corresponding to the graph in Fig. 3, can bewritten in exponential family form as

P (x ) = exp{β (1)1 d
(1)
1 (x ) + β

(1)
2 d

(1)
2 (x ) + β

(1)
3 d

(1)
3 (x ) + β

(2)
1 d

(2)
1,{{12,13}}(x ) + β

(2)
3 d

(2)
3,{{13,23}}(x ) −ψ(β )}.

As in the hierarchical Erdös-Rényi case, we are interested in writing the normalizing constant in a closed form in order
to be able to apply optimizationmethods for obtaining themaximum likelihood estimator. We sum over all possible
values of the binary vector x in (3) after inserting the parameters in (7), and set it equal to 1 in order to calculate the
normalizing constantψ(β , η).

ψ(β , η) = log(∏
i<j

(1 + eβi +βj ) +
n(n−1)/2∑
r=2

∑
H ∈D(r )

(e
∑|V (H )|
d=2

∑
C∈C(d )(H ) β

(d )
hub(C )+

∑
C∈τ(H )(ηc1+ηc2+ηc3 ) − 1)e

∑
v∈H βv1+βv2 ), (9)

where D(r ) is the set of all subgraphs ofD with r vertices,V (H ) is the vertex set ofH , C(d )(H ) is the set of all cliques inH
with d vertices except the hubless cliques, τ(H ) is the set of all hubless cliques, which are of form {(i , j ), (i , k ), (j , k )}, and
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wedenote such i , j , and k by c1 , c2 , and c3 . In addition, wewritev as (v1,v2). In (9), the term∏
i<j (1+ eβi +βj ) corresponds

to cliques of size 1, which are the vertices of the dependency graph, and neglecting the other term in the logarithm, we
obtain the normalizing constant for β -model,∑i<j log(1 + eβi +βj ).

Equation (9) can be used to compute the normalizing constant explicitly, although depening on the size of the
network and the density ofD , the computation of the sum could become intractable. For example, for the dependency
graph in Fig. 3, and from (8) we obtain

ψ(β ) = log(∑
x

exp{(β (1)1 + β (1)2 )x12 + (β
(1)
1 + β (1)3 )x13 + (β

(1)
2 + β (1)3 )x23 + β

(2)
1 x12x13 + β

(2)
3 x13x23 })

= log(1 + eβ (1)1
+β
(1)
2 + eβ

(1)
1

+β
(1)
3 + eβ

(1)
2

+β
(1)
3 + eβ

(1)
1

+β
(1)
2

+β
(1)
1

+β
(1)
3

+β
(2)
1 + eβ

(1)
1

+β
(1)
2

+β
(1)
2

+β
(1)
3

+eβ
(1)
1

+β
(1)
3

+β
(1)
2

+β
(1)
3

+β
(2)
3 + eβ

(1)
1

+β
(1)
2

+β
(1)
1

+β
(1)
3

+β
(1)
2

+β
(1)
3

+β
(2)
1

+β
(2)
3 )

= log((1 + eβ (1)1
+β
(1)
2 )(1 + eβ

(1)
1

+β
(1)
3 )(1 + eβ

(1)
2

+β
(1)
2 ) + (eβ

(2)
1 − 1)e2β

(1)
1

+β
(1)
2

+β
(1)
3

+(eβ
(2)
3 − 1)e2β

(1)
3

+β
(1)
1

+β
(1)
2 + (eβ

(2)
1

+β
(2)
3 − 1)e2β

(1)
1

+2β
(1)
2

+2β
(1)
3 ).

Themethod proposed above for Erdös-Rényi and beta is not restricted to thesemodels. In general, if there is a model
that assumes dyadic independence then this method can be applied in the followingmanner:

Every linear exponential random graphmodel can be written in the form expressed in (3). The idea is that, for every
cliqueC , the parameter γC is further parametrized based on the baseline networkmodel such that for every clique size
r there is a family of parameters {θi ,k }k ∈ K , where K is the set of parameters in the baseline network model. The
baselinemodel corresponds to the empty dependency graph, and γi j , for every i , j , is reparametrized by the first order
parameters {θ1,k }k ∈ K in order to obtain the baseline networkmodel.

