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Abstract

Is the asset management sector a source of financial instability? This paper de-
velops a macroprudential stress test model which enables the quantification of sys-
temic vulnerabilities due to fire sales in this sector. The model incorporates the
flow-performance relationship as an additional funding shock in the model of Green-
wood, Landier, and Thesmar (2015). Using data on US equity mutual funds for the
period 2003-14, we quantify both fund-specific and system-wide (aggregate) vulner-
abilities to fire sales over time. Our main finding is that the aggregate vulnerability,
according to this propagation mechanism, is relatively small in comparison with
values reported for banks. However, during periods of low market liquidity, the
vulnerability of the system can become significant. Our paper also contributes to
the ongoing discussion on the SIFI designation of Non-Bank Non-Insurer entities.
For this purpose, we explore the determinants of individual funds’ vulnerability to
systemic asset liquidations, highlighting the importance of size and portfolio illiq-
uidity. Therefore, regulators should monitor structural vulnerabilities in the fund
sector arising through liquidity transformation.
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1 Introduction

Ever since the global financial crisis of 2007-09, the shadow banking system (or more
accurately non-bank non-insurer financial intermediaries) has been under close scrutiny
with regard to its potential contribution to financial instability (Financial Stability Board
(2011, 2015); O�ce of Financial Research (2013); European Central Bank (2014); Inter-
national Monetary Fund (2015); Bauguess (2017)). This is particularly true of the global
asset management industry – comprising, among others, mutual funds and hedge funds –
which has grown tremendously both in terms of size and importance over the last decades.
Figure 1, which is reproduced from (Bank for International Settlements, 2014, p. 115),
illustrates this growth for the period 2002-12 by showing the total assets held by the 500
largest global asset managers over this period. The increasing importance of market-based
financial intermediation o↵ers new funding opportunities for businesses and households
but might also entail new risks (Bank for International Settlements (2014)). For example,
the asset management industry became more concentrated: the share of assets held by
the 20 largest institutions has grown over time (see Figure 1 and European Central Bank
(2014)). Thus, the behavior of a relatively small number of asset managers might have a
strong impact on market dynamics and ultimately on funding costs for the real economy.1

Figure 1: Growth and concentration in the asset management industry. The plot is taken from
(Bank for International Settlements, 2014, p. 115) and shows both the total assets under management
for 500 global asset managers and the share of assets held by the 20 largest institutions.

There is no clear consensus on whether the asset management industry contributes to
financial instability. On the one hand, historical examples suggest that significant portfolio
overlap and correlated trading strategies can indeed have major systemic repercussions.
Two prominent examples are the role of portfolio insurers in the market crash of October
1987, and the systemic repercussions of the hedge fund Long Term Capital Management
in 1998. On the other hand, leading industry representatives repeatedly argue that asset
managers in general, and mutual funds in particular, are not a source of systemic risks.

1Asset managers are typically evaluated on the basis of short-term performance, and fund revenues
are linked to fluctuations in customer fund flows. These arrangements can exacerbate the procyclicality
of asset prices, and greater concentration in the sector could in fact strengthen this e↵ect (see Feroli,
Kashyap, Schoenholtz, and Shin (2014)).
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For example, the Investment Company Institute claims that existing microprudential
regulations for investment funds (e.g. leverage and liquidity constraints) are e↵ective
(Investment Company Institute (2016)). Therefore, there is a general need for regulators
and policymakers to understand whether the fund industry is vulnerable to systemic crises
and might contribute to financial instability. Our paper tackles this question.

How to quantify systemicness of asset managers is an open question. The Finan-
cial Stability Board (2015) mentions asset liquidation and exposure risk as channels
through which stress can propagate within the sector, and therefore size and leverage
could serve as systemicness indicators. Danielsson and Zigrand (2015) advocate focusing
on asset managers’ negative externalities in order to gauge their impact on financial insta-
bility. The externality stems from the price impacts generated by the asset liquidations
of asset managers, which a↵ect the market value of other investors’ portfolios.

In this paper we quantify the vulnerability of asset managers to systemic asset liqui-
dations, incorporating both funding liquidity shocks and fire sale price dynamics into a
stress test.2 For this purpose, we propose an extension of Greenwood et al. (2015), who
introduced a simple fire sale model for the banking sector. In the original model, systemic
risks are largely driven by leverage - something that makes sense for highly leveraged
financial actors, such as commercial banks or broker-dealers (Adrian and Shin (2010)).
However, stress test models for asset managers must take into account the specifics of
mutual funds’ business models. Mutual funds generally make little use of leverage and
rely on short-term funding by promising daily redeemable fund shares (e.g., Pozen and
Hamacher (2011)).

Structures in the redemption process confront funds with a fragile funding base (Secu-
rities and Exchange Commission (2018)). The idea is that, in order to generate su�cient
cash to finance outflows due to investor redemptions, mutual funds might have to liqui-
date assets which can a↵ect market prices. These costs of liquidation are borne by the
remaining fund investors, suggesting the existence negative externalities. These external-
ities create incentives for shareholders to redeem their fund shares as early as possible
(first-mover advantage). In a theoretical model, Chen, Goldstein, and Jiang (2010) show
that information on fund returns can allow fund investors to learn about redemption deci-
sions of others. In this regard, negative returns can serve as a signal for flow-driven asset
liquidations. Empirical evidence underlines the existence of a positive flow-performance
relationship: investors tend to redeem their fund shares in response to negative perfor-
mances (see Sirri and Tufano (1998); Berk and Green (2004)). This implies that, in order
to generate su�cient cash to finance these outflows, mutual funds might have to sell ad-
ditional assets in a declining market. Hence, fire sale price cascades might occur even in
the absence of leverage. In order to adequately model this channel, we incorporate the
flow-performance relationship into the Greenwood et al. (2015) model, such that a small
initial shock could potentially wipe out significant parts of the fund sector’s total assets
under management.

Our new stress test model allows to quantify the vulnerabilities of both the aggregate
mutual fund sector and those of individual funds over time. We apply the model to the
economically meaningful subset of U.S. domestic equity mutual funds for the period 2003-

2Thus, our macroprudential stress test includes the two key components of stress tests identified by
Greenwood and Thesmar (2011), and Tarullo (2016).
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14.3 At the end of 2014, this fund type accounted for more than 52% of the U.S. investment
industry’s total assets (Investment Company Institute (2015)). The main advantages of
focusing on this subset of funds are the availability of detailed data on these funds’ stock
holdings for the period 2003-14, and detailed information of the individual stocks in the
holdings data (most importantly price impact parameters).

Our main finding is that mutual funds’ aggregate vulnerability, according to this prop-
agation mechanism, is modest in most specifications. However, during periods of low
market liquidity, the vulnerability of the system can become more significant. For exam-
ple, in the most relevant scenario with time-varying and asset-specific price impacts, in
response to a 5% shock on asset values we find a maximum value of aggregate vulnera-
bility (AV, the fraction of equity wiped out due to the fire sale mechanism, relative to
total equity) of 1.3%. These vulnerabilities are significantly smaller than those reported
for banks. For the sake of comparison, Greenwood et al. (2015) report an AV of 245%
among the largest European banks in response to a shock of comparable magnitude as
the one considered in our paper (50% reduction of GIIPS sovereign debts). Di↵erences in
the systemic risk contribution between asset managers (mutual funds in particular) and
banks are founded in their di↵erent business models. Two of these structural di↵erences
are particularly relevant, namely that the flow-performance relationship is relatively weak
for mutual equity funds and, more importantly, mutual funds use much less leverage than
banks. These results suggest that systemic risks among mutual funds are unlikely to be
a major concern, at least when looking at this part of the financial system in isolation.
We also find that the time dynamics of AV strongly depend on the choice of price im-
pact parameters. Despite the strong growth of the system over our sample period, we
find that aggregate vulnerability only exhibits a significantly positive time trend when
we ignore the time dynamics in our price impact parameters. Lastly, we also explore the
determinants of individual funds’ contribution to systemic asset liquidations. Here, we
highlight the importance of fund size, diversification levels, and portfolio illiquidity. We
also discuss implications for the design of future stress tests and the monitoring of fund
vulnerabilities more general.

Our paper proposes a macroprudential stress test for asset managers with an appli-
cation to the U.S. mutual fund industry. Closest to our work is a blogpost by the New
York Fed (Cetorelli, Duarte, and Eisenbach (2016)), which performs a comparable stress
test for U.S. high-yield bond funds. Dunne and Shaw (2017) relate fund-specific char-
acteristics, such as leverage or usage of derivatives, to funds’ exposure to a tail event in
the fund sector (Marginal Expected Shortfall). By contrast, the vast majority of existing
work on systemic risk tends to concentrate on the banking sector (see Glasserman and
Young (2016) for a recent survey). Note that this literature is mainly concerned with
default contagion in interbank markets, where banks can be connected either directly
(e.g. via borrowing and lending relationships on the interbank market) or indirectly (e.g.,
via holding similar assets in their portfolios). Portfolio similarity exposes intermediaries
to the same market risk exposure which serves as an amplification mechanism for fire

3Within the asset management industry, mutual funds are by far the most important players. For
example, in the U.S. more than 90.4 million individuals, or roughly 43% of all households, invested their
money through mutual funds in 2014. Furthermore, mutual funds have been among the largest investors
in U.S. financial markets for the last two decades, holding roughly one quarter of all outstanding stocks
at the end of 2014 (Investment Company Institute (2015)).
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sale related market price drops. Here, the selling-inducing price decline triggers fire sales
of other intermediaries with investments in the same securities. Glasserman and Young
(2015) showed that direct connections between banks are unlikely to be a major source
of systemic risk, but contagion can be dramatically amplified when allowing for indirect
connections as well. In line with mounting empirical literature on the existence of fire
sales in various asset markets (e.g., Pulvino (1998) for real assets; Coval and Sta↵ord
(2007) for equities; Ellul, Jotikasthira, and Lundblad (2011) and Manconi, Massa, and
Yasuda (2012) for corporate bonds), a growing literature is looking at the importance
of overlapping portfolios and asset liquidations as a source of systemic risk (Cifuentes,
Ferrucci, and Shin (2005); Wagner (2011); Greenwood et al. (2015); Cont and Schaan-
ning (2017); Getmansky, Girardi, Hanley, Nikolava, and Pelizzon (2016)). Much of this
literature predicts a positive relationship between portfolio overlap and systemic risk, at
least up to a certain point (Caccioli, Shrestha, Moore, and Farmer (2014)). We add to the
literature by quantifying the vulnerability of the asset management industry to systemic
asset liquidations over a relatively long sample period.

Relative to Cetorelli et al. (2016), we make several important contributions both in
terms of stress-test modelling and the actual model application. With regards to the
model design, our extension of the model of Greenwood et al. (2015) is flexible enough to
be applicable for di↵erent kinds of financial intermediaries. The model provides simple
closed-form formulae for a fire sale model that incorporates both leverage targeting and
funding shocks. The leverage targeting element is arguably better suited for leveraged
investors such as banks and broker-dealers, while equity funding shocks are particularly
relevant for modelling fund share redemptions in the mutual fund sector. Debt funding
shocks, on the other hand, could be relevant for banks during debt market freezes which
hamper the rolling-over of existing short-term debt as exemplified by the financial crisis
(e.g. Acharya, Gale, and Yorulmazer (2011)). We can recover the original equations of
Greenwood et al. (2015) by switching o↵ the equity and debt funding channels, such that
leverage targeting would remain the only channel for fire sales. Accordingly, our extended
model allows to calculate fire sale vulnerabilities of any given financial system over time,
where di↵erent channels can be switched o↵/on to adequately capture the specifics of
di↵erent sets of institutions. As such, our model could serve as a starting point for proper
system-wide stress tests in the future that take into account di↵erent sets of financial
institutions in a coherent way.

With regards to the model application, we make several contributions that set our
paper apart from Cetorelli et al. (2016). First, we focus on a di↵erent subset of U.S. mu-
tual funds, namely (domestic) equity funds instead of corporate bond funds. Domestic
equity funds represent more than half of the U.S. investment industry’s total assets (In-
vestment Company Institute (2015)) and thus are an economically meaningful subset of
intermediaries to analyze. We acknowledge that these funds’ asset portfolios are likely
to be very liquid, in particular in comparison with corporate bond funds, which implies
that the price impacts su↵ered by equity funds’ fire sales might be comparably small.
However, as documented in the seminal paper of Coval and Sta↵ord (2007), fire sales are
a relevant phenomenon for equity funds nonetheless. Our results support these findings,
in the sense that the vulnerability of the system is generally modest but can become
significant when market liquidity is low. Second, we highlight the importance of allow-
ing for time-varying and asset-specific price impacts. In contrast, much of the existing
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literature ignores within-asset-class heterogeneity and does not adequately capture the
liquidity situation of individual market segments at any point in time (see Greenwood
et al. (2015); Cetorelli et al. (2016)). Our results show that such an approach should
be avoided as it can yield unreliable fund-level vulnerabilities. Third, in contrast to ex-
isting work, we assess the robustness of the empirical flow-performance relationship at
great length. Fourth, we also apply our model on di↵erent levels of portfolio aggregation,
showing that the vulnerability of the system depend on the modeller’s choice/granularity
of the data at hand. Lastly, our fund-level regressions are novel in the sense that we
relate these vulnerability indicators to fund-level characteristics such as size and portfolio
illiquidity. These results can be useful for guiding future fund sector regulations.

The remainder of this paper is organized as follows: in Section 2, we introduce an
extended version of the model developed by Greenwood et al. (2015). In Section 3, we
describe the dataset and explain how we calibrate the model parameters. Section 4 shows
aggregate vulnerabilities for di↵erent price impact scenarios over time and includes various
robustness analyses. Section 5 takes a closer look at fund-specific vulnerabilities. Section 6
discusses the main findings, and Section 7 concludes.

2 Modelling Vulnerabilities

In this section we present an extended version of the model introduced by Greenwood et al.
(2015) which is more applicable to the fund sector. What is special about mutual funds
compared to banks is their funding model. Mutual fund equity corresponds to redeemable
investment shares which investors can purchase/redeem directly with the mutual fund at
prices that are fixed (typically once per day). Given that many mutual funds do not
use significant leverage, redeemable fund equity typically makes up the entire liability
side. Therefore, investor redemptions can force funds to sell assets in order to pay out
redeeming investors. This funding structure is in contrast to the predominant liability
structure of banks, which generally involves significant debt financing and non-redeemable
equity shares. We describe the required model modifications in the following.

2.1 Model

There are N asset managers (institutions) and K assets (investments). Let M{N⇥K}
denote the matrix of portfolio weights, where each element 0  Mi,k  1 is the market-
value-weighted share of asset k in investor i’s portfolio, and

P
k Mi,k = 1 by definition.

Each institution i is financed with a mix of debt, Di, and equity, Ei. A{N⇥N} is the
diagonal matrix of institutions’ assets with Ai,i = Ei + Di 8i. B{N⇥N} is the diagonal
matrix of leverage ratios with Bi,i = Di/Ei 8i. Finally, F1 denotes a (K ⇥ 1) vector of
asset-specific returns (this is the initial shock). All pre-shock variables have a time index
of 0.

The four main steps are as follows:

1. We impose an initial shock on the value of asset managers’ asset holdings.

2. Investors in these asset managers react to the initial shock by withdrawing some of
their investments (flow-performance relationship).
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3. Asset managers have fixed leverage targets and liquidate assets according to their
original portfolio weights.

4. Asset liquidations a↵ect market prices, with more illiquid assets showing larger price
changes for a given liquidation amount (price impacts).

