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The hydrodynamic problem of a body submerged beneath a free surface in a current is
considered. The mathematical model used is based on the velocity potential theory with
fully nonlinear boundary conditions. The integral hodograph method used previously in
a simply connected domain is extended for the present problem to a doubly connected
domain. Analytical expressions for the complex velocity and for the complex potential
are derived in a rectangular region in a parameter plane, involving the Theta-functions.
The boundary value problem is transformed into a system of two integral equations for
the velocity modulus on the free surface and for the slope of the submerged body surface
in the parameter plane, which are solved through the successive approximation method.
Case studies are undertaken both for a smooth body and for a hydrofoil with a sharp
edge. Results for the free surface shape, pressure distribution as well as resistance and
lift are presented for a wide range of Froude numbers and depths of submergence. It
further confirms that at each submergence below a critical value there is a range of
Froude numbers within which steady solution may not exist. This range increases as
the submergence decreases. This applies to both a smooth body and a hydrofoil. At
the same time it is found that at any Froude number beyond a critical value the wave
amplitude and the resistance decrease as the body approaches the free surface. In these
cases nonlinear effects become more pronounced.

1. Introduction

The problem of free-surface gravity flow past a submerged body has received extensive
attention for more than one century due to its important relevance to wave resistance
of a ship. Among the earliest work is that by Lamb, summarized in his book (Lamb
(1932)), in which uniform flow past a submerged circular cylinder was modelled by a
dipole at the centre of the cylinder, whose strength was the same as that without the free
surface. The linearized free surface boundary condition was then satisfied exactly, while
the impermeable boundary condition on the body surface was satisfied approximately.
The approach was later known as the first approximation. Havelock (1927) introduced
a correction to the first approximation by taking images alternately regarding the body
surface and the free surface. Then, Havelock (1936) obtained a solution for the circular
cylinder in the form of infinite series, in which each term satisfied the linearized free
surface boundary condition. The unknown coefficients in the series were obtained through
the body surface boundary condition. In such a way, both the linearized free surface
and body surface boundary conditions were satisfied exactly. The latter would be an
approximation only in the sense that the infinite series was truncated for practical
calculation. From the solution, the results for both the wave resistance and the vertical
force, or the lift were obtained.
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Wehausen & Liatone (1960) solved the problem for a circular cylinder by using the
formulae of Kochin (1937) and Milne-Thomson (1968), alternatively, and also provided
an outstanding and extended review of earlier work on this problem. Later Wehausen
(1973) further gave a comprehensive review specifically on wave resistance of a ship. The
analytical solutions for three dimensional problems include those for a sphere in infinite
water depth (Wu & Eatock Taylor (1988)), in finite water depth (Wu (1995)) and in a
channel (Wu (1998)).
The earlier studies mentioned above assumed that disturbances on the free surface

were small. This might be justified when the body was deeply submerged or the body
was elongated in the incoming stream direction. In order to account for nonlinear effects
on the free surface, Tuck (1965) developed a consistent second-order wave theory, in which
the nonlinear free surface boundary conditions on the unknown position was expanded
to the mean level of the water surface and terms of up to second order were kept.
He demonstrated through the second-order correction that the nonlinearity of the free-
surface condition was important for the wave resistance, even when the ratio of the body
submergence to its radius is relatively large, for example at 4.
The non-linear free-surface effects were also investigated by Salvesen (1969) using

higher-order perturbation theory. He derived a consistent second-order solution and
attempted to include the third order effect for the free surface elevation at far field.
The solution procedure was not limited to a circular cylinder and results were obtained
for hydrofoils of finite thickness. Based on the results from the calculations, as well as
comparisons with experiments, he confirmed the conclusion of Tuck (1965), that the
linearize theory was inadequate, especially when the submergence was small.
Dagan (1971) employed the method of matched asymptotic expansions to analyse

the flow past a circular cylinder close to a free surface at high Froude number. The
inner solution was based on the non-linear gravity-free flow past a doublet, while the
outer solution was that from the linearized free surface boundary condition. His solution
became close to the solution with the linearized free surface condition, as the submergence
of the cylinder became large.
Free surface flow with obstruction on the bottom of the fluid was studied by Forbes &

Schwartz (1982). Vanden-Broeck (1987) considered a semicircular obstacle while Dias
& Vanden-Broeck (1989) considered a triangular shape using the conformal mapping
method coupled with the boundary integral method. By using the Cauchy integral
equation formula, Dias & Vanden-Broeck (2004) derived a system of integral equations
for an arbitrarily shaped bottom.
Chapman & Vanden-Broeck (2006) investigated nonlinear gravity waves over a rough

bottom or submerged object at small Froude number using the technique of exponential
asymptotics. At the limit of zero Froude number, the dominance of gravity means that
the free surface tends to a rigid flat surface.
An approximate solution for a submerged cylinder was also obtained by Kiselev &

Troepol’skaya (1996) assuming that the velocity magnitude at the free surface was
approximately constant, which was exact when the Froude number was infinite or the
gravity effect was ignored. A related problem is that free surface flow past a source or
sink. King & Bloor (1989) considered the fully nonlinear flow problem. They used a
conformal mapping technique and derived, in particular, a nonlinear integro-differential
equation in terms of velocity angle on the free surface. However, they did not present
detailed numerical results.
The problem of the flow past a submerged hydrofoil with cavity effect in the wake was

studied by Faltinsen & Semenov (2008) with a fully nonlinear boundary condition on
the free surface. Because the flow region is a doubly connected domain, they introduced
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a cut along the streamline starting at the closure point of the cavity of the hydrofoil and
included boundary conditions on the both sides of the streamline into the formulation of
the problem. When the cavity effect is ignored, the streamline used for the cut started
from the trailing edge. The integral hodograph method (Semenov & Iafrati (2006)) could
then be used, in which the complex velocity potential of the flow could be written in terms
of integrals in a parameter plan. The solution of the integral equations was obtained by a
numerical method. For a smooth body, the streamline used for the cut in the method of
Faltinsen & Semenov (2008) would have to start from the stagnation point of the body.
However, the position of the stagnation point is not known in advance and it would have
to be determined as a part of the solution procedure.
In the linearized free surface problem, it is commonly assumed that for a body in the

steady current the free surface flow will eventually become steady. Therefore, the steady
solution is usually obtained directly. However, for the nonlinear free surface problem,
it was noticed that the steady solution could not always be achieved when the time
domain method was used (Haussling & Coleman (1979)). Scullen & Tuck (1995) then
assumed that the flow was already steady and attempted to find its solution using
the iteration method for the nonlinear steady free surface boundary condition. They
found that at given a submergence of a circular cylinder they were not able obtain the
steady solution within certain range of the Froude number. This range reduced as the
submergence increased and disappeared when the submergence was sufficiently large.
This was consistent with what was observed by Haussling & Coleman (1979) using the
time domain method. One should note that wave blocking might occur when the local
wave upstream meets the current and the total velocity at the crest becomes zero. What
has been observed and discussed by Haussling & Coleman (1979) and Scullen & Tuck
(1995) suggests that no steady solution can be found near the blocking condition.
Scullen & Tuck (1995) also introduced a vortexes located at the centre of the circular

cylinder. Through adjusting the circulation, they confirmed numerically that the wave
at the far downstream could virtually disappear and the wave resistance on the cylinder
became zero, which had be easily predicted by the linear theory.
Here, we present a fully nonlinear solution to the problem of an arbitrarily shaped body

which may be a cylinder or a hydrofoil, moving beneath the free surface, or equivalently
a fixed body in a uniform incoming current, in the presence of gravity. In contrast to the
method used by Faltinsen & Semenov (2008) for the doubly connected domain, the cut
used in the present formulation does not have to be a streamline which has to intersect
the smooth body at the stagnation point. We can use an arbitrary line linking the body
and the free surface for the cut. It greatly simplifies the solution and the numerical
procedure, and enables features of the flow to be investigated more easily. A further
development of this work is that we use the apparatus of elliptic Theta-functions, which
enables the problem in a doubly connected domain in the physical plane to be converted
into a simply connected domain in the parameter plane. In particular, a rectangle can be
used in the latter, instead of the first quadrant commonly adopted previously for simply
connected domains (e.g. Semenov & Wu (2013)). Two of its parallel sides correspond
two sides of the cut, on which a periodic condition can be adopted.
Specifically, our solution method follows that proposed by Michell (1890), Joukovskii

(1890) for steady jet flows of an ideal fluid. The key step of the method is to find the two
governing functions: the complex velocity and the derivative of the complex potential,
both defined in an auxiliary parameter region. For the case of a doubly connected flow
domain these functions can be effectively obtained using the mathematical apparatus of
elliptic Theta-functions.
The problem is formulated in section 2, where the governing functions are derived. For
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determination of the complex velocity, we have derived an integral formula for a mixed
boundary-value problem for an analytical function defined in the rectangular auxiliary
parameter region. This formula makes it possible to determine the analytical function
from values of its modulus and argument given on the horizontal sides of the rectangle.
The complex velocity obtained using this formula explicitly includes the variation of the
velocity modulus along the free boundary and the variation of the velocity angle along
the body as functions of the parameter variable. The system of integral equations for
the velocity angle along the body and the velocity magnitude along the free surface are
derived by imposing the kinematic and dynamic boundary conditions.
In section 3, a method of successive approximations adopted for solving the integral

equations is outlined. The problem without gravity is first considered in section 3.1. As
a validation step for problem with gravity, in section 3.2 comparisons are made between
the obtained results and those by Scullen & Tuck (1995). The results are presented for
the circular cylinder in terms of the free surface elevation, streamline patterns and force
coefficients in a wide range of Froude numbers and depths of submergence. Particular
attention is given to small depths of submergence for which nonlinear effects are most
pronounced. In section 3.3 the solution procedure is adopted to predict flow past a
submerged hydrofoil. Conclusions are given in section 4.