In general, by using the reparametrization of γC , (3) can be written in exponential family form and the sufficient
statistics will show up in themodel, In addition, for thesemodels, if the normalizing constant of the baseline network
model is in closed form then, by summing over all possible values of the binary vector x in the reparametrized version
of (3), the normalizing constant can be written in closed form, although it still contains a sum over subgraphs of the
dependency graph as opposed to a sum over all networks with n nodes.

4 | PARAMETER ESTIMATION AND SIMULATION STUDIES

4.1 | Maximum likelihood estimation

One important difference between the proposedmodels in this paper and other exponential random graphmodels that
do not assume dyadic independence is that the normalizing constants (see (6) and (9)) in our proposedmodels are in
closed form in the sense that they do not depend on summation over all networks. Themodels inherit this property from
themodels on which they are based (i.e. the Erdös-Rényi and β -models). However, the normalizing constants depend on
summation over subgraphs of the corresponding dependency graph, which can still be computationally demanding. We
will, however, show below that for sparse dependency graphs some computations are manageable. This is essential
for implementing theML estimation for thesemodels. This is in contrast to other exponential random graphmodels
without dyadic independence assumption, which usually require some type ofMarkov chainMonte Carlomethods in
order to compute the normalizing constant; see for example Hunter et al. (2008).

Henceforth, for brevity, we assume that there is no triangle of form 〈i j , i k , j k 〉 in the dependency graphD . This
implies that the parameter t can be removed from themodel. However, one can trivially generalize all the calculations
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and algorithms below to the case that t is existent in themodel.
By (5), the log-likelihood of the Erdös-Rényi model can bewritten as

l (q ) =
n−1∑
r=1

q (r )s (r )(x ) −ψ(q ),

whereψ(q ) is defined in (6).
This function is obviously concave. The goal is to apply the gradient descent method (for example, see Snyman

(2005)) to find its maximum. An element of the gradient of the log-likelihood, form = n(n − 1)/2, is

∂l (q )/∂q (i ) = s (i )(x ) −
∑m
r=1

∑
H⊆D (r ) c

(i )(H ) exp{∑min(d ,r )
r ′=1 c(r

′)(H )q (r ′) }

1 +
∑m
r=1

∑
H⊆D (r ) exp{∑min(d ,r )r ′=1 c(r ′)(H )q (r ′) }

, (10)

where d is the maximal clique size inD . The main problem in computing the gradient vector is the large sum in both
numerator and denominator, whose number of terms in the worst case is of orderO (n3d2m ). Here wewill address this
issue.

By calculating the term r = 1 separately in (10), we obtain for 2 ≤ i ≤ d ,

∂l (q )/∂q (i ) = s (i )(x ) −
∑m
r=i e

r q (1) ∑
H⊆D (r ) c

(i )(H ) exp{∑min(d ,r )
r ′=2 c(r

′)(H )q (r ′) }

1 +meq
(1)

+
∑m
r=2 e

r q (1) ∑
H⊆D (r ) exp{∑min(d ,r )r ′=2 c(r ′)(H )q (r ′) }

; (11)

and

∂l (q )/∂q (1) = s (1)(x ) −
meq

(1)
+

∑m
r=2 r e

r q (1) ∑
H⊆D (r ) exp{∑min(d ,r )r ′=2 c(r

′)(H )q (r ′) }

1 +meq
(1)

+
∑m
r=2 e

r q (1) ∑
H⊆D (r ) exp{∑min(d ,r )r ′=2 c(r ′)(H )q (r ′) }

. (12)

Suppose thatD is sparse in the sense that the number of non-isolated vertices inD , denoted bym′, is of order of a
constant, i.e. not growing with n , or it is increasing by a rate slower than n . This implies that, based on our assumption,
there is only a finite number of individuals in the model to which the connected ties are dependent. By increasing n ,
the dependency graph converges to the empty graph, and themodel converges to Erdös-Rényi. Denote the induced
subgraph by non-isolated vertices byD ′. An expression in the last term in the denominator of (11) or (12) is expanded as
follows:

∑
H⊆D (r )

exp{
min(d ,r )∑
r ′=2

c(r
′)(H )q (r ′) } =

min(m′,r )∑
r ′′=2

(
m −m′
r − r ′′

) ∑
H⊆D ′(r ′′)

exp{
min(d ,r ′′)∑
r ′=2

c(r
′)(H )q (r ′) }+

(
m −m′
r

)
+m′

(
m −m′
r − 1

)
,

where (a
b

) := 0, for b > a .
Therefore, by the same argument for numerators, (11) and (12) can bewritten as

∂l (q )/∂q (i ) = s (i )(x )−
∑m′

r ′′=i

∑
H⊆D ′(r ′′) c

(i )(H ) exp{∑min(d ,r ′′)
r ′=2 c(r

′)(H )q (r ′) }(∑m
r=2

(m−m′
r−r ′′

)
e r q

(1) )
1 +

∑m
r=1 e

r q (1) (
(m−m′

r

)
+m′

(m−m′
r−1

)
) + ∑m′

r ′′=2

∑
H⊆D ′(r ′′) exp{∑min(d ,r ′′)r ′=2 c(r ′)(H )q (r ′) }(∑m

r=2

(m−m′
r−r ′′

)
e r q

(1) )
; (13)

and

∂l (q )/∂q (1) = s (1)(x )−
∑m
r=1 r e

r q (1) (
(m−m′

r

)
+m′

(m−m′
r−1

)
) + ∑m′

r ′′=2

∑
H⊆D ′(r ′′) exp{∑min(d ,r ′′)r ′=2 c(r

′)(H )q (r ′) }(∑m
r=2 r

(m−m′
r−r ′′

)
e r q

(1) )
1 +

∑m
r=1 e

r q (1) (
(m−m′

r

)
+m′

(m−m′
r−1

)
) + ∑m′

r ′′=2

∑
H⊆D ′(r ′′) exp{∑min(d ,r ′′)r ′=2 c(r ′)(H )q (r ′) }(∑m

r=2

(m−m′
r−r ′′

)
e r q

(1) )
, (14)
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where (a
b

) := 0, for b < 0.
By fixing q (1), and assumingm′ is of order of a constant, since d can no longer growwith n , the number of terms

in the sum in both numerator and denominator is of orderO (C2n ), whereC is a constant. Now for every value of q (1)∗ ,
by the gradient descent method, the largest value for g (q (1)∗ ) = maxq (2),...,q (d ) l (q (1)∗ , q (2), . . . , q (d )) can be computed. (If
f (x , y ) is concave then so is f (x , y∗) for a fixed value of y∗.) Hence, one can use iterative methods in optimization to find
the value of q (1) within a certain range with a certain precision that maximizes the likelihood function.

4.2 | Computational and simulation study

Wehavewritten code that calculates themaximum likelihood estimator by the optimizationmethod discussed above,
although, at the moment it cannot computationally carry large networks (> 50 nodes) (the computational difficulty
depends also on the density of the dependency graph).

We have also incorporated the corresponding statistics in the package ERGM (Hunter et al., 2007), by coding up
the change statistics in the package ERGM.userterterms (Hunter et al., 2013), and can now utilize the functionality
provided in the ERGM package such as those for approximating the maximum likelihood estimator by Markov chain
Monte Carlo methods and simulating networks based on exponential random graphmodels.

For a given network x and dependency graphD , and in order to have some base for comparisons regardless of the
difference in the density of the simulated networks, we find the likelihood ratio under themaximum likelihood estimator
of hierarchical Erdös-Rényi and Erdös-Rényi (the latter can be exactly computed easily):

S = 2lHER (q̂1, . . . , q̂r ; x ,D ) − 2lER (q̂ ; x ). (15)

Since the Erdös-Rényi is a submodel of hierarchical Erdös-Rényi, it holds that lHER > lER , and hence S > 0. In addition,
for two fixed hierarchical models, denoted by 1 and 2, and the same network, the difference between the log-likelihoods
is proportional to S1 − S2.

