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Abstract—Probabilistic systems that accumulate quantities
such as energy or cost are naturally modelled by cost chains,
which are Markov chains whose transitions are labelled with a
vector of numerical costs. Computing information on the proba-
bility distribution of the total accumulated cost is a fundamental
problem in this model. In this paper, we study the so-called
cost problem, which is to compute quantiles of the total cost,
such as the median cost or the probability of large costs. While
it is an open problem whether such probabilities are always
computable or even rational, we present an algorithm that allows
to approximate the probabilities with arbitrary precision. The
algorithm is simple to state and implement, and exploits strong
results from graph theory such as the so-called BEST theorem
for efficiently computing the number of Eulerian circuits in a
directed graph. Moreover, our algorithm enables us to show
that a decision version of the cost problem lies in the counting
hierarchy, a counting analogue to the polynomial-time hierarchy
that contains the latter and is included in PSPACE. Finally, we
demonstrate the applicability of our algorithm by evaluating it
experimentally.

I. INTRODUCTION

Stochastic uncertainty is an unavoidable feature of many
systems and inherently present in probabilistic programs.
As a consequence, their quantitative analysis, in particular
performance analysis, requires formal models of probabilistic
behaviour. Markov chains, a well-established and versatile
mathematical concept, are at the core of such models. A Mar-
kov chain comprises a set of states with a transition function
that assigns to every state a probability distribution over the
set of successor states. A typical problem about a given
Markov chain, with applications, e.g., to system reliability,
is computing the probability with which a designated target
state is reached starting from an initial state. This probability
is computable in polynomial time [6] for explicitly given
Markov chains. Polynomial-time decidability carries over to
more complex specifications of probabilistic systems, such as
properties specified in PCTL [6], a stochastic extension of the
branching-time logic CTL. Probabilistic model checkers such
as PRISM [25] and MRMC [23] can efficiently reason about
such properties on large Markov chains in practice.

Cost chains. Reasoning about the performance of probabi-
listic programs and systems requires expressive modelling
languages that incorporate not only stochasticity but further
quantitative measures such as time, energy, profit, etc. We refer
to those measures as costs. A cost chain is a Markov chain

whose transitions are labelled by a numerical cost, or more
generally by a vector of costs. We are primarily interested in
the total cost accumulated during a run of the Markov chain.
For an example, we consider the so-called coupon collector’s
problem, see e.g. [28]. Suppose a vendor of cereals launches
a promotion campaign and adds a sticker with the photograph
of a football player of a popular team into every box of cereals
uniformly at random. A consumer wins a prize once she
collects the stickers of every member of the team. For n team
members, this process can be modelled by an n-dimensional
cost chain, where the ith dimension models the ith distinct
football player found in the cereal boxes.

Figure I illustrates this cost chain for n = 4. There, ei
is the ith unit vector. Starting in control state 1, the cost
chain first transitions into control state 2 and adds the cost
vector e1, since we certainly discover one new coupon at the
beginning. Then, in control state 2, there are two possibilities:
either with probability 0.25 we draw again the first coupon,
i.e., loop in control state 2 while adding e1; otherwise we
find the second coupon and transition to control state 3 while
adding e2. Continuing analogously, we eventually reach the
target control state 4 in which every component of the vector is
at least one. The components indicate how often the n players
have been discovered.

The cost problem. A tailor-made analysis of the coupon
collector’s problem shows that the expected termination time
is Θ(n·log n), see e.g. [22], [28]. Given an arbitrary cost chain,
one can compute the expected cost (or the vector of expected
costs in the multi-dimensional case) in polynomial time [6].
However, this provides only little information about the (joint)
probability distribution of the costs. For example, computing
expectations does not suffice to answer questions such as
“what is the probability that after collecting all coupons,
there is some coupon that has been drawn at least three
times?” The problem considered in the previous example is
an instance of the more general cost problem: Given a cost
chain, a probability threshold τ , and a cost formula which is a
Boolean combination ϕ(x1, . . . , xn) of linear inequalities over
n variables, the cost problem asks whether the accumulated
probability of all paths achieving a value consistent with ϕ
when reaching a target state t is at least τ . With an algorithm
for the cost problem at hand, one can compute further infor-
mation on the probability distribution of the costs, specifically
quantiles, see Section III.978-1-5090-3018-7/17/$31.00 c©2017 IEEE
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Fig. 1. Cost chain Cn modelling the coupon collector’s problem for n = 4. The loop labelled with e1;
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, respectively (and similarly for the right loop).

It has been shown in [18] that the non-negative cost pro-
blem (where all costs are non-negative) can be decided in
PSPACE for one-dimensional cost chains. This follows from
an application of a general result from [26], [33] that states
equality of the complexity classes PSPACE and probabilistic
PSPACE. From this, one could in principle glean a PSPACE
algorithm for the non-negative cost problem by counting the
number of accepting computations of a polynomial-space
Turing-machine simulating the cost chain. It is questionable
whether such an algorithm would be applicable in practice.
The computational difficulty of the non-negative cost problem
can be demonstrated by a lower complexity bound: it was
shown in [18] that it is hard for the complexity class PP,
the counting analogue of NP. In fact, PP is substantially
harder than NP: it follows from Toda’s theorem [34] that,
with the help of an oracle for the cost problem, one can decide
any problem in the polynomial-time hierarchy in deterministic
polynomial time.

Our contribution. While the decidability of the general cost
problem remains an open problem of this paper, we make the
following contributions:
(1) We show that the probability of all paths reaching the

target state with accumulated cost consistent with a cost
formula can be approximated arbitrarily closely. This leads
us to study the finitary cost problem, which is a subclass
of the cost problem and a superclass of the non-negative
cost problem.

(2) We provide a graph-based algorithm for deciding the
finitary cost problem.

(3) Building upon this algorithm we show that the finitary cost
problem can be decided in the counting hierarchy.

(4) We show that a prototypical implementation of our algo-
rithm can outperform the state-of-the-art model checker
PRISM [25].

The counting hierarchy (CH) is the counting analogue of (and
actually contains) the polynomial-time hierarchy, see e.g. [4],
[36] or Section IV. It is contained in PSPACE. Thus, our
contribution (3) implies that this version of the cost problem
is not PSPACE-hard unless PSPACE = CH. In recent years,
several numerical problems, for which only PSPACE upper
bounds had been known, have been shown to be in CH. Two
of the most important and fundamental problems of this kind
are POSSLP and BITSLP: POSSLP is the problem whether
a given arithmetic circuit over the operations +, − and ×
evaluates to a positive number, and BITSLP asks whether

a certain bit of the computed number is equal to 1. Even
placing those problems in PSPACE is non-trivial, since an
arithmetic circuit with n gates can evaluate to a number in
the order of 22n

; hence the number of output bits can be
exponential and a certain bit of the output number can be
specified with polynomially many bits. Placing the finitary cost
problem in CH additionally requires us to make the following
technical contributions:
(5) We develop a toolbox for showing membership of nu-

merical problems in the counting hierarchy, based on
techniques introduced in [3], [21].

(6) We show that the number of words with a given Parikh
image accepted by a deterministic finite-state automaton
can be computed in CH.