In the following, we describe these steps in detail.

2.1.1 Step 1: Initial Shock

In matrix notation, we obtain asset managers’ portfolio returns as

R1 = MF1, (1)

with R1 being a (N ⇥ 1) vector. This gives us the updated total assets

A1 = A0(1 +R1), (2)

which yields an equivalent change in the net asset value of equity

E1 = E0 + A0R1, 4 (3)

and debt (assuming that the initial shock does not wipe out all of the institution’s equity)

D1 = D0. (4)

2.1.2 Step 2: Response on the Funding Side

In line with a vast existing literature (e.g. Sirri and Tufano (1998); Berk and Green
(2004)), we assume a positive linear relationship between asset managers’ performances
and net inflows. Hence, negative (positive) performance is followed by an outflow (inflow)
of money. To allow for di↵erent responses for di↵erent types of funding, we derive the
equations for the general case where equity and debt may have di↵erent flow-performance
sensitivities, �E and �D, as introduced below.5

The most simple scenario is that net equity inflows (in absolute terms) are a linear
function of an institution’s realized return on assets from step 1. This can be written as

�E2

E1
= �ER1, (5)

where �E is the flow-performance sensitivity parameter of equity, and �E2 is the net
inflow in dollars. Note that the assumed linearity implies that positive and negative

4If the initial shock is large enough, equity could become negative. To prevent this from happening,
we could write E1 as max(E0 +A0R1, 0) and D1 as D0 +min(E0 +A0R1, 0). For simplicity, we assume
that the initial shock is small enough to not wipe out the entire equity.

5In the case of investment funds, investors can redeem their equity shares, while in the case of banks,
some short-term borrowing may dry up. In the general case, equity and debt may be redeemed simulta-
neously.
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returns are treated symmetrically. This is in line with the findings of Spiegel and Zhang
(2013). Similarly, we can write the change in refinancing power as

�D2 = �DR1D1 = �DR1D0, (6)

where �D is the flow-performance sensitivity parameter of debt, and �D2 is the net inflow
in dollars.6

With these additional adjustments on the liability side of the balance sheet, updated
equity and debt can be written as

E2 = E1(1 + �ER1), (7)

and
D2 = D1(1 + �DR1). (8)

Using the above definitions for D1 and E1, we can write total assets as

A2 = A1 +�E2 +�D2

= A0

✓
1 +R1

✓
1 + �E

✓
R1 +

1

1 + B

◆
+ �D B

1 + B

◆◆
,

(9)

where we used E0/A0 = 1/(1 +B). The asset manager has to liquidate assets in order to
make the payments, which will a↵ect demand in step 3 below.

Note that the additional funding shock can be seen as an amplifier of the original shock.
More precisely, we can write the adjusted portfolio return (before asset liquidation) as

R2 =
A2 � A0

A0

= R1

✓
1 + �E

✓
R1 +

1

1 + B

◆
+ �D B

1 + B

◆
.

(10)

Hence, all other things equal, R2 will be closer to R1 for more leveraged firms (higher B),
with a weaker flow-performance sensitivity (lower �E and �D).7

For the case of no withdrawal of debt, we would impose �D = 0 and �E > 0, in which
case the adjusted return reads as

R2 = R1

✓
1 + �E

✓
R1 +

1

1 + B

◆◆
. (11)

The relationship between R2 and the parameters �E and B is nonlinear and can have a
substantial impact on the resulting portfolio returns in the model. For example, a mutual

6 Eq. (6) seems most reasonable for institutions with very short-term debt financing. In fact, we
would achieve similar results to those presented here if we distinguish between short- and long-term debt
financing, respectively, D0 = D

L
0 +D

S
0 . That would allow us to assume more realistically that only short-

term creditors would be prone to withdrawing their funds (not rolling over the loans), while long-term
debt is much more slow-moving, see Gorton and Metrick (2012).

7If we were to distinguish between short- and long-term debt, see footnote 6, the last term would read

�
D DS

0
A0

, where D
S
0 is the amount of short-term debt in the initial balance sheet.
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fund without leverage (B = 0) and �E = 2.5 will have a R2 that is amplified by a factor
of 3 compared to the original R1. Note that the flow-performance relationship will be
somewhat milder for less levered asset managers (higher B amplifies R1 less strongly) since
their equity tranche is relatively small. As we will see below, highly levered institutions
will, however, liquidate more assets in order to achieve their leverage target (Step 2.1.3).

Finally, note that in the case where equity and debt have the same flow-performance
sensitivity, i.e., where � = �E = �D, Eq. (10) reduces to

R2 = R1 (1 + �(1 +R1)) . (12)

2.1.3 Step 3: Leverage Targeting with Fixed Portfolio Weights

In line with Greenwood et al. (2015), we assume that asset managers target their leverage
and aim at holding their portfolio weights constant when liquidating (or buying) assets.
These two assumptions are quite realistic, particularly so for investment funds: first, asset
managers generally need to specify the composition of both their asset and liability side
in their sales prospectuses and are unlikely to deviate significantly from these proposed
targets. Second, empirical evidence suggests that mutual funds tend to sell assets accord-
ing to the liquidity pecking-order during normal times, but in a pro-rata fashion during
times of market stress (Jian, Li, and Wang (2016)).

Given that asset managers will have to liquidate an amount �E2 + �D2 due to the
withdrawal of short-term funding (equity and debt) after a negative shock, we need to
add another leverage targeting component to the total amount to be liquidated. In the
original paper, this component is easily found to be A0BR1. In our case, things are slightly
more complicated, because the original reduction in equity might have been followed by
additional outflows of debt and equity, respectively. Given the definition of B, we know
that the new value of debt should be D3 = E2 ⇥ B, or, equivalently,

�D3 = E2B �D2 = A0B(R2 � �DR1). (13)

Thus, adding all of the above component we end up with total assets to be liquidated
per investor of

�|{z}
Amount to be liquidated

= �E2|{z}
Net inflow of equity

+ �D2|{z}
Net inflow of debt

+ �D3.| {z }
Leverage targetting

(14)

This can be written compactly as

� = �EE1R1 + �DD1R1 + A0B(R2 � �DR1),

= A0


�E

✓
1

1 + B
+R1

◆
+ �D

✓
B

1 + B

◆
+B(R2 � �DR1)

�
.

This can be broken down into
� = M 0�, (15)

which gives a (K ⇥ 1) vector of net asset purchases by all asset managers in period 3.
The last term in Eq. (15) corresponds to the � in the Greenwood et al. (2015) model,
which we recover when we set �D = �E = 0. Eq. (15) assumes that both �D and �E are
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the same across institutions. We can easily account for a more general case by setting
up two diagonal matrices �E

{N⇥N} and �D
{N⇥N}, where each element �E

i,i and �D
i,i can be

institution-specific.8 With this formulation, we write

� = M 0� = M 0A0


�E

✓
1

1 + B
+R1

◆
+ �D

✓
B

1 + B

◆
+B(R2 � �DR1)

�
, (16)

where the vectorized version of Eq. (10) can be written as

R2 = R1 �
⇥
1N + �E(R1 + diag(1 + B)�1) + �Ddiag(B(1 +B)�1)

⇤
, (17)

where diag(·) retrieves the main diagonal and � indicates element-wise multiplication.

2.1.4 Step 4: Fire Sales Generate Price Impact

Asset sales generate a linear price impact

F4 = L� = LM 0�, (18)

where L is the matrix of price impact ratios, expressed in units of returns per dollar of
net sales.9 This gives a final return of

R4 =MF4 = MLM 0�. (19)

Note that, empirically, it has been documented that price impact appears to follow a
square-root law, i.e. it is a concave function (see Engle, Ferstenberg, and Russell (2012)).
Hence, if anything, the assumed linearity of Eq. (18) overestimates the actual price impacts
and thus the vulnerability of the system, because liquidating twice as many assets should
lead to a price change that is less than twice the original one.

2.2 Measuring Vulnerability Exposures

Suppose there is a negative shock on asset prices, F1 = (f1, f2, · · · , fK), 8f 2 [�1; 0): this
translates into dollar shocks to institutions’ assets given by A1MF1. The aggregate direct
e↵ect on all institutions’ assets is the sum of these values: 10NA1MF1. This shock will
have additional knock-on e↵ects for individual institutions due to investors’ redemptions.
The net inflows of equity and debt can also be aggregated as before by multiplying with
1N . Note that these direct e↵ects do not involve any contagion between institutions.

Using Eq. (19), we can compute the aggregate dollar e↵ect of shock F1 on institutions’
assets through fire sales. To do so, we pre-multiply by 10NA0, and normalize by the initial
total equity, E0,

AV =
10NA0R4

E0
=

10NA0MLM 0�

E0
. (20)

AV measures the percentage of aggregate equity that would be wiped out by institutions’
asset liquidation in case of a shock of F1 to asset returns. Similar to Greenwood et al.

8Assuming that the � matrices are diagonal implies that we ignore cross-institutional correlations in
the net inflows.

9As in Greenwood et al. (2015), we always make sure that asset prices cannot become negative.
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(2015), we can decompose aggregate vulnerability into each asset manager’s individual
contribution

Si =
10NA0MLM 0�i�0i�

E0
, (21)

where �i is a (N ⇥ 1) vector with all zeros except for the ith element, which is equal to
one, and

PN
i Si = AV .

Finally, we also define an institution’s indirect vulnerability with respect to shock F1

as the impact of the shock on its equity through the deleveraging of other institutions:

IVi =
�0iA0MLM 0�

Ei,i
. (22)

3 Model Application: Vulnerable Funds?

In this section, we apply our model to the economically meaningful set of U.S. domestic
equity funds. We restrict ourselves to this particular fund type since we have accurate
information on their asset holdings over a relatively long sample period. Moreover, we
can match these holdings with stock-specific information from CRSP-Compustat, which
allows us to estimate the price impact parameters separately for each stock over time. In
the following, we introduce the data set (Section 3.1) and explain the calibration of model
parameters (Section 3.2).

To the best of our knowledge, there is no documented evidence of a flow-performance
relationship with regard to debt financing for asset managers in general; therefore, we set
�D = 0 in everything that follows. In summary, the model relies on five crucial inputs:
(1) size; (2) leverage; (3) portfolio weights; (4) flow-performance relationship; (5) price
impact parameters.

3.1 Data

The data used here come from two di↵erent sources. First, we obtain mutual funds’
portfolio holdings and additional fund-specific information from the CRSP Survivor-Bias-
Free Mutual Fund Database (following the literature, we aggregate di↵erent share classes
to the fund level, e.g., Cremers and Petajisto (2009)). Portfolio holdings are available at
the quarterly level from March 2003 onwards and our final sample comprises 48 quarters
between Q1 2003 and Q4 2014.10 In everything that follows, we disregard short positions.
Second, we obtain daily stock-specific information from the merged CRSP-Compustat
data. The final dataset gives us detailed information on the domestic equity holdings
of U.S. mutual funds and we therefore restrict ourselves to equity funds with a focus
on domestic stocks (we only keep funds with CRSP objective codes starting with ’ED’).
While we include index mutual funds in our sample, we drop exchange-traded funds in
everything that follows due to structural di↵erences in their redemption process compared
to those of mutual funds.

10Note that there is a structural break in the fund identifiers in CRSP: all fund ID’s were replaced with
new ones from Q3 2010 to Q4 2010. Moreover, there are no holdings data available for Q4 2010 which
we replace by the portfolio holdings from Q3 2010 for this particular quarter, which is in line with the
typical buy-and-hold strategy of mutual funds.
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Figure 2: System size. Left: total dollar value of mutual funds’ equity holdings over time in 2014 US$
(trillion). The solid line shows the values when including all funds that report their holdings in the CRSP
Mutual Fund Database, and the dashed line shows the values for domestic equity (DE) funds only which
will be the main focus of this study. Right: number of DE funds and stocks in our sample over time.

The final sample contains 7,936 unique stocks, 7,345 unique funds and 86,898 fund-
quarter observations. The flow-performance regressions will be based on monthly data,
in which case we have 429,330 fund-month observations.

3.2 Estimation of Model Parameters

In the following, we describe the computation of model parameters. In detail, we discuss
fund specific size, leverage, portfolio holdings and corresponding portfolio weights and
funds portfolio overlap with other fund portfolios.

3.2.1 Fund Size

Fund size is defined as the dollar value of a fund’s portfolio as reported in the matched
holdings data. The left panel of Figure 2 shows the total dollar volume of the system
over time in trillion dollars, adjusted for inflation (indexed to Q4 2014 based on the CPI
available from the St. Louis Fed) to make them comparable over time.11 The solid line
shows the total volume when including all reported holdings, and the dashed-dotted line
shows the values for domestic equity funds (DE) only. Clearly, the system has grown
over the sample period, partly because the market value of the asset holdings depends
on market prices, which also explains the strong e↵ect of the global financial crisis in
Figure 2. The right panel of Figure 2 shows the number of active DE funds and the

11For the sake of comparability, we adjusted all nominal dollar volumes for inflation (including price
impacts). This generally does not a↵ect our vulnerability estimates below since these are always ratios
of nominal values.
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number of active stocks.12 Over the sample period the number of active funds (black line)
increased quite significantly, while the number of stocks (dotted line) has been shrinking
over time.
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Figure 3: Market concentration. This Figure shows the relative market share of the largest 1, 5, and
20 fund(s) over time, respectively.

As discussed by Greenwood et al. (2015), a more concentrated system might be more
vulnerable to systemic asset liquidations. Figure 1 above documents the increase of asset
holding concentration of the 500 largest global asset managers over the last decade. An
obvious question is whether there is a similar trend for the set of DE mutual funds
considered in this study. Figure 3 shows the relative market share of the largest fund(s)
over time. More precisely, we divide the total assets under management of the 1, 5, and
20 largest funds by the total size of the system. Somewhat surprisingly, we find that the
fraction of assets held by the largest and the 5 largest funds has been relatively stable,
while the share of the largest 20 funds has actually decreased over time. This finding
could be driven by the growing number of active mutual funds over our sample period
and the relatively high levels of competition in the industry (Malkiel (2013)). Overall,
based on these dynamics alone, we do not necessarily expect aggregate vulnerabilities of
the system to increase over time.

3.2.2 Leverage

Since the CRSP Mutual Fund database does not provide information on funds’ lever-
age ratios, we apply two di↵erent approaches to address this shortcoming. These two

12Funds are defined as those DE funds that report their holdings in CRSP in a given quarter. Active
stocks are defined as those stocks that are held by at least one fund and for which we have additional
information in CRSP/Compustat.
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approaches are based on the theoretical lower and upper bounds of mutual fund leverage.
First, the upper bound is explicitly stated in the regulatory framework, since mutual

funds in the U.S. are subject to tight leverage constraints. According to the Investment
Company Act of 1940, ”[b]y law, the value of its borrowings may not exceed one-third
of the value of its assets” (see Pozen and Hamacher (2011)). In terms of our model,
this means that the maximum value of D

A is 0.33, or equivalently, the maximum value of
leverage is B̄ = 0.5. This upper bound is relatively small compared to the values reported
for the largest European banks whose leverage can exceed 30 (Greenwood et al. (2015)).

Second, the lower bound is based on the empirical observation that mutual funds
often self-impose zero leverage constraints and many investment policies prohibit debt
borrowing (Almazan, Brown, Carlson, and Chapman (2004); Boguth and Simutin (2017)).
Hence, the most natural baseline scenario is to assume that all mutual funds use zero
leverage.