We first provide amethod to simulate a vector of sizem of binary variables with conditional correlations (linear
dependencies) induced by a given undirected dependency graphD . By this method the dependencies induced by the
dependency graph are preserved, but there might be independencies that turn into non-linear dependencies among the
simulated binary data:

We simulate anm ×m symmetric positive-definitematrixM (e.g., using of TheQRDecomposition of aMatrix in
LAPACK (Anderson et al., 1999)). We then change the values of thematrix in order for zeros to correspond tomissing
edges of D as follows. For A ⊥⊥ B | C , it holds that cov(A,B) = cov(A,C )cov(C ,C )−1cov(C ,B). Thus, start withM as a
covariancematrix and cycle through all pairs corresponding to themissing edges ofD by forcing the formula to hold for
(i , j ,V \ {i , j }). We stop when the sum of the deviations from the concentrations fitted to themissing edges (i.e. the sum
of the corresponding elements on the generatedmatrix) is smaller than some default. For more details, see Speed and
Kiiveri (1986). Call the resultingmatrix L.

We can now consider K = L−1 to be the concentration matrix, i.e. the inverse of the covariancematrix, of a Gaussian
distributionwith0mean that isMarkov toD . Wegeneratebinary randomvariables by thresholding anormal distribution,
i.e. by setting the simulated value of a variable to 0 if the corresponding value in the Gaussian distribution is negative,
and to 1 if the corresponding value in the Gaussian distribution is positive. The linear conditional dependencies are
preserved under thresholding; see Leisch et al. (1998) and the R package bindata, introduced in its appendix.

We now assume that a simulated x is an observed network with every element corresponding to a tie. We find
an approximation of themaximum likelihood estimator for the hierarchical Erdös-Rényi model by the ERGM package,
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and also themaximum likelihood estimator for Erdös-Rényi. We then calculate the likelihood ratio S . We discard the
simulated networks for which themaximum likelihood estimator does not seem to exist (as implied by ERGM).

Here we conduct our study for several dependency graphs with complete connected components of different sizes
(including isolated vertices); see also Section 5 for a short discussion onmodel selection (based on nodal attribute or
exchangeability). We performed four simulations experiments.

1)We simulate networks on 50 nodes from the same dependency graph, but both using low values of the partial
correlations ρi j ,i k , for all possible vertices i j and i k , among the dependent variables ( |ρi j ,i k | < 0.1), and also high values
of the partial correlations ( |ρi j ,i k | < 0.9). We consider two dependency graphs: one consisting of a clique of size 25 and
isolated vertices and the other of a clique of size 40 and isolated vertices. For each simulated network in each of the
scenarios we compute the likelihood ratio statistic as in (15), and plot the ordered values of the corresponding statistics,
in order to give a sense of the spread and tail of the their distribution. The results are presented in Figure 4. We clearly
observe that themodel performs better for higher correlations, which is expected.
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(a) (b)
F IGURE 4 Ordered likelihood-ratios of networks simulated from a conditional independence structure implied by a
dependency graphwith 1225 vertices and (a) with one clique of size 25 together with isolated vertices, low correlations
(black, at the bottom) and high correlations (blue, on top); (b) with one clique of size 40 together with isolated vertices,
low correlations (black, at the bottom) and high correlations (blue, on top).

2) We simulate networks on 50 nodes with different dependency graphs with medium level correlations. The
dependency graph again consists of one cliques and isolated nodes, for increasing values of the clique size (and therefore
of the number of parameters in the model). It is obvious that the likelihood ratio should increase as well, which is
confirmed by our study. Figure 5 shows the results of the experiment for cliques of size 5, 15, 25, 40, and 50.