The latter result makes use of the so-called BEST theorem for
efficiently counting the number of Eulerian paths in directed
graphs [1, p. 445]. As a corollary, we derive from those results
that the non-negative cost problem considered in [18] is in CH,
improving the PSPACE upper bound from [18].

The BEST theorem enables us to summarise a potentially
exponential number of paths that lead to the same cost vector.
One can thus view the techniques developed in our paper as a
partial order reduction technique for probabilistic systems. We
elaborate on this aspect in some more detail in Section V-A.

Related work. The problems studied in this paper lie at the
intersection of probabilistic verification, automata theory, enu-
merative combinatorics and computational complexity. Hence,
there is a large body of related work that we can only briefly
discuss here.

Over the last decade and in particular in recent years, there
has been strong interest in extensions of Markov chains and
Markov decision processes (MDPs) with (multi-dimensional)
weights. Laroussinie and Sproston were the first to show
that model checking PCTL on cost chains with non-negative
costs in dimension one is NP-hard and in EXPTIME [27];
the lower bound has recently been improved to PP in [19].
Qualitative aspects of quantile problems in weighted MDPs
where the probability threshold τ is either 0 or 1 have been
studied by Ummels and Baier in [37], and iterative linear
programming based approaches for solving reward quantiles
have been described in [5], [24]. There is also a large body of
work on synthesising strategies for weighted MDPs that ensure
both worst case as well as expected value guarantees [12],
[14], [15], [30]; see [31] for a survey on such beyond-worst-
case-analysis problems. Another branch of related work deals
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with extension of classical temporal logics that allow to reason
about accumulated costs along runs, see e.g. [7], [10], [16],
[35].

We use the BEST theorem in our proof for membership of
the finitary cost problem in CH in order to count the number
of Eulerian circuits in a directed edge-weighted multi-graph
whose edge weights are encoded in binary. For an unweighted
directed graph, the BEST theorem allows one to compute the
number of Eulerian circuits in polynomial time (even in NC2),
since it basically reduces the computation to a determinant.
On the other hand, computing the number of Eulerian circuits
in an undirected graph is #P-complete [11]. For graphs of
bounded tree width, the number of Eulerian circuits can be
computed very efficiently: in logspace for directed graphs [8],
and in NC2 for undirected graphs [9].

Outline of the Paper. Section II contains all basic definitions.
Subsequently, Section III establishes our contributions (1)
and (2): we define the (finitary) cost problem and describe
our basic algorithm for deciding it by a reduction to counting
problems on edge-weighted graphs. We also explain how
the cost problem relates to the computation of quantiles. In
Section IV we deliver contribution (3) by proving that the
finitary cost problem can be decided in the counting hierarchy.
The technical contributions (5) and (6) are contained in
Sections IV-C and IV-D. Finally, in Section V we evaluate our
basic algorithm experimentally (contribution (4)). We conclude
in Section VI.

II. PRELIMINARIES

By Z and N we denote the set of integers and non-
negative integers, respectively. Let Σ = {a1, . . . , am} be a
finite alphabet. A Parikh vector is a vector of m non-negative
integers, i.e., an element of Nm or alternatively NΣ. Let
u ∈ Σ∗ be a word. For a ∈ Σ, we denote by |u|a the number
of occurrences of a in u. The Parikh image Ψ(u) ∈ NΣ

of u is the Parikh vector counting how often every alphabet
symbol of Σ occurs in u, i.e., Ψ(u) := (|u|a1 , . . . , |u|am).
The Parikh image of a language L ⊆ Σ∗ is defined as
Ψ(L) := {Ψ(u) : u ∈ L} ⊆ NΣ.

A deterministic finite-state automaton (DFA) is a tuple A =
(Q,Σ, q0, F, δ), where Q is a finite set of control states, Σ is
a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the
set of final states, and δ ⊆ Q × Σ × Q is a finite set of
transitions such that (q, a, q1), (q, a, q2) ∈ δ implies q1 = q2.
Given u = a1a2 · · · an ∈ Σ∗, a run % of A on u is a finite
sequence of control states % = p0p1 · · · pn such that p0 = q0

and (pi, ai, pi+1) ∈ δ for all 0 ≤ i < n. We call % accepting
whenever pn ∈ F and define the language accepted by A as
L(A) := {u ∈ Σ∗ : A has an accepting run on u}.

Given a vector z = (z1, . . . , zd) ∈ Zd, we denote
by ‖z‖1 and ‖z‖∞ the sum and the maximum norm,
which are defined as usual, i.e., ‖z‖1 :=

∑
1≤i≤d|zi| and

‖z‖∞ := max1≤i≤d|zi|. Given a d × n integer matrix A
consisting of row vectors z1, . . . ,zd, we define ‖A‖1,∞ :=
max1≤i≤d‖zi‖1.

III. COST PROBLEMS IN MARKOV CHAINS

A Markov chain is a triple M = (S, s0, δ), where S is
a countable (finite or infinite) set of states, s0 ∈ S is the
initial state, and δ : S → dist(S) is a probabilistic transition
function that maps a state to a probability distribution over the
successor states. Given a Markov chain we also write s

p−→ t
or s −→ t to indicate that p = δ(s)(t) > 0. A run is an infinite
sequence s0s1s2 · · · where si ∈ S and si−1 −→ si for all
i ≥ 1. We write Run(s0 · · · sk) for the set of runs that start
with s0 · · · sk. We associate to M the standard probability
space (Run(s0),F ,P) where F is the σ-algebra generated
by all basic cylinders Run(s0 · · · sk) with s0 · · · sk ∈ s0S

∗,
and P : F → [0, 1] is the unique probability measure such that

P(Run(s0 · · · sk)) =

k∏
i=1

δ(si−1)(si).

A cost chain in dimension d is a tuple C = (Q, q0, t,∆),
where Q is a finite set of control states, q0 ∈ Q is the
initial control state, t ∈ Q \ {q0} is the target control state,
and ∆: Q → dist(Q × Zd) is a probabilistic transition
function. Here, for q, q′ ∈ Q and z ∈ Zd, when q is the
current control state, the value ∆(q)(q′, z) ∈ [0, 1] is the
probability that the cost chain transitions to control state q′

and cost z is incurred. (Rational numbers as costs could be
made integer by multiplying with the least common multiple
of the denominators.) For complexity results we define the size
of C as the size of a succinct description, i.e., the costs are
encoded in binary, the probabilities are encoded as fractions
of integers in binary (so the probabilities are assumed to be
rational in order to get a finite representation), and for each
q ∈ Q, the distribution ∆(q) is described by the list of
triples (q′, z, p) with ∆(q)(q′, z) = p > 0 (so we assume
this list to be finite). We define the set E of edges of C
as E := {(q, z, q′) : ∆(q)(q′, z) > 0}, and write ∆(e)
for ∆(q)(q′, z) when e = (q, z, q′) ∈ E. A cost chain C
induces a Markov chain MC = (Q × Zd, (q0,0), δ) with
δ(q, c)(q′, c′) = ∆(q)(q′, c′ − c) for all q, q′ ∈ Q and
c, c′ ∈ Zd. For a state (q, c) ∈ Q × Zd in MC we view q
as the current control state and c as the current cost, i.e., the
cost accumulated so far. We sometimes call the components
of c and their values counters and counter values, respectively.

