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Abstract
Quantified integer programming is the problem of deciding assertions of the form Qkxk . . . ∀x2
∃x1 : A·x ≥ c where vectors of variables xk, . . . ,x1 form the vector x, all variables are interpreted
over N (alternatively, over Z), and A and c are a matrix and vector over Z of appropriate sizes.
We show in this paper that quantified integer programming with alternation depth k is complete
for the kth level of the polynomial hierarchy.
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1 Introduction

The problem of integer programming is, given a system of linear inequalities A · x ≥ b, to
decide whether there exists a solution for x in the non-negative integers. This problem has
been studied for decades, and its 0–1 version (in which the components of x are constrained
to be either 0 or 1) is one of Karp’s seminal 21 NP-complete problems [8]. In this paper, we
study quantified integer programming (QIP), an extension of integer programming where
some of the variables can be quantified universally – so that its instances have the form

Qkxk . . . ∀x2. ∃x1 : A · x ≥ c (1)

where Qi ∈ {∃,∀} and x consists of all first-order variables appearing in the vectors xi.
Our main contribution is settling the complexity of QIP with k quantifier blocks (as

above): we prove this problem complete for the kth level of the polynomial hierarchy, similarly
to the quantified version of SAT.1 We also show that QIP with an unbounded number of
quantifier blocks is PSPACE-hard and decidable in STA(∗, 2nO(1)

, n) ⊆ EXPSPACE.2

∗ Supported by the ERC grant AVS-ISS (648701).
1 As in the case of quantified CNF SAT, the innermost block of universal quantifiers, if present, is

disregarded; e.g., the ∀∗∃∗∀∗ fragment is complete for ΠP
2 . So we find fragments of QIP complete for

ΣP
1 = NP, ΠP

2 , ΣP
3 , . . . , but not for coNP = ΠP

1 , ΣP
2 , . . .

2 The complexity class STA(s(n), t(n), a(n)) was introduced by Berman [1] and contains all decision
problems that can be decided by an alternating Turing machine in time t(n) using space at most s(n)
and alternating at most a(n) times on every computation branch.
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Related work and discussion. While the decidability of QIP is immediate – it can be
viewed as a syntactic fragment of Presburger arithmetic, the (decidable) first-order theory of
the natural numbers with addition and order, in which matrix formulas are constrained to be
conjunctions of linear inequalities – its computational complexity has been unknown. It is, of
course, not difficult to see that QIP (and in fact Presburger arithmetic) is PSPACE-complete
if the interpretation of every first-order variable xi is restricted to an interval [li, ui] that is
given as part of the input: xi ∈ [li, ui]; see, e.g., [14]. But if xi ∈ N, then the best known
upper bounds seem to be STA(∗, 22nO(1)

, O(n)) ⊆ 2-EXPSPACE, the generic upper bound for
deciding Presburger arithmetic [1], and the (k− 1)th level of the weak EXP hierarchy for the
fragment with k quantifier blocks [6]. The best known lower bound has been ΠP

2 , established
recently by the authors for Π2-instances of QIP [3, Sec. 4.2].

It may be surprising, and certainly was to the authors, that the complexity of QIP, a
natural decision problem, has not yet been established. The main reason is probably that
standard quantifier-elimination and automata-based techniques – which are at the core of
decision procedures for Presburger arithmetic – fail to yield tight upper bounds for QIP:

Weispfenning shows that quantifier-elimination procedures for Presburger arithmetic
run in time 2O(|Φ|(4j)k

) [17, Thm. 2.1], where |Φ| denotes the size of an input formula Φ
with k quantifier blocks and at most j variables in each quantifier block, and that this
upper bound is essentially tight [18, Thm. 3.1]. In particular, even the NP upper bound
for standard integer programming instances (Σ1-IP) cannot be obtained by quantifier
elimination.

Automata-based decision procedures for Presburger arithmetic do not suffice either to
obtain the bounds for QIP that we establish in this paper. Klaedtke shows [9, Thm. 4.6]
that the size of the minimal deterministic finite automaton (DFA) for a formula Φ is upper-
bounded by 2|Φ|(j+1)(k+4)

, which does not give any complexity bounds asymptotically
better than those obtained via quantifier elimination.

Yet another approach to QIP is to construct the semi-linear representation of the set of
solutions to the system of linear inequalities of the matrix formula, and then to repeatedly
project and complement this set. By an application of [2, Thm. 21], this approach gives
a ΠP

2 upper bound for the Π2-fragment of QIP; however, as every complementation step
increases the number of generators of semi-linear sets by one exponential, this approach
would only yield a non-elementary upper bound for general QIP instances and fail to
place fragments with bounded alternation depth inside PSPACE.

Our main results are, in short, obtained by means of a new quantifier elimination procedure
on hybrid linear sets, which are semi-linear sets that represent sets of solutions to systems
of linear inequalities. While existential projection (L 7→ {x | ∃y. (x, y) ∈ L}) is a trivial
operation on semi-linear sets (in generator representation), in this paper we define a dual
operation, which we call universal projection (L 7→ {x | ∀y. (x, y) ∈ L}), and show that its
application enables us to eliminate blocks of universal quantifiers without resorting to double
complementation (∀ = ¬∃¬; this would lead to a non-elementary blowup). We spell out
(these and other) results of the paper in more detail in Section 3 and outline the techniques
in Section 4.