Given that leverage clearly has a positive impact on aggregate vulnerabilities, we
contrast the zero-leverage case with the case where all mutual funds use their maximum
leverage of B̄. These two approaches provide us with the minimum and maximum values
of aggregate vulnerabilities at any point in time.

3.2.3 Portfolio Weights and Overlap

In our dataset, we observe the actual equity holdings of U.S. mutual funds. The most
granular holdings matrix is M{N⇥K}, where N is the number of active funds and K the
number of active stocks.13 Recall that an element Mi,k � 0 gives the weight of stock k in
fund i’s portfolio (share of market value), with

P
k Mi,k = 1 8i.

Since we observe additional information on the stocks, we also run our model based
on more coarse-grained portfolios, say Magg

{N⇥Ka} with total number of aggregated assets
Kagg < K. In the following, we focus on SIC industry codes (4-digits, 2-digits, and 1-
digit).14 For example, the 4-digit SIC classification defines 1,353 unique industry codes,
and each element Ma

i,k shows the portfolio weight of stocks from industry k in fund i’s
portfolio. The 2- and 1-digit classifications are defined in a similar fashion, and contain
84 and 10 industries, respectively. Clearly, fewer asset classes lead to a higher average
overlap between any pair of investors, meaning that the system’s vulnerability for the more
granular portfolios Ma should be positively a↵ected compared with the most granular
portfolios M .

In Greenwood et al. (2015), aggregate vulnerability depends on the typical overlap of
investors’ portfolios. One obvious question, therefore, is whether we observe an increase
in the typical portfolio overlap over time. In order to answer this question, we define the
overlap of two funds’ portfolios as

Overlapi,j =

PK
k=1 Mi,kMj,kqPK

k=1(Mi,k)2 ⇥
qPK

k=1(Mj,k)2
, (23)

13Note that only active stocks are of interest in the following, since stocks need to be held by at least
one mutual fund to be subject to any kind of fire sale cascades.

14We also classified stocks into di↵erent size deciles (based on market capitalization). In terms of
aggregate vulnerability, the results are comparable to those reported below for the SIC classification.
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Figure 4: Portfolio overlap. For each quarter we show the cross-sectional average value of Eq. (23) for
di↵erent aggregation levels. ’Stocks’ corresponds to the original holdings reported in the CRSP Mutual
Fund Database.

where i 6= j. Technically, Overlap is defined as the angle between the vectors of portfolio
weights between fund i and fund j (cosine overlap). Overlap ranges between 0 and 1, with
higher values indicating more similar portfolios. If two funds have no assets in common,
their overlap equals 0; if they hold the exact same portfolios, their overlap corresponds
to 1.

Figure 4 shows the cross-sectional average overlap over time for di↵erent levels of
portfolio aggregation. The solid line shows the typical overlap based on the most granular
stock-specific portfolios; the other cases show the results for the aggregated industry-
specific portfolios. As expected, portfolio overlap increases with fewer asset classes. In all
cases, the values are significantly larger than the minimum value of zero, but similarly the
values are also always substantially below its maximum possible value of 1. With regards
to the time dynamics, the values appear to be remarkably stable on all aggregation levels.15

From these numbers one would not expect a strong trend in aggregate vulnerability purely
due to the dynamics of portfolio overlap.

3.2.4 Price Impact

We estimate stocks’ price impact parameters based on the daily CRSP data. For this pur-
pose, we use the standard Amihud (2002)-ratio as our measure of price impact. Goyenko,
Holden, and Trzcinka (2009) have shown that the Amihud-ratio is indeed an adequate
proxy for monthly illiquidity conditions.

15Fricke (2017) finds a significant but small time trend in the portfolio overlap among the same set of
U.S. mutual funds.
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Figure 5: Price impact. For each stock, we calculate the daily Amihud-ratio as |Returnk,t|/DVolumek,t,
where |Returnk,t| and DVolumek,t are the absolute return and the dollar volume of stock k on day t,
respectively. We then take the quarterly average of these daily values separately for each stock. Dollar-
trading volumes are adjusted for inflation. For each quarter, we show the cross-sectional average values
(equal-weighted and weighted by market capitalization). The y-axis is displayed in logarithmic scale.

The Amihud-ratio for asset k on day d is defined as the daily absolute return over the
total dollar volume,

Amihudk,d =
|Returnk,d|
DVolumek,d

. (24)

For each seperate asset, we take the quarterly average of these daily observations and
define the price impact of that asset in quarter t as

PriceImpactk,t =
1

Dk,t

X
Amihudk,d, (25)

where Dk,t is the number of daily observations for asset k in quarter t. As for the value
of the total holdings above, we adjust the price impacts for inflation (the denominator is
based on nominal dollar volumes).

As an illustration of the overall dynamics, Figure 5 shows the cross-sectional average
(equal-weighted and value-weighted, respectively) price impact over time, as defined in
Eq. (25), on semi-logarithmic scale. The average values in Figure 5 are 4.77 ⇥ 10�6 and
1.11 ⇥ 10�8, respectively. The magnitude of the price impact measures is comparable to
those reported by Brennan, Huh, and Subrahmanyam (2013). It is worth noting that the
typical price impact in our data set is several orders of magnitude larger than the values
reported by Greenwood et al. (2015) who assume a price impact of 10�13 for most of their
asset classes.

Not surprisingly, the value-weighted average is much smaller since stocks with a higher
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market capitalization tend to be more liquid than assets with a lower market capitaliza-
tion. In fact, the value-weighted price impact is two orders of magnitude smaller than the
equal-weighted price impact. Due to the dependence of the Amihud-ratio on volatility,
it also comes as no surprise that there is a clear peak in price impacts during the global
financial crisis.16

3.2.5 Flow-Performance Relationship

The existence of a flow-performance relationship has become something of a ’stylized
fact’ in the mutual fund literature. The basic idea is that there is a positive relationship
between funds’ past performance and their future net inflows. The estimation equation
is

Flowsi,t = a+ b⇥ Controlsi,t + �E ⇥ Returni,t�1 + ✏i,t, (26)

where Flowsi,t is the net inflow of fund i in month t, which we calculate as

Flowsi,t =
TNAi,t � TNAi,t�1(1 + Returni,t)

TNAi,t�1
, (27)

with TNA as total net assets. Given that we think of the stress test happening at relatively
short time-scales, we will estimate Eq. (26) using data at the highest available frequency,
namely monthly.17

There are many di↵erent ways to estimate parameter �E: first, one has to decide on
the time dimension, i.e., do we estimate parameters for the full sample (�E is constant
over time) or based on rolling window regressions? Secondly, one has to decide whether
the parameter should be estimated separately for each fund (in which case �E would
have a fund-specific index i), or whether one wants to pool data for di↵erent funds (e.g.
across all funds or by fund type). Since there are no obvious answers to these questions,
in the baseline scenario we use the most transparent approach and pool observations
for all funds over time and estimate one �E for all funds.18 This way, the estimated
vulnerabilities in the next section will not be driven by any time dynamics in the flow-
performance relationship. We discuss this assumption below and relax it in section 4.2.3,
where we introduce heterogeneity regarding �E across fund types and explore how this
a↵ects the aggregate vulnerabilities relative to the baseline scenario.

Lastly, we should stress that the existing literature typically uses adjusted performance
measures (returns relative to some benchmark) rather than raw returns. Clearly, adjusting
all funds’ returns using the same benchmark (such as S&P 500) will not have an impact
on our estimate of �E when using the Fama and MacBeth (1973) methodology. The
results might, however, di↵er when di↵erent funds’ returns are adjusted using a di↵erent
benchmark. In this regard, we find comparable results to those reported below when
using style-adjusted and fund-family-adjusted returns, respectively (see Appendix B).
Many studies also use factor-model alphas instead of returns (e.g. Goldstein, Jiang, and

16In Appendix A we show the typical price impacts for very active trading days.
17We also experimented with quarterly data. In this case, the estimates for �E are even smaller than

those shown below (results available upon request from the authors).
18We add further data filters for these regressions: we exclude funds that are less than one year old,

and we also drop extreme flow/return observations (above/below +200%/-50%).
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Ng (2017)).19

Results. Table 1 shows the results of this exercise, using di↵erent control variables and
estimation approaches, with Newey-West standard errors in parentheses. Columns (1) to
(5) show the results using simple pooled OLS: the first column only includes the lagged
(1-month) return and flow as control variables. The other columns then add further lags,
fund size, and fund-/time-FEs to the regressions. Overall, we find that the parameter on
Return(t-1) is always strongly positively significant, but generally rather small. In fact,
the maximum value for �E is 0.1490 when using pooled OLS. The last column shows the
results when using Fama-MacBeth regressions, which yields �E = 0.2748. Given that
the typical R2 is highest in this case, and in order to explore the worst case scenario
in the model application, we stick to this value of �E in the following. Note that our
estimates are broadly comparable with those of Franzoni and Schmalz (2017), who used
a similar methodology. We should stress, however, that this is still a small value: a
return of -5% would translate into additional net outflows of only �5% ⇥ .2748 ⇡ -1.37%,
suggesting that the vulnerability of the system is likely to be small even when including
the flow-performance relationship.

Discussion. Before moving on, it is worth stressing that the approach taken in the
baseline scenario, namely fixing the same �E for all funds and for all periods, is mainly
chosen for the sake of transparency. Given that our model already contains a number of
moving parts (most importantly fund portfolios and price impacts), fixing �E can be seen
as a reasonable benchmark. However, we do acknowledge that the assumption of a uniform
flow-performance relationship across all fund types is likely unrealistic, and we therefore
perform a large number of additional analyses with regards to the baseline regressions in
Table 1. We report the most important results in Table 2 and leave additional analyses
for Appendix B. Table 2 shows three exercises:

(1) Subsamples. In order to explore to what extent the estimation di↵ers over di↵erent
sample periods, we first run the same Fama-MacBeth regressions using only data
from the crisis period (2008-09). In line with Franzoni and Schmalz (2017), we
estimate �E = 0.1781 which is significantly below the pooled estimator. We also
split the sample into two equal-sized subsamples, which cover the years 2003-08,
and 2009-14, respectively. We estimate �E separately for both subsamples. It turns
out that the value is slightly higher in the first subsample (�E = 0.2951 versus
0.2521). However, both values are roughly within one standard deviation of the
original estimate for the whole sample; we therefore conclude that the values are
not significantly di↵erent during the two subsamples.

19In the technical Appendix to their blogpost, Cetorelli et al. (2016) describe a two-step estimation
approach for �

E based on fund alphas: in the first stage, they estimate fund-specific alphas using a
12-month rolling window regression of fund returns on the market return separately for each fund. In
the second stage, they regress funds’ flows against the estimated alphas. For the sake of completeness,
we perform a similar exercise using both fund returns and fund alphas. The results can be found in
Appendix B.2. In this case, we find that the coe�cients are rather broadly distributed around zero (with
many negative values) and a smaller average value than our baseline estimate when using fund returns.
We therefore stick to our baseline approach in the following.
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Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3) (4) (5) (6)

Return(t-1) 0.0508** 0.0553** 0.0629** 0.1402** 0.1490** 0.2748**
(0.0039) (0.0037) (0.0036) (0.0111) (0.0109) (0.0268)

Return(t-2) 0.0125** 0.0271** 0.0671** 0.0882** 0.1885**
(0.0037) (0.0036) (0.0107) (0.0107) (0.0330)

Return(t-3) 0.0095 * 0.0240** 0.0366** 0.0569** 0.0996**
(0.0038) (0.0037) (0.0111) (0.0110) (0.0164)

Return(t-4) 0.0133** 0.0310** 0.0472** 0.0696** 0.0507
(0.0038) (0.0037) (0.0107) (0.0105) (0.0349)

Return(t-5) -0.0014 0.0188** 0.0090 0.0387** 0.0664**
(0.0038) (0.0037) (0.0101) (0.0100) (0.0179)

Return(t-6) 0.0097 * 0.0284** 0.0413** 0.0687** 0.1047**
(0.0039) (0.0039) (0.0116) (0.0114) (0.0273)

Return(t-7) 0.0004 0.0132** 0.0382** 0.0657** 0.0647**
(0.0036) (0.0035) (0.0107) (0.0104) (0.0231)

Return(t-8) 0.0004 0.0100** 0.0154 0.0454** 0.0832**
(0.0036) (0.0035) (0.0106) (0.0100) (0.0221)

Return(t-9) 0.0096 * 0.0245** 0.0273 * 0.0611** 0.0780**
(0.0039) (0.0038) (0.0111) (0.0111) (0.0237)

Return(t-10) -0.0139** 0.0028 -0.0207 0.0156 0.0070
(0.0038) (0.0037) (0.0117) (0.0112) (0.0335)

Return(t-11) 0.0149** 0.0329** 0.0397** 0.0748** 0.0387 *
(0.0035) (0.0034) (0.0105) (0.0103) (0.0177)

Return(t-12) 0.0099** 0.0331** 0.0240 * 0.0676** 0.0351 *
(0.0034) (0.0034) (0.0103) (0.0101) (0.0164)

Flows(t-1) 0.0884** 0.0616** 0.0156 * 0.0587** 0.0119 0.0760**
(0.0050) (0.0065) (0.0064) (0.0064) (0.0064) (0.0098)

Flows(t-2) 0.0839** 0.0437** 0.0825** 0.0414** 0.0848**
(0.0057) (0.0055) (0.0057) (0.0055) (0.0073)

Flows(t-3) 0.0590** 0.0252** 0.0584** 0.0235** 0.0433 *
(0.0053) (0.0052) (0.0053) (0.0052) (0.0178)

Flows(t-4) 0.0348** 0.0033 0.0345** 0.0020 0.0332**
(0.0054) (0.0054) (0.0054) (0.0054) (0.0092)

Flows(t-5) 0.0515** 0.0242** 0.0509** 0.0226** 0.1053 *
(0.0054) (0.0053) (0.0054) (0.0053) (0.0500)

Flows(t-6) 0.0418** 0.0169** 0.0413** 0.0155** 0.0162
(0.0054) (0.0052) (0.0054) (0.0052) (0.0187)

Flows(t-7) 0.0247** 0.0017 0.0250** 0.0010 0.0564
(0.0052) (0.0050) (0.0052) (0.0050) (0.0324)

Flows(t-8) 0.0332** 0.0104 * 0.0335** 0.0095 0.0114
(0.0051) (0.0051) (0.0051) (0.0050) (0.0215)

Flows(t-9) 0.0339** 0.0137** 0.0345** 0.0132** -0.0218
(0.0050) (0.0050) (0.0050) (0.0050) (0.0467)

Flows(t-10) 0.0262** 0.0079 0.0270** 0.0076 0.0223**
(0.0049) (0.0048) (0.0049) (0.0048) (0.0069)

Flows(t-11) 0.0174** -0.0008 0.0180** -0.0014 0.0178**
(0.0044) (0.0044) (0.0044) (0.0044) (0.0052)

Flows(t-12) 0.0303** 0.0137** 0.0306** 0.0128** 0.0309**
(0.0047) (0.0047) (0.0047) (0.0047) (0.0060)

log(TNA(t-1)) -0.0032** -0.0015** -0.0232** -0.0016** -0.0240** -0.0058
(0.0001) (0.0001) (0.0006) (0.0001) (0.0006) (0.0033)

Fund FE No No Yes No Yes -
Time FE No No No Yes Yes -
Fama-MacBeth - - - - - Yes
adj. R2 0.014 0.052 0.116 0.056 0.121 0.168
Obs. 417,801 306,570 306,570 306,570 306,570 306,570