In this section, we will be interested in the cost accumulated
during a run when reaching the target state t. Following [18],
we assume (i) that the target state t is almost surely reached,
and (ii) that ∆(t)(t,0) = 1. Hence runs that visit t do not
leave t and accumulate only a finite cost. Those assumptions
are needed for the following definition to be sound1: Given
a cost chain C, we define a random variable KC that maps
a run of MC to its accumulated cost. Formally, we define
KC : Run((q0,0))→ Zd such that KC((q0,0) (q1, c1) · · · ) =
c if there exists i ∈ N with (qi, ci) = (t, c). From the
aforementioned assumptions on t, it follows that the random
variable KC is almost surely defined.

1See [18] for a discussion on why those assumptions can be made.
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A cost chain C induces a DFA AC := (Q,E, q0, {t}, δ),
which we define such that (q, e, q′) ∈ δ whenever e =
(q, z, q′) ∈ E for some z ∈ Zd, except for t which has no
outgoing transitions. Note that different transitions are labelled
with different alphabet symbols. For u ∈ L(AC), we define
R̂un(u) to be the unique run of C that coincides with u in the
order of the traversed edges in its initial segment.

Let x1, . . . , xd be d integer-valued variables. An atomic cost
formula is an inequality of the form a1 ·x1 + · · ·+ad ·xd ≤ b,
where a1, . . . , ad, b ∈ Z are encoded in binary, and a cost
formula is an arbitrary Boolean combination of atomic cost
formulas, i.e., a formula in quantifier-free Presburger arithme-
tic. We say that a tuple c = (c1, . . . , cd) ∈ Zd satisfies a cost
formula ϕ, in symbols c |= ϕ, if ϕ is true when every xi is
replaced by ci. Let

[[ϕ]] := {c ∈ Zd : c |= ϕ}

be the set of all satisfying assignments of ϕ.
We can now formally define the problem that we study in

this paper:

COST PROBLEM

INPUT: A cost chain C, a cost formula ϕ and a proba-
bility threshold τ ∈ [0, 1] given as a fraction of
integers encoded in binary.

QUESTION: Does P(KC |= ϕ) ≥ τ hold?

This generalises the definition from [18], where the cost
problem for one-dimensional cost chains with non-negative
costs is studied. Consequently ϕ is required to only define a
subset of N. It is shown in [18] that this version of the cost
problem belongs to PSPACE. This result is not algorithmic in
its nature and relies on a nontrivial result from computational
complexity, namely the equality PSPACE = #PSPACE [26].
Moreover, the decidability result from [18] depends on the fact
that due to the imposed restrictions, JϕK is either finite or co-
finite, and hence it suffices to consider only a finite number of
paths in the induced Markov chain in order to decide a cost
problem. If we allow negative costs to occur in cost chains, it
is not obvious (and the authors do not know) whether the cost
problem is decidable, even in dimension one. It is not even
clear whether the probability of reaching a particular target
configuration is rational. Therefore, we consider a special case
of the cost problem to obtain decidability and good complexity
bounds.

Computation of Quantiles. The cost problem generalises
the computation of quantiles of the probability distribution
of accumulated costs. In more detail, in the one-dimensional
case, one might be interested in finding the smallest budget b
so that the probability of the cost being at most b is at
least τ . Given b, it is an instance of the cost problem to check
whether P(KC |= x1 ≤ b) ≥ τ . Binary search can be used
to determine the least b that satisfies this probability bound.
In the multidimensional case one might fix b1, . . . , bn−1

and use binary search on bn to find the least bn such that
P(KC |=

∧n
i=1 xi ≤ bi) ≥ τ .

A. The Finitary Cost Problem

Let C, ϕ, τ be an input instance of the cost problem with
its induced DFA AC . This instance is finitary if the set

Lϕ(AC) := {u ∈ L(AC) : KC(R̂un(u)) |= ϕ}

is finite. If L¬ϕ(AC) is finite, we call the instance co-finitary.
We will later argue that one can decide whether an instance of
the cost problem is finitary (or co-finitary), see Proposition 3
below. Clearly, an algorithm for the cost problem restricted
to finitary instances also solves the co-finitary case, since
P(KC |= ϕ) = 1 − P(KC |= ¬ϕ). Moreover, an arbitrary
instance of a cost problem in dimension d can be turned
into a finitary cost problem given by Ĉ, ϕ̂ and τ by (i)
adding to C a new counter that gets incremented along every
transition, except for the self-loop at the target state t, in
order to obtain a cost chain Ĉ; and (ii) replacing ϕ with
ϕ̂ := ϕ ∧ 0 ≤ xd+1 ≤ m for some arbitrary but fixed length
threshold m ∈ N representing the maximum length of paths
allowed before reaching the target t. This transformation gives
up the infinite-state nature of the cost problem, but it allows
for an arbitrarily close approximation:

Proposition 1. Let Ĉ, ϕ̂, τ be the instance of the finitary
cost problem obtained from restricting the instance C, ϕ, τ
of the cost problem to some length threshold m, and let p =
P(KC |= ϕ). Then p− ε ≤ P(KĈ |= ϕ̂) ≤ p for

ε = exp

(
p
|Q|
min ·

(
−m− 1

|Q|
+ 1

))
,

where pmin is the smallest nonzero probability appearing in
the description of C.

Proof. We have:

P(KĈ |= ϕ̂) ≤ P(KĈ |= ϕ) def. of ϕ̂

= P(KC |= ϕ) def. of Ĉ
= p def. of p

This proves the upper bound. Towards the lower bound, from
the definition of ε we obtain:

m = |Q| ·

(
− ln ε

p
|Q|
min

+ 1

)
+ 1

From [18, Prop. 2] we have:

P(KĈ |= xd+1 > m) ≤ ε (1)

Hence:

p = P(KC |= ϕ) def. of p

= P(KĈ |= ϕ) def. of Ĉ
= P(KĈ |= ϕ ∧ 0 ≤ xd+1 ≤ m︸ ︷︷ ︸

ϕ̂

)

+ P(KĈ |= ϕ ∧ xd+1 > m)

≤ P(KĈ |= ϕ̂) + P(KĈ |= xd+1 > m)

≤ P(KĈ |= ϕ̂) + ε by (1)
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This proves the proposition.

Note that ε in Proposition 1 is independent from the integer
weights occurring in C.