2. Theoretical analysis

We consider a two-dimensional problem of the steady free surface flow of infinite depth
past a submerged cylindrical body with characteristic length L. Definition sketch is shown
in figure 1a. A Cartesian coordinate system XY is defined with the origin at a point
inside the body and the X−axis along the velocity direction of the incoming flow with
a constant speed U . The Y−axis points vertically upwards. The fluid is assumed to be
inviscid and incompressible, and the flow is irrotational. The velocity potential theory
can then be used in such a case. The body is assumed to have an arbitrary shape which
can be defined by the slope of the body as a function of the arc length coordinate S, or
βb = βb(S). The free surface is defined by the function Y (X). In general, the free surface
at far upstream remains flat, while there will be waves at far downstream. The solution
which we are seeking therefore has the limit Y (X)X→−∞ = H, where H is submergence
of the body, measured from the origin of the coordinate system. The condition at far
downstream, or X → ∞ will be discussed when the solution method is presented.
We will solve the problem through determining the complex potential of the flow,W (Z)

with Z = X+ iY . For the steady flow, the kinematic conditions on the body surface and
the free surface mean that the stream function is constant, or ℑ[W (Z)] = const., as they
are both streamlines. However, the constant on the body surface may be different from
that on the free surface. The dynamic boundary condition on the free surface is obtained
from the Bernoulli equation

ρ
V 2

2
+ ρgY = ρ

U2

2
+ ρgH, (2.1)

where U is the speed of incoming stream, ρ is the liquid density, V = |dW/dZ| is the
magnitude of the velocity, g is gravity acceleration. Two different Froude numbers can be
defined based on the characteristic length L or the depth of submergence H, respectively

F =
U√
gL

, Fh =
U√
gH

. (2.2)

Using non-dimensionalization based on U , L, ρ, we have v = V/U , x = X/L, y = Y/L,
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Figure 1. (a) Physical plane and (b) parameter ζ− plane.

h = H/L and W (Z) = ULw(z). Equation (2.1) takes the form

v2 = 1− 2(y − h)

F 2
. (2.3)

Equation (2.3) gives the velocity magnitude along the free surface as a function of wave
elevation y which is a function of x. When the gravity effect is ignored, or F → ∞, the
velocity magnitude on the free surface is a constant.

2.1. General approach based on the hodograph method.

Usually, finding the function w = w(z) directly is a complicated problem. Instead,
Michell (1890) and Joukovskii (1890) proposed to introduce an auxiliary parameter
plane, or ζ−plane, which was typically chosen as the upper half-plane. Then, they
considered two functions, which were the complex potential w and the function ω =
− ln(dw/dz) in the parameter plane. When w(ζ) and ω(ζ) are obtained as function of ζ,
the velocity field and the function mapping the parameter plane onto the physical plane
can be determined as follows:

dw

dz
= exp[−ω(ζ)], z(ζ) = z0 +

∫ ζ

0

dw

dz
/
dw

dζ
dζ, (2.4)

where z0 = z(0) in the physical plane corresponds to the origin in the ζ−plane.
The flow region beneath the free surface and outside the body is a doubly connected

domain. A canonical region of a doubly connected domain is an annulus. By making a
cut connecting the external and the internal circles of the annulus, the double connected
region becomes simply connected. As shown in figure 1a, O−D+ and O+D− are the two
sides of the cut which could have an arbitrary shape, but form a right angle with the flow
boundary at both the body surface and the free surface. The simply connected flow region
including O−D+ and O+D− is then transformed into the domain bounded by a rectangle
O−O+D−D+ in the parameter plane. We choose the rectangle as the parameter domain
to provide conformal mapping at points O−, O+, D−, D+. Indeed, the rectangle has
the right angle at these points, same as that at the corresponding points in the physical
plane. For other forms of the parameter region, for which angles at points O−, O+, D−,
D+ are different from the right angle, a singularity will appear, which makes it more
difficult to find the solution. We may choose the coordinates of the rectangle vertexes
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O−, O+, D−, D+ as (0, 0), (π, 0), (π, πτ/4) and (0, πτ/4), respectively, in the parameter
plane shown in figure 1b. Here, τ is an imaginary number. The horizontal length of the
rectangle is then equal to π and its vertical length is equal to π|τ |/4.
In the flow region, there are two stagnation points marked as A, where two streamlines

merge into one, and B, where a streamline splits into two branches. Positions of these
points in parameter plane ζ, ζ = a, ζ = b as well as the position of point C, ζ = c+πτ/4,
corresponding to infinity in the physical plane, should be determined from additional
conditions. The interval 0 6 ξ 6 π on the real axis corresponds to the body boundary.
The interval c < ξ 6 π, η = πτ/4 corresponds to part of the free surface D−C−, and the
interval 0 6 ξ < c, η = πτ/4, corresponds to the other part of the free surface D+C+.
It should be noticed that points C− as x → −∞ and C+ as x → +∞ have been

transformed to the same point C in the parameter plane. As discussed in the first
paragraph of this section, y → h at C− while it is a wavy function at C+. Thus some
treatments are need to ensure they can become the same point in the parameter plane.
For this reason in the region between points T1 and T2 in figure 1a, an artificial curved
plate is placed on the free surface, which applies a pressure on the surface. The logic of
this method is that for steady free surface flow past a body in infinite water depth, the
body does not create wave at far upstream but it does at far downstream. If the artificial
body is put sufficiently behind the physical body, it does not affect flow near the physical
body significantly, as it does not generate wave there. On the other hand, when its shape
is adjusted properly, the wave generated by its presence can cancel the wave generated by
the physical body at far downstream, leading to a flat surface as x→ ∞. This is similar
to what is used by Faltinsen & Semenov (2008). In Vanden-Broeck (2010) the fact that
the free surface is infinite is reflected in an integral derived, where the integration limit
tends to infinity. The limit is then truncated, which is equivalent to treating the free
surface at far downstream as a flat surface. To adopt this technique here, we can also
choose the the artificial body as a flat plate. However, the plate has to be put farther
away than a curved body which changes the free surface gradually rather than abruptly.
The flux of wave energy at downstream is related to the force applied to the fluid

(Wehausen & Liatone (1960), Newman (1977)). If the total force due to the submerged
body and the artificial plate is zero, then there will be no wave at x→ ∞. As a result C+

and C− in the physical plane can be transformed to the same point C in the parameter
plane. The shape of the curved plate will be the part of the solution. When it is applied,
the velocity magnitude v along T1T2 gradually tends to 1 towards x→ xT2, and remains
to be 1 further beyond, or xT2 6 x <∞. We should notice that the effect of the artificial
plate on the flow near the real body will diminish as xT1 increases. This is because the
plate will not generate waves at its far upstream.
When solving free boundary problems, a shape of the auxiliary parameter region is

usually chosen with the aim to obtain the solution of a problem in the simplest form with
minimal numbers of singular points at which the transformation of the parameter region
onto the complex potential w and the function dw/dz regions is not conformal. In the case
of simply connected domain, the fluid region is commonly converted to the first quadrant
of the parameter plane or half-plane (e.g. Gurevich (1965)). In the case of the double
connected flow region here, the additional corner points appear at the intersections of
two sides of the cut and the flow boundary. To correspond these corner points, it is more
convenient to choose the parameter plane in the form of a rectangle. On the other hand,
when the integral equation is constructed in the half-plane or the first quadrant, the
polynomial functions are usually used. Here, for the rectangular domain, the polynomial
functions will be replaced by Jacobi’s Theta-functions (Abramowitz & Stegun (1964),
which are quasi-doubly-periodic functions. Jacobi’s functions have been used for solving
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free surface problems involving double connected flow regions, for example by Birkhoff
& Zarantonello (1957), Gurevich (1965) and Terentiev et al. (2011).

2.2. Expression for complex velocity, dw/dz, defined in the ζ−plane.

At this stage we denote the angle of the velocity direction along the body as βb(ξ) and
the velocity magnitude on the free surface as v(ξ). With these notations, we have the
following boundary-value problem for the function of complex velocity, dw/dz:∣∣∣∣dwdz

∣∣∣∣ = v(ξ), 0 6 ξ 6 π, η = πτ/4. (2.5)

χ(ξ) = arg

(
dw

dz

)
=

 −βb(ξ), 0 6 ξ < a, η = 0,
−βb(ξ)− π, a < ξ < b, η = 0,
−βb(ξ)− 2π, b < ξ 6 π, η = 0.