⇤ p<0.05; ⇤⇤ p<0.01

Table 1: This Table shows the results of the flow-performance regressions, with �
E being the parameter

on Return(t-1). All regressions based on monthly data using standard OLS (Newey-West standard errors
in parentheses). The last column is our main specification and shows the results for Fama-MacBeth
regressions, in which case we report the time-series average of cross-sectional regression coe�cients and
the adjusted R2. TNA is a fund’s total net assets, and Flow is defined in Eq. (27).
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Robustness: Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3)

Subsamples Index funds Illiquidity Quartile
Crisis Sub 1 Sub 2 (Most liquid) (Least liquid)

2008-09 2003-08 2009-14 No Yes 1 2 3 4
Return(t-1) 0.1781** 0.2951 ** 0.2521 ** 0.2578** 0.4396** 0.2089** 0.2822** 0.3235** 0.2498**

(0.0370) (0.0263) (0.0487) (0.0236) (0.0907) (0.0428) (0.0327) (0.0302) (0.0371)
Return(t-2) 0.1128 * 0.1810 ** 0.1970 ** 0.1693** 0.2026 * 0.1707** 0.1209** 0.1571** 0.1875**

(0.0479) (0.0217) (0.0661) (0.0154) (0.0945) (0.0370) (0.0364) (0.0363) (0.0321)
Return(t-3) 0.0826 * 0.1219 ** 0.0744 ** 0.0980** 0.0044 0.0664 0.1488** 0.1502** 0.1603**

(0.0317) (0.0206) (0.0257) (0.0208) (0.0840) (0.0444) (0.0377) (0.0307) (0.0324)
Return(t-4) 0.1004 * 0.0912 ** 0.0051 0.0926** 0.0299 0.1076 * 0.0342 0.0945** 0.1032**

(0.0375) (0.0202) (0.0705) (0.0138) (0.1013) (0.0424) (0.0399) (0.0281) (0.0286)
Return(t-5) -0.0391 0.0558 * 0.0783 ** 0.0696** -0.0045 0.1431** 0.0840 * 0.0890 * 0.0718

(0.0290) (0.0252) (0.0256) (0.0144) (0.0869) (0.0442) (0.0376) (0.0377) (0.0395)
Return(t-6) 0.0080 0.0782 ** 0.1346 * 0.0895** 0.0734 0.0648 -0.0175 0.1033** 0.0650 *

(0.0324) (0.0196) (0.0536) (0.0165) (0.0969) (0.0499) (0.0388) (0.0282) (0.0314)
Return(t-7) 0.0167 0.0643 ** 0.0653 0.0879** -0.1099 0.0581 0.0131 0.0660 * 0.0709

(0.0436) (0.0227) (0.0422) (0.0279) (0.0923) (0.0395) (0.0378) (0.0328) (0.0374)
Return(t-8) 0.1079** 0.0813 ** 0.0854 * 0.0793** 0.0854 0.0430 0.0279 0.0408 0.0609

(0.0308) (0.0222) (0.0399) (0.0208) (0.0989) (0.0447) (0.0329) (0.0350) (0.0385)
Return(t-9) 0.0631 0.0218 0.1414 ** 0.0570** 0.0196 0.0620 0.0629 0.0517 0.1220**

(0.0370) (0.0207) (0.0434) (0.0134) (0.1036) (0.0407) (0.0393) (0.0317) (0.0435)
Return(t-10) 0.0077 0.0329 -0.0221 0.0461** -0.1829 * 0.0567 0.0357 0.1024** 0.0668 *

(0.0379) (0.0210) (0.0673) (0.0147) (0.0871) (0.0446) (0.0370) (0.0330) (0.0269)
Return(t-11) 0.0824 0.0517 * 0.0242 0.0438** 0.0136 0.0604 0.0323 0.0563 0.0309

(0.0471) (0.0218) (0.0286) (0.0125) (0.1037) (0.0385) (0.0374) (0.0317) (0.0315)
Return(t-12) 0.0508 0.0611 ** 0.0058 0.0363** 0.0526 0.0235 0.0669 0.0356 -0.0202

(0.0373) (0.0209) (0.0252) (0.0129) (0.0914) (0.0402) (0.0372) (0.0319) (0.0273)
Flows(t-1) 0.1386** 0.1125 ** 0.0350 * 0.1299** -0.0778** 0.0345 0.1093** 0.0739** 0.0966**

(0.0254) (0.0114) (0.0146) (0.0101) (0.0200) (0.0205) (0.0173) (0.0212) (0.0211)
Flows(t-2) 0.1080** 0.0929 ** 0.0757 ** 0.0903** 0.0468 * 0.0968** 0.0687** 0.0689** 0.1000**

(0.0264) (0.0106) (0.0098) (0.0084) (0.0197) (0.0165) (0.0205) (0.0180) (0.0158)
Flows(t-3) 0.0812** 0.0637 ** 0.0204 0.0627** 0.0238 0.0900** 0.0919** 0.0594** 0.0634**

(0.0221) (0.0111) (0.0356) (0.0194) (0.0193) (0.0145) (0.0182) (0.0202) (0.0125)
Flows(t-4) 0.0289 * 0.0501 ** 0.0143 0.0230 0.0139 0.0250 0.0433 * 0.0658** 0.0335 *

(0.0132) (0.0115) (0.0143) (0.0195) (0.0185) (0.0172) (0.0182) (0.0170) (0.0132)
Flows(t-5) 0.0655** 0.0678 ** 0.1476 0.0540** 0.0763** 0.0509** 0.0382 * 0.0602** 0.0575**

(0.0208) (0.0096) (0.1058) (0.0062) (0.0185) (0.0139) (0.0176) (0.0179) (0.0121)
Flows(t-6) -0.0160 0.0251 * 0.0063 0.0457** 0.0306 0.0201 0.0587** 0.0252 0.0398**

(0.0127) (0.0099) (0.0384) (0.0134) (0.0172) (0.0285) (0.0162) (0.0174) (0.0127)
Flows(t-7) 0.0385 0.0237 * 0.0931 0.0319** 0.0334 * 0.0246 0.0206 0.0299 0.0255 *

(0.0196) (0.0110) (0.0677) (0.0114) (0.0168) (0.0147) (0.0142) (0.0153) (0.0112)
Flows(t-8) 0.0102 0.0306 ** -0.0103 0.0079 0.0468 * 0.0409** 0.0373** 0.0334 * 0.0590**

(0.0170) (0.0095) (0.0445) (0.0147) (0.0191) (0.0134) (0.0134) (0.0132) (0.0134)
Flows(t-9) 0.0019 0.0203 * -0.0692 -0.0241 0.0352 * 0.0323 * 0.0312 * 0.0241 0.0189

(0.0127) (0.0086) (0.0989) (0.0471) (0.0159) (0.0150) (0.0136) (0.0167) (0.0103)
Flows(t-10) 0.0343 * 0.0264 ** 0.0176 0.0251** 0.0506 * 0.0455 * 0.0290 0.0308 * 0.0166

(0.0161) (0.0086) (0.0111) (0.0059) (0.0205) (0.0176) (0.0148) (0.0134) (0.0097)
Flows(t-11) 0.0310 * 0.0212 ** 0.0139 0.0238** 0.0143 0.0281 * 0.0091 0.0193 0.0095

(0.0134) (0.0069) (0.0078) (0.0046) (0.0149) (0.0138) (0.0177) (0.0128) (0.0109)
Flows(t-12) 0.0333 * 0.0286 ** 0.0334 ** 0.0198** 0.0604** 0.0404** 0.0354 * 0.0259 0.0211**

(0.0133) (0.0091) (0.0076) (0.0047) (0.0173) (0.0133) (0.0144) (0.0163) (0.0080)
log(TNA(t-1)) -0.0019** -0.0015 ** -0.0107 -0.0056 -0.0030** -0.0010** -0.0001 -0.0012** -0.0011**

(0.0003) (0.0002) (0.0070) (0.0033) (0.0005) (0.0002) (0.0012) (0.0004) (0.0002)
Fama-MacBeth Yes Yes Yes Yes Yes Yes Yes Yes Yes
adj. R2 0.145 0.176 0.158 0.175 0.443 0.381 0.436 0.420 0.351
Obs. 35,915 126,244 180,326 272,168 34,402 35,709 34,824 35,304 35,255

⇤ p<0.05; ⇤⇤ p<0.01

Table 2: Robustness checks, flow-performance regressions. �
E is the parameter on Return(t-1). All

regressions based on monthly data using Fama-MacBeth regressions, where we report the time-series
average of cross-sectional regression coe�cients, their Newey-West standard errors in parentheses and
the adjusted R2. TNA is a fund’s total net assets, and Flow is defined in Eq. (27).



(2) Index funds. Index funds have gained importance over the last few decades. For
example, Malkiel (2013) reports that, within the mutual fund sector, actively man-
aged funds had a market share of 97% in 1990, and only 71% in 2010. Given
that index funds are likely to behave very di↵erently from non-index funds, we es-
timate parameters separately for the two fund types.20 Interestingly, index funds
display a significantly larger value relative to non-index funds (�E = 0.4396 versus
0.2578). In other words, investors respond much more strongly to index funds’ past
performance. This finding might be caused by lower trading costs of index funds
compared to actively managed funds which might attract short-term investors (see
Malkiel (2013)). Due to the increasing importance of index funds over time, we
explore the aggregate vulnerabilities for this scenario in Section 4.2.3 below.

(3) Illiquid funds. Relatively illiquid funds tend to be more fragile in the sense that
there are strong first-mover advantages among investors in those funds (Goldstein
et al. (2017)). Hence, we estimate the flow-performance relationship separately for
funds with di↵erent liquidity profiles. For each month, we sort funds into illiquidity
quartiles based on their portfolio-weighted Amihud ratio. The last four columns of
Table 2 show the results for the di↵erent quartiles, where the first (fourth) quartile
corresponds to the most liquid (illiquid) funds. As expected, the most liquid funds
display the weakest flow-performance relationship (�E = 0.2089). Interestingly, the
relationship is strongest for the relatively illiquid funds in quartile 3 (�E = 0.3235).
On the other hand, for the most illiquid funds we find a substantially smaller value
than for funds in quartile 3 (�E = 0.2498). This suggests that investors in the
most illiquid funds tend to be more cautious in terms of their withdrawals. We will
explore the aggregate vulnerabilities for this scenario in Section 4.2.3 below as well.

Lastly, we also looked at small versus large funds (see Table 9 in Appendix B):

(4) Size. Larger funds are likely to have a stronger impact on other funds, simply be-
cause their asset liquidations are larger in absolute terms. Hence, we also estimated
the flow-performance relationship separately for small and large funds, respectively,
based on whether a funds’ TNA is below-/above-median in a given quarter. As
shown in Appendix B, we find that the values are larger for small funds (�E =
0.3239 versus 0.2411). Again, we explore the aggregate vulnerabilities for this sce-
nario in Section 4.2.3.

4 Results: Aggregate Vulnerabilities Over Time

In the following, we consider a shock scenario of an initial shock of -5% on all stocks21,
which is comparable in magnitude to shock scenarios considered in previous stress tests
for banking systems (see Cont and Schaanning (2017) for an overview). We calculate
the aggregate vulnerabilities (AV) separately for each quarter. Model parameters are

20For example, it is common practice in the flow-performance literature to drop index funds from the
analysis (e.g., Goldstein et al. (2017)).

21Note that the AV scales linearly in the initial shock. Hence, an initial shock of -20% yields an AV
which is approx. 4 times that of a -5% shock.
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calibrated as defined above, with zero-leverage as our baseline. We will di↵erentiate
between three scenarios with regards to our choice of the price impact parameters:

- Scenario 1 : Price impact time-varying and asset-specific.

- Scenario 2 : Price impact constant and asset-specific (time-average for each stock).

- Scenario 3 : Homogeneous price impact for all assets in all quarters. We use
a value of 1.57 ⇥ 10�13 which corresponds to the price impact of the asset class
’Developed Equity Markets’ in Cetorelli et al. (2016).

We will see that the first two scenarios generate AVs of similar orders of magnitude,
and much smaller values in the last scenario. Interestingly, we will also see that the time
dynamics of the AVs are a↵ected by which price impacts one chooses.

4.1 Baseline

The main results for the baseline analysis can be found in Figure 6 and Table 3. Let us
briefly describe these for the three di↵erent scenarios under study here.

Aggregate Vulnerability (AV)
Scenario 1 Scenario 2 Scenario 3
Leverage Leverage Leverage

Panel Zero Maximum Zero Maximum Zero Maximum
A Sum. Stats. 10�4 10�3

Mean 0.005 0.021 0.016 0.054 ⇥0.187 ⇥0.078
Median 0.005 0.020 0.014 0.049 ⇥0.182 ⇥0.076
Min 0.003 0.011 0.009 0.029 ⇥0.082 ⇥0.034
Max 0.013 0.052 0.036 0.115 ⇥0.335 ⇥0.140
Std 0.002 0.006 0.007 0.019 ⇥0.059 ⇥0.025

B Correlations
S1-Zero Lev. 1.000
S1-Max Lev. 1.000⇤⇤ 1.000
S2-Zero Lev. 0.098 0.100 1.000
S2-Max Lev. 0.065 0.066 0.995⇤⇤ 1.000
S3-Zero Lev. 0.376⇤⇤ 0.377⇤⇤ 0.735⇤⇤ 0.757⇤⇤ 1.000
S3-Max Lev. 0.376⇤⇤ 0.377⇤⇤ 0.735⇤⇤ 0.757⇤⇤ 1.000⇤⇤ 1.000

C Trend Analysis
Trend 0.001 0.001 0.036⇤⇤ 0.031⇤⇤ 0.016⇤⇤ 0.016⇤⇤

(0.002) (0.002) (0.005) (0.004) (0.004) (0.004)
Constant 0.770⇤⇤ 0.770⇤⇤ 0.787⇤⇤ 0.917⇤⇤ 1.219⇤⇤ 1.219⇤⇤

(0.074) (0.074) (0.146) (0.128) (0.135) (0.135)
R2 0.003 0.003 0.518 0.502 0.209 0.209
Obs. 48 48 48 48 48 48

⇤ p<0.05; ⇤⇤ p<0.01

Table 3: Results for AV. This Table shows summary statistics (top panel), correlation coe�cients
(center panel), and the results of a trend analysis (bottom panel). Scenario 1 (S1) is based on time-
varying and asset-specific price impacts; Scenario 2 (S2) is based on constant and asset-specific price
impacts; Scenario 3 (S3) is based on homogeneous price impacts. The trend analysis shows results from
OLS regressions of AVs on a constant and a time trend. For the sake of comparison, we divide each AV
time series by its initial value in Q1 2003.
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Figure 6: Aggregate vulnerabilities for the three di↵erent price impact scenarios. Top left: Scenario 1
(price impact time-dependent and asset-specific). Top right: Scenario 2 (price impact constant and
asset-specific). Bottom: Scenario 3 (homogeneous price impact = 1.57�13 for all assets/quarters). In all
cases, we calculate the AVs when using zero leverage and maximum leverage, respectively, such that the
shaded areas show the range of possible AVs.