B. A Parikh-Image Based Approach to the Cost Problem

We can use Parikh images as an abstraction for runs of
a cost chain C and words in AC . This in turn enables us
to prove an upper bound on the length of the relevant part
of runs satisfying ϕ. Let E = {e1, . . . , em} be the set of
edges of C and let p = (p1, . . . , pm) be first-order variables
representing a Parikh vector. It is shown in [32, Thm. 1] that
from a given NFA A one can construct in linear time an
existential Presburger formula of size O(|A|) for the Parikh
image Ψ(L(A)). It follows that there exists an existential
Presburger formula γC,ϕ(p) of size O(|C| + |ϕ|) that defines
the Parikh image of Lϕ(AC):

JγC,ϕK = Ψ(Lϕ(AC)). (2)

While the formula γC,ϕ is not explicitly presented in [32], it
can easily be explained on an informal level since it essentially
encodes the classical Euler-Hierholzer theorem in Presburger
arithmetic. This theorem states that there exists a Eulerian path
(a path traversing every edge exactly once) in a directed graph
if and only if
(a) for every node, the number of incoming edges equals the

number of outgoing edges, and
(b) the graph is connected.
Condition (a) is easily encoded as a system of linear equalities,
and for Condition (b) the authors use a neat trick that simulates
a breadth-first search in Presburger arithmetic. By recording
for a run in AC the number of times it traverses an edge,
the Euler-Hierholzer theorem gives us sufficient and neces-
sary conditions for ensuring that a Parikh vector has some
corresponding run in AC . See also [20] for a more elaborate
discussion on the construction from [32].

The following lemma makes use of (2) and in particular
implies that the finitary cost problem is decidable.

Lemma 2. Let C, ϕ, τ be an instance of the finitary cost
problem. Then for every u ∈ Lϕ(AC) we have |u| ≤
2O((|C|+|ϕ|)3).

Proof. Let γ(p) be the formula γC,ϕ from (2). Bringing γ(p)
into disjunctive normal form, we have that γ(p) is equivalent
to a disjunction of polyhedra each given by the Presburger
formula θ(p) = ∃x : A ·

(
p
x

)
≥ b, where A is an n1 × n2

matrix for some n1, n2 ≤ |γ| and x is an integer vector of
length n2−m. It follows from a result of Pottier [29, Cor. 1]
and the fact that we are dealing with a finitary instance of the
cost problem that for any p with θ(p)

‖p‖1 ≤ (2 + ‖A‖1,∞ + ‖b‖∞)|γ|.

Estimating ‖A‖1,∞ ≤ 2|γ| · |γ| and ‖b‖∞ ≤ 2|γ|, we conclude
that every p ∈ Nm with γ(p) satisfies

‖p‖1 ≤ (2 + 2|γ| · |γ|+ 2|γ|)|γ| ≤ 2O((|C|+|ϕ|)3).

Algorithm 1 Deciding an instance of a finitary cost problem
C, ϕ and τ .

1: p := 0
2: let γC,ϕ(p) be the formula from (2)
3: while γC,ϕ(p) is satisfiable and p < τ do
4: choose p∗ ∈ JγC,ϕK
5: p := p+N(AC ,p∗) ·

∏
e∈E ∆(e)p

∗(e)

6: γC,ϕ(p) := γC,ϕ(p) ∧ p 6= p∗

7: end while
8: return p ≥ τ

Since ‖p‖1 equals the length of all paths with Parikh image
p, the length of every u ∈ Lϕ(AC) is bounded by ‖p‖1 and
the statement follows.

Moreover, Lemma 2 enables us to decide whether a given
instance of the cost problem is finitary:

Proposition 3. Given a cost chain C and a cost formula ϕ,
one can check in coNP whether Lϕ(AC) is finite.

Proof. Lemma 2 implies that there is a constant c > 0 such
that the given instance C, ϕ is finitary if and only if |u| ≤
2c·(|C|+|ϕ|)

3

for every u ∈ Lϕ(AC). Consequently, in order to
check whether C, ϕ is not finitary it suffices to decide whether
γC,ϕ(p) has a solution such that ‖p‖1 > 2c·(|C|+|ϕ|)

3

. For
p = (p1, . . . , pn), this is equivalent to deciding whether

γC,ϕ ∧
∑

1≤i≤n

pi > 2c·(|C|+|ϕ|)
3

is satisfiable, which can be done in NP.

Note that due to (2), we can use an SMT-solver to enume-
rate Ψ(Lϕ(AC)). However, a single Parikh vector in JγC,ϕK
may correspond to an exponential number of paths through
the Markov chain. Here we use the following observation: we
only need the number of those paths. Suppose we had access to
an oracle N(AC ,p) returning the number of words in L(AC)
with Parikh image p. Then we could calculate the probability
P(KC |= ϕ) without enumerating all paths:

P(KC |= ϕ) =
∑

u∈Lϕ(AC)

P(R̂un(u)) (3)

=
∑

p∈Ψ(Lϕ(AC))

N(AC ,p) ·
∏
e∈E

∆(e)p(e).

This equation gives rise to Algorithm 1. It enumerates all
Parikh images of words in Lϕ(AC) using the formula γC,ϕ
from (2), and accumulates the probability of all paths with
every such Parikh image. The while-loop is guaranteed to
terminate as the cost problem is finitary.

In the remainder of the section we show how to efficiently
compute the number N(AC ,p). To this end, we give a graph-
theoretical expression for the number N(AC ,p): we relate it
to the number of Eulerian circuits in an edge-weighted multi-
graph associated with AC and p.
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C. Multi-Graphs
A (finite directed) multi-graph is a tuple G = (V,E, s, t),

where V is a finite set of nodes, E is a finite set of edges,
and the mapping s : E → V (resp., t : E → V ) assigns to
each edge its source node (resp., target node). We always
assume that there are no isolated nodes, i.e., V = s(E)∪t(E).
A path (of length n) in G from u to v is a sequence of
edges e1, e2, . . . , en such that s(e1) = u, t(en) = v, and
t(ei) = s(ei+1) for all 1 ≤ i ≤ n − 1. We say that
G is connected if for all nodes u, v ∈ V there exists a
path in G from u to v. We call an edge e ∈ E with
s(e) = t(e) a loop. The in-degree of v is d+

G(v) := #t−1(v)
(the preimage t−1(v) is the set of all incoming edges for node
v) and the out-degree of v is d−G(v) := #s−1(v). We call
G Eulerian if d−G(v) = d+

G(v) for all v ∈ V . A Eulerian
circuit is a path e1, e2, . . . , en such that E = {e1, e2, . . . , en},
ei 6= ej for i 6= j, and t(en) = s(e1). Let us denote by
e(G) the number of Eulerian circuits of G, where we do
not distinguish between the Eulerian circuits e1, e2, . . . , en
and ei, ei+1, . . . , en, e1, . . . , ei−1. Alternatively, e(G) is the
number of Eulerian circuits that start with a distinguished
edge. In other words, e(G) counts the number of Eulerian
circuits of G modulo cyclic rotations. Since we have no
isolated nodes, we have e(G) > 0 if and only if G is Eulerian
and connected.

D. The BEST Theorem and Tutte’s Matrix-Tree Theorem
In this section we explain the two main tools from com-

binatorics that we use for the computation of N(AC ,p): the
BEST theorem and Tutte’s matrix-tree theorem.

Let G = (V,E, s, t) be a multi-graph. For v ∈ V , let
t(G, v) denote the number of directed spanning trees oriented
towards v, i.e., the number of sub-graphs T of G such that

(i) T contains all nodes of G,
(ii) v has out-degree 0 in T , and

(iii) for every other vertex u ∈ V \{v} there is a unique path
in T from u to v.