Concurrently with our work and building upon a theorem of Kannan [7], Nguyen and
Pak [11] have shown that Presburger arithmetic with fixed number of variables and fixed
Boolean structure of the matrix formula (and, by necessity, where the total number of
occurrences of atomic predicates is fixed) can be solved in polynomial time.
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2 Preliminaries

By Z and N we denote the sets of integers and non-negative integers, respectively. Given
sets X and Y , we denote by X ⇒ Y the set of all functions with domain X and co-domain
Y . Let X be a countably infinite set of first-order variables, and with no loss of generality
assume some total ordering ≺ on X . Given a finite set X ⊆ X , an X-indexed integer vector
is a function v ∈ (X ⇒ Z), and an X-indexed non-negative integer vector is a function
v ∈ (X ⇒ N). We often call v just an integer vector respectively a (non-negative) vector
when X is clear from the context. Due to the total ordering on X , we can interchangeably
write v as a tuple (v1, . . . , vn) ∈ Zn such that n = |X|. We denote by ei the ith unit vector
(mapping the ith variable to 1 and all other variables to 0). Addition and multiplication of a
vector by a scalar value are defined component-wise. Given a set of non-negative vectors
V ⊆ Nn, its complement is defined as V := {w ∈ Nn : w /∈ V }.

A vector of (first-order) variables over X ⊆ X is a tuple y = (y1, . . . , y`) ∈ X` such
that each yi ∈ X and yi ≺ yi+1. For vi ∈ (Xi ⇒ Z), i ∈ {1, 2}, with X1 ∩ X2 = ∅, by
v1 ◦ v2 we denote the vector from (X1 ∪ X2) ⇒ Z that agrees with vi on Xi for both
i ∈ {1, 2}. Given a vector v ∈ (X ⇒ N) and a vector of variables y = (y1, . . . , y`) ∈ X`, the
projection of v removing variables y is the vector πy(v) ∈ ((X \ {y1, . . . , y`})⇒ N) such that
πy(v)(x) := v(x) for all x ∈ X \ {y1, . . . , y`}. This definition of projection naturally extends
to sets of vectors:

πy(V ) :=
⋃

v∈V
{πy(v)} = {v1 | there is a v2 ∈ ({y1, . . . , y`} ⇒ N) such that v1 ◦ v2 ∈ V }.

For sets of vectors V ⊆ (X ⇒ N), we additionally define the universal projection

π∗y(V ) := πy(V ) = {v1 | for all v2 ∈ ({y1, . . . , y`} ⇒ N) the vector v1 ◦ v2 is in V }.

For a vector v ∈ Zn, we denote by ‖v‖ := max{maxx∈X |v(x)|, 2} the maximum norm
of v. For V ⊆ Zn, we define ‖V ‖ := maxv∈V ‖v‖. For a matrix A, we define ‖A‖ to be the
norm of its set of column vectors.

Quantified integer programming (QIP). LetA be an n×m integer matrix, x = (x1, . . . , xm) ∈
Xm a vector of first-order variables for some finite X ⊆ X , and c ∈ Zn. We call S : A ·x ≥ c
a system of linear inequalities. A solution to S is a vector v ∈ (X ⇒ Z) such that A · v ≥ c,
where “≥” is interpreted component-wise. We denote by JSK ⊆ (X ⇒ N) the set of all
non-negative solutions to S.

Let x1, . . . ,xk be vectors of first-order variables over disjoint sets of variables X1, . . . , Xk,
and let S : A · x ≥ c be a system of linear inequalities. A formula of QIP is given by

ψ = Qkxk. Qk−1xk−1 . . . Q1x1 : A · x ≥ c,

where S : A · x ≥ c is a system of linear inequalities as above, Qi ∈ {∃,∀}, and Qi 6= Qi+1
for all 1 ≤ i < k, i.e., quantifiers alternate between blocks of variables. The size |ψ| of ψ is
the number of bits required to write down ψ, where we assume binary encoding of numbers,
and also that |ψ| ≥ max{2, n+m, log‖A‖, log‖c‖}. The set JψK ⊆ (X \ (X1 ∪ · · · ∪Xk)⇒ N)
of non-negative solutions to ψ is inductively defined as follows:

for k = 0, JψK := JSK;
for k > 0 and ψ = ∃xk.ψk, JψK := πxk

JψkK; and
for k > 0 and ψ = ∀xk.ψk, JψK := π∗xk

JψkK.

ICALP 2017
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A set M ⊆ (X ⇒ N) is QIP-definable if there is a QIP-formula ψ such that M = JψK.
Whenever X ⊆ X1 ∪ · · · ∪ Xk, we say that ψ is a sentence. In this case, ψ is valid if
JψK = {>} where > denotes the unique function from ∅ to N, and invalid if JψK = ∅. If
X \ (X1 ∪ · · · ∪Xk) = Y = {y1, . . . , ym}, we write ψ(y1, . . . , ym) to indicate that ψ is open
in Y . Given a1, . . . , am ∈ N, we write ψ[a1/x1, . . . , am/xm] to denote the instance of QIP
obtained from replacing every occurrence of xi by ai in S. We say that two QIP formulas ψ
and φ are equivalent if JψK = JφK; note that we may always assume with no loss of generality
that ψ and φ are open in the same set of variables.