Scenario 1 : Price Impact Time-Varying and Asset-Specific. The top left panel
of Figure 6 shows the results for Scenario 1 : the red shaded area spans the range of
possible AVs for varying assumptions on the leverage ratios. With zero leverage, the
typical AVs are on the order of 0.5%. With maximum leverage, AVs lie in a range around
2% with the exception of the financial crisis, at which AVs peak at 5% (see Table 3,
Panel A).22

It turns out that vulnerabilities in the mutual fund sector are smaller than those
reported for the banking sector. For example, Greenwood et al. (2015) report AV of
245% (assuming a 50% GIIPS shock23). The di↵erence in the systemic risk contribution
between asset managers and banks is heavily influenced by di↵erences in their funding
models. Banks are well-known to make use of substantial leverage, while mutual funds
often use zero leverage. Note that Greenwood et al. (2015) impose a leverage cap on
their sample banks (maximum value is winsorized to 30), possibly due to the instability
of their results. On the other hand, mutual fund regulations in the U.S. restricts the
maximum leverage to 0.5 (see section 3.2.2). Therefore, the amount of fire-sales through
leverage targeting (section 2.1.3) is dramatically larger in the banking sector. In addition,
while theoretically plausible, mutual funds’ fire-sales due to fund share redemptions are
also relatively modest due to a weak flow-return-sensitivity. For example, our estimated
sensitivities imply that an asset price shock of 5% translates to additional outflows of only
1.35%.

The dynamic of the AVs in Scenario 1 suggests that they are primarily driven by
the dynamics of the price impacts. Indeed, the Pearson-correlation between the value-
weighted price impacts shown in Figure 5 and the AVs is 0.67 in this case. Given the
absence of a visible time trend in the price impacts, it comes as no surprise that the AVs
in Scenario 1 exhibit no significant time trend. This can be seen from Panel C of Table 3,
where we regress the quarterly AVs on a constant and a time trend. In other words, when
using time-varying and asset-specific price impact we do not find that the system has
become more vulnerable despite the strong growth of the system.

Scenario 2 : Price Impact Constant and Asset-Specific. The top right panel
of Figure 6 shows the AVs for Scenario 2, where we ignore the time variation in the
estimated price impacts and simply take the average value for each stock. The AVs of
Scenario 1 di↵er from those of Scenario 2 in two ways. First, the magnitude of the AVs is
somewhat larger than for Scenario 1 : with zero leverage, the typical AVs are in the order
of 1.5%; with maximum leverage these values are around 5% (see Panel A of Table 3).
The maximum values are located around 3.5% and 11.5%, respectively. Given that the
average price impact of a given stock will be influenced by the crisis years, these results
suggest that in most cases this approach overestimates the actual price impacts and thus
the corresponding AVs.24 Second, the AVs of Scenario 2 peak at the end of sample rather

22Note that the AVs for the two extreme leverage assumptions are perfectly correlated (see Panel B of
Table 3). Hence, we will focus on the baseline scenario with zero leverage in the fund-specific analyses
below.

23The GIIPS shock corresponds to a 50% write-down on sovereign debt from Greece, Italy, Ireland,
Portugal, and Spain.

24We also experimented with an alternative Scenario 2b, where we use the maximum price impacts
(rather than the average) for each stock. In this case, the AVs are even larger with average values of 7%
(zero leverage) and 18% (max. leverage), respectively.
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than during the financial crisis period. When analyzing the time dynamics in more detail,
Figure 6 suggests that the AVs have slowly increased over time, which is confirmed by the
significantly positive time trend parameter in the trend analysis (see Panel C of Table 3).

Scenario 3 : Homogeneous Price Impact. The bottom of Figure 6 shows the AVs
when imposing a uniform price impact across all assets and all quarters. In this case, the
AVs are very small, with typical values on the order of 10�4. Nevertheless, we still observe
that the AVs have significantly increased over time (see Panel C of Table 3 as well), even
though the time trend is much weaker than for Scenario 2.

Overall, these results indicate that the AV of the system is relatively small in most
instances, in particular when comparing the values with those reported by Greenwood
et al. (2015) for large European banks.25 As discussed previously, given that most mutual
funds do not make use of any leverage, the somewhat larger values for the case with
maximum leverage are likely to be of limited empirical relevance. Hence, systemic asset
liquidations are unlikely to be a major issue for the set of U.S. equity mutual funds, at
least when looking at this part of the asset management industry in isolation. We will
discuss this finding in more detail below. One should keep in mind, however, that the
AVs exhibit significantly positive time trends in the last two scenarios. Hence, depending
on the choice of price impact parameters, the system may have become more vulnerable
over time and might continue to do so in the future.

4.2 Extensions

In the following, we show three extensions of the above baseline analysis: first, we study
the linear dependency of the AVs as a function of the initial shock size and the assumed
level of market liquidity. Second, we explore to what extent using more coarse-grained
stock portfolios has an impact on the estimated AVs. Third, we include heterogeneity
in the flow-performance relationship to understand whether our assumption of a homo-
geneous �E a↵ects the AVs. In all cases, for the sake of brevity, we focus on the case of
time-varying and asset-specific price impacts (Scenario 1 ) with zero leverage only.

4.2.1 Sensitivity Analysis

In order to assess the dependency of the AV on the size of the initial shock and on the
assumed level of market liquidity we perform a sensitivity analysis along these two dimen-
sions. More specifically, we run the model for di↵erent sizes of the initial shock (between 0
and 40%) and di↵erent multiples of the actual asset-level PriceImpact parameters. With
regards to the latter, we look at di↵erent “Liquidity Factors” which range between 0.1
and 5, where a value of 1 corresponds to the observed PriceImpacts and a value of 5 to
PriceImpacts that are 500% larger than the observed values. The results for Q4 2014 can
be found in Figure 7. As expected from the linearity of the model, the AV is roughly linear
along these two dimensions. The worst-case scenario (shock size = 40% and Liquidity
Factor = 500%) yields an AV of 0.3. This sensitivity analysis reveals that vulnerability of
the system is generally modest but can become significant when market liquidity is low

25In Appendix C we present an alternative model of mutual fund asset liquidations, which takes a large
redemption shock as a starting point.
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and shocks are large. Therefore, we see this analysis as an important tool for gauging the
resilience of the mutual fund sector to a broader set of adverse stress-test scenarios. With
regard to our empirical analysis in the following section, the linearity of the AV means
that our results would remain largely una↵ected qualitatively. Therefore, for the sake of
brevity, we restrict our analyses to the vulnerabilities derived from the baseline scenario.

5
4

3

AV, No Leverage, 2014-Q4

Liquidity Factor

0

0.05

20.4

0.1

0.35

0.15AV

0.2

0.3

Shock Size

0.25

0.25 1

0.3

0.2 0.15 0.1 00.05 0

Figure 7: AV as a function of the initial shock and market liquidity in Q4 2014 (Scenario 1). The
Amihud ratio is multiplied with the liquidity factor to simulate an aggraviation of market liquidity. Shock
size refers to the initial negative market shock.

4.2.2 Portfolios Aggregated to the Industry Level

In our baseline application, we used the most granular stock portfolios, but in many
existing applications of fire sale models such detailed information of investor portfolios
is not available (e.g., Greenwood et al. (2015); Duarte and Eisenbach (2013); Cont and
Schaanning (2017)). For example, in their assessment of vulnerabilities among broker-
dealers, Duarte and Eisenbach (2013) collapse their data into 9 major asset classes (such as
treasuries, equities, and corporate bonds). Given that we focus on domestic equity funds,
the set of asset managers under study invests in one major asset class only. In order to
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Figure 8: Aggregate vulnerabilities for di↵erent industry aggregation levels (based on SIC classifica-
tions). Here we show results for Scenario 1 using the baseline with zero leverage.

explore the e↵ect of using more coarse-grained asset portfolios, we aggregate these to the
industry level using di↵erent granularity levels of SIC industry codes (4-digits at the most
granular level).

Not surprisingly, with fewer asset classes the typical portfolio overlap between mutual
funds increases (see Figure 4), which makes it easier for funds to have an impact on others
through their asset liquidations. Note that, while we assumed cross-asset price impacts
to be zero for the most granular case (the o↵-diagonal elements of matrix L were all
zero), aggregation implicitly includes cross-price impacts between individual assets from
the same class. Here the price impact of each industry bucket is defined as the weighted
average price impact of the individual stocks in that particular bucket, divided by the
number of stocks.26

Figure 8 shows the results of this exercise for three di↵erent aggregation levels (SIC 4-,
2-, and 1-digit, respectively); for the sake of reference, we also reproduce the AV time series
for the most granular stock portfolios from Figure 6. It turns out that, as expected, the
AVs tend to increase in the aggregation level and tend to be substantially larger compared

26The latter adjustment is important, since the aggregated asset should be more liquid than the indi-
vidual constituents. In other words, the market depth of an aggregate asset should be larger (see Cont
and Schaanning (2017)). Dividing the typical price impact by the number of stocks is the most natural
approach under a linear price impact function. An alternative approach would consist of directly calcu-
lating the price impacts of the aggregated assets in line with Eq. (25), where we would divide the absolute
return of the aggregated asset by the sum of trading volumes of its constituents.
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with the baseline results. Interestingly, however, the di↵erence between the AVs of 4-digit
and 1-digit codes (consisting of an average of 677 and 10 assets, respectively) is rather
small. Overall, the AVs are still relatively small during normal times, but reach values
around 10% during the financial crisis, i.e. roughly twice the original shock.

4.2.3 Heterogeneity in Flow-Performance Relationship

In our baseline application we assumed that all funds have the same homogeneous flow-
performance relationship.Here we re-apply our model using exactly the same approach
as in Section 4 but use four alternative specifications regarding �E, some of which were
discussed in Subsection 3.2.5 (see Table 2 in the main text and Table 9 in Appendix B):

a) index versus non-index funds,

b) liquid versus illiquid funds,

c) large versus small funds,

d) di↵erent combinations of index/non-index funds and institutional/non-institutional
funds. We further separate non-index funds by their liquidity profile, since run
incentives are more relevant for illiquid funds (see Goldstein et al. (2017)). This
results in six di↵erent �Es which are reported in Table 4 (see Table 11 in Appendix B
for details).

Heterogeneity Across
Multiple Dimensions

�
E Index Non-Index

Liquid Illiquid
Inst. 0.255 0.126 0.235
Non-Inst. 0.463 0.339 0.303

Table 4: Estimated �
E ’s for di↵erent subsets of mutual funds. Full regression results are shown in

Table 11 in Appendix B.

Figure 9: Aggregate vulnerabilities relative to baseline results for Scenario 1 (as shown in top left
panel in Figure 6). Note: ‘Index/Non-Index’ corresponds to specification (2) in Table 2; ‘Liquid/Illiquid’
corresponds to specification (3) in Table 2; ‘Small/Large’ corresponds to specification (3) in Table 9
in Appendix B. ‘Index/Non-Index (Liquid/illiquid + Inst./Non-Inst)’ corresponds to the distinction in
Table 4.

Figure 9 shows the AVs for the four di↵erent cases, relative to those in the baseline
scenario (as in the top left panel of Figure 6). A value larger (smaller) than 1 indicates
that the AV under the new approach is larger (smaller) than in our baseline. The results
are quite remarkable: in almost all cases – with the exception of the index/non-index fund
scenario – the resulting AVs tend to be smaller compared to the baseline specification. In
fact, when distinguishing between index/non-index funds it appears that the relative AV
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tends to increase over time, suggesting that the growth of index funds tends to be quite
important from a systemic perspective (Malkiel (2013)). On the other hand, when allow-
ing for di↵erences between funds’ with di↵erent portfolio liquidity or di↵erent sizes, the
AVs are generally significantly smaller than in the baseline scenario. Lastly, when allowing
for multiple sources of heterogeneity (combining index/non-index and institutional/non-
institutional), the resulting AVs are slightly more volatile, but largely comparable to
those for the liquid/illiquid case. In summary, these results show that adding hetero-
geneity across di↵erent fund types in terms of the flow-performance relationship does not
necessarily lead to a more vulnerable system.
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5 A Closer Look at Fund-Specific Vulnerabilities

This section explores the determinants of the two fund-specific vulnerability indicators,
namely systemicness S and indirect vulnerability IV (see Eqs. (21) and (22)). Identifying
such determinants is of utmost importance when formulating a macroprudential regulatory
framework for asset managers (Financial Stability Board (2017)).

Generally speaking, we are interested in the following cross-sectional regressions

log(yi,t) = at + bt ⇥ log(Xi,t�1) + ✏i,t, (28)

where yi,t is the fund-specific vulnerability indicator of interest (S or IV , respectively)
based on the case of zero leverage27, X contains our set of control variables (always using
the first lag to alleviate the endogeneity problem), and b is the corresponding parame-
ter vector. A log-transformation is applied to each variable to adjust for skewness and
to mitigate the e↵ect of extreme observations. In everything that follows, we estimate
parameters following the Fama and MacBeth (1973) methodology, and explore di↵erent
sets of control variables that allow us to predict fund-specific vulnerabilities. Table 5
reports the correlations between the variables that will be of interest in the following;
multicollinearity is not an issue, since correlations are relatively small in absolute terms.

The analysis proceeds in three steps: first, we explore to what extent the (lagged)
fund-specific characteristics that appear in the model equations are able to predict fu-
ture values of the vulnerability measures. In a way, this can be seen as a simple model
validation step and we acknowledge that this analysis, despite using lagged exogenous
variables, su↵ers from a potential endogeneity bias, hampering the identification of causal
relationships between vulnerabilities and these fund-specific characteristics. Second, to
address a possible endogeneity bias, model-inherent fund characteristics are replaced with
alternative measures. For example, we approximate fund size using fund age and net
flows. We find that the regression results are qualitatively very similar to the ones from
the first step, such that our analysis indeed uncovers the determinants of fund-specific vul-
nerabilities. Third, we address concerns on a potential outlier bias related to the market
liquidity aggravation around the financial crisis (see Figure 5) and explore the robustness
of our findings by conducting a subsample analysis that excludes observations from the
2008-09 period. In line with this three-step analysis, the following regression tables will
consist of three panels each (Panels A, B, and C).

5.1 Towards Understanding Funds’ Vulnerabilities (Scenario 1)

Here, we explore fund characteristics which determine individual funds’ vulnerability to
systemic asset liquidations, highlighting the importance of size and portfolio illiquidity.
Again, Scenario 1 is our starting point and serves as the benchmark, since it allows for
asset and time-specific price impacts. We explore the two other scenarios afterwards.

27As shown in Table 3 above, despite showing di↵erent levels, aggregate vulnerabilities are (nearly)
perfectly correlated when comparing the cases with zero leverage and with maximum leverage for each of
the three scenarios under study here. Not surprisingly, this is also true for the fund-specific indicators.
Hence, all of the results shown below are practically identical when looking at the case of maximum
leverage, since the di↵erences in levels are fully absorbed by the intercepts in our regressions.
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5.1.1 Step 1: Model-Inherent Measures

The first step is to explore to what extent the fund-specific characteristics serving as inputs
in our stress testing model are able to predict future vulnerabilities. Our model suggests
the following relationships: systemicness increases with a larger fund size or interconnect-
edness since larger funds should sell more assets, and a higher interconnectedness means
that those funds sell assets that are held by many other funds as well. The reverse should
be true for indirect vulnerability, since more diversified funds should be less vulnerable to
other funds’ asset liquidations. The correlations in Table 5 are in line with this reasoning.
As mentioned in Greenwood et al. (2015), the relationship between fund size and indirect
vulnerability is not clear. In our case, Table 5 shows a small negative correlation between
IV and TNA. Lastly, more illiquid funds should be both more systemic and vulnerable in
general, since illiquid funds have to sell a larger share of their portfolios to meet investors’
redemptions and are also likely to su↵er more from other funds’ asset liquidations. Of
course, we would also expect leverage to have a strong impact on both systemicness and
indirect vulnerability. Given that in our model application there is no cross-sectional
variation in leverage (zero or maximum leverage, respectively), we cannot include it in
the regressions below.