If G is Eulerian then t(G, v) = t(G, v′) for all v, v′ ∈ V [1,
p. 236], and we denote this number with t(G). The BEST
theorem [1, p. 445], named after de Bruijn, van Aardenne-
Ehrenfest, Smith and Tutte, relates the number e(G) of Eule-
rian circuits with t(G):

Theorem 4 (BEST theorem). If G is a connected Eulerian
multi-graph, then e(G) = t(G) ·

∏
v∈V (d−G(v)− 1)!.

The number t(G) can be computed using Tutte’s matrix-
tree theorem, see e.g. [1, p. 231]. First, note that removing
all loops from G does not influence the number of spanning
trees. We can also assume that V = {1, . . . , n}. The adjacency
matrix of G is A(G) = (ai,j)1≤i,j≤n, where ai,j := #{e ∈
E : s(e) = i, t(e) = j} is the number of edges from i to j.
The out-degree matrix D−(G) = (di,j)1≤i,j≤n is defined by
di,j := 0 for i 6= j and di,i := d−G(i). The Laplacian L(G)
of G is L(G) := D−(G) − A(G). If M is a matrix then we
denote by M i,j the (i, j)-minor of M , i.e., the matrix obtained
from M by deleting its ith row and jth column.

Theorem 5 (Tutte’s matrix-tree theorem). For a loop-free
multigraph G we have t(G, i) = (−1)i+j ·det(L(G)i,j), where
j ∈ V is arbitrary. In particular, t(G, i) = det(L(G)i,i).

As mentioned previously, in the Eulerian case we have
t(G) = t(G, i) = t(G, j) for all i, j ∈ V , and thus
t(G) = det(L(G)1,1).

E. Edge-Weighted Multi-Graphs

An edge-weighted multi-graph is a tuple
G = (V,E, s, t, w), where (V,E, s, t) is a multi-graph
and w : E → N assigns a weight to every edge. We can
define the ordinary multi-graph G̃ induced by G by replacing
every edge e ∈ E by k = w(e) many edges e1, . . . , ek with
s(ei) = s(e) and t(ei) = t(e). For two nodes u, v ∈ V
with u 6= v we denote by e(G, u, v) the number of paths
e1, e2, . . . , en in (V,E, s, t) such that s(e1) = u, t(en) = v,
and for every edge e, w(e) = #{i : 1 ≤ i ≤ n, e = ei}.
To compute this number, let us define G̃v,u by adding to
G̃ a new edge e with s(e) = v and t(e) = v. With these
definitions, we can show the following simple statement:

Lemma 6. For an edge-weighted multi-graph G =
(V,E, s, t, w) and two nodes u, v ∈ V with u 6= v we have

e(G, u, v) =
e(G̃v,u)∏
e∈E w(e)!

Proof. Note that every path in G from u to v that uses every
edge e exactly w(e) times corresponds to exactly

∏
e∈E w(e)!

many Eulerian circuits of G̃v,u. These Eulerian circuits are
obtained by fixing for every e ∈ E an arbitrary permutation of
the k = w(e) many edges e1, . . . , ek in G̃ that replace e.

F. From Automata to Graphs

Let Σ be an alphabet and p ∈ NΣ be a Parikh vector. For a
DFA A, we denote by N(A,p) the number of words in L(A)
with Parikh image p, i.e.,

N(A,p) := #{u ∈ L(A) : Ψ(u) = p}.

Let us call a DFA well-formed if it has a unique final state
that is different from the initial state and has no outgoing
transitions. We can reduce the computation of N(A,p) to
well-formed DFAs as follows: Let A = (Q,Σ, q0, F, δ) be
a DFA, and p a Parikh vector. We define a new DFA A′
as follows: Add a fresh state qf 6∈ Q and a fresh symbol
b 6∈ Σ to the alphabet together with all transitions (q, b, qf )
for q ∈ F . Moreover, qf becomes the only final state of A′.
Note that L(A′) = L(A)b. We extend the Parikh vector p
to a Parikh vector p′ by p′(b) = 1 and p′(a) = p(a) for
all a 6= b. It follows that the mapping x 7→ xb (x ∈ Σ∗)
induces a bijection between words u ∈ L(A) with Ψ(w) = p
and words v ∈ L(A′) with Ψ(v) = p′. Thus, we have
N(A,p) = N(A′,p′).

For a well-formed DFA A = (Q,Σ, q0, {qf}, δ) and
p : Σ → N let W (A,p) be the set of all mappings
w : δ → N such that for every a ∈ Σ, we have p(a) =∑

(p,a,q)∈δ w(p, a, q). Moreover, for w : δ → N we define
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the edge-weighted multi-graph Aw = (Q, δ, s, t, w), where
s(p, a, q) = p and t(p, a, q) = q. With these definitions, we
clearly get:

Lemma 7. Let A = (Q,Σ, q0, {qf}, δ) be a well-formed DFA.
Then, N(A,p) =

∑
w∈W (A,p) e(Aw, q0, qf ).

Let us summarise our reduction chain for the DFA AC =
(Q,E, q0, {t}, δ) obtained from a cost chain C = (Q, q0, t,∆).
Note that AC is already well-formed and all transitions
are labelled by pairwise different letters. The latter implies
W (AC ,p) = {w}, where w(p, e, q) = p(e) for all (p, e, q) ∈
δ, and we get:

N(AC ,p) = e(AwC , q0, t). (4)

From the edge-weighted multi-graph G = AwC , we form the
multi-graph G′ = G̃t,q0 . W.l.o.g. we can assume that it has
no isolated nodes. If G′ is not connected or not Eulerian, then
e(G, q0, t) = 0, otherwise we get with Lemma 6

e(G, q0, t) =
e(G′)∏
t∈δ w(t)!

=
e(G′)∏
e∈E p(e)!

.

Finally, for e(G′) we get with Theorems 4 and 5 the formula

e(G′) = t(G′) ·
∏
q∈Q

(d−G′(q)− 1)!

= det(L(G′′)1,1) ·
∏
q∈Q

(d−G′(q)− 1)!

(note that the new state qf has outdegree one, and 0! = 1).
Here, G′′ is obtained from G′ by removing all loops. Our
tool QUANT, see Section V, uses the above formulas to
evaluate N(AC ,p) in Algorithm 1.

IV. THE FINITARY COST PROBLEM BELONGS TO THE
COUNTING HIERARCHY

In this section we use our approach based on the BEST
theorem to show that the finitary cost problem is in the
counting hierarchy (CH), which is defined in Section IV-A.
Section IV-B contains further definitions and results used in
the proofs. In Section IV-C we develop a toolbox for functions
mapping bit strings to natural numbers that can be evaluated
in CH. Here, evaluating a function refers to deciding whether
a certain bit of the function value is equal to one. Our toolbox
enables us to add, multiply and divide functions while staying
inside CH. We apply these closure properties in Section IV-D
to show that the previously defined function N(A,p) that
counts the number of words with Parikh image p accepted
by a DFA A can be evaluated in CH. This enables us to prove
membership of the finitary cost problem in CH.