(2.6)

dw

dz
(ξ = 0, iη) =

dw

dz
(ξ = π, iη), 0 6 iη 6 πτ/4. (2.7)

In (2.6) the argument of complex velocity has the jumps equal to −π at stagnation
points A (ζ = a) and B (ζ = b) due to the jump of the velocity direction when passing
through the stagnation point. The two vertical sides of the rectangle in the parameter
plane correspond to the two sides of the cut in the physical plane. The velocities on both
sides of the cut are the same and therefore the condition of periodicity can be applied
on the vertical sides the rectangle.
The problem is to find the function dw/dz in the parameter domain, which satisfies

the given boundary conditions (2.5) − (2.7). Based on the Cauchy integral, it is possible
to derive an expression for dw/dz based on an integral along the boundary involving
only given condition. Here we may follow a different approach. With the aim of applying
the special points method (Gurevich (1965)), we decompose the body surface O−ABO+

in the parameter plane into N intervals Ej−1, Ej , with j = 1, . . . , N , and assume that
the argument of the velocity is piecewise constant, or χ(ξ) ≡ χj−1 for ξ ∈ (ξj−1ξj), so
that the velocity argument changes stepwise from χj−1 to χj at vertex Ej . Here, ξ0 = 0
and ξN = π are defined. The order of singularity of the function dw/dz at point Ej can
be determined by analysing the behaviour of its argument when we are moving along
an infinitesimal semicircle centred at ξ = ξj in counter clockwise direction as shown in
figure 1b. In such a way, the argument of (ζ − ξj) changes by π, while the corresponding
change in the argument of dw/dz is −(χj − χj−1) = −∆χj . The Theta-function ϑ1(ζ)
(see Appendix) to be used to derive dw/dz has only one simple zero at point ζ = 0 in
the rectangle O−O+D−D+ (Whittaker & Watson (1927)), or ϑ1(ζ) ∼ ζ near ζ = 0. The
argument of function ϑ1(ζ − ξj) near point ζ = ξj , arg[ϑ1(ζ − ζj)], behaves in the same
way as arg(ζ − ξj). Therefore, near ζ = ξj if we write

dw

dz
∼ [ϑ1(ζ − ξj)]

−
∆χj
π , j = 1, . . . , N, (2.8)

then the change of the argument of dw/dz is −∆χj . Here (2.8) can be either zero or
singular, depending on the sign of the exponent. To take into account the change of
dw/dz over each ξj , we may write

dw

dz
∼

N∏
j=1

[ϑ1(ζ − ξj)]
−

∆χj
π , ∆χ = χj − χj−1, j = 1, . . . .N, (2.9)

when z(ζ) moves along the body surface. We also decompose the free surface C−D−D+C+
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intoM intervals Fi−1Fi, with i = 1, . . . ,M , and assume that the velocity modulus within
each interval (ξ̃j−1, ξ̃j) is constant, v(ξ̃) ≡ vi. Similarly the velocity modulus changes

stepwise from vi−1 to vi at point Fi. Here ξ̃0 = π and ξ̃M = 0 are defined. On the
basis of the above consideration, we consider the properties of the function (dw/dz)i =
exp[−iω(ζ))] = exp(θ+ i ln v), where θ = − arg(dw/dz), and ω(ζ) is defined in (2.4). The
argument of this function is the logarithm of the velocity modulus, and its magnitude is
the exponent of the velocity argument. Thus, moving along an infinitesimal semicircle in
the ζ−plane centred at ζi = ξ̃i+πτ/4 in counter clockwise direction, arg[ζ− (ξ̃i+πτ/4)]
changes by π, while the corresponding change in the argument of the function (dw/dz)i

is −(ln vi − ln vi−1). Therefore, the function behaves near point ζi = ξi + πτ/4 as(
dw

dz

)i

∼ [ϑ1(ζ − ξi − πτ/4)]
− 1

π ln
vi

vi−1 , i = 1, . . . ,M. (2.10)

Similar to (2.9), we may then write

dw

dz
∼

M∏
i=1

[ϑ1(ζ − ξi − πτ/4)]
i
π ln

vi
vi−1 , i = 1, . . . ,M. (2.11)

We now construct the expression for the complex velocity based on equations (2.9)
and (2.11). Taking into account the requirement in (2.5) to (2.7), we may consider the
following function

f(ζ) =

N∏
j=1

(
ϑ1(ζ − ξj)

ϑ1(ζ − ξj − πτ/2)

)−
∆χj
π

M∏
i=1

(
ϑ1(ζ − ξ̃i − πτ/4)

ϑ1(ζ − ξ̃i + πτ/4)

) i
π

vi
vi−1

(2.12)

The denominator has no zeros or singularities in the rectangle O−O+D−D+ and its
boundary, and therefore the zeros and singularities are those on the numerator, at ζ = ξj ,

j = 1, . . . , N , and ζ = ξ̃i + πτ/4, i = 1, . . . ,M , respectively.

As ϑ1(ζ+π) = −ϑ1(ζ) (see Appendix), equation (2.7) is satisfied. We let ζ = ξ̃+πτ/4
on the free surface. Noticing that the nominator and denominator of the first product in
(2.12) are complex conjugate as τ is an imaginary number, we have∣∣∣∣∣ϑ1(ξ̃ − ξj + πτ/4)

ϑ1(ξ̃ − ξj − πτ/4)

∣∣∣∣∣ = 1.

Similarly, for point ζ = ξ̃ + πτ/4 on the line D−D+, which is the mirror image of the
point ζ = ξ̃ − πτ/4 about O−O+ (see figure 1b), the second product in (2.12) can be
evaluated as

v0

M∏
i=1

∣∣∣∣∣∣
(

ϑ1(ξ̃ − ξ̃i)

ϑ1(ξ̃ − ξ̃i + πτ/2)

) i
π ln

vi
vi−1

∣∣∣∣∣∣ = v0 exp

{
M∑
1

ln
vi
vi−1

H(ξ̃i − ξ̃)

}
=

v0 exp

{
k∑
1

ln
vi
vi−1

}
= vk,

where H(ξ̃i − ξ̃) is the Heaviside step function. We can then verify that boundary
conditions in (2.5) and (2.6) are satisfied by f(ζ) apart from a constant. Thus the complex
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velocity may be written as

dw

dz
= C

N∏
j=1

(
ϑ1(ζ − ξj)

ϑ1(ζ − ξj − πτ/2)

)−
∆χj
π

M∏
i=1

(
ϑ1(ζ − ξ̃i − πτ/4)

ϑ1(ζ − ξ̃i + πτ/4)

) i
π

vi
vi−1

, (2.13)

in which C is a complex constant.

The products in (2.13) can be recast in the exponential form. We have

dw

dz
= C exp

[
− 1

π

N∑
1

∆χj ln
ϑ1(ζ − ξj)

ϑ1(ζ − ξj − πτ/2)
(2.14)

+
i

π

M∑
1

∆ ln vi ln
ϑ1(ζ − ξ̃ − πτ/4)

ϑ1(ζ − ξ̃ + πτ/4)
+ iχ(π)

]
.

By letting ∆χj = (dχ/dξ)/∆ξj and ∆ ln vi = ln(vi/vi−1) = (d ln v/dξ)∆ξi, and taking
the limit as the step ∆ξ in the argument and modulus of velocity tends to zero and,
correspondingly, N → ∞ and M → ∞, we obtain the integral formula

dw

dz
= v(π) exp

[
− 1

π

∫ π

0

dχ

dξ
ln

(
ϑ1(ζ − ξ)

ϑ1(ζ − ξ − πτ/2)

)
dξ (2.15)

+
i

π

∫ 0

π

d ln v

dξ
ln

(
ϑ1(ζ − ξ − πτ/4)

ϑ1(ζ − ξ + πτ/4)

)
dξ + iχ(π)

]
,

which gives an expression for the mixed boundary-value problem (2.5) - (2.7) in the
rectangle O−O+D−D+ based on the argument, arg[dw/dz]ζ=ξ,η=0 = χ(ξ), 0 6 ξ 6 π,
η = 0, and the modulus, |dw/dz|ζ=ξ,η=πτ/4 = v(ξ). The important thing to notice here is
that the right hand side involves only those boundary values prescribed, either modulus
or argument, and not the unknown part. Therefore, dw/dz can be obtained directly once
these prescribed values are known. The complex constant C in (2.15) can be determined
using the value of the argument of the function dw/dz at point O+ (ζ = π) and its
modulus at point D− (ζ = π + πτ/4). We note, that the integral formula (2.15) derived
for the complex velocity, dw/dz, can be used for solving boundary value problem (2.5)
- (2.7) for an arbitrary complex function. By substituting the boundary conditions (2.5)
and (2.6) into (2.15) and evaluating the first integral over the step change in the function
χ(ξ) at points ξ = a and ξ = b, we obtain the expression for the complex velocity in the
rectangle O−O+D−D+

dw

dz
= vD

ϑ1(ζ − a)ϑ1(ζ − b)

ϑ4(ζ − a)ϑ4(ζ − b)
exp

[
1

π

∫ π

0

dβb
dξ

ln
ϑ1(ζ − ξ)

ϑ4(ζ − ξ)
dξ (2.16)

+
i

π

∫ 0

π

d ln v

dξ
ln
ϑ1(ζ − ξ − πτ/4)

ϑ4(ζ − ξ − πτ/4)
dξ − iβO

]
.

where βO− is the angle at point O− which is zero if point O− is the highest point of the
body. Here, the relations between Theta-functions ϑ1(ξ) and ϑ4(ξ) have been used (see
Appendix). The constant vD or the velocity magnitude at point D+, is determined by
satisfying the velocity at infinity, ζ = c+ πτ/4, which is 1, as it has been chosen as the
reference velocity, or ∣∣∣∣dwdz

∣∣∣∣
ζ=c+πτ/4

= 1 (2.17)
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2.3. Expression for derivative of the complex potential, dw/dζ.