A (valid) instance of the QIP problem is a (valid) sentence ψ. We call such a ψ an
instance of Σk-IP if Qk = ∃, and an instance of Πk-IP if Qk = ∀. The alternation depth of
ψ is the number k of quantifier blocks.

Hybrid linear and semi-linear sets. Given finite sets B,P = {p1, . . . ,pn} ⊆ Nm called base
and period vectors, the hybrid linear set generated by B and P is the set

L(B,P ) := {b+ λ1 · p1 + · · ·+ λn · pn : b ∈ B, λi ∈ N, 1 ≤ i ≤ n} .

The representation of L(B,P ) as the pair B,P (written explicitly) is called the generator
representation. If B is singleton then L(B,P ) is called a linear set; a finite union of (hybrid)
linear sets is called a semi-linear set. For a hybrid linear set in the generator representation
L = L(B,P ), we denote ‖L‖ := max(max‖B‖,max‖P‖).

Hybrid linear sets represent sets of solutions to systems of linear inequalities and equalities.
The following bounds on the norm in the generator representation follow from [12, Cor. 1]
and [2, Prop. 4].

I Proposition 1. Let S : A ·x ≥ c be a system of linear inequalities such that A is an n×m
integer matrix. Then JSK = L(B,P ) such that ‖B‖, ‖P‖ ≤ (m · ‖A‖+ ‖c‖+ 2)n+m.

3 Summary

The main result of this paper is the following theorem.

I Theorem 2. Σk-IP is complete for ΣP
k if k is odd, and Πk-IP is complete for ΠP

k if k is
even.

What happens if the parity of k is different? In this case the innermost quantifiers are
universal, and it turns out that they can be eliminated in a trivial way.

I Corollary 3. Σk+1-IP is complete for ΣP
k if k is odd, and Πk+1-IP is complete for ΠP

k if k
is even.

The lower bound of Theorem 2 is proved by a reduction from an alternating version of the
subset sum problem, which is essentially shown complete for the respective levels of the
polynomial-time hierarchy by Travers [15]. Our reduction and more details are given in
Section 7.

The upper bound of Theorem 2 is more challenging. Note that in the well-known case
of Σ1-IP, i.e., of the standard integer programming, in order to prove membership of the
problem in NP, one needs to obtain polynomial upper bounds on the bit size of minimal
solutions to systems of integer linear inequalities. Such bounds were derived by, e.g., von zur
Gathen and Sieveking [16]. In our work, we build upon these bounds and generalize them
from Σ1-IP instances to QIP instances.
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I Proposition 4 (Small Witness Property). For a QIP instance ψ of the form (1) with k
quantifier blocks, the validity of ψ does not change if variables of the vector xk (bound by
the quantifiers of the outermost block) are interpreted over [0,M − 1] instead of N, where
logM = |ψ|O(k).

The domains of other variables can then be bounded in turn as follows – which places QIP
with fixed alternation depth into PH.

I Proposition 5 (Relativization-Type Theorem). For a QIP instance ψ of the form (1) with k
quantifier blocks, the validity of ψ does not change if, for each i ∈ [1, k], all variables of the
vector xi (bound by the quantifiers of the ith innermost block) are interpreted over [0,Mi− 1]
instead of N, where logMi = |ψ|O(2k−i) and the constant of O(·) is independent of ψ, k,
and i.

Let us point out that in Proposition 5 it is not possible to substitute [0,M − 1] for the range
of all variables; not only using M = maxMi, but in fact using any finite M . For example,
the sentence ∀x. ∃y : y = x+ 1 is true if x and y are interpreted in N, but false if they are
interpreted in any finite segment [0,M − 1].

I Remark. The last observation, of course, also holds for Presburger arithmetic in general:
any relativization-type theorem (analogous to Proposition 5) must assign different ranges to
variables from different quantifier blocks; for instance, this reveals a flaw in the formulation
of the relativization-type Theorem 2.2 in [17].

Notice that our small witness property (Proposition 4) is specific to QIP, in the sense that
its bound is smaller by one exponential compared to its analogue for general Presburger
formulas [17, Thm. 2.2] (the latter is, in fact, tight, as shown implicitly in, e.g., [5, 6]). At
the core of our small witness property is a new quantifier elimination procedure for QIP:

I Proposition 6 (Quantifier Elimination). Given a QIP formula φ(x) with alternation depth
k, there exists an equivalent Σ1-IP formula φ′(x) with at most 2|ψ|O(k) existentially quantified
variables and numbers of absolute value bounded by 2|ψ|O(k) .

The ideas behind Propositions 4 and 6 are outlined in the following Section 4.

Further results. Our results give a uniform upper bound for the general QIP problem, where
the number of quantifier blocks can be unbounded. For such a QIP instance, our relativization-
type theorem (Proposition 5) suggests doubly exponential ranges for all variables, which
places QIP in the complexity class STA(∗, 2nO(1)

, n), as k ≤ n. The best lower bound is
PSPACE, by the arguments of Section 7.

Another by-product of our techniques is a pseudo-polynomial algorithm for QIP in which
the total number of variables is fixed and the matrix formula is A ·x = c instead of A ·x ≥ c.

In terms of auxiliary techniques, on the way to our quantifier elimination procedure
for QIP we discover (in Sections 5 and 6) some new properties of hybrid linear sets. In
particular, these properties enable us to find, as a side result, a polynomial-time algorithm
for universality of hybrid linear sets in the generator representation, even if all input numbers
are written in binary (Proposition 17 in Section 5).