3) The following study further suggests that themodel works. We again simulate networks of the same size, but
with different dependency graphs of the samemaximal clique size. Hence, the number of parameters is the same for
different dependency graphs. Here we comparemodels for two dependency graphs, one of which contains only one
clique and isolated vertices, and the other has several disconnected cliques of the same size. In particular, we depict
the values of the likelihood ratio for networks with 50 nodes simulated from two dependency graphs that, alongwith
isolated vertices, have respectively 1maximal clique of size 5, and 10maximal cliques of size 5 (part (a) of Fig. 6), and 1
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F IGURE 5 Ordered likelihood-ratios of networks simulated from a conditional independence structure implied by a
dependency graphwith 1225 vertices and one clique of size 5 (black, at the bottom), 15 (blue, second from the bottom),
25 (red, in themiddle), 40 (yellow, second from the top), and 50 (green, on top), and isolated vertices.

component of size 25, and 2 components of size 25 (part (b) of Fig. 6). In this experiment we discard cases where the
maximum likelihood estimator does not exist (or at least cannot be computed by this method). It is seen in Fig. 6 (b)
that the number of simulated networks, for which themaximum likelihood estimator seems to exist is visibly lower for
the denser dependency graph. We observe the same trend in our simulation studies, where the simulated networks
based on themodels with denser dependency graphs aremore affected by the issue of non-existence of themaximum
likelihood estimator. This can be due to the fact that the value for certain statistics in some simulated networks is 0, or
due to degeneracy issues in other cases.

As it is often the case with exponential random graphmodels, the issues of existence of themaximum likelihood
estimator and degeneracy (Schweinberger, 2011; Rinaldo et al., 2009; Handcock, 2003) affect also the models we
propose. In fact, in our simulations we have encountered several cases in which the likelihood function does not appear
to be strongly convex, as the estimated Fisher informationmatrix becomes nearly singular along optimizing sequences
of parameters with norms diverging to infinity. This is a clear indication of a nonexistent maximum likelihood estimator
andmanifests itself in failed convergence of theMarkov chainMonte Carlo maximum likelihood estimation procedure
and slowmixing. While the investigation of these important issues is clearly outside the scope of this paper, nonetheless
we recommend using small dependency graphs and a careful monitoring of the convergence of the optimizing procedure
of choice.

In addition, themodel withmore cliques seems to have a higher variance than themodel with only one clique.

4) We increase the number of nodes and try to keep the density of dependency graph (whose size increases of
order of n2) unchanged. As expected, we see that the value of S increases when increasing the number of nodes. Here
we depict examples of this value for simulated networks of size 50, 100, and 200 in the graph of Fig. 7 with dependency
graphs that contain a clique of size n/2 along with isolated vertices.



SADEGHI AND RINALDO 15

0
5

10
15

20
25

simulated networks

so
rt

ed
 v

al
ue

 o
f S

0
10

20
30

40
50

simulated networks

so
rt

ed
 v

al
ue

 o
f S

(a) (b)
F IGURE 6 Ordered likelihood-ratios of networks simulated from a conditional independence structure implied by a
dependency graphwith 1225 vertices and (a) one clique of size 10 (black, at the bottom) and 5 cliques of size 10 (blue, on
top) together with isolated vertices; (b) one clique of size 25 (black, at the bottom) and 2 cliques of size 25 (blue, on top)
together with isolated vertices.

0
20

40
60

80
10

0

simulated networks

so
rt

ed
 v

al
ue

 o
f S

F IGURE 7 Ordered likelihood-ratios of networks simulated from a conditional independence structure implied by a
dependency graphwithm =

(n
2

) vertices and one clique of size n/2 = 25 (black, at the bottom), n/2 = 50 (red, in the
middle), and n/2 = 100 (blue, on top) together with isolated vertices.