For steady flows, the stream function ψ = ℑ(w) takes constant values along the body
and the free surface. According to Chaplygin’s special point method (Gurevich (1965),
Chapter 1(5)), to determine the function w = w(ζ), it is sufficient to analyse all special
points where the mapping is not conformal. These are stagnation points A (ζ = a) and
B (ζ = b) and point C (ζ = c + πτ/4) corresponding to infinity in w−plane. The order
of w(ζ) at these points can be determined by analysing the behaviour of the argument
of w(ζ) in the vicinity of these points.
Moving in the counter-clockwise direction around an infinitesimal semicircle centred at

the point ζ = a, arg(ζ − a) changes by π while the corresponding change of arg(w−wA)
in the w−plane is 2π. This means that the function w(ζ) behaves as

w − wA ∼ θ21(ζ − a)

near point A. Similarly, at the stagnation point B (ζ = b), the function w(ζ) behaves as

w − wB ∼ θ21(ζ − b).

Moving in the counter-clockwise direction around an infinitesimal semicircle centred
at the point ζ = c + πτ/4, arg(ζ − c − πτ/4) increases by π, while arg(w − wC) of the
semicircle of an infinite radius linking points C+ and C− in the w−plane decreases by π.
Therefore, the function w(ζ) behaves as

w − wC ∼ θ−1
1 (ζ − c− πτ/4).

According to symmetry principle, to satisfy the boundary condition ℑ(w) = const. on
the flow boundary, it is necessary to put special points of the same order at points A′

(ζ = a+ πτ/2) and B′ (ζ = b+ πτ/2), which are respectively symmetry points of A and
B with respect to the side D−D+, and at point C ′ (ζ = c−πτ/4) which is the symmetry
point of C with respect to side O−O+.
By differentiating the function w(ζ), we obtain that the derivative dw/dζ which has

the following zeros and poles:

θ1(ζ − a), θ1(ζ − b), θ−2
1 (ζ − c− πτ/4),

θ1(ζ − a− πτ/2), θ1(ζ − b− πτ/2), θ−2
1 (ζ − c+ πτ/4)

on boundaries of the rectangle and their symmetry lines. Similar to dw/dz, we may
construct dw/dζ in the following form

dw

dζ
= K ′e−i2(ζ−c)ϑ1(ζ − a)ϑ1(ζ − a− πτ/2)ϑ1(ζ − b)ϑ1(ζ − b− πτ/2)

ϑ21(ζ − c− πτ/4)ϑ21(ζ − c+ πτ/4)
, (2.18)

where K ′ is a real scale factor. The term e−i2(ζ−c) is introduced in the above equation
to satisfy kinematic boundary condition on the body and the free surface. In fact, on the
free surface, ζ = ξ̃ + πτ/4, equation (2.18) takes the form

dw

dζ
= K ′q−

1
2 e−i2(ξ̃−c)ϑ1(ξ̃ − a+ πτ/4)ϑ1(ξ̃ − a− πτ/4)ϑ1(ξ̃ − b+ πτ/4)ϑ1(ξ̃ − b− πτ/4)

ϑ21(ξ̃ − c)ϑ21(ξ̃ − c+ πτ/2)
.

(2.19)

We notice that ϑ1(ξ̃ − ξ̃′ + πτ/4) and ϑ1(ξ̃ − ξ̃′ − πτ/4) are complex conjugate to each
other and

ϑ1(ξ̃ − c+ πτ/2) = iq−
1
4 e−i(ξ̃−c)ϑ4(ξ̃ − c).
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Thus,

ℑ(dw) = ℑ[(dw/dζ)ζ=ξ̃+πτ/4dξ̃] = 0.

On the body surface, ζ = ξ, we may use

ϑ1(ζ − πτ/2) = −iq 1
4 eiζϑ4(ζ)

to write (2.18) as

dw

dζ
= Kei(2c−a−b)ϑ1(ξ − a)ϑ4(ξ − a)ϑ1(ξ − b)ϑ4(ξ − b)

ϑ21(ξ − c− πτ/4)ϑ21(ξ − c+ πτ/4)
, (2.20)

where K = K ′q−1. The numerator is real following definitions of the functions ϑ1(ζ)
and ϑ4(ζ). The denominator is also real since ϑ21(ξ − c− πτ/4) and ϑ21(ξ − c+ πτ/4) are
complex conjugate quantities. Thus,

ℑ(dw) = ℑ[(dw/dζ)ζ=ξdξ] = 0,

if 2c− a− b = 0 which will be shown later. Using this, equation (2.20) becomes

dw

dζ
= K

ϑ1(ζ − a)ϑ4(ζ − a)ϑ1(ζ − b)ϑ4(ζ − b)

ϑ21(ζ − c− πτ/4)ϑ21(ζ − c+ πτ/4)
. (2.21)

Dividing (2.21) by (2.16), we obtain the derivative of the mapping function as

dz

dζ
=

K

vD

θ24(ζ − a)θ24(ζ − b)

θ21(ζ − c− πτ/4)θ21(ζ − c+ πτ/4)
(2.22)

× exp

[
− 1

π

∫ π

0

dβb
dξ

ln
θ1(ζ − ξ)

θ4(ζ − ξ)
dξ − i

π

∫ 0

π

d ln v

dξ
ln
θ1(ζ − ξ − πτ/4)

θ4(ζ − ξ − πτ/4)
dξ + iβO

]
.

whose integration along the intervals 0 6 ξ < c and c < ξ 6 π at η = πτ/4 in the
ζ−plane provides the parts D+C+ and D−C− of the free surface C−C+ in ζ−plane,
respectively. The parameters a, b, c, τ and K, and the functions βb(ξ) and d(ln v)/dξ have
to be determined from physical considerations and the kinematic boundary condition on
the body surface and the dynamic boundary conditions on the free surface.

2.4. System of equations for parameters a, b, c, τ and K.

At infinity, point C−C+ (ζC = c + πτ/4), the velocity approaches unit (since this
velocity is chosen as the reference velocity) and its direction is along the x−axis.
Therefore, the argument of the complex velocity (2.16) at point ζC should be equal
to zero

arg

(
dw

dz

)
ζ=ζC

= 1. (2.23)

The scale factor K is determined by the length Sb which is the perimeter of the body
cross-section ∫ π

0

dsb
dξ

dξ = Sb. (2.24)

where
dsb
dξ

=

∣∣∣∣dzdζ
∣∣∣∣
ζ=ξ

.

The free surface on the left and right hand sides at infinity has the same value of
y−coordinate. This is also equivalent to that the stream function ψ = ℑ(w) is continuous
across the cut, or ℑ(wD−)−ℑ(wD+

) = 0. By integrating ℑ(dw/dζ) along D−D+ passing
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the point ζC along a semi-circle C ′ of an infinitesimal radius ε, at which dw/dζ in
Eq.(2.21) has the second order singularity, we have

ℑ
(∫ c+ε

π

dw

dζ
dζ +

∮
C′

dw

dζ
dζ +

∫ 0

c−ε

dw

dζ
dζ

)
= ℑ

(∮
C′

dw

dζ
dζ

)
= ℑ

iπ Res
ζ=ζC

dw

dζ


= ℑ

{
iπ

d

dζ

[
dw

dζ
(ζ − ζC)

2

]
ζ=ζC

}
.

Here the first and third terms on the left hand are zero because ℑ(w) = const. on the
free surface. From this equation it follows

a+ b = 2c. (2.25)

The depth of submergence, h, and the flowrate, Q, between the body and the free
surface are related. Therefore, instead of a condition for the depth h, we can use the
following condition for the given flowrate Q, which is the integral of the derivative of the
complex potential along the side O−D+

ℑ

(∫ πτ/4

0

dw

dζ
dζ

)
= Q. (2.26)

We may place a vortex with circulation Γ at the centre of the cylinder, which can
be nondimensionalized as γ = Γ/(2πUL). For a circular cylinder, this does not affect
the impermeable body surface boundary condition, but does change the positions of the
stagnation points and also affects the free surface boundary. For a hydrofoil, γ should be
determined through the Kutta condition at the trailing edge.
Integrating dw/dζ along the body surface in the parameter plane, we have

ℜ
(∫ π

0

dw

dζ
dζ

)
= 2πγ. (2.27)

In the case γ ̸= 0, the real part of the potential, ϕ = ℜ(w), have a jump on the sides
O−D− and O+D+ of the cut, while the complex velocity, dw/dz and the stream function
ψ = ℑ(w) are still continuous across the cut.
Equations (2.23) - (2.27) allow us to determine the unknown parameters a, b, c, τ and

K, which appear in the governing equations (2.16), (2.21) and (2.22), once the functions
v(ξ) and βb(ξ) are specified.

2.5. Integro-differential equations for functions βb(ξ) and v(ξ).

2.5.1. Kinematic boundary condition on the body surface.

By integrating the modulus of the mapping function (2.22) along the side O−O+ in
the parameter plane, we can obtain the spatial coordinate along the body as a function
of the parameter variable

sb(ξ) =

∫ ξ

0

dsb
dξ′

dξ′, (2.28)

where dsb/dξ = |dz/dζ|ζ=ξ,η=0. Since the function βb(sb) is known, the function βb(ξ)
can be determined from the following integro-differential equation:

dβb
dξ

=
dβb
dsb

dsb
dξ

. (2.29)
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By substituting dz/dζ from (2.22), this equation takes the form

dβb
dξ

= κ[sb(ξ)]
K

vD

∣∣∣∣ θ24(ξ − a)θ24(ξ − b)

θ21(ξ − c− πτ/4)θ21(ξ − c+ πτ/4)

∣∣∣∣ (2.30)

× exp

[
− 1

π

∫ π

0

dβb
dξ′

ln
θ1(ξ − ξ′)

θ4(ξ − ξ′)
dξ′ − i

π

∫ 0

π

d ln v

dξ′
ln
θ1(ξ − ξ′ − πτ/4)

θ4(ξ − ξ′ − πτ/4)
dξ′
]
,

where κ(sb) = dβb/dsb is the curvature of the body.