Finally, our results extend in a natural way to the version of quantified integer program-
ming where all variables are interpreted over Z instead of over N: the results of Theorem 2
and Corollary 3 still hold.

ICALP 2017
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4 Main ideas

As explained in Section 3, bounding the range of the outermost quantifier is the main technical
task in our development. In this section we explain how to do this, thus sketching the ideas
behind both the small witness property (Proposition 4) and the quantifier elimination
procedure (Proposition 6).

Suppose we start with a QIP instance ψ of the form (1); to find a suitable upper bound
Mk for the range of the xk variables of ψ, we will compute generator representations for the
sets of models of formulas

ψj(xk, . . . ,xj+1) = Qjxj . . . ∀x2. ∃x1 : A · x ≥ c

for all j ∈ [0, k], where, as previously, x is the concatenation of x1, . . . ,xk. For each value of
the parameter j, we will find upper bounds on the integers appearing in these representations,
starting with j = 0 and culminating with j = k. The upper bound for the value of parameter
j = k will be a valid choice for Mk.

Let us now describe this computation in more detail. Consider a simple abstract example,
a Σ3-IP instance with 3 variables, ψ : ∃x. ∀y. ∃z : A ·x ≥ c where x = (x, y, z). Let L0 ⊆ N3

be the set of all models of ψ0 : A ·x ≥ c; this is a hybrid linear set – denote it L(C0, Q0) – with
‖C0‖, ‖Q0‖ upper-bounded by a polynomial in ‖A‖, ‖c‖ with degree at most the size of ψ (see,
e.g., Proposition 1). It follows that log‖C0‖ and log‖Q0‖ are polynomial in the size of ψ. It
is clear that the the set L1 = Jψ1K = {(x, y) ∈ N2 | there exists a z ∈ N such that (x, y, z) ∈
L0} is simply a projection of L(C0, Q0), and in particular L1 = L(C,Q) where the sets C
and Q are obtained by removing z-coordinates from all vectors in C0 and Q0, respectively.
Hence, log‖C‖ and log‖Q‖ are also polynomial in the size of ψ. (This will, of course, work
for all occurrences of the existential quantifier in ψ, including ∃x in our example; but we will
need to handle the universal quantifier ∀y before handling ∃x.)

The next step is to transform the generator representation L(C,Q) of the set L1 = Jψ1K
into a generator representation of the set

L2 = Jψ2K = {x ∈ N | for all y ∈ N it holds that (x, y) ∈ L1}.

This set L2 is the universal projection of L(C,Q): L2 = π∗y(L(C,Q)); cf. Section 2. As the
main technical contribution of the present paper, we show that, in general, (i) universal
projections of hybrid linear sets are hybrid linear sets themselves and that (ii) universal
projection as an operation on hybrid linear sets can only lead to a moderate increase in the
magnitude of generators. (These results are summarized in Proposition 10 below. For the
usual projection, such facts are obvious.)

We now briefly introduce the techniques that we develop for handling the universal
projection. Define for each y ∈ N the cross section S(y) = {x ∈ N | (x, y) ∈ L1}, then

L2 =
⋂
y∈N

S(y) (2)

by definition. Each set S(y) is a semi-linear set (and, in fact, a hybrid linear set – because it is
essentially the intersection of two hybrid linear sets, see Lemma 13, and such intersections are
hybrid linear sets themselves, see, e.g., [2, Theorem 6]), but the intersection in (2) is infinite,
and, in general, an infinite intersection of semi-linear sets does not have to be semi-linear.3
However, we prove (in Section 5) the following lemma, which is our first and key insight:

3 For every n ≥ 1, consider the hybrid linear set Ln = N \ {0, n} = L([1, n− 1] ∪ {2n}, {n}). Given any
A ⊆ N, the intersection

⋂
n∈A

Ln = N \ ({0}∪A) is only semi-linear (i.e., ultimately periodic) if so is A.
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I Lemma 7. Let L = L(C,Q) ⊆ Nm be a hybrid linear set with C,Q ⊆ Nm. Let the
components of vectors be indexed by m variables X, let U ⊆ X, |U | = s, and suppose u is
the corresponding vector of variables. Then the following statements hold:

If, for some variable ui ∈ U , the set Q contains no multiple of the unit vector ei associated
with ui, then π∗u(L) = ∅.
Otherwise, denote ai = min{a | a · ei ∈ Q} and H = {b ∈ Ns | 0 ≤ b(ui) ≤ ai − 1 for all
ui ∈ U}. Then

π∗u(L) =
⋂

b∈H

πu

(
L(C,Q) ∩ {u = b}

)
where {u = b} denotes the hybrid linear set {c ∈ Nm | c(ui) = b(ui) for all ui ∈ U}.

In other words, unless L2 = ∅, the intersection in (2) can be made finite without changing
its result:

⋂
y∈N S(y) =

⋂
y<N S(y), where logN is polynomial in the size of ψ. Since, as we

have just mentioned, hybrid linear sets are closed under finite intersections, this shows that
the set L2 is hybrid linear, and, in fact, the following general result follows:

I Proposition 8. A set in Nm is QIP-definable iff it is hybrid linear.