A. Definitions From Computational Complexity

We assume familiarity with basic complexity classes. The
class PP (probabilistic polynomial time) contains all problems
A for which there exists a non-deterministic polynomial-time
Turing machine M such that for every input x, x ∈ A if
and only if more than half of all computation paths of M on
input x are accepting. By a result of Toda [34], the polynomial

time hierarchy (PH) is contained in PPP, which is the class of
all languages that can be decided in deterministic polynomial
time with the help of an oracle from PP. Hence, if a problem
is PP-hard, then this can be seen as a strong indication that
the problem does not belong to PH (otherwise PH would
collapse). The levels of the counting hierarchy Cpi (i ≥ 0)
are inductively defined as follows: Cp0 = P and Cpi+1 = PPCp

i

(the set of languages accepted by a PP-machine as above with
an oracle from Cpi ) for all i ≥ 0. Let CH =

⋃
i≥0 C

p
i be the

counting hierarchy. It is not hard to show that CH ⊆ PSPACE,
but it is open whether this inclusion is strict, see [4], [36] for
more details.

B. Auxiliary Definitions and Results About Circuit Complexity

The circuit complexity class TC0 is the class of all langua-
ges L ⊆ {0, 1}∗ that can be decided by a family of circuits
(Cn)n≥0 with the following properties:
• The circuits Cn are built up from Boolean gates (AND,

OR and NOT) and threshold gates. A threshold gate
outputs a 1 if at least half of its inputs are 1, otherwise
it outputs a 0.

• The circuit Cn has n input gates x1, . . . , xn and a
single output gate, and for an input assignment αn :
{x1, . . . , xn} → {0, 1} the output gate evaluates to 1
if and only if the bit string αn(x1)αn(x2) · · ·αn(xn)
belongs to L.

• There is a constant c such that every circuit Cn has depth
at most c, where the depth of a circuit is the length of a
longest path from an input gate to the output gate.

• There is a polynomial p(n) such that the circuit Cn has
at most p(n) many gates.

Note that this is a non-uniform computation model in the sense
that the circuits Cn do not have to follow a common pattern,
and this implies that TC0 also contains undecidable languages.
Therefore, TC0 is often restricted to uniform variants. The
most restricted but still non-trivial such variant is DLOGTIME-
uniform TC0. Here, DLOGTIME-uniformity means that one
can compute in time O(log n) (i) the type of a given gate
of the nth circuit Cn, and (ii) whether two given gates of
the nth circuit are connected by a wire. Here, gates of the
nth circuit are encoded by bit strings of length O(log n). If
we do not allow threshold gates in this definition, we obtain
DLOGTIME-uniform AC0.

There are obvious generalisation of the above language
classes AC0 and TC0 to function classes. Given two n-bit
numbers x, y ∈ Z, x + y (resp., x · y) can be computed in
DLOGTIME-uniform AC0 (resp., DLOGTIME-uniform TC0)
[38]. Even the product of n numbers x1, . . . , xn ∈ Z, each of
bit-size at most n, and the integer quotient bx/yc (x, y ∈ Z)
can be computed in DLOGTIME-uniform TC0 [2], [21]. More
details on the counting hierarchy (resp., circuit complexity)
can be found in [4] (resp., [38]).

C. A Toolbox for the Counting Hierarchy

To place the finitary cost problem into CH, we need some
closure results for the counting hierarchy. These results are
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based on ideas and results developed in [3], [13], which are,
however, not sufficiently general for our purposes.

Let B := {0, 1}∗. For a k-tuple x = (x1, . . . , xk) ∈ Bk let
|x| =

∑k
i=1 |xi|. The following definition is a slight variant of

the definition in [13] that suits our purposes better. Consider
a function f : Bk → N that maps a k-tuple of binary words to
a natural number. We say that f belongs to CH if there exists
a polynomial p(n) such that
• for all x ∈ Bk we have f(x) ≤ 22p(|x|)

, and
• the set of tuples

Lf := {(x, i) ∈ Bk × N : the ith bit of f(x) is 1}

belongs to CH (here, we assume that i is given in binary
representation).

We also consider mappings f : D1 × · · · × Dk → N in CH,
where the domains D1, . . . , Dk are not B (e.g., in Propo-
sition 13 below). In this case, we assume some standard
encoding of the elements from D1, . . . , Dk as words over a
binary alphabet.

Lemma 8. If the function f : Bk+1 → N belongs to CH and
p(n) is a polynomial, then also the functions g : Bk → N and
h : Bk → N belong to CH, where

g(x) =
∑

y∈{0,1}p(|x|)
f(x, y) and h(x) =

∏
y∈{0,1}p(|x|)

f(x, y).

Proof. We only prove the statement for products, the proof
for sums is the same. To this end, we follow the arguments
from [3] showing that BITSLP belongs to the counting hier-
archy. As mentioned in Section IV-B, iterated product, i.e.,
the problem of computing the product of a sequence of binary
encoded integers, belongs to DLOGTIME-uniform TC0. More
precisely, there is a DLOGTIME-uniform TC0 circuit family,
where the nth circuit Cn has n2 many input gates, which are
interpreted as n-bit integers x1, . . . , xn, and n2 output gates,
which evaluate to the bits in the product

∏n
i=1 xi. Let c be the

depth of the circuits Cn, which is a fixed constant. One can
assume that the gates are partitioned into c levels, where level
1 consists of the input gates, level c consists of the output gate
and all wires go from a gate on level i to a gate on level i+ 1
for some 1 ≤ i ≤ c− 1.

Since the function f belongs to CH, there is a polynomial
q(n) such that for all x ∈ Bk and y ∈ B we have f(x, y) ≤
22q(|x|+|y|)

. Let r(n) be the polynomial with r(n) = q(n +
p(n)). Hence, for all x ∈ Bk and y ∈ {0, 1}p(|x|) we have
f(x, y) ≤ 22r(|x|)

. We can assume that r(n) ≥ p(n) for all n
(simply assume that q(n) ≥ n).

For an input tuple x ∈ Bk with |x| = n we consider the
circuit Dn := C2r(n) . It takes 2r(n) ≥ 2p(n) integers with
2r(|x) bits as input. Hence, we can consider the input tuple

z = (f(x, y1), f(x, y2), . . . , f(x, y2p(n)), 1, . . . , 1) (5)

for Dn. Here, y1, . . . , y2p(n) is the lexicographic enumeration
of all binary words of length p(n). We pad the tuple with a
sufficient number of ones so that the total length of the tuple
is 2r(n).

There is a polynomial s(n) such that Dn has at most 2s(n)

many gates. Hence, a gate of Dn can be identified with a
bitstring of length s(n). Then, one shows that for every level
1 ≤ i ≤ c the following set belongs to CH:

{(x, u) : x ∈ Bk, u ∈ {0, 1}s(|x|), gate u is on level i of D|x|
and evaluates to 1 if z from (5) is input for D|x|}.

This is shown by a straightforward induction on i as in [3].
For the induction base i = 1 one uses the fact that f belongs
to CH.