2.5.2. Nonlinear boundary condition on the free surface: integral equation for the
function d ln v/dξ.

The velocity magnitude on the free surface can be obtained from Bernoulli equation
(2.3) in iteration manner using the initial guess y(ξ) = h and

v(ξ) =

√
1− 2(y(ξ)− h

F 2
. (2.31)

Then, at each branch of the free surface, C−D− (c < ξ 6 π) and C+D+ (0 6 ξ < c), its
elevation can be obtained from

y(ξ){c<ξ6π,06ξ<c} = yD + ℑ

(∫ ξ

{π,0}

dz

dζ

∣∣∣∣
ζ=ξ+πτ/4

dξ

)
, (2.32)

where the integrand can be obtained from (2.22), and yD is the vertical coordinate of
point D and can be obtained from

yD = ℑ

(
i

∫ π|τ |/4

0

dz

dζ

∣∣∣∣
ζ=iη

dη

)
. (2.33)

This iteration converges well for the part C−D− of the free surface for which y(ξ) changes
monotonically, if D is chosen appropriately. For the wavy part C+D+ the convergence of
iteration is more difficult to achieve, which requires to apply more sophisticated approach.
Differentiating equation (2.3) with respect to the arc length coordinate along the free

surface and taking into account that slope of the free surface δ = arcsin(dy/ds) = π + β
is angle between unit tangential vector τ and the x−axis, we obtain

F 2v2
d ln v

ds
− sinβ = 0, (2.34)

where the velocity direction β can be determined from (2.16) by putting ζ = ξ + πτ/4:

β(ξ) = βO −ℑ
{
ln
ϑ1(ξ − a+ πτ/4)ϑ1(ξ − b+ πτ/4)

ϑ4(ξ − a+ πτ/4)ϑ4(ξ − b+ πτ/4)
(2.35)

− 1

π

∫ π

0

dβb
dξ′

ℑ
[
ln
ϑ1(ξ − ξ′ + πτ/4)

ϑ4(ξ − ξ′ + πτ/4)

]
dξ′ − 1

π

∫ 0

π

d ln v

dξ′
ln

∣∣∣∣ϑ1(ξ − ξ′)

ϑ4(ξ − ξ′)

∣∣∣∣ dξ′} .
Using the relationships

dv

ds
= v

d ln v

dξ
/
ds

dξ
, (2.36)

and

ds

dξ
=

∣∣∣∣dzdζ
∣∣∣∣
ζ=ξ+πτ/4

=
1

v(ξ)

∣∣∣∣dwdζ
∣∣∣∣
ζ=ξ+πτ/4

=
K

v(ξ)

∣∣∣∣θ24(ξ − a+ πτ/4)θ24(ξ − b+ πτ/4)

θ21(ξ − c)θ24(ξ − c)

∣∣∣∣ .
(2.37)
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We can rewrite (2.34) with the following integral equation in terms of the function
d ln v/dξ over the interval 0 6 ξ < c:

F 2v3
d ln v

dξ
+ P1(ξ) sin

[
1

π

∫ 0

π

d ln v

dξ′
ln

∣∣∣∣θ1(ξ − ξ′)

θ4(ξ − ξ′)

∣∣∣∣ dξ′ + P2(ξ)

]
= 0, (2.38)

where

v(ξ) = vD exp

(∫ ξ

0

d ln v

dξ′
dξ′

)
, P1(ξ) = K

∣∣∣∣θ24(ξ − a+ πτ/4)θ24(ξ − b+ πτ/4)

θ21(ξ − c)θ24(ξ − c)

∣∣∣∣ ,
P2(ξ) = ℑ

{
ln
θ1(ξ − a+ πτ/4)θ1(ξ − b+ πτ/4)

θ4(ξ − a+ πτ/4)θ4(ξ − b+ πτ/4)

}
+

1

π

∫ π

0

dβb
dξ′

ℑ
{
ln
θ1(ξ − ξ′ + πτ/4)

θ4(ξ − ξ′ + πτ/4)

}
dξ′ − βO.

The velocity modulus function v(ξ) is determined by (2.31) for c < ξ 6 π and by (2.38)
for 0 6 ξ < c.

2.6. Numerical approach.

Discretization of the body and the free surfaces in the ζ−plane. In the discrete form,
the solution is sought on a fixed set of points ξj , j = 1, . . . , N distributed along the side

O−O+, 0 6 ξj 6 π, η = 0, and fixed set of points ξ̃i distributed along the intervals

c+ ε 6 ξ̃i 6 π, i = 1, . . . ,M1 and 0 6 ξ̃i 6 c− ε, i =M1 + 1, . . . ,M on the side D−D+,
η = πτ/4. These intervals correspond to parts D−C− and D+C+ of the free surface
C−C+.
The value ε is chosen to provide the length of the free surface C+D+ such that xT1 >

5λ, where λ = 2πF 2 is the wave length predicted by a linear theory. The number of
nodes on the body and the free surface are chosen in the range N = 100 − 300 and
M = 500 − 1000, respectively, based on the requirement of convergence and accuracy
of the solution. For all calculated examples, the difference between the results from
the above ranges of N and M starts form the fourth figure only. The points ξj are
distributed in a way to provide a higher density of the points sj = sb(ξj) near stagnation
points A (ζ = a) and B (ζ = b). We have ξj = a[1 − cos(π(j − 1)/(NA − 1))]/2,
j = 1, ..., NA, ξj = a+(b− a)[1− cos(π(j−NA)/(NB −NA))]/2, j = NA +1, ..., NB and
ξj = b+ (π − b)[1− cos(π(j −NB)/(N −NB))]/2, j = NB + 1, ..., N , where NA = N/4
and NB = 3N/4.
The distribution of the points ξ̃i is chosen similarly to provide a higher density of the

points si = s(ξ̃i) on the free boundary closer to the body.
Discrete form of the integro-differential equation for the function βb(ξ). The integrals

in the equations are evaluated using the linear interpolation of the functions βb(ξ) and
ln v(ξ̃) on the segments (ξj−1, ξj) and (ξ̃i−1, ξ̃i), respectively. Then, the integrals in (2.16)
are evaluated numerically over each segment using trapezoidal rule.
The method of successive approximations is adopted for solving integro-differential

equation (2.30) and integral equation (2.38). In the discrete form equation (2.30) becomes

(∆βb)
(k+1)
j

∆ξj
=
βb[s

(k)
b (ξj)]− βb[s

(k)
b (ξj−1)]

∆ξj
, j = 1, . . . , N, (2.39)

where the arc length along the body, s
(k)
b (ξ), is evaluated using (2.28) with (∆βbj/∆ξj)

(k)
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known at the (k)th iteration. The iteration process converges very fast. After 5 to 10
iterations the error is below a prescribed tolerance of 10−6.
Distribution of the velocity magnitude in the transition region xT1 6 x 6 xT2. In the

ζ−plane, interval (xT1, xT2) corresponds to the interval (ξ̃T1, ξ̃T2). The integral equation
(2.38) is solved over the interval 0 6 ξ̃ < ξ̃T1 and due to the radiation condition adopted
in the present method, velocity magnitude at point T2 should be v(xT2) = 1. Therefore,
in the transition region, xT1 6 x 6 xT2 we use one parameter family for the velocity
distribution

v(x) =

{
vT1 + (1− vT1)x+Av sin (2πx) exp(−x), 0 6 x 6 1,
1, 1 < x <∞,

(2.40)

where x = (x − xT1)/(xT2 − xT1) and Av is a parameter. The velocity distribution on
the interval (ξ̃T1, c) that is downstream of the point T1 does not significantly affect the
free surface near the body. This effect will diminish when xT1 is sufficiently large. The
parameter Av in (2.40) is chosen to further reduce this effect and obtain zero slope of
the free surface at point xM1+1, or β(ξ̃M1+1) = 0.
The discrete form of the integral equation for the function d ln v/dξ. In the discrete

form equation (2.34) can be written as follows

F 2(v3i )
(k)∆(ln v)

(k+1)
i

∆ϕi
− β

(k+1)
i = sinβ

(k)
i − β

(k)
i . (2.41)

Due to nonlinearity of (2.41), it is solved through iteration procedure. The system of
linear equations to determine unknown ∆ ln vj at (k + 1)th iteration can be written as
follows

aij∆ ln vj = bj , i, j = 1, . . . , n (2.42)

where n =M −MT is the number of nodes ξ̃i between points D+ and T1, ξ̃MT
= ξ̃T1,

aij = Aij + δijF
2(v3i )

(k) 1

∆ϕi
, v

(k)
i =

v
(k)
i−1 + v

(k)
i

2
, ξi =

ξ̃i−1 + ξ̃i
2

, δij =

{
1, i = j,
0, i ̸= j.