Furthermore, the set L2 turns out to have a small generator representation as well. Indeed,
we first observe that all sets S(y) have representations L(By, P ) with a common set of
periods P and with ‖By‖, ‖P‖ small if so is ‖y‖ (Lemma 13 in Section 5). We then prove
(in Section 6) the following lemma, which is our second insight:

I Lemma 9. Let Li = L(Ci, Q), i ∈ [1, n], be hybrid linear sets with Ci, Q ⊆ Nm. The
set S =

⋂n
i=1 Li has a representation S = L(B,Q) where ‖B‖ ≤ maxi∈[1,n]‖Li‖O(m3)

independently of n.

In other words, long intersections of hybrid linear sets with a common set of periods preserve
small representations, regardless of the number of sets in the intersection. Combining
Lemmas 7 and 9, we obtain the following statement:

I Proposition 10. Let L = L(C,Q) ⊆ Nm be a hybrid linear set with C,Q ⊆ Nm. Let
the components of vectors be indexed by m variables u,v, and suppose the vector u has
s variables. Then the universal projection π∗u(L) has a representation L(B,P ) where P =
πu ({q ∈ Q | q1 = . . . = qs = 0}) and ‖B‖ ≤ ‖L‖O(m5).

In particular, we conclude that the set L2 =
⋂
y<N L(By, P ) has a representation L(B,P )

with ‖B‖ < M where logM is polynomial in the size of ψ. But note that ψ = ψ3 is true
iff L2 = Jψ2K is non-empty; therefore, the validity of ψ is unchanged if the range of ∃x is
changed from N to [0,M − 1]. Thus, in our example the bound M3 can be chosen as M ; it
can hence be deduced that a ΣP

3 algorithm can handle such instances. The argument for the
general case follows the same lines.

5 Universal projection and universality

A semi-linear set in Nd is called universal if it is equal to Nd.

I Example 11. A one-dimensional hybrid linear set L = L(B,P ) ⊆ N with B,P ⊆ N is
universal iff P \ {0} 6= ∅ and L contains the integer segment [0, k− 1] where k = minP \ {0}.
Indeed, the right-to-left direction is immediate: if L satisfies the conditions above, then
N = L([0, k − 1], {k}) ⊆ L. For the left-to-right direction, suppose L = N. First observe that
the set P \ {0} is non-empty because L is infinite. Therefore, k > 0 is well-defined. Second,
as L = N, the set L contains all natural numbers, in particular those in [0, k − 1].

ICALP 2017
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The following lemma generalizes Example 11; recall that ei denotes the ith unit vector.

I Lemma 12. A hybrid linear set L = L(B,P ) ⊆ Nm with B,P ⊆ Nm is universal iff
P contains vectors ai · ei for some ai > 0, for every i ∈ [1,m], and L contains the box
H = [0, a1 − 1]× . . .× [0, am − 1].

Proof. The right-to-left direction is immediate: if L satisfies the conditions of the lemma,
then Nm = L(H, {a1 · e1, . . . , am · em}) ⊆ L. For the left-to-right direction, suppose L = Nm.
We first prove that, for each i ∈ [1,m], the set of periods P contains a vector ai · ei with
ai > 0. Assume without loss of generality that i = 1 and denote N = N× 0 ⊆ Nm. Since L
is universal (and Q≥0×0 is a face of Qm≥0), N = L(B,P )∩N ⊆ L(B ∩N,P ∩N). Therefore,
the set P ∩N contains at least one vector a1 · e1 with a1 > 0, otherwise the set N would be
finite. Hence, P contains a1 · e1, . . . , am · em with all ai > 0. It now remains to note that, as
L = Nm, the set L contains all nonnegative integer vectors, in particular those in H. This
completes the proof. J

I Remark. If m = 1, then in the statement of Lemma 12, the condition H ⊆ L(B,P ) is
equivalent to the condition H ⊆ B, as long as H is defined using the shortest vector a1 · e1
in P \ {0}. For m ≥ 2, this is no longer the case.

I Lemma 13. Suppose L = L(C,Q) ⊆ Nm and M = L(D,E) ⊆ Nm where E = {e1, . . . , es}.
Then the set L ∩M has a representation L(B,P ) where P = {q ∈ Q | qs+1 = . . . = qm = 0}
and ‖B‖ ≤ ‖L‖O(m2) · ‖M‖O(m).

We can now restate and prove Lemma 7, which appeared previously in Section 4.

I Lemma 14. Let L = L(C,Q) ⊆ Nm be a hybrid linear set with C,Q ⊆ Nm. Let the
components of vectors be indexed by m variables X, let U ⊆ X, |U | = s, and suppose u is
the corresponding vector of variables. Then the following statements hold:

If, for some variable ui ∈ U , the set Q contains no multiple of the unit vector ei associated
with ui, then π∗u(L) = ∅.
Otherwise, denote ai = min{a | a · ei ∈ Q} and H = {b ∈ Ns | 0 ≤ b(ui) ≤ ai − 1 for all
ui ∈ U}. Then

π∗u(L) =
⋂

b∈H

πu

(
L(C,Q) ∩ {u = b}

)
where {u = b} denotes the hybrid linear set {c ∈ Nm | c(ui) = b(ui) for all ui ∈ U}.