The first set of regressions, therefore, uses only three control variables, namely fund
size (defined as TNA), interconnectedness (defined as a fund’s average portfolio overlap
with all other funds, MeanOverlap)28, and illiquidity (defined as the portfolio-weighted
average Amihud-ratio of a fund, IlliqAmihud)29:

log(yi,t) = at + b1,t ⇥ log(TNAi(t-1)) + b2,t ⇥ log(MeanOverlapi(t-1))

+b3,t ⇥ log(IlliqAmihud
i (t-1)) + ✏i,t.

(29)

The results are shown in Panel A of Table 6 and in line with expectations stated
above: first, larger funds contribute more to aggregate vulnerability and are therefore
more systemically important. Interestingly, larger funds also show significantly higher IVs
and are therefore more vulnerable to other funds’ asset liquidations (lower IV). Second,
more connected funds exhibit lower IV (likely due to the benefits of diversification) but
contribute to a larger extent to the sector’s asset fire sales (higher S). Finally, illiquid
funds are both more vulnerable and more systemic. Overall, these results are in line with
our discussion above and with those of Greenwood et al. (2015).

5.1.2 Step 2: Alternative Measures

In order to overcome endogeneity concerns, the second step is to regress vulnerabilities on
variables that are not directly included in the model (what we call “alternative measures”).
Those variables are direct substitutes for the model-inherent variables discussed in section
5.1.1. Let us briefly explain how we substitute each of the exogenous variables from Panel
A of Table 6.

28To be precise, for each quarter we calculate this fund-specific portfolio overlap as follows: for each pair
of funds, we calculate their portfolio overlap according to Eq. (23). At each point in time, MeanOverlap
of fund i is then defined as the average Overlap of this particular fund with all other funds.

29We calculate the illiquidity of fund i in quarter t as
P

k Mi,kPriceImpactk,t, where PriceImpactk,t is
defined in Eq. (25). See Yan (2008) for a similar approach.
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32

Determinants of Fund-Specific Vulnerabilities (Scenario 1)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV1) log(S1) log(IV1) log(S1) log(IV1) log(S1)
Model-inherent measures
log(TNA(t-1)) 0.0156** 0.6222**

(0.0017) (0.0573)
log(MeanOverlap(t-1)) -0.0705** 0.2030**

(0.0046) (0.0401)
log(IlliqAmihud(t-1)) 0.1128** 0.1352**

(0.0052) (0.0100)
Alternative measures
log(1+Age(t-1)) 0.0280** 1.0289** 0.0290** 1.0211**

(0.0009) (0.0161) (0.0009) (0.0193)
Flows6M(t-1) -0.0033 0.3069 * -0.0016 0.3200 *

(0.0069) (0.1245) (0.0083) (0.1483)
log(Concentration(t-1)) 0.0057** -0.4376** 0.0057** -0.4344**

(0.0017) (0.0112) (0.0017) (0.0135)
log(IlliqRelSpread(t-1)) 0.5147** 0.2036** 0.4566** 0.1388**

(0.0276) (0.0360) (0.0239) (0.0356)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.652 0.539 0.605 0.236 0.572 0.234
Obs. 72,688 72,688 67,556 67,556 52,479 52,479

⇤ p<0.05; ⇤⇤ p<0.01

Table 6: The determinants of fund-specific indirect vulnerability (IV1) and systemicness (S1), respec-
tively, for Scenario 1. Results are based on quarterly data using Fama-MacBeth regressions (Newey-West
standard errors in parentheses), including a constant that is omitted from the output. All variables are
defined in the main text and in Table 5. Panels A and B cover the full sample period from 2003-14 and
Panel C reports results of the subsample without the financial crisis period 2008-09.



Size. Fund age is the natural proxy of fund size since older funds tend to be larger
(Yan (2008)). The economic intuition is that older funds were able to expand their assets
under management over a longer period of time compared to younger funds. However,
fund age might also capture aspects that are not size related. Therefore, we also include
funds’ average net flows over the previous 6 months, Flows6M, as an additional size proxy.
Flows are less deterministic (compared to age) and are likely to capture growth dynamics
in the recent past.30

Interconnectedness. Portfolio concentration is considered as an inverse proxy for intercon-
nectedness as a highly diversified fund might have at least some common asset holdings
with other funds. Here we define Concentration as the portfolio concentration index of
Kacperczyk et al. (2005) for a given fund i at a specific point in time as

Concentrationi =
X

k

(Mi,k � M̄k)
2,

where M̄k is the weight of asset k in the market portfolio.31 Not surprisingly, Concentra-
tion and MeanOverlap are negatively correlated (Pearson correlation of -0.15, see Table 5),
such that both measures appear to capture certain aspects of concentration or intercon-
nectedness, respectively.
Illiquidity. An asset’s relative spread tends to better capture asset illiquidity, while the
Amihud-ratio is more related to price impact (see Goyenko et al. (2009)). Therefore, we
use the portfolio-weighted relative spread, IlliqRelSpread, as an alternative liquidity mea-
sure.32

With these alternative measures we then run the following regression

log(yi,t) = at + b1,t ⇥ log(Agei(t-1)) + b2,t ⇥ Flows6Mi (t-1) + b3,t ⇥ log(HHIi(t-1))

+b4,t ⇥ log(IlliqRelSpread
i (t-1)) + ✏i,t.

(30)

The results in Panel B of Table 6 generally consistent with those in Panel A: larger (and
older funds) are both more vulnerable and systemically important. More concentrated
funds are more vulnerable but less systemically important. Finally, more illiquid funds
have both higher IVs and higher systemicness.

5.1.3 Step 3: Subsample analysis

As a last step, Panel C of Table 6 addresses concerns that the e↵ect of liquidity on funds’
vulnerabilities is mainly driven by the market liquidity aggravation around the financial
crisis (see Figure 5). For this purpose, we run the same Fama-MacBeth regressions as
in the previous step but exclude all observations during the crisis years 2008-09. This
subsample analysis delivers nearly identical regression parameters and suggests that our

30Given that flows can take negative values, we do not take logarithms in this case.
31In order to be consistent with our calculation of MeanOverlap, we compute the portfolio concen-

tration index on basis of deviations from the market portfolio at the security level. This deviates from
Kacperczyk et al. (2005) who define the portfolio concentration index for 1-digit industry portfolios. We
checked that defining Concentration based on funds’ industry portfolios yields similar qualitative results.

32To be precise, we define the relative spread of stock k in quarter t as:
RelSpreadk,t =

1
Dk,t

P Bidk,d�Askk,d

(Bidk,d+Askk,d)/2
.

33



Determinants of Fund-Specific Vulnerabilities (Scenario 2)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV2) log(S2) log(IV2) log(S2) log(IV2) log(S2)
Model-inherent measures
log(TNA(t-1)) 0.0255** 0.6321**

(0.0016) (0.0568)
log(MeanOverlap(t-1)) -0.1645** 0.1091**

(0.0080) (0.0394)
log(IlliqAmihud(t-1)) 0.2400** 0.2624**

(0.0074) (0.0116)
Alternative measures
log(1+Age(t-1)) 0.0388** 0.9974** 0.0388** 0.9877**

(0.0054) (0.0126) (0.0065) (0.0146)
Flows6M(t-1) -0.0277 0.3096 * -0.0430 0.3071 *

(0.0289) (0.1304) (0.0313) (0.1496)
log(Concentration(t-1)) 0.0192 -0.4238** 0.0134 -0.4263**

(0.0105) (0.0193) (0.0126) (0.0236)
log(IlliqRelSpread(t-1)) 1.0732** 0.7593** 1.0643** 0.7435**

(0.0379) (0.0503) (0.0409) (0.0562)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.469 0.509 0.422 0.226 0.435 0.223
Obs. 72,688 72,688 67,556 67,556 52,479 52,479

⇤ p<0.05; ⇤⇤ p<0.01

Table 7: The determinants of fund-specific indirect vulnerability (IV2) and systemicness (S2), respec-
tively, for Scenario 2. Results are based on quarterly data using Fama-MacBeth regressions (Newey-West
standard errors in parentheses), including a constant that is omitted from the output. All variables are
defined in the main text and in Table 5. Panels A and B cover the full sample period from 2003-14 and
Panel C reports results of the subsample without the financial crisis period 2008-09.

findings are not driven by the financial crisis.

5.2 Additional Robustness Checks

Let us now briefly turn to the regression results for Scenarios 2 and 3.

5.2.1 Results for Scenario 2 – Price Impact Constant and Asset-Specific

Table 7 shows the results for Scenario 2. The results are largely consistent with those in
Table 6 both in terms of parameter signs and significance levels. Overall, these results
suggest that the first two scenarios, despite showing di↵erent time dynamics in terms of
the aggregate vulnerabilities, tend to give very similar results.

5.2.2 Results for Scenario 3 – Homogeneous Price Impact

Table 8 shows the regression results for Scenario 3. It turns out that these results are
quite di↵erent from those presented for the other two scenarios. For example, some of the
parameters switch signs. Most importantly, under Scenario 3, illiquid funds tend to be
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Determinants of Fund-Specific Vulnerabilities (Scenario 3)

Panel A Panel B Panel C
Full Sample Full Sample No Crisis

log(IV3) log(S3) log(IV3) log(S3) log(IV3) log(S3)
Model-inherent measures
log(TNA(t-1)) -0.0139** 0.5927**

(0.0029) (0.0529)
log(MeanOverlap(t-1)) 0.9711** 1.2447**

(0.0152) (0.0275)
log(IlliqAmihud(t-1)) -0.2912** -0.2688**

(0.0070) (0.0076)
log(1+Age(t-1)) 0.0376** 0.9963** 0.0357** 0.9846**

(0.0041) (0.0189) (0.0049) (0.0227)
Flows6M(t-1) -0.0175 0.3198 * -0.0262 0.3239 *

(0.0241) (0.1225) (0.0275) (0.1454)
log(Concentration(t-1)) 0.0030 -0.4399** 0.0134 -0.4263**

(0.0148) (0.0138) (0.0174) (0.0155)
log(IlliqRelSpread(t-1)) -2.5460** -2.8600** -2.4781** -2.7989**

(0.0820) (0.0726) (0.0933) (0.0818)
Fama-MacBeth Yes Yes Yes Yes Yes Yes
Mean R2 0.837 0.712 0.719 0.495 0.737 0.503
Obs. 72,688 72,688 67,556 67,556 52,479 52,479

⇤ p<0.05; ⇤⇤ p<0.01

Table 8: The determinants of fund-specific indirect vulnerability (IV3) and systemicness (S3), respec-
tively, for Scenario 3. Results are based on quarterly data using Fama-MacBeth regressions (Newey-West
standard errors in parentheses), including a constant that is omitted from the output. All variables are
defined in the main text and in Table 5. Panels A and B cover the full sample period from 2003-14 and
Panel C reports results of the subsample without the financial crisis period 2008-09.

both less vulnerable and less systemic, which is against economic intuition.33

As our analysis solely focuses on funds’ equity portfolios, Scenario 3 is closest to
the applications Greenwood et al. (2015) and Cetorelli et al. (2016), where a specific
homogeneous price impact parameter is assigned to an entire asset class. While this
seems like a reasonable approach in the absence of detailed information on asset liquidity
and price impact parameters are derived from regulatory guidelines, such as Basel III,
our analysis reveals that this can be problematic in the sense that the model yields very
di↵erent vulnerabilities at the micro-level.

Let us take a closer look at how Scenario 3 a↵ects the estimated fund-specific vulner-
abilities. Given the assumption of a homogeneous price impact parameter, we e↵ectively
treat funds with very liquid (illiquid) portfolios as being more illiquid (liquid) than what
they should be. To illustrate the e↵ect of this point on both IV and S, Figure 10 plots
each fund’s relative rank in terms of its indirect vulnerability (left panel) and systemic-
ness (right panel) in Scenario 1 and Scenario 3 against each other. For a given measure,
the ranking is between 0 and 1 (least and most vulnerable/systemic, respectively). We
show the results for both the most liquid funds (Decile 1) and the least liquid funds

33Note that Tables 6-8 all use exactly the same exogenous variables, with the two illiquidity measures
being the actual portfolio illiquidity observed in the data (not the homogeneous value that would arise
in the stress test model application).

35



Figure 10: Vulnerability rankings in Scenario 1 plotted against those from Scenario 3. Left panel:
indirect vulnerability. Right panel: systemicness. Both panels show the relative ranking for funds in
liquidity Decile 1 (most liquid) and Decile 10 (least liquid), respectively, based on IlliqAmihud. For the
sake of reference, the solid line shows the 45 degree line. Note: ranks are between 0 and 1, with higher
values corresponding to higher vulnerabilities.

(Decile 10), based on the observed IlliqAmihud. If a homogeneous price impact did not
a↵ect fund-specific vulnerabilities, the two scenarios should yield similar rankings and
all observations would lie on the main diagonal (solid black line). It turns out that the
rankings are quite di↵erent for the two sets of funds under study here: liquid funds (blue
dots) tend to be much more vulnerable (and slightly more systemic), since almost all
observations are below the main diagonal. The reverse is true for the most illiquid funds
(red crosses). Hence, Scenario 3 underestimates the vulnerabilities for the least liquid
funds and overestimates those for the most liquid funds.

In summary, we propose that Scenario 3 should be treated with care and, whenever
possible, time-varying and asset-specific price impacts should be used in the application
of stress testing models.
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6 Discussion

Implications for future stress tests. Do our findings suggest that the mutual fund
sector is relatively robust to systemic asset liquidations? The answer tends to be ‘yes’
if we are interested in the set of U.S. domestic equity funds in isolation, at least during
periods of relatively high market liquidity. However, it is important to keep in mind that
we restricted ourselves to this relatively liquid fund type for two reasons: first, domestic
equity funds constitute an economically meaningful subset of the U.S. asset management
industry. Second, this fund type is well-studied in the literature, largely because the CRSP
Mutual Fund Database provides accurate information on these funds’ asset holdings and
the corresponding price impacts. Therefore, our analysis is an obvious first step in the
quantification of systemic risks among asset managers.

An obvious extension of our analysis would include additional fund types and explore
to what extent this might further increase the system’s vulnerability.34 Such an extension
seems particularly relevant because other fund types have been growing in importance over
time, especially corporate and high-yield bond funds (Goldstein et al. (2017); Cetorelli
et al. (2016)). Assuming that a typical fixed income fund holds at least some stocks in its
portfolio (and vice versa for equity funds), shocks that originate in one asset class would
spread to other asset classes. Therefore, we would expect higher vulnerabilities when
including these additional fund types. As pointed out by Cetorelli et al. (2016), these
spill-over e↵ects might be even larger when market liquidity worsens and bond fund flows
become more sensitive to fund performance (see Goldstein et al. (2017)).

Policy implications. Our paper contributes to the ongoing discussion about systemic
risk in the asset management sector, especially to the SIFI designation of Non-Bank Non-
Insurer entities (Financial Stability Board (2015)). One indicator for assigning systemic
relevance is fund size, which is readily available and accessible for supervisors in a timely
manner (Financial Stability Board (2015)). Besides size, International Monetary Fund
(2015) suggests considering funds’ investment style as a further indicator, which might be
proxied by a fund’s portfolio diversification and liquidity profile.