Aij =
1

π∆ξ̃j

∫ ξ̃j

ξ̃j−1

ln

∣∣∣∣∣ϑ1(ξi − ξ̃′)

ϑ4(ξi − ξ̃′)

∣∣∣∣∣ dξ̃′, ∆ϕi = ℜ
(
dw

dζ

)
ζ=ξi

∆ξ̃i,

bi = sinβ
(k)
i +

MT∑
1

Aij∆ ln v
(k)
j , β

(k)
i = −

M∑
1

Aij∆ ln v
(k)
j +Bi,

Bi = βO− −ℑ
{
ln
ϑ1(ξi − a+ πτ/4)ϑ1(ξi − b+ πτ/4)

ϑ4(ξi − a+ πτ/4)ϑ4(ξi − b+ πτ/4)

}

−
N∑
1

∆βjℑ

{
1

π∆ξ̃j

∫ ξ̃j

ξ̃j−1

ln

∣∣∣∣∣ϑ1(ξi − ξ̃′ + πτ/4)

ϑ4(ξi − ξ̃′ + πτ/4)

∣∣∣∣∣
}
,

The iteration procedure is constructed as follows.
(i) Functions βb(ξ) and v(ξ) are initialized as βb(ξ) = 2ξ, 0 6 ξ 6 π and v(ξ) ≡ 1,

together with parameter Av = 0.
(ii) Equation (2.39) is solved by iteration for a given function v(ξ). For each iteration,

equations (2.23) - (2.27) are solved to update a, b, c, K and τ , respectively.
(iii) Apply external iteration to update v(ξ) by solving the system of equations (2.42).
(iv) Return to (ii) and continue until the free surface shape downstream has converged.
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Figure 2. Streamline patterns for a submerged circular cylinder at the flowrate Q = 1 for
different circulations: (a) 2πγ = 0; (b) 2πγ = 3; (c) 2πγ = −3; (d) 2πγ = 7.5; (e) 2πγ = −7.5.

(v) Update the velocity distribution upstream using equations (2.31) and (2.32) and
return to (ii) until the velocity magnitude along the whole free surface has converged.

3. Results and discussion.

The formulation of the problem and its solution procedure developed in section 2 makes
it possible to consider a smooth body of an arbitrary shape as well as a body with a
sharp corner, such as hydrofoil with a sharp trailing edge. For the former we shall use
a circular cylinder for case study. Its radius R is chosen as the characteristic length in
the definition of the Froude number. We shall discuss below the features of the flow for
different Froude numbers and depths of submergence.

3.1. Flow past a submerged circular cylinder without gravity.

The solution procedure is applied to solve the free surface flow past a circular cylinder
beneath the free surface without the effect of gravity. In such a case F = ∞ and equation
(2.3) can be simplified as v(ξ) ≡ 1. As the magnitude of the velocity is known on the
free surface, only integro-differential equation (2.30), together with nonlinear equations
(2.23) - (2.27) has to be solved to determine the function βb(ξ). In figure 2 are shown the
streamline patterns at different circulation γ due to a vortex located at the centre of the
cylinder. Due to the symmetry of the cylinder, these lines are symmetric about x = 0.
The zero streamline is the line that passes through the stagnation point. It therefore

splits into two lines at point B, which merge into one at point A. These two stagnation
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points are clearly shown in the figure. We may investigate the behaviour of the free
surface at infinity using equation (2.32) in which ℑ(dz/dζ)ζ=ξ+πτ/4 = ds/dξ sinβ

y(ξ) = yD +

∫ ξ

0

sinβ
ds

dξ
dξ, ξ → c (3.1)

where sinβ = dy/ds, and s is arc length along the free surface. The behaviour of β(ξ)
on the free surface can be determined evaluating the leading order as ξ → c. By taking
into account equation (2.23), β(ξ)ξ=c = 0, from (2.35) for ξ → c we can obtain from the
Taylor expansion

β(ξ) ∼ B1(ξ − c), ξ → c, (3.2)

where

B1 = −ℑ
{
ϑ′1(c− a+ πτ/4)

ϑ1(c− a+ πτ/4)
+
ϑ′1(c− b+ πτ/4)

ϑ1(c− b+ πτ/4)
− ϑ′4(c− a+ πτ/4)

ϑ4(c− a+ πτ/4)
− ϑ′4(c− b+ πτ/4)

ϑ4(c− b+ πτ/4)

}
− ℑ

{
1

π

∫ π

0

dβb
dξ′

[ϑ′1(c− ξ′ + πτ/4)− ϑ′4(c− ξ′ + πτ/4)] dξ′
}

(3.3)

and dash on the Theta-function means the derivative. The leading order of the derivative
ds/dξ is obtained form (2.37) taking into account that the function ϑ1(ξ − c) along the
free surface has a simple zero at ξ = c

ds

dξ
=

1

v(ξ)

∣∣∣∣Kϑ24(ξ − a+ πτ/4)ϑ24(ξ − b+ πτ/4)

ϑ21(ξ − c)ϑ24(ξ − c)

∣∣∣∣ ∼ K1

v(c)ϑ21(ξ − c)
∼ K1

(ξ − c)2
, ξ → c,

(3.4)
where

K1 =

∣∣∣∣Kϑ24(c− a+ πτ/4)ϑ24(c− b+ πτ/4)

θ24(0)

∣∣∣∣ .
By using (3.2) and (3.4), from (3.1) can be obtained

y(ξ) ∼ C1 ln |ξ − c|, ξ → c, (3.5)

where C1 = B1/K1, and from (3.4)

s(ξ) ∼ −K1/(ξ − c), ξ → c, (3.6)

By eliminating the parameter ξ from (3.5) and (3.6), we obtain

y(s) ∼ −C1 ln |s|, |s| → ∞. (3.7)

If the constant C1 = B1/K1 ̸= 0, the y−coordinate of the free surface tends to infinity
for |s| → ∞. However, the value of coefficient B1 in (3.3) very much depend on the
combination of the parameters a, b, c determined from the system of equations (2.23),
(2.25) and (2.27).
Streamline patterns for a submerged circular cylinder at the flowrateQ = 1 for different

circulations are shown in figure 2. The free surface elevation in figure 2a varies slowly
in both directions away from the body, although it may not be obviously graphically
visible. In figures 2b and 2d are shown streamlines for γ = 3/(2π) and γ = 7.5/(2π),
respectively. The both stagnation points move towards the lower part of the cylinder,
and the free surface elevation at infinity tends to −∞. For the circulation γ = −3/(2π)
and γ = −7.5/(2π), the stagnation points moves towards each other on the upper part of
the cylinder, and the y−coordinate of the free surface tends to +∞ at infinity. The flow
patterns for larger flowrate Q are shown in figure 3, which corresponds to large y(x)x=0,
or the distance between the free surface right above the body and its centre. As expected,
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Figure 3. The streamline patterns for submerged circular cylinder at the flowrate Q = 10 for
different circulation: (a) 2πγ = 0; (b) 2πγ = 3; (c) 2πγ = −3; (d) 2πγ = 7.5; (e) 2πγ = −7.5.

the effects of the body and circulation on the local free surface elevation become smaller
than for the case shown in figure 2.
The force acting on the body can be obtained from Blasius-Chaplygin theorem

Rf = Xf − iYf =
iρU2R

2

∮
Cb

(
dw

dz

)2

dz = − iρU
2R

2

∫ π

0

dw

dz

dw

dζ
dζ, (3.8)

where Cb is a closed contour enclosing the body and the integration follows the positive
(anti-clockwise) direction. The sign ′−′ in the last term appears due to the fact that
integration route in the parameter plane from point O− to O+ is in the opposite direction.
Drag and lift coefficients are defined as follows

CD =
2Xf

ρU2R
, CL =

2Yf
ρU2R

. (3.9)

The dependences of the lift coefficient on circulation 2πγ at different Q are shown in
figure 4. For the large Q corresponding to large y(0), the lift coefficient CL/2 → −2πγ,
which corresponds to the Kutta-Joukovskii theorem in the case without free surface. For
smaller Q corresponding to smaller y(0), the lift coefficient is smaller. Note, that the drag
force is zero due to the symmetry of the flow about the y−axis.

3.2. Flow past the submerged circular cylinder with gravity.

For the case with gravity, we first reconsider those cases in Scullen & Tuck (1995), and
their results obtained from the numerical method will be used for comparison.
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The complete solution procedure presented in section 2.6 is used to predict the flow
with gravity. For verification purposes we compare the obtained solution with Scullen &
Tuck (1995) results based on their numerical method. They represented the flow potential
as a superposition of the potentials corresponding to the uniform flow, sources/sink
and vortexes placed on the surfaces external to the fluid domain. The singularities
due to sources were distributed at some distance over the free surface and within the
circular cylinder close to its boundary. By using the dynamic and kinematic boundary
conditions, the problem was reduced to a system of nonlinear equations solved by Newton
method. Scullen & Tuck (1995) presented results for various Froude numbers at depths
of submergence h > 4.
In figure 5 are shown the free surface profiles for Froude number F = 2.75 and the depth

of submergence h = 7.55, which gives Fh = 1. They are compared with those of Scullen
& Tuck (1995), shown by symbols. The circulation γ0 = Γ0/(2πUR) = 1/F 2 is the one
at which the solution from the first approximation theory is waveless far downstream or
x → ∞, and it predicts zero drag force (Tuck & Tulin (1992)). As can be seen from
figure 5, the present results are in an excellent agreement with those of Scullen & Tuck
(1995).
Further calculations are made for different submergences and Froude numbers. The free

surface profiles are shown in figure 6, in which the x−coordinate is scaled by λ = 2πF 2,
the wavelength from the linear theory. The centre of the cylinder is shown by the solid
circle. For Froude numbers F = 5 and F = 3 shown in figures 6a and 6b, respectively,
the wave amplitude initially increases when h decreases, reaches a maximum value at
a submergence h = hm and then decreases as the cylinder further approaches the free
surface. For h < hm the free surface elevation above the cylinder is higher than the wave
peak downstream. At very small depth the downstream wave almost disappears. Note,
that for h < 1, the top of the cylinder is above the still water level. Due to inertia of the
incoming liquid, the free surface rises near the cylinder, and the liquid between the zero