Proof. Denote V = X \ U ; we will abuse notation and let symbols u and v refer to U - and
V -indexed integer vectors (wherever this creates no confusion). By definition, a vector v∗
belongs to π∗u(L) if and only if for all u the vector (u,v∗) belongs to L. This condition is
equivalent to the requirement that

L ∩ {(u,v) ∈ Nm | v = v∗} = {(u,v) ∈ Nm | v = v∗}. (3)

Note that {(u,v) ∈ Nm | v = v∗} = L((0,v∗), E) where E is the set of all unit vectors
associated with variables u. We now apply Lemma 13: L ∩ L((0,v∗), E) = L(Dv∗ , R) where
R = {q = (u,v) ∈ Q | v = 0}. Now the requirement (3) has the form L(Dv∗ , R) = {(u,v) ∈
Nm | v = v∗} and, by Lemma 12, is equivalent to the requirement that, first, the set R
contains some multiple of the unit vector, ai ·ei for some ai > 0, associated with each variable
ui ∈ U , and, second, the set L(Dv∗ , R) contains the box

H(v∗) = {(u,v) ∈ Nm | v = v∗, 0 ≤ ui ≤ ai − 1 for all variables ui ∈ U}.
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Note that in the statement of Lemma 12 we can always choose ai · ei to be the shortest
vectors of the required form in R; expanding the definition of R then gives

ai = min{a | a · ei ∈ Q} for each variable ui ∈ U . (4)

We now make the following observations. First, the set R does not depend on the vector v∗,
but only on Q and on the way the variables are split into u and v. Therefore, the condition
that R contains ai·ei for some ai > 0 is either satisfied or not satisfied for all v∗ simultaneously.
In the former case, π∗u(L) = ∅; so it suffices to consider the latter case. We have the following
equivalence:

v∗ ∈ π∗u(L) iff (u,v∗) ∈ L(Dv∗ , R) for all u ∈ H

where H = {u | 0 ≤ ui ≤ ai − 1 for all variables ui ∈ U} and ai are as defined in (4). Since
L(Dv∗ , R) was chosen as L ∩ {(u,v) ∈ Nm | v = v∗}, this is the same as

v∗ ∈ π∗u(L) iff (u,v∗) ∈ L for all u ∈ H,

and the equation of the lemma follows. J

I Example 15. Consider any set L = L(C, {3 e2}) ⊆ N2 with a finite C ⊆ N2. Its universal
projection L′ = π∗y(L) = {x | (x, y) ∈ L for all y ∈ N} can be obtained by taking cross
sections Sb = {x | (x, b) ∈ L} for b = 0, 1, 2, removing the y coordinate, and intersecting
the results: L′ = πy(S0) ∩ πy(S1) ∩ πy(S2) where the projection πy : N2 → N removes the
y coordinate. So whether or not a specific a ∈ N belongs to L′ is fully determined by whether
the vectors (a, 0), (a, 1), and (a, 2) belong to L. In fact, this conclusion will also hold if
instead of L we consider any set M = L(C, {3 e2} ∪Q) where Q contains no vectors of the
form a · e2.

Intermezzo: Deciding universality of hybrid linear sets

The technique developed above, in fact, enables us to show that universality of hybrid linear
sets (given in generator representation) can be decided in polynomial time, even if all numbers
are written in binary. Consider the following lemma, which is a more general version of
Example 11 and Lemma 12.

I Lemma 16. Let L = L(B,P ) ⊆ Nm be a hybrid linear set with B,P ⊆ Nm. Define the
set of shallow points,

W =
{
w ∈ Nm | there is no p ∈ P \ {0} with w ≥ p

}
= Nm \

⋃
p∈P\{0}

(p+ Nm).

Then L is universal iff W ⊆ B.

Indeed, for Example 11, observe that for m = 1 the set W is the integer segment [0, k− 1]
where k = minP \ {0}; cf. Remark 5.

For Lemma 12, note thatW ⊆ B is only possible ifW is finite, which implies that for each
i ∈ [1,m] there is a vector ai·ei ∈ P with ai > 0 (otherwise all such vectors for some given i are
inW , and there are infinitely many of them). But thenW ⊆ H = [0, a1−1]× . . .× [0, am−1].

I Proposition 17. There is a polynomial-time algorithm that takes a hybrid linear set
L(B,P ) ⊆ Nm, presented as B,P ⊆ Nm with numbers written in binary, and decides if
L(B,P ) is universal.
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Proof. By the characterization of Lemma 16, it is sufficient to check if W ⊆ B. First check
that the necessary condition of Lemma 12 is satisfied: if for some i there is no ai · ei ∈ P
with ai > 0, then L(B,P ) is not universal. Otherwise consider the Hasse diagram of the
partial order (H,≤), i.e., the directed acyclic graph with vertex set H and all edges (x,y)
where x < y and there is no z with x < z < y. Notice that this graph does not have to be
of polynomial size with respect to the input.

Run the depth-first search (DFS) procedure on (a part of) this graph, starting from 0 and
for each x ∈ H ordering the outgoing edges (x,y) according to the (unique) index i ∈ [1,m]
for which xi < yi. Whenever the current node is outside W , the algorithm backtracks
(observe that the set W is always downward closed, i.e., whenever w ∈W and w′ ≤ w, then
also w′ ∈W ); if it is in W but not in B, the algorithm terminates immediately, reporting
that L(B,P ) is not universal. If the search finishes, the algorithm concludes that W ⊆ B and
reports that L(B,P ) is universal. All visited nodes are marked and not re-entered, ensuring
that no node is ever visited twice. As all visited notes are checked for inclusion in B, which
is given as part of the input, it follows that the running time of the search is proportional to
the size of the input, and the entire procedure works in polynomial time. J

6 Long intersections

I Lemma 18. Let Li = L(Ci, Q), i ∈ [1, n], be hybrid linear sets with Ci, Q ⊆ Nm. Suppose
the vectors of Q are linearly independent. Then the set S =

⋂n
i=1 Li has a representation

S = L(B,Q) where ‖B‖ ≤ 2O(m logm) ·maxi∈[1,n]‖Li‖ · ‖Q‖m independently of n.