5 | DISCUSSION AND FUTURE WORK

Our aim in this paper was to introduce a new approach for proposing a new family of models, where eachmodel is the
combination of a known networkmodel and the hierarchical model for a given dependency graph. There are, however,
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still many open questions regarding the proposedmodels as well as natural ways to generalize such approach.
As discussed before, for these hierarchical models, if the normalizing constant of the baseline networkmodel is in

closed form then the normalizing constant is in closed form, i.e. it does not contain a sum over all networks of size n . This
is an essential aspect of thesemodels, whichmakes exact parameter estimation possible. However, the normalizing
constant still contains a sum over subgraphs of the dependency graph, which depending on the size and density of
dependency graph could be computationally intractable. As discussed in Section 4, because of this computational
demands, it is not possible to only apply standard optimizationmethods to find themaximum likelihood estimator. In
this paper, we provided a fairly more sophisticated computational techniques that work for “sparse" dependency graphs.

The question of how to efficiently find solutions for gradients (13) and (14) is indeed an interesting optimization
problem. By skipping the 1 in the denominator, a general form for the gradient that one should deal with is∑ ci fi /

∑
fi .

The other term in the gradient is computationally manageable.
Throughout this paper weworked under the assumption that there is a given dependency graph. In general, the

model depends on the labeling of the network, i.e. the individuals represented by the network. In practical cases, a
sparse dependency graphmay normally be provided by experts, bymarking certain individuals whose relations with
other individuals affect the whole or some parts of the network.

If such an expert opinion is not available, there may be several methods to select a dependency graph based on the
nature of the network or themodel: It is common to observe some nodal attributes along with an observed network. In
this case these attributes can be used for selecting a dependency graph.

In addition, features of networks could lead to specific dependence graphs. These include homophily, i.e. individuals
with similar characteristics beingmore likely to relate (Krivitsky et al., 2009), heterophily, where individuals relate to
those with different characteristics (as seen in some social networks (Lozares et al., 2014)), exchangeability, in the sense
that themodel is invariant under relabeling of the nodes, and transitivity, which states that given that we knowwhether
j and k are friends (i.e. adjacent), knowing whether i is a friend of j would impact the probability of i being a friend of k .

For exchangeable ERGMs, it was shown in (Lauritzen et al., 2018) that the corresponding dependence graph could
be either empty, complete, the line graph of the complete graph, or its compliment.

For the case of transitivity, for three nodes, this corresponds to i j ⊥⊥ i k | j k not being satisfied, but the marginal
independence i j ⊥⊥ i k being satisfied. This can be represented by the bidirected dependency graph i j ≺ �j k ≺ �i k . This
motivates introducing a parallel theory as in this paper to define a set of networkmodels that preserve the independence
structures of bidirected graphical models as opposed to undirected graphical models: for a bidirected graphD , where all
edges are depicted as bidirected edges, ≺ �, the pairwiseMarkov property states that for two non-adjacent vertices i
and j , i ⊥⊥ j , i.e. i and j aremarginally independent; whereas the globalMarkov property states thatA ⊥⊥ B | C when every
path between disjoint vertex subsetsA and B has no vertex inC .

Suppose that a given dependency graph captures the independence structure of a network of friendships. It is
plausible to assume that the existence of a tie between individuals i and j and the existence of a tie between k and l are
marginally independent, i.e., knowingwhether i and j are friendswould not change the probability of friendship between
k and l when there is no information available on the existence of other friendships in the network. This conforms with
themissing edge between i j and k l in a bidirected dependency graph that satisfies theMarkov dependence property.
Moreover, a possible edge between i j and i k in the dependency graph indicates that knowing whether i has a friend j
would impact the probability of i having another friend k .

For the purpose of modeling ERGMs based on bidirected dependency graphs,marginal binary models of Drton and
Richardson (2008) can be used. The parameters of this model aremarginal probabilities for every connected subgraph
of the dependency graph (as opposed to every clique in hierarchical models). These models are curved exponential
families. In order tomake the parameter estimationmore practical, onemay use othermarginal models introduced in
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graphical models that are in curved exponential family form; see, for example, themultivariate logistic transformation,
introduced in Lupparelli et al. (2009), and log-mean linear models, introduced in Roverato et al. (2013). Of course, instead
of the plain marginal binarymodels, the idea is to apply thesemodels to networks.
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