20 Y. A. Semenov, G.X. Wu

-5 0 5 10 15
-0.1

0.0

0.1

y/
F2

x/F2

Figure 5. Free surface profiles for Froude number F = 2.75 and the depth of submergence
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(c) γ = γ0 (dotted line). Symbols correspond to Scullen & Tuck (1995) results and the lines to
the present ones.
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Figure 6. Free surface profiles for different depths of submergence and Froude numbers: (a)
F = 5, (b) F = 3, (c) F = 2, (d) F = 1.

streamline and the free surface passes the top of the cylinder. Then it moves down along
the cylinder and merges with the main stream. Such flow may occur for those Froude
numbers and submergences h < 1, for which the free surface elevation y − h < F 2/2,
equivalent to the condition v > 0 on the whole free surface.
For Froude number F = 2 in figure 6c, the free surface is less disturbed than that in the
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Figure 7. Wave height versus the depth of submergence for various Froude numbers: F = 5
(solid line), F = 3 (dashed line), F = 2 (dotted line), F = 1 (dot-dashed line).

case of larger Froude number when h > 15. However, at smaller submergence, or h < 6.2,
the wave height becomes larger. The curve for h = 3.93 corresponds to the smallest depth
of submergence for which the converged solution could be obtained from the iteration
process. For the velocity magnitude equal to 0.5 at the wave crest, the wave elevation
therefore is 75% of the maximal possible elevation corresponding to v = 0. As it can be
seen, for the case of h = 3.93, the wave crest becomes sharper than the wave trough,
and wave elevation departs from the sinusoidal curve showing important nonlinear effect.
As the wave height increases, and the wave length becomes smaller, which is consistent
with nonlinear dispersion relationship (e.g, Lamb (1932), Art.250). As the submergence
further decreases, the wave steepness becomes larger. However, the results shown are for
the cases within limit for which non breaking waves can exist. Near or beyond the limit,
the steady solution was not to be able to be found, which was also observed and discussed
by Scullen & Tuck (1995), Faltinsen & Semenov (2008).
In our numerical method, when h is nearer the critical value it becomes more difficult

to obtain the solution, which is usually reflected by the non convergence during the
iteration process. Convergence is obviously affected by the tolerance chosen for iteration.
However, when the tolerance is sufficiently small, it no longer affects the limiting h in
the calculation. This was also observed and discussed by Haussling & Coleman (1979);
Scullen & Tuck (1995) and by Faltinsen & Semenov (2008). In these cases the wavelength
and velocity continue to oscillate during the iterations, and the result does not converge.
For Froude F = 1 in figure 6d, the free surface is weakly disturbed for h > 6.2. For

4.34 < h < 6.2 the wave slope grows rapidly and for h < 4.34 steady wave patterns were
not able to be obtained.
The downstream wave height, hw = ycr − ytr versus submergence is shown in figure

7 for Froude numbers F = 5, 3, 2 and 1. Here, ycr and ytr are the vertical coordinates
of the wave crest and wave trough, respectively. For F = 5 the maximal wave height
is smaller than that for F = 3. In the figure, at smaller Froude numbers F = 2 and
F = 1, the wave height keeps increasing when the submergence decreases. Then, when
the submergence further decreases, no converged solution could be obtained as discussed
above. This is principally owing to a larger value hw/λn, where λn is the actual length of
the nonlinear wave. In the cases of F = 5 and 3, the wave height hw first increases and
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Figure 8. Pressure distribution along the cylinder for F = 5 at different submergences: no free
surface (solid line) , h = 2.87 (dashed line), h = 1.48 (dotted line), h = 0.86 (dash-dotted line)
and h = 0.47 (dash-dot-dot line).

then reaches a peak when submergence decreases. Beyond the peak hw decreases with h.
Solution can still be obtained even h < 0, for which the centre of the cylinder is already
above the still water.
The pressure coefficient along the cylinder

cp =
2(P − P∞)

ρU2
= cpd −

2y

F 2
(3.10)

in which cpd is the dynamic pressure and the second term is the hydrostatic pressure.
The dynamic pressure coefficient as the function of the arc length coordinate s = S/R is
shown in figure 8 for Froude number F = 5. The values s/π = 0 and s/π = 2 correspond
to the same top point of the cylinder, and s/π = 1 corresponds to the bottom point.
For the case without free surface, the pressure coefficients at the top and bottom points
are the same, and they are the troughs of the curve. As the cylinder approaches the free
surface, or h decreases, the trough corresponding to the bottom point goes up slightly,
and the one corresponding to the top point moves up much more. Therefore, excluding
the buoyancy we can expect a downward vertical force whose magnitude increases as the
cylinder approaches the free surface. For h < 1, the top point of the cylinder is above
the undisturbed free surface. The free surface upstream will rise near the cylinder and
the pass over the top of the body similar to that shown in figure 2a. The peaks of the
pressure coefficient cpd without the free surface in figure 8 correspond to the stagnation
points, and the position is affected only slightly by the free surface.
Through the first approximation solution (Lamb (1932); Kochin, Kibel & Roze (1964))

obtained the explicit equations for the resistance and lift force coefficients as

C ′
Dh

2 =
Xf

πρgR2
h2 = CD

h2F 2

2π
= 4π

(
1

F 2
h

− γh

)
exp−2/F 2

h , (3.11)

C ′
Lh

2 =
Yf

πρgR2
h2 = CL

h2F 2

2π
= −γF 2

hh(2h
2 + γh− 1) + 4γh− 1

2
F 2
h − 1− 2

F 2
h

+ 4

(
1

F 2
h

− γh

)2

exp−2/F 2
h Ei1

(
2

F 2
h

)
, (3.12)
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Figure 9. (a) Scaled drag and lift coefficients against Fh = F/
√
h at different Froude number,

F : the first approximation theory (solid line) and the nonlinear theory for F = 5 (dashed line),
F = 3 (dotted line) and F = 2 (dash-dotted line, ends at Fh = 1.2); (b) scaled drag (upper
curves) and lift (lower curves) coefficients as functions of the depth of submergence: nonlinear
(solid lines and solid markers) and the first approximation theory (dashed lines and opened
markers) for Froude F = 5 (•, ◦), F = 3 (N, △) and F = 2 (�, �).

where Ei1(z) is the exponential integral function. The coefficients C ′
D and C ′

L represent
the force coefficients nondimensionalized by the buoyancy of the cylinder, πρgR2. Results
for the force at γ = 0 are obtained from the present fully nonlinear theory and are given
in figure 9a, in which C ′h2 is plotted against submergence based Froude number, Fh, at
different radius based F . For first approximation, at γ = 0, the C ′h2 in (3.11) depends
on Fh = F/

√
h only. It means that provided Fh is the same C ′h2 does not change with

F . Thus results from the first approximation theory at F = 5, 3 and 2, (equation (3.11)
are shown by the same solid line in 9a. However based on the present nonlinear solution,
the results are very much affected by F even at the same Fh. Nonlinear solution can be
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found for all the three F when Fh < 1.2, and the results are in a fairly good agreement
with the first approximation solution. For Fh > 1.2, no solution is obtained for the case
of F = 2. The results from F = 3 and F = 5, which correspond to a body of smaller
radius relative to h, show some discrepancy with the first approximation solution. The
difference is larger for the former, as the body is larger relative to the depth and therefore
has a larger nonlinear effect.
The peaks of C ′

Dh
2 in figure 9a occur around the same Fh at different F . The curves

for C ′
Dh

2 and C ′
Lh

2 versus the depth of submergence are shown in figure 9b. The position

is shifted to the left for large F according to the relation Fh = F/
√
h. The normalized

lift force coefficient, C ′
Lh

2, becomes noticeable when h becomes relatively small. The
variation is faster for F = 5 and then for F = 3. For F = 2 the curve ends at relative
larger submergence.

3.3. Flow past a submerged hydrofoil.

The solution procedure derived in section 2 is also applicable for a body with a sharp
corner point. In a such a case, Kutta-Joukovskii condition is to be imposed at the corner
to ensure the velocity and the pressure are finite there. As a result, the circulation γ
should be obtained from such a condition, rather than being chosen randomly. Its chord
length is chosen as the characteristic length L in the following computation.
We consider hydrofoil NACA0012 which has the thickness of the trailing edge 2.5% of

the hydrofoil thickness. In the present computations, we neglected the thickness of the
trailing edge by taking it zero. The inner angle at the trailing edge is assumed as µ. In
order to satisfy the Kutta condition, the stagnation point A and the trailing edge of the
foil should coincide. With this assumption, the slope of the hydrofoil can be written as
follows

βb(ξ) =

{
β∗
b (ξ), 0 6 ξ < a, η = 0,
β∗
b (ξ)− π + µ, a < ξ 6 π, η = 0,

(3.13)

where β∗
b (ξ) is a continuous function changed from 0 to 2π − µ. By substituting (3.13)

into (2.16) and evaluating the first integral over the step change in the function βb(ξ) at
point ξ = a, we obtain the expression for the complex velocity for the hydrofoil

dw

dz
= vD

[
ϑ1(ζ − a)

ϑ4(ζ − a)

]µ
π ϑ1(ζ − b)

ϑ4(ζ − b)
exp

[
1

π

∫ π

0

dβ∗
b

dξ
ln
ϑ1(ζ − ξ)

ϑ4(ζ − ξ)
dξ (3.14)

+
i

π

∫ 0

π

d ln v

dξ
ln
ϑ1(ζ − ξ − πτ/4)

ϑ4(ζ − ξ − πτ/4)
dξ − iβO

]
.