Proof (Sketch). Note that
⋂n
i=1 L(Ci, Q) is the union over all c1 ∈ C1, . . . , cn ∈ Cn of⋂n

i=1 L(ci, Q), so we shall assume with no loss of generality that Ci = {ci} for all i.
Define a point lattice L = Q · Zr = {Q · u | u ∈ Zr} where r = |Q|; see, e.g., [10,

Chapter 2]. Vectors x,y ∈ Zm are called congruent modulo L, written x ≡ y (mod L), if
and only if x− y ∈ L. This congruence splits Zm into a disjoint union of equivalence classes,
which have the form x + L where x ∈ Zm. Note that the relation ≡ is compatible with
addition and subtraction of elements of Q, in the sense that vectors x± q, q ∈ Q, belong to
the same equivalence class as x; therefore, Li = ci + Q · Nr ≡ ci (mod L). Hence, unless
the intersection

⋂n
i=1 Li is empty, it must be the case that ci ≡ cj (mod L) for all i, j. We

assume in the sequel that this is indeed the case, i.e., all sets Li are contained in the same
equivalence class c1 + L.

Let us now define the coordinates in c1 + L in a natural way. Consider the mapping
ψ : c1 + L → Zr that maps each x into a vector u = ψ(x) such that x = c1 + Q · u;
note that u exists as long as x ∈ c1 + L and is determined uniquely because the vectors
in Q are linearly independent. The mapping ψ is, in fact, a bijection between c1 + L
and Zr, so L1 ∩ . . . ∩ Ln = ψ−1 (ψ(L1) ∩ . . . ψ(Ln)). Denote fi = ψ(ci) and observe that
ψ(Li) = ψ(ci) + Nr. So a vector v ∈ Zr belongs to the intersection of all ψ(Li) if and only
if v ≥ fi for all i ∈ [1, n]. This condition is satisfied if and only if v ≥ f where f is the
component-wise maximum of vectors f1, . . . ,fn; in other words,

⋂n
i=1 ψ(Li) = f + Nr and

L1 ∩ . . . ∩ Ln = L(ψ−1(f), Q).
It remains to find an upper bound on ‖ψ−1(f)‖. Note that ψ−1(f) = c1 + Q · f ,

so ‖ψ−1(f)‖ ≤ ‖c1‖ + ‖Q · f‖. Suppose f = (f1, . . . , fr) and Q = {q1, . . . , qr}, then
Q · f = f1 · q1 + . . .+ fr · qr. Recall that each f j is, in fact, a component of some fi = ψ(ci).
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For this i = i(j) it holds that ci = c1 +Q · fi, and by [2, Proposition 3] we have

|f j | ≤ 2O(m logm) ·max (‖ci − c1‖, ‖Q‖) · ‖Q‖m−1 and

‖ψ−1(f)‖ ≤ ‖C1‖+m · max
j∈[1,r]

‖f j · qj‖ ≤ 2O(m logm) · max
i∈[1,n]

‖Li‖ · ‖Q‖m. J

We can now restate and prove Lemma 9, which appeared previously in Section 4.

I Lemma 19. Let Li = L(Ci, Q), i ∈ [1, n], be hybrid linear sets with Ci, Q ⊆ Nm. The
set S =

⋂n
i=1 Li has a representation S = L(B,Q) where ‖B‖ ≤ maxi∈[1,n]‖Li‖O(m3)

independently of n.

Proof (Sketch). We first apply a discrete version of the Carathéodory theorem [2, Pro-
position 5] to the set L1, decomposing it into a union of hybrid linear sets with linearly
independent periods:

L1 =
⋃
j

Mj where Mj = L(Dj , Qj) and ‖Dj‖ ≤ ‖C1‖+ (#Q · ‖Q‖)O(m),

with each Qj ⊆ Q a set of linear independent vectors (here and below # denotes the
cardinality of a set). The intent is to make it possible to invoke Lemma 18.

Notice that, whereas intersecting two hybrid linear sets L and L′ with sets of periods P
and P ′ ⊆ P , respectively, will always give a hybrid linear set with the set of periods P ′ (see,
e.g., [2, Theorem 6] and, transitively, Theorem 5.6.1 of [4, p. 180]), this observation would
not suffice for our purposes. Indeed, the magnitude of the base vectors in the hybrid linear
representation of L∩L′ can still increase compared to the magnitude of the base vectors of L
and L′; and so n− 1 consecutive applications of this operation would lead to a blowup in the
representation size if n grows. Instead of using this observation, we will rely on Lemma 18
to defeat the effect of large n, and will use another trick to make its application possible.

Indeed, observe that

L1 ∩ L2 ∩ . . . ∩ Ln =
⋃
j

Mj ∩ L2 ∩ . . . ∩ Ln =
⋃
j

(Mj ∩ L2) ∩ . . . ∩ (Mj ∩ Ln).