Our analysis reveals ambiguous e↵ects of fund size and investment style on vulner-
abilities in the fund sector. In fact, micro- and macroprudential regulators might draw
opposite conclusions from our results. On the one hand, microprudential supervisors are
mainly concerned with the resilience of individual funds to market-wide shocks, which we
capture to a certain extent with our indirect vulnerability (IV ) measure. It turns out
that smaller and more concentrated funds appear to be more robust to other funds’ asset
liquidations. On the other hand, macroprudential regulators would be more concerned
with the negative externalities imposed by funds, as proposed for example by Danielsson
and Zigrand (2015). In this case, systemicness (S ) is the variable of interest and we find
that larger, more diversified funds strongly contribute to the aggregate vulnerability of the
sector. This finding relates to the model of diversification disasters by Ibragimov, Ja↵ee,
and Walden (2011), where financial intermediaries increase systemic risks by attempting
to reduce their exposure to idiosyncratic risks.

Fund illiquidity tends to contribute to both funds’ own vulnerability and their impact
on other funds. Therefore, both micro- and macroprudential regulators should closely

34As these data are not covered by the CRSP Mutual Fund Database, we leave this extension for future
research.
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monitor the liquidity profile of individual funds. This proposal is in line with a new set of
SEC rules for enhancing liquidity risk management by open-ended funds (see Hanouna,
Noval, Riley, and Stahel (2015)), and FSB recommendations to address the liquidity
mismatch in the fund sector (Financial Stability Board (2017)). Other regulators have
already recognized the need to monitor the liquidity profiles of individual institutions.
For example, the Liquidity Coverage Ratio (LCR) has become an important metric for
banking regulators, and there is an active academic debate on how to measure the liquid-
ity profile of individual institutions (Brunnermeier, Gorton, and Krishnamurthy (2012);
Krishnamurthy, Bai, and Weymuller (2016)).

Swing pricing is a potential element which can help to mitigate vulnerabilities in the
mutual fund sector (Securities and Exchange Commission (2018); Capponi, Glasserman,
and Weber (2018)). The basic idea of swing pricing is to levy redeeming investors for their
redemption-induced transaction costs due to asset liquidations. Hence, swing pricing can
possibly reduce existing first-mover advantages, particularly so for more illiquid funds (see
Goldstein et al. (2017)). In this context, the SEC recently allowed funds to use swing
pricing as a further liquidity risk management tool (Securities and Exchange Commission
(2018)). In this regard, Capponi et al. (2018) point out that an adequate design of swing
pricing likely depends on the amount of fire-sale losses that should be accounted for from
a macropudential perspective. In this context, our fund-level indicators (vulnerability
and systemicness) could serve as inputs for macroprudential extentions of swing pricing
models.

7 Conclusions

Our paper proposes a macroprudential stress test for asset managers. For this purpose,
we extended the model of Greenwood et al. (2015) by incorporating the well-documented
flow-performance relationship. We then applied the model to the set of U.S. domestic
equity mutual funds. Overall, we generally find that the system in isolation is relatively
robust to systemic asset liquidations, at least when market liquidity is not too low. This
result is largely driven by the fact that mutual funds tend to use little leverage compared
with commercial banks and broker-dealers. Lastly, we also explored the determinants of
individual funds’ vulnerabilities, highlighting the importance of fund size, diversification
levels, and portfolio illiquidity. Thus, a clear understanding of funds’ liquidity profile is
essential for enhancing the corresponding micro- and macroprudential policy tools.

Moving forward, we see various interesting avenues for future research. Most impor-
tantly, we aim to apply our model to a broader set of asset managers. In addition, we
believe it is of utmost importance to combine stress tests for bank and non-bank financial
institutions in order to understand repercussions and interconnections between di↵erent
parts of the financial system. Our model is general enough to accommodate a variety of
financial institutions with di↵erent regulatory constraints and potentially di↵erent behav-
ioral rules.
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Internet Appendix

A Price Impacts During Active/Volatile Trading Pe-
riods

The price impacts shown in Figure 5 are likely to be representative of the typical market
conditions in a given quarter. More precisely, in the baseline scenario, we calculate the
price impacts as the average values of the daily Amihud ratio for each stock. In order
to explore to what extent one would expect even larger price impacts during very active
periods, Figure 11 shows the results for: (1) trading days with above-median volatility for
each stock within a given quarter; and (2) the same for trading days with above-median
trading volumes for each stock within a given quarter.
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Figure 11: Price impacts for very active periods. In the baseline scenario, we calculate the price
impacts as the average values of the daily Amihud ratio for each stock (All Days, as in the main text).
We also calculated price impacts using only the most active trading days for each stock: (1) based on
daily trading volumes in a quarter; (2) based on absolute returns in a given quarter. We then take the
quarterly average of these daily values separately for each stock. Dollar-trading volumes are adjusted
for inflation. For each quarter, we show the cross-sectional equal-weighted average values. (y-axis in
logarithmic scale).

Interestingly, the results go in opposite directions: price impacts are slightly larger
(smaller) for high volatility (trading volume) days. This indicates that high-volume days
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do not coincide with high-volatility days in general. Overall, the typical price impacts are
comparable to those we used in our main analysis in Scenario 1 in the main text.

B Flow-Performance Relationship

B.1 Pooled Regressions

Table 1 in the main text shows several di↵erent specifications for the estimation of the flow-
performance relationship, most importantly the baseline specification using the Fama-
MacBeth methodology. In addition to the results shown in Table 2, here we report
additional robustness checks which generally yield very similar results in terms of the
estimated parameter �E. In this regard, Table 9 shows the most important robustness
checks:

(1) Style-adjusted returns. In this case, we take a fund’s return and subtract the average
return of each fund category (based on CRSP obective codes) separately for each
month.

(2) Fund family-adjusted returns. In this case, we take a fund’s return and subtract the
average return of funds’ from the same fund family (CRSP management company
code) separately for each month, if the fund is member of a fund family.

(3) Size. Here we separate the sample into large and small funds, respectively, based
funds’ TNA to (above- and below-median size groups).

(4) Flow Volatility. Goldstein et al. (2017) find that more illiquid funds tend to display
a stronger flow-performance relationship. In addition to the liquid/illiquid funds
estimation in the main text, it seems natural to also estimate the relationship for
funds with di↵erent levels of funding fragility. Here we separate the sample into
funds with high and low levels of flow volatility (above- and below-median funds),
using the 6-month rolling-window flow standard deviations.

(5) Return Volatility. Franzoni and Schmalz (2017) find that funds with higher return
volatility display a weaker flow-performance relationship. Hence, we also estimate
the relationship for funds with di↵erent levels of return volatility. Similar to the
previous case, we separate the sample into funds with high and low levels of return
volatility (above- and below-median funds), using the 6-month rolling-window return
standard deviations.

Flows might also be influenced by large return variations, especially during crisis pe-
riods. To test this hypothesis we extend the baseline flow-performance regression by
including dummy variables that are meant to capture fund-month observations with ex-
treme returns. Adding the di↵erent dummies to the regressions allows us to check to what
extent extreme fund-level returns might lead to higher netflows. Here we calculate two
sets of dummy variables: the first set compares a given fund’s lagged return with its own
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lagged 6-month rolling window return standard deviation (�6M
i,t�1)

35

Dabs,fund-level
i,t =

(
1 if abs(Return(t-1)) > 2⇥ �6M

i,t�1

0 else.

In order to specifically focus on extreme negative returns, we also calculated another
dummy

Dneg,fund-level
i,t =

(
1 if Return(t-1) < �2⇥ �6M

i,t�1

0 else.

For the sake of robustness, we also analyze if the average fund sector return variation
a↵ects fund flows. In this case, we define two additioal dummies which compare fund-
level returns with the lagged 6-month rolling window return standard deviation of the
average fund return (�6M

mkt,t�1), denoted as Dabs,mkt and Dneg,mkt, respectively.
Table 10 reports the results. The estimated �Es are generally within the confidence
bands of the original baseline estimator from Table 1. In other words, the strength
of the flow-performance relationship does not change significantly for these alternative
specifications. If anything, given that the parameters on the di↵erent dummy variables
are generally positive (or insignificant), large lagged returns tend to be followed by rather
muted outflows. This suggests that the baseline specification we have chosen in the paper
will tend to overestimate rather than underestimate the vulnerability of the system.

Lastly, Table 11 shows the full regression results corresponding to the ones shown in
Table 4 in the main text.

35Given that the average fund return is approximately zero, adding the rolling-window average returns
to the dummy construction is immaterial for the reported results.
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Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2) (3) (4) (5)
Style Fam.-adj. Fund size Flow vola Return vola

Returns Returns Small Large Low High Low High
Return(t-1) 0.3225** 0.3405 ** 0.3234** 0.2411** 0.0667** 0.4305** 0.3158** 0.2884**

(0.0244) (0.0484) (0.0274) (0.0172) (0.0037) (0.0291) (0.0264) (0.0225)
Return(t-2) 0.1966** 0.1375 ** 0.1705** 0.1536** 0.0452** 0.2243** 0.2337** 0.1378**

(0.0210) (0.0234) (0.0258) (0.0165) (0.0033) (0.0284) (0.0299) (0.0232)
Return(t-3) 0.1202** 0.0366 0.1053** 0.1130** 0.0343** 0.1348** 0.1744** 0.0901**

(0.0211) (0.0384) (0.0242) (0.0211) (0.0031) (0.0245) (0.0234) (0.0203)
Return(t-4) 0.0823 * 0.0551 ** 0.0818** 0.0862** 0.0183** 0.1109** 0.1378** 0.0842**

(0.0405) (0.0192) (0.0226) (0.0147) (0.0029) (0.0268) (0.0229) (0.0205)
Return(t-5) 0.0990** 0.0764 * 0.0774** 0.0538** 0.0079** 0.0859** 0.1570** 0.0522 *

(0.0189) (0.0326) (0.0245) (0.0198) (0.0030) (0.0268) (0.0269) (0.0213)
Return(t-6) 0.1195** 0.1058 * 0.1085** 0.0528** 0.0096** 0.1035** 0.1143** 0.0569 *

(0.0192) (0.0411) (0.0238) (0.0140) (0.0036) (0.0237) (0.0233) (0.0218)
Return(t-7) 0.0844** 0.1088 0.0441 0.0618** 0.0058 0.0594 * 0.1126** 0.0188

(0.0227) (0.0768) (0.0234) (0.0138) (0.0029) (0.0263) (0.0241) (0.0196)
Return(t-8) 0.0896** 0.0701 ** 0.0772** 0.0505** 0.0167 0.0874** 0.0944** 0.0679**

(0.0185) (0.0229) (0.0260) (0.0149) (0.0103) (0.0272) (0.0238) (0.0220)
Return(t-9) 0.0783** 0.0622 ** 0.0598 * 0.0630** 0.0067 * 0.0772** 0.0738** 0.0850**

(0.0177) (0.0193) (0.0244) (0.0135) (0.0029) (0.0256) (0.0224) (0.0323)
Return(t-10) 0.0648** 0.0474 * 0.0530 0.0324 * 0.0142 0.0395 0.0507 0.0313

(0.0181) (0.0223) (0.0279) (0.0147) (0.0074) (0.0281) (0.0285) (0.0259)
Return(t-11) 0.0472** 0.0374 0.0363 0.0348 * 0.0101** 0.0472 0.0663** 0.0388

(0.0172) (0.0220) (0.0243) (0.0158) (0.0030) (0.0277) (0.0228) (0.0211)
Return(t-12) 0.1074 * 0.0715 0.0350 0.0348 * -0.0002 0.0649 * -0.0031 0.0412

(0.0453) (0.0389) (0.0234) (0.0142) (0.0028) (0.0287) (0.0200) (0.0213)
Flows(t-1) 0.0764** 0.0907 ** 0.0631** 0.1332** 0.2803** 0.0686** 0.1145** 0.0492**

(0.0099) (0.0167) (0.0112) (0.0179) (0.0057) (0.0102) (0.0125) (0.0118)
Flows(t-2) 0.0734** 0.0889 ** 0.0861** 0.0930** 0.1910** 0.0769** 0.0921** 0.0815**

(0.0106) (0.0073) (0.0088) (0.0088) (0.0051) (0.0072) (0.0094) (0.0099)
Flows(t-3) 0.0310 0.0386 * 0.0178 0.0661** 0.1554** 0.0103 0.0707** 0.0243

(0.0205) (0.0187) (0.0270) (0.0150) (0.0049) (0.0326) (0.0156) (0.0281)
Flows(t-4) 0.0557** 0.0287 * 0.0343** 0.0519** 0.1161** 0.0335** 0.0559** 0.0568 *

(0.0191) (0.0137) (0.0085) (0.0083) (0.0037) (0.0072) (0.0086) (0.0236)
Flows(t-5) 0.0684** 0.0695 ** 0.0561** 0.0526** 0.1002** 0.0504** 0.0497** 0.0542**

(0.0145) (0.0144) (0.0079) (0.0093) (0.0041) (0.0062) (0.0078) (0.0085)
Flows(t-6) 0.0142 0.0147 0.0400** 0.0232 0.0047** 0.0364** 0.0298** 0.0130

(0.0206) (0.0205) (0.0105) (0.0179) (0.0011) (0.0081) (0.0069) (0.0284)
Flows(t-7) 0.0151 0.0508 0.0218 * 0.0261** 0.0050** 0.0267** 0.0231** 0.0271 *

(0.0115) (0.0270) (0.0086) (0.0058) (0.0018) (0.0082) (0.0065) (0.0109)
Flows(t-8) 0.0417** 0.0317 ** 0.0317** 0.0319** 0.0052** 0.0332** 0.0427** 0.0262**

(0.0120) (0.0058) (0.0066) (0.0067) (0.0011) (0.0074) (0.0101) (0.0076)
Flows(t-9) -0.0080 -0.0170 -0.0087 0.0296** 0.0066 0.0378** 0.0347** 0.0265**

(0.0478) (0.0468) (0.0478) (0.0105) (0.0038) (0.0123) (0.0111) (0.0073)
Flows(t-10) 0.0236** 0.0344 ** 0.0306** 0.0327 * 0.0065 0.0295** 0.0271** 0.0250**

(0.0069) (0.0096) (0.0066) (0.0138) (0.0037) (0.0067) (0.0073) (0.0077)
Flows(t-11) 0.0181** 0.0171 ** 0.0174 * 0.0267** 0.0022 * 0.0073 0.0171 * 0.0188 *

(0.0051) (0.0051) (0.0068) (0.0068) (0.0009) (0.0142) (0.0066) (0.0072)
Flows(t-12) 0.0263** 0.0286 ** 0.0402** 0.0216** 0.0031 0.0328** 0.0200** 0.0443**

(0.0066) (0.0057) (0.0110) (0.0059) (0.0019) (0.0070) (0.0071) (0.0129)
log(TNA(t-1)) -0.0058 -0.0057 -0.0089** -0.0023** -0.0003 -0.0040** -0.0009** -0.0043

(0.0033) (0.0033) (0.0033) (0.0003) (0.0002) (0.0011) (0.0003) (0.0024)
Fama-MacBeth Yes Yes Yes Yes Yes Yes Yes Yes
adj. R2 0.163 0.165 0.191 0.224 0.686 0.164 0.211 0.203
Obs. 306,570 306,570 143,184 163,386 158,677 147,893 151,900 154,669

⇤ p<0.05; ⇤⇤ p<0.01

Table 9: Additional robustness checks, flow-performance relationship. This Table shows the results of
the flow-performance regressions, with �

E being the parameter on Return(t-1). All regressions based on
monthly data using Fama-MacBeth regressions (Newey-West standard errors in parentheses), as in the
main text.