It is seen form the above equation that the complex velocity at the trailing edge has zero
of order µ/π. For the case µ = 0 which is assumed below, the first product in (3.14)
disappears and velocity at the trailing edge becomes finite. Point A will be still chosen at
the trailing edge. However, this may not be a stagnation point anymore. The circulation
γ is obtained from (2.27). The parameters a, b, c,K and τ are obtained from the system
of equations (2.23) - (2.26) and the equation

sOA =

∫ a

0

ds

dξ
dξ, (3.15)

where ds/dξ = |dz/dζ|ζ=ξ, and ξ = 0 corresponds to the point where the slope of the
upper part of the foil is equal to zero. The system of integral equations from (2.30) to
(2.38) has to be slightly modified by replacing the expression for the complex velocity
(2.16) with (3.14).
The free-surface elevations for the flow past the NACA0012 hydrofoil at angle of
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Figure 10. Free surface profiles past a NACA0012 hydrofoil at angle of attack α = 5◦,
Froude number F = 0.567 and depth of submergence (a) h/L = 1.256 and (b) h/L = 1.0345
measured from mid-chord point. Solid lines: present solution; dashed lines: Faltinsen & Semenov
(2008) analytical/numerical approach; dotted lines: Landrini et al. (1999) nonlinear numerical
approach; symbol ◦: measurements from Duncan (1983).

attack α = 5◦ and Froude number based on the chord length of the foil F = 0.567
are shown in figure 10 and compared with experimental data Duncan (1983) and with
the results obtained through the fully nonlinear numerical approach by Landrini et al.
(1999) and nonlinear solution by Faltisen and Semenov (2008). Agreement between the
present nonlinear solution and that by Faltinsen & Semenov (2008) as well as with that
from the numerical simulation Landrini et al. (1999) is quite good. The agreement with
the experimental data at larger submergence is also quite good. However there is some
discrepancy between the experimental data and all the calculated data for the smaller
depth of submergence (10b).
The dynamic pressure coefficient on the hydrofoil is plotted against x for Froude

number F = 2 and angle of attack α = 5◦ is shown in figure 11. The origin is located
in the middle point of the foil between the leading and trailing edges. The pressure
coefficient with peak cpd = 1 at the stagnation point near the leading edge, x = xB
gradually decreases along the lower side of the hydrofoil. On the upper side, the pressure
coefficient rapidly drops to its minimal value and then gradually increases with x. The
effect of submergence most pronounced on the upper side. It increases as the depth
decreases, and even becomes larger than that on the lower side at the same x on some
part of the hydrofoil.
The effect of the submergence on the lift coefficient is shown in figure 12. The solid

lines and symbols correspond to the lift coefficients obtained through the integration of
the pressure around the hydrofoil, while the dashed lines and opened symbols are based
on the Kutta-Joukowskii theorem (Yf = −ρUΓ ) for the unbounded flow domain, which
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Figure 11. Effect of submergence on the pressure distribution along the lower and upper sides
of hydrofoil NACA0012 for Froude number F = 2 and angle of attack α = 5◦: no free surface
(solid line) , h = 0.74 (dashed line), h = 0.33 (dotted line) and h = 0.10 (dash-dotted line).
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Figure 12. Effect of submergence on the lift coefficient for hydrofoil NACA0012 at the angle
of attack α = 5◦ for Froude numbers F = 10, 5, 3, 2 and 1 (lines marked by squire, circle,
triangle, reversed triangle and diamond, respectively). The solid lines and symbols correspond to
integration of the pressure around hydrofoil, and the dashed lines and opened symbols correspond
to the Kutta-Joukowskii theorem relating the lift force and circulation around the hydrofoil.

in the present notations is CL = 2πγ, where γ is obtained from equation (2.27). From
the figure it is seen that the lift decreases as the hydrofoil approaches the free surface,
which is consistent with the increase of the pressure on the upper side of the hydrofoil in
figure 11. At small depths of submergence, the smaller the Froude number is, the smaller
lift coefficient becomes, which may also become negative.
The wave resistance of a submerged body can be also determined by the wave energy
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Figure 13. Effect of submergence on the wave resistance of the hydrofoil NACA0012 at the
angle of attack α = 5◦ for Froude numbers F = 10, 5, 3, 2, 1 and 0.567. The solid and dashed
lines correspond to equation (3.9) and(3.16), respectively.

flux downstream generated (Wehausen & Liatone (1960)). For linear sinusoidal waves
with height hw, this may be simplified as (Newman (1977))

CD =
h2w

16F 2
(3.16)

which does not depend on the body shape. In figure 13, the coefficients versus depth h
obtained using equation (3.8) and equation (3.16) are shown by solid and dashed lines,
respectively. As the depth decreases, the wave height becomes larger and CD reaches its
maximal value CDmax at submergence hm. For further decrease of the depth, h < hm, the
wave amplitude and the resistance, correspondingly, become smaller. For smaller Froude
number the coefficient CDmax becomes larger. However, at very small Froude number
(F < 1 in the presented calculations), the maximal wave resistance cannot be reached
due to wave breaking, that can be seen in figure (13) for F = 0.567. Thus similar to a
smooth body, the steady solution is not always possible for a hydrofoil either.

4. Conclusions

A fully nonlinear solution for the problem of steady free-surface gravity flow past
a submerged body is presented in the form of analytical expressions for the complex
velocity and derivative of the complex potential in a parameter plane. To deal with
flow in the doubly connected domain, a cut is introduced, which does not have to be a
streamline, as required in the previous work. Correspondingly a rectangular region in the
parameter plane is used for the fluid domain, instead of the first quadrant which has been
commonly adopted previously. Accordingly, the Theta-functions are used in the derived
integral formulae for the complex velocity and derivative of the complex potential. They
are in explicit form involving the magnitude of the velocity on the free surface and the
velocity direction on the body surface, which are functions of the parameter variable
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varying along the horizontal sides of the rectangle. These functions are determined from
a system of integral equations which are derived by enforcing the dynamic and kinematic
boundary conditions. These integral equations are solved numerically using an iteration
procedure.
The flows past a submerged circular cylinder without and with gravity are investigated

by the presented formulation. In the former, the free surface elevation away from the
body may tend to infinity logarithmically under some conditions. In the latter, at each
given submergence h below a critical value, the steady solution may not be obtained
when the Froude number F is within a certain range. This range increases when the
submergence decreases. At a given Froude number, the steady solution may not exist
when submergence is below a critical value. When the solution always exists at any h
at certain F , there is value h = hm at which the free surface wave height reaches its
maximal value. As h further decreases, the wave height will decrease. At very small h,
the free surface becomes almost flat. The calculated drag and lift force coefficients are
compared with those from the first approximation theory. For Froude number F < 2
the force coefficients predicted by the first approximation theory and the fully nonlinear
theory agree well for all submergences when the nonlinear steady solution exists. For
F > 3 and small submergence, the force coefficients predicted by the nonlinear theory
may be several times smaller than those predicted by the first approximation theory.
The formulation is extended to a body with a shape corner, in which circulation is

obtained from the Kutta condition at the corner. NACA0012 hydrofoil is used for the
case study. The results obtained agree with experimental data, and those from other
computational methods. It is shown that similar to the smooth body, the steady solution
may not exist within a range of F at a given h.

Appendix A. Theta-functions

Four types of Theta functions and their properties (Whittaker & Watson (1927)):

ϑ1(ζ) = 2

∞∑
n=1

(−1)n−1q
1
4 (2n−1)2 sin(2n− 1)ζ, (A 1)

ϑ2(ζ) = 2

∞∑
n=1

q
1
4 (2n−1)2 cos(2n− 1)ζ, (A 2)

ϑ3(ζ) = 1 + 2

∞∑
n=1

qn
2

cos 2nζ, (A 3)

ϑ4(ζ) = 1 + 2

∞∑
n=1

(−1)nq2n cos 2nζ, (A 4)

where q = eπiτ .

ϑ1(ζ + π) = −ϑ1(ζ), ϑ1(ζ + πτ) = −q−1e−2iζϑ1(ζ),

ϑ2(ζ + π) = −ϑ2(ζ), ϑ2(ζ + πτ) = q−1e−2iζϑ2(ζ),

ϑ3(ζ + π) = ϑ3(ζ), ϑ3(ζ + πτ) = q−1e−2iζϑ3(ζ),

ϑ4(ζ + π) = ϑ4(ζ), ϑ4(ζ + πτ) = −q−1e−2iζϑ4(ζ).

Theta functions can be expressed one through another as follows

ϑ1(ζ) = −ϑ2
(
ζ +

π

2

)
= −iPϑ3

(
ζ +

π

2
+
πτ

2

)
= −iPϑ4

(
ζ +

πτ

2

)
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ϑ2 (ζ) = ϑ1

(
ζ +

π

2

)
= Pϑ3

(
ζ +

πτ

2

)
= Pϑ4

(
ζ +

π

2
+
πτ

2

)
ϑ3 (ζ) = Pϑ2

(
ζ +

πτ

2

)
= Pϑ1

(
ζ +

π

2
+
πτ

2

)
= ϑ4

(
ζ +

π

2
)
)

ϑ4 (ζ) = iPϑ2

(
ζ +

π

2
+
πτ

2

)
= ϑ3

(
ζ +

π

2

)
= −iPϑ1

(
ζ +

πτ

2

)
Here, P = q−1/4eiζ .
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