For the statement about sums, the proof is the same using
the result that iterated sum belongs to DLOGTIME-uniform
TC0 as well (which is much easier to show than the corre-
sponding result for iterated products).

Remark 9. A particular application of Lemma 8 that we will
use subsequently is the following: Assume that f, g : Bk → N
are functions such that for a given tuple x ∈ Bk the values
f(x) and g(x) are bounded by 2poly(|x|) and the binary repre-
sentations of these numbers can be computed in polynomial
time. Then, the mappings defined by f(x)! and f(x)g(x) belong
to CH.

Remark 10. In our subsequent applications of Lemma 8 we
have to consider the case that g is given as

g(x) =
∑

y∈S(x)∩{0,1}p(|x|)
f(x, y),

such that for a given tuple x ∈ Bk and a binary word y ∈
{0, 1}p(|x|) one can decide in polynomial time whether y ∈
S(x). This case can be easily reduced to Lemma 8, since
g(x) =

∑
y∈{0,1}p(|x|) f

′(x, y), where f ′ is defined as

f ′(x, y) :=

{
f(x, y) if y ∈ S(x)

0 otherwise.

Moreover, if f belongs to CH, then also f ′ belongs to CH.
The same remark applies to products instead of sums.

Lemma 11. If the functions f : Bk → N and g : Bk → N
belong to CH, then also the following functions q : Bk → N
(quotient) and d : Bk → N (modified difference) belong to CH:

q(x) :=

⌊
f(x)

g(x)

⌋
and d(x) := max{0, f(x)− g(x)}

Proof. The proof is the same as for Lemma 8, using the result
that division (resp., subtraction) of integers encoded in binary
is in DLOGTIME-uniform TC0 [21] (resp., AC0 ⊆ TC0 [38]).

Lemma 11 implies:

Lemma 12. If the functions f : Bk → N and g : Bk → N
belong to CH, then also the following function h : Bk → N
belongs to CH:

h(x) :=

{
1 if f(x) > g(x)

0 otherwise

8



D. Applications to the Cost Problem

We apply our toolkit for the counting hierarchy to show
that any bit of the number N(A,p) can be evaluated in the
counting hierarchy, see Proposition 13 below. This, in turn,
enables us to place the cost problem in the counting hierarchy.
Formally:

BITPARIKH

INPUT: A DFA A over an alphabet Σ, a Parikh vector
p ∈ NΣ, and a number i ∈ N encoded binary.

QUESTION: Is the ith bit of N(A,p) equal to one?

Proposition 13. BITPARIKH is in CH.

Proof. Let A = (Q,Σ, q0, {qf}, δ) be a DFA which we
may assume to be well-formed, cf. Section III-F, and let
p ∈ NΣ be a Parikh vector. By Lemma 7 we have N(A,p) =∑
w∈W (A,p) e(Aw, q0, qf ), where w : δ → N and Aw is the

edge-weighted multi-graph obtained from A by assigning to
every transition t ∈ δ the weight w(t). Note that for a given
mapping w : δ → N one can check in polynomial time whether
w ∈ W (A,p), see Section III-F. Moreover, from w and
A one can construct the edge-weighted multi-graph Aw in
polynomial time. Together with Lemma 8 and Remark 10, this
implies that it suffices to show that the mapping (G, u, v) 7→
e(G, u, v), where G = (V,E, s, t, w) is an edge-weighted
multi-graph and u, v ∈ V are different node, belongs to CH.
By Lemma 6 we have e(G, u, v) = e(G′)/

∏
e∈E w(e)!, where

G′ = G̃v,u. Given G, u and v, we can check in polynomial
time whether G̃v,u is connected and Eulerian. If this is not the
case, then e(G, u, v) = 0. Otherwise, Theorems 4 and 5 yield

e(G, u, v) = det(L(G′′)1,1) ·
∏
v∈V

(d−G′(v)− 1)!/
∏
e∈E

w(e)!,

where G′′ is obtained from G′ by removing all loops. The
determinant det(L(G′′)1,1) can be computed in polynomial
time from the edge weights of G. Finally, Lemma 8 and 11
imply that the mapping (G, u, v) 7→ e(G, u, v) belongs to CH.

Proposition 13 can be used to show that a bit of the
probability P(KC |= ϕ) can be computed in CH. Formally,
we consider the following problem:

BITCOST PROBLEM

INPUT: An instance C, ϕ, τ of the cost problem and an
integer j ≥ 0 encoded in binary.

QUESTION: Is the jth bit of P(KC |= ϕ) equal to one?

We call an instance of the BITCOST problem finitary (resp.
co-finitary) if the underlying cost problem is finitary (resp.
co-finitary). We have:

Proposition 14. The finitary and co-finitary BITCOST pro-
blems belong to CH.

Proof. The proof is a convolution of all results and concepts
introduced in this paper so far. Let C, ϕ, τ and j be an instance
of the finitary BITCOST problem. Moreover, let E be the set

of edges of C, and for every edge e ∈ E, let ∆(e) = me/de
be the probability of e. Recall that the numbers me and de
are given in binary notation. By Lemma 2, there is some c ≤
2O((|C|+|ϕ|)3) such that |u| ≤ c for all u ∈ Lϕ(AC), and in
particular ‖Ψ(u)‖1 ≤ c. From Equation (3), it then follows
that

P(KC |= ϕ) =

∑
p∈Ψ(Lϕ(AC))

N(AC ,p) ·
∏
e∈E

mp(e)
e dc+1−p(e)

e∏
e∈E

dc+1
e

.

From the above formula for P(KC |= ϕ), it follows that the jth
bit of P(KC |= ϕ) is the least significant bit of the following
integer:

P (C, ϕ, j) :=


∑

p∈Ψ(Lϕ(AC))

2j N(AC ,p)
∏
e∈E

mp(e)
e dc+1−p(e)

e∏
e∈E

dc+1
e


By Proposition 13, the function N(AC ,p) belong to CH.
Hence, Lemma 8 and 11 (see also Remark 9 and 10 after
Lemma 8) imply that the function P (C, ϕ, j) belongs to CH
(which implies that the finitary BITCOST problem belongs to
CH). For this, note that for given C, ϕ and p with ‖p‖1 ≤ c,
one can decide in polynomial time whether p ∈ Lϕ(AC),
which allows to apply Remark 10.

For a co-finite instance P(KC |= ϕ) = 1 − P(KC |= ¬ϕ)
holds. Hence, we have to compute the least significant bit of
the number b2j−2j ·P(KC |= ¬ϕ)c. This can be done in CH
by using again the above formula for P(KC |= ¬ϕ) and the
lemmas from Section IV.

Now we can prove our main result:

Theorem 15. The finitary and co-finitary cost problems belong
to CH.

Proof. Let C, ϕ, τ be an instance of the finitary cost problem,
and let τ = m/d. Following the proof of Proposition 14,
deciding P(KC |= ϕ) reduces to deciding whether∑
p∈Ψ(Lϕ(AC))

d ·N(C,p) ·
∏
e∈E

mp(e)
e dc+1−p(e)

e ≥ m ·
∏
e∈E

dc+1
e .