Since the sets of periods ofMj and Li are Qj and Q, respectively, it follows by [2, Theorem 6]
that each Mj ∩ Li is a hybrid linear set with representation L(Bi,j , Qj), where

‖Bi,j‖ ≤ ((#Qj + #Q) ·max(‖Mj‖, ‖Li‖))O(m) ≤ max
(
‖C1‖+ (#Q · ‖Q‖)O(m), ‖Li‖

)O(m)
.

But now, for each j, the intersection of L(Bi,j , Qj), i ∈ [2, n], satisfies the conditions of
Lemma 18, and thus can be written as L(Bj , Qj) with ‖Bj‖ small with respect to ‖Bi,j‖
and ‖Qj‖ (estimations to follow). Now S =

⋃
j L(Bj , Qj), and it remains to note that, as

Li + L(0, Q) = Li for all i, it also holds that S + L(0, Q) = S and hence

S =
⋃
j

L(Bj , Qj) + L(0, Q) =
⋃
j

L(Bj , Q) = L
(⋃
j

Bj , Q
)
, with

‖Bj‖ ≤ 2O(m logm) ·max
(

max
i∈[2,n]

‖Bi,j‖, ‖Qj‖
)
· ‖Qj‖m ≤ max

i∈[1,n]
‖Li‖O(m3). J

7 Lower bounds

We show lower bounds for QIP and Σk-IP via a reduction from a generalisation of the
classical SubsetSum problem. For odd k, let ak ∈ Nmk , . . . ,a1 ∈ Nm1 be vectors of natural
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numbers, and let t ∈ N be a target. An instance of Σk-SubsetSum is a tuple (ak, . . . ,a1, t).
This instance is a valid instance whenever the following holds:

∃xk ∈ {0, 1}mk . ∀xk−1 ∈ {0, 1}mk−1 . . . ∃x1 ∈ {0, 1}m1 :
k∑
i=1

ai · xi = t. (5)

Thus, Σk-SubsetSum can be viewed as the 0–1 variant of Σk-IP, i.e., variables are only
interpreted over {0, 1}. For even k, Πk-SubsetSum is defined analogously. When we take
the union of Σk-SubsetSum for all k > 0, we obtain QSubsetSum.

I Proposition 20. For every fixed k > 0, for odd k Σk-SubsetSum is ΣP
k-complete, and for

even k Πk-SubsetSum is ΠP
k-complete. QSubsetSum is PSPACE-complete.

Upper bounds for Σk-SubsetSum and QSubsetSum can be obtained trivially. The PSPACE
lower bound for QSubsetSum was established by Travers in [15, Lem. 4]. Unfortunately,
the construction given in [15] does not directly yield ΣP

k hardness for Σk-SubsetSum, as the
lower bound for QSubsetSum is shown in [15] by a reduction from 3-CNF QBF in which
the alternating quantifiers range over single variables, and ΣP

k hardness for 3-CNF k-QBF
requires an unbounded number of variables in every quantifier block [13]. It is not difficult
to show that the construction from [15] can indeed be adapted in order to yield ΣP

k hardness
for Σk-SubsetSum for odd k, and likewise for even k.

Proof of lower bounds in Theorem 2

We reduce from Σk-SubsetSum and show how to transform an instance given as (5) into an
equivalent instance of Σk-IP. Note that the existentially quantified variables do not present
an issue, since, for instance, x1 ∈ {0, 1}m1 iff x1 ≤ 1, i.e., (5) is equivalent to

∃xk ∈ {0, 1}mk . ∀xk−1 ∈ {0, 1}mk−1 . . . ∀x2 ∈ {0, 1}m2 . ∃x1 :
k∑
i=1

ai ·xi = t∧x1 ≤ 1. (6)

The key insight is that, for universally quantified variables, conjunctions of linear integer
constraints can express division with remainder using any fixed divisor. In particular, consider

∃xk ∈ {0, 1}mk . ∀xk−1 ∈ {0, 1}mk−1 . . . ∀x2. ∃x1. ∃λ :
k∑
i=3

ai · xi + a2 · (x2 − 2 · λ) + a1 · x1 = t ∧ x1 ≤ 1 ∧ 0 ≤ x2 − 2 · λ ≤ 1. (7)

We claim that the sentences (6) and (7) are equivalent. First, no matter what x2 is, λ has
to be bx2/2c in order to satisfy the last constraint of (7). If sentence (6) is true, then (7) is
also true. Indeed, if x2 ∈ {0, 1}m2 , then we can choose λ = 0 and the inequalities become
the same as before (and thus, for instance, there is an appropriate x1). Analogously, if x2
is outside {0, 1}m, then it is the vector x2 − 2 · λ that is in {0, 1}m2 , and for this vector
we already know the appropriate x1 from the previous formula. Conversely, suppose the
sentence (7) is true, then it is in particular true for all choices x2 ∈ {0, 1}m2 in which case
λ = bx2/2c = 0. Hence, the assignment for x1 chosen in (7) given x2 will also work for (6).
This proves the claim.

In fact, the trick above works regardless of how many universal variables we have and
at which positions they occur in the quantifier prefix. So we can handle both existential
and universal variables and can transform any instance of Σk-SubsetSum respectively
Πk-SubsetSum into an equivalent instance of Σk-IP respectively Πk-IP, which yields the
desired lower bounds, when variables are interpreted over the natural numbers.
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