This can be decided in CH as in the proof of Proposition 14,
where in addition we have to use Lemma 12. Finally, in the
co-finite case we check as above whether P(KC |= ¬ϕ) ≤
1− τ .

V. EXPERIMENTAL EVALUATION

While so far the main focus of this paper has been on finding
good complexity-theoretic upper bounds for the cost problem,
in this section we briefly discuss on which instances we can
expect Algorithm 1 to perform well. We first describe how our
approach can be seen as a partial-order reduction technique,
and then compare an implementation of Algorithm 1 with the
state-of-the-art probabilistic model checker PRISM [25].
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A. Counting Paths as a Partial Order Reduction Technique

As already briefly mentioned in the introduction, our appli-
cation of the BEST theorem can be viewed as a partial order
reduction technique for cost chains. For finitary instances, by
Lemma 2 it is always possible to obtain an explicit Markov
chain by hard-coding the relevant cost vectors into the control
structure. This is partly the basis of the approaches described
for instance in [5], [24] for lower-dimensional cost chains.
Leaving aside the possible exponential blow-up, a potential
drawback is that the resulting Markov chain does not allow
for subsuming paths that accumulate the same cost vectors
due to commutativity of the transitions traversed. This is in
stark contrast to our approach: a Parikh vector can compactly
represent and subsume an exponential number of such paths on
which an exponential states may occur. For an n-dimensional
cost chain and a Parikh vector p, in the best case p subsumes
n‖p‖1 many states along paths leading to the control state
represented by p.

0; 1
k

e1; (1− 1
k
) · 1

n
e2; (1− 1

k
) · 1

n

e3; (1− 1
k
) · 1

n
e4; (1− 1

k
) · 1

n

Fig. 2. Cost chain Gn,k modelling the geometric coupon collector’s problem
for n = 4.

For an illuminating example, consider a variant of the
coupon collector’s problem from the introduction presented
in Figure 2. In the cost chain Gn,k it is no longer the
case that coupons are bought until every coupon type (out
of n types) has been discovered. Instead, in Gn,k the total
number of coupons bought is distributed geometrically with
expectation k. Suppose we wish to compute the probability of
reaching the target state with a cost vector whose components
all lie in an interval [`, u]. A Markov chain hard-coding
the cost vectors consists of nu many states that need to be
explicitly constructed. Our approach avoids this construction
and only needs to consider nu−` many Parikh images of paths
leading into this interval. Thus, as long as u − ` is not too
large, the size of the total explicit finite state space is almost
irrelevant for the empirical performance of Algorithm 1 on
this example.

As a general rule of thumb, the situations in which Al-
gorithm 1 becomes advantageous occur when #Ψ(Lϕ(AC))
is relatively small, but the overall state space is huge. Thus,
Algorithm 1 is particularly well-suited for exactly computing
probabilities of rare events of highly succinct probabilistic
systems.

B. A Comparison with PRISM

The goal of this section is to empirically compare the
algorithmic approach to the cost problem developed in this

paper with the PRISM model checker [25]. In particular, our
experiments show that SMT solvers are sufficiently powerful
in order to enumerate all Parikh vectors fulfilling a cost
formula, which could at first sight be seen as a limiting factor
of our approach.

To this end, we implemented Algorithm 1 in a tool called
QUANT2. It is written in the PYTHON programming language
and consists of about 200 lines of code. In order to enu-
merate Parikh vectors, we use the SMT-solver Z3 [17]. The
benchmarks were run on a Samsung Series 9 ultrabook with
an Intel R© CoreTM i5-2467M 1.60 GHz processor with 4 GB
DDR3 1066 MHz under Ubuntu Linux 16.04. For the run
times, we used the user time reported by the Linux tool
time. The version of PRISM that we compared to is 4.3.1.
We set the timeout to 300s and allowed for a maximal memory
usage of 1Gb.

Fig. 3. Run times and probabilities for the first experiment.

We first evaluated QUANT on the classical coupon col-
lector’s problem that we presented in the introduction by
computing the probability of the event that after collecting all
coupons, there is some coupon that has been drawn at least
two or three times, respectively, i.e., the probability P(KCn |=
ϕn,m), where ϕn,m := x1 ≥ m ∨ x2 ≥ m ∨ · · · ∨ xn ≥ m,
2 ≤ n ≤ 7 and m ∈ {2, 3}. For n = 7 and m = 3, QUANT
can compute this probability, which is ≈0.91, in less than
274s. The run time of QUANT and the calculated probabilities
are illustrated in Figure 3. As expected, P(KCn |= ϕn,m)
increases with larger n and is almost 1 for n = 7 and m = 2.
On this instance, PRISM outperforms QUANT significantly
and discharges every instance within a couple of seconds. This
is not surprising: for n = 7 and m = 3, the generated state

2The tool QUANT and the experiments performed in this section can be
obtained from the authors upon request.
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space is with 1822 states very modest, while there are many
different Parikh images leading to the same configuration that
have to be inspected by QUANT.

Fig. 4. Run times for the second experiment. Missing data points indicate a
timeout or out-of-memory error.

As discussed in the previous section, the situation should
become more favourable for QUANT when we consider the
geometric variant of the coupon collector’s problem from
Figure 2. In our benchmarks, we compute the probabilities
that at the end every coupon has been drawn between 8 and
10 times, 13 and 15 times, and 18 and 20 times. Formally, we
compute P(KGn,k

|= ψn), where ψn :=
∧

1≤i≤n ` ≤ xi ≤ u
for (`, u) ∈ {(8, 10), (13, 15), (18, 20)}, and k = n · (` + 1).
In Figure 4, we see that the run time of QUANT is almost
independent from the choices of ` and u. This is in stark
contrast to PRISM. For (`, u) = (8, 10), (13, 15), (18, 20),
PRISM cannot handle the cases n = 8, n = 7 and n = 6 any
longer. In the respective cases, the number of states generated
by PRISM before failing to discharge the next n are ≈ 7.1·107,
≈ 4.8 · 107 and ≈ 3.6 · 107.

VI. CONCLUSION

Computing quantiles in cost chains is a natural problem in
the quantitative analysis of stochastic systems. Existing com-
plexity results show that polynomial-time algorithms for the
cost problem are unlikely to exist. Nevertheless, in this paper
we have devised an algorithm that can both be implemented
efficiently and proves that the finitary cost problem is in CH.
This complements a result from [18] stating hardness for PP
and POSSLP. Our algorithm and its implementation employ a
variety of techniques and concepts, including formal language
theory, Presburger arithmetic, the BEST theorem, and SMT-
solvers.

There are several further research directions that we plan to
explore. Decidability of the infinitary cost problem is open. A
more precise complexity analysis of the finitary cost problem
might place it in a low level within CH. One might also
improve the POSSLP and PP lower bounds which hold even in
the non-negative one-dimensional case [18]. In a forthcoming
paper we plan an investigation of the complexity of problems
related to counting the number of words that both have a given
Parikh image and are accepted by a given language acceptor.

While QUANT shows promising performance in our ben-
chmarks, more engineering efforts might conceivably lead to

better scalability. We would like to explore how our methods
can be combined with iterative linear programming approaches
that have been described in [5].
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