Flow-Performance Relationship

�6M
i,t�1 �6M

mkt,t�1
abs neg abs neg

Return(t-1) 0.3178** 0.3176** 0.2456** 0.2730**
(0.0334) (0.0326) (0.0467) (0.0461)

Return(t-2) 0.1520** 0.1527** 0.1608** 0.1609**
(0.0208) (0.0208) (0.0193) (0.0192)

Return(t-3) 0.1173** 0.1190** 0.1102** 0.1107**
(0.0222) (0.0221) (0.0177) (0.0180)

Return(t-4) 0.0423 0.0434 0.0323 0.0323
(0.0439) (0.0437) (0.0489) (0.0489)

Return(t-5) 0.0673** 0.0700** 0.1227 * 0.1184 *
(0.0178) (0.0181) (0.0551) (0.0551)

Return(t-6) 0.0935** 0.0975** 0.1162** 0.1165**
(0.0197) (0.0193) (0.0387) (0.0386)

Return(t-7) 0.0365 0.0398 0.0576** 0.0604**
(0.0219) (0.0217) (0.0178) (0.0175)

Return(t-8) 0.0626** 0.0634** 0.0764** 0.0805**
(0.0197) (0.0196) (0.0188) (0.0186)

Return(t-9) 0.0827** 0.0810** 0.0630** 0.0596**
(0.0267) (0.0267) (0.0169) (0.0167)

Return(t-10) 0.0259 0.0276 0.0270 0.0273
(0.0198) (0.0199) (0.0212) (0.0210)

Return(t-11) 0.0378 * 0.0389 * 0.0898 0.0918
(0.0176) (0.0176) (0.0510) (0.0509)

Return(t-12) 0.0364 * 0.0361 * 0.0382 * 0.0397 *
(0.0164) (0.0163) (0.0163) (0.0161)

Flows(t-1) 0.0741** 0.0739** 0.0696** 0.0695**
(0.0090) (0.0090) (0.0086) (0.0086)

Flows(t-2) 0.0776** 0.0774** 0.0798** 0.0802**
(0.0093) (0.0093) (0.0080) (0.0080)

Flows(t-3) 0.0190 0.0188 0.0107 0.0106
(0.0288) (0.0288) (0.0356) (0.0356)

Flows(t-4) 0.0602** 0.0600** 0.0565** 0.0563**
(0.0224) (0.0224) (0.0193) (0.0193)

Flows(t-5) 0.0553** 0.0552** 0.0553** 0.0554**
(0.0062) (0.0062) (0.0062) (0.0062)

Flows(t-6) 0.0096 0.0091 0.0151 0.0151
(0.0250) (0.0250) (0.0196) (0.0196)

Flows(t-7) 0.0224** 0.0229** 0.0238** 0.0240**
(0.0070) (0.0071) (0.0066) (0.0066)

Flows(t-8) 0.0616 * 0.0620 * 0.0625 * 0.0630 *
(0.0301) (0.0301) (0.0313) (0.0313)

Flows(t-9) -0.0020 -0.0021 0.0051 0.0051
(0.0496) (0.0496) (0.0526) (0.0526)

Flows(t-10) 0.0247** 0.0248** 0.0263** 0.0255**
(0.0058) (0.0058) (0.0054) (0.0054)

Flows(t-11) 0.0182** 0.0183** 0.0187** 0.0190**
(0.0051) (0.0051) (0.0051) (0.0051)

Flows(t-12) 0.0304** 0.0305** 0.0303** 0.0303**
(0.0058) (0.0059) (0.0058) (0.0058)

log(TNA(t-1)) -0.0057 -0.0057 -0.0058 -0.0058
(0.0033) (0.0033) (0.0033) (0.0033)

D(�6m
t�1) 0.0003 0.0012 0.0074** 0.0156 *

(0.0025) (0.0070) (0.0025) (0.0069)
Fama-MacBeth Yes Yes Yes Yes
adj. R2 0.168 0.169 0.169 0.170
Obs. 306570 306570 306570 306570

⇤ p<0.05; ⇤⇤ p<0.01

Table 10: Flow-performance regressions for volatile markets. This Table shows the results of the flow-
performance regressions which additionally control for nonlinear flow behavior during volatile markets
by including dummy variables. Dummy variables take a value of one if the fund return is more than
two standard deviations above the 6-month return average. �E represents the parameter on Return(t-1).
All regressions based on monthly data using Fama-MacBeth regressions (Newey-West standard errors in
parentheses), as in the main text.



Flow-Performance Relationship

Dependent variable: Flows(t)
(1) (2)

Index Non-Index
Inst. Non-Inst. Inst. Non-Inst.

Liquid Illiquid Liquid Illiquid
Return(t-1) 0.2557 0.4627 ** 0.1260** 0.2347** 0.3393** 0.3026**

(0.1430) (0.1109) (0.0301) (0.0297) (0.0337) (0.0359)
Return(t-2) 0.6026** 0.1405 0.1160** 0.1982** 0.1233** 0.1761**

(0.2132) (0.1284) (0.0327) (0.0281) (0.0357) (0.0291)
Return(t-3) 0.1501 0.0589 0.1482** 0.1387** 0.1237** 0.1242**

(0.1979) (0.1310) (0.0283) (0.0347) (0.0337) (0.0272)
Return(t-4) 0.3271 -0.0058 0.0645 * 0.0590 0.0572 0.1189**

(0.1794) (0.1404) (0.0289) (0.0326) (0.0367) (0.0315)
Return(t-5) 0.2081 -0.0349 0.1544** 0.0668 * 0.0519 0.0345

(0.1525) (0.1155) (0.0294) (0.0309) (0.0408) (0.0262)
Return(t-6) 0.3300 -0.0862 0.0696 * 0.1066** 0.0186 0.0428

(0.1677) (0.1288) (0.0290) (0.0307) (0.0404) (0.0263)
Return(t-7) -0.0101 -0.0853 0.0690 * 0.1412** 0.0136 0.0437

(0.1721) (0.1469) (0.0280) (0.0259) (0.0322) (0.0289)
Return(t-8) 0.0596 0.2225 0.0474 0.0529 * 0.0599 0.0692

(0.1708) (0.1664) (0.0290) (0.0258) (0.0317) (0.0388)
Return(t-9) -0.0003 0.0860 0.0101 0.1198** 0.0214 0.0515

(0.1657) (0.1548) (0.0311) (0.0296) (0.0321) (0.0310)
Return(t-10) -0.2015 -0.3388 * 0.0534 0.0969** 0.0962** 0.0389

(0.1670) (0.1461) (0.0323) (0.0305) (0.0336) (0.0305)
Return(t-11) 0.3032 * -0.1176 0.0666 * 0.0653 * 0.0061 0.0537

(0.1476) (0.1603) (0.0296) (0.0254) (0.0316) (0.0283)
Return(t-12) 0.1184 -0.0188 0.0307 0.0338 0.0625 * 0.0269

(0.1613) (0.1480) (0.0279) (0.0277) (0.0314) (0.0268)
Flows(t-1) 0.1276** -0.1385 ** 0.1171** 0.1138** 0.1338** 0.1638**

(0.0351) (0.0273) (0.0195) (0.0221) (0.0195) (0.0266)
Flows(t-2) 0.0822** 0.0330 0.1117** 0.0721** 0.0664** 0.0717**

(0.0310) (0.0252) (0.0125) (0.0133) (0.0218) (0.0200)
Flows(t-3) 0.0673** 0.0134 0.0933** 0.1006** 0.0954** 0.0525**

(0.0216) (0.0259) (0.0108) (0.0121) (0.0212) (0.0159)
Flows(t-4) 0.0653** -0.0141 0.0527** 0.0585** 0.0203 0.0515**

(0.0248) (0.0259) (0.0125) (0.0098) (0.0195) (0.0176)
Flows(t-5) 0.0789** 0.1074 ** 0.0639** 0.0721** 0.0624** 0.0431 *

(0.0247) (0.0278) (0.0137) (0.0106) (0.0151) (0.0186)
Flows(t-6) 0.0603 0.0344 0.0415** 0.0376** 0.0394 * 0.0111

(0.0336) (0.0235) (0.0105) (0.0118) (0.0178) (0.0172)
Flows(t-7) 0.0606 * 0.0411 0.0552** 0.0266** 0.0216 0.0215

(0.0268) (0.0249) (0.0093) (0.0096) (0.0174) (0.0131)
Flows(t-8) 0.0343 0.0341 0.0292** 0.0424** 0.0154 0.0460**

(0.0319) (0.0239) (0.0094) (0.0126) (0.0177) (0.0136)
Flows(t-9) 0.0130 0.0381 0.0057 0.0311 * 0.0428** 0.0219

(0.0169) (0.0224) (0.0125) (0.0120) (0.0163) (0.0146)
Flows(t-10) 0.0173 0.0697 * 0.0299 * 0.0348** 0.0597** 0.0070

(0.0192) (0.0310) (0.0116) (0.0083) (0.0205) (0.0113)
Flows(t-11) 0.0158 0.0058 0.0193 * 0.0068 -0.0091 0.0280

(0.0192) (0.0246) (0.0092) (0.0075) (0.0152) (0.0152)
Flows(t-12) 0.0285 0.0634 * 0.0091 0.0228** 0.0422** 0.0189

(0.0180) (0.0264) (0.0084) (0.0077) (0.0149) (0.0150)
(0.0173) (0.0084) (0.0077) (0.0149) (0.0150)

log(TNA(t-1)) -0.0007 -0.0041 ** -0.0006** -0.0018** -0.0011** -0.0008 *
(0.0005) (0.0007) (0.0002) (0.0005) (0.0002) (0.0004)

Fama-MacBeth Yes Yes Yes Yes Yes Yes
adj. R2 0.512 0.592 0.311 0.329 0.450 0.391
Obs. 14180 20222 34,831 34,622 29,207 29,434

⇤ p<0.05; ⇤⇤ p<0.01

Table 11: Adding further heterogeneity in the flow-performance relationship. This Table shows the
results of the flow-performance regressions, with �

E being the parameter on Return(t-1). All regressions
based on monthly data using Fama-MacBeth regressions (Newey-West standard errors in parentheses),
as in the main text.



B.2 Fund-Specific Flow-Performance Relationship

As another robustness check, we also run the following flow-performance regressions

Flowsi,t = ai + bi ⇥ Controlsi,t + �E
i ⇥ Returni,t�1 + ✏i,t

separately for each fund, using the same controls as in our main specification (specifically
12 lags of flows and returns).

The results can be found in Figure 12, where we show the distribution of the fund-
specific � parameters. The solid line gives the results for our baseline case, showing
that the distribution is quite broad with a large number of negative values. While the
typical estimate is positive (mean = 0.08; median = 0.03), these values are rather noisy
(std. dev. = 0.77) and substantially smaller than those used in the model application.

Lastly, we also used a similar approach as Cetorelli et al. (2016) in their blogpost

Flowsi,t = ai + bi ⇥ Controlsi,t + �E
i ⇥ Alphai,t�1 + ✏i,t

where Alpha is the intercept of a one-factor model regression using a moving window of
12 months, separately for each month. The dashed-dotted line in Figure 12 shows the
distribution of the estimated � parameters in this case. Interestingly, the distribution is
even broader compared to the previous case, yielding a non-negligible number of observa-
tions exceeding 4 in absolute terms. Again the typical estimate is positive (mean = 0.64;
median = 0.39), but even noisier than before (std. dev. = 5.63).

-4 -3 -2 -1 0 1 2 3 4

Fund specific FPR (γE

i
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
re

q
u

e
n

cy

Return (12 lags)
Alpha (1 lag)

Figure 12: Distribution of fund-specific �
Es. We estimate the flow-performance relationship (FPR)

separately for each fund using the same control variables as in our main specification. In addition, we
also show the distribution when using alphas instead of returns.
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C Initial Redemption Shock

Given the modest AV levels in our baseline model application, we also explored alternative
approaches. Let us briefly describe a simple model that uses the following steps:

1. Initial redemption shock. Rather than imposing an initial shock on asset prices,
we assume that all mutual funds’ observe redemptions of E0, with 1 >  � 0.

2. Leverage targetting. As in the baseline model, funds can have a leverage target
(which may be equal to zero). Hence, in the general case funds will liquidate ad-
ditional assets to revert to their original leverage target. Adding this to the values
from the previous step, a given fund will liquidate a total amount of A0 assets,
irrespective of the value of B.

3. Asset liquidation proportional to portfolio weights. As in the baseline model,
we assume that funds’ liquidate their assets proportional to their portfolio weights.
Hence, the amount to be liquidated per asset is � = M 0A0, which results in a
market impact of F = L�. Given the portfolio holdings matrix M , we can calculate
each fund’s corresponding return as

R = MF = MLM 0A0.

This allows us to obtain an equivalent definition of the aggregate vulnerabilities in
this simplified model:

AV =
10NA0R

E0
. (31)

In our application, we again compare the two di↵erent cases ofB = 0 andB = B̄ = 0.5.
Here we assume a homogeneous initial redemption shock of  = �0.05 for all mutual
funds.36 Furthermore, we use time-varying and stock-specific price impacts (as in Scenario
1 in the main text).

The yellow area in Figure 13 shows the corresponding AVs; for the sake of comparison,
the red area reproduces the AVs for the baseline model (see top left Panel of Figure 6 in
the main text). It turns out that these values are somewhat larger than in the baseline
model, but yield identical time dynamics. Generally speaking, however, the resulting
values are still relatively modest given that redemptions of 5% constitute a reasonably
large initial shock.

36In our sample, net flows of -5% roughly correspond to the 5%-percentile of the monthly/quarterly
flows of U.S. domestic equity mutual funds.
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Figure 13: AVs over time in response to initial redemption shock of  = �0.05 (based on alternative
model in Appendix C) are shown in yellow. Price impacts as in Scenario 1. We also reproduce the AVs
from the baseline model in red (as shown in top left panel of Figure 6 in the main text).

D Nonlinear Flow-Performance Relationship

Our baseline FPR-specification assumes a linear relationship between flows and lagged
returns. Here we present several analyses which, in line with the existing literature, show
that conditioning on negative returns/allowing for a nonlinear FPR would lead to lower
AVs in general given that equity fund flows are less responsive to negative returns.

D.1 Flow-Performance Relationship for Negative Returns

Here we test for an asymmetric response of fund flows to negative and positive returns,
respectively. Chen et al. (2010) and Goldstein et al. (2017) document a convex rela-
tionship between flows and returns for equity funds meaning that flows less sensitive to
negative returns compared with positive returns. Following the approach of Goldstein
et al. (2017), we test for this possibility by conditioning the �E-parameter on negative
returns and including a dummy variable for lagged negative returns (D(Return(t-1)<0))
and an interaction term (Return(t-1)⇥D(Return(t-1)<0)) as additional control variables
in our baseline Fama-MacBeth regressions. Given the above-mentionend convexity of the
flow-performance relationship, we expect a smaller (rather than a larger) return sensitiv-
ity parameter compared to our baseline scenario.
Table 12 reports the results for the full sample and for the crisis period, respectively. In
both cases the estimated parameter on Return(t-1) becomes larger. However, as expected
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from the convex flow-performance relationship, the parameters on the interaction terms
show that this result is driven by positive rather than negative returns: the estimated �E,
conditioned on negative returns (0.5344 � 0.4524 = 0.0820), is substantially lower than
our baseline estimate (0.2748). Hence, if anything, the AVs reported in the main part of
the paper are again biased upwards rather than downwards. More precisely, if we were
to use the estimated �E conditioned on negative returns, the linearity of our stress test
model implies that the corresponding AVs would be less than 1/3 of the reported values.

D.2 Nonlinear Flow-Performance Relationship

To capture potential nonlinearities in the flow-performance relationship we added Return(t-
1) raised to powers 2, 3, . . . as additional explanatory variable(s) to the baseline regression.
It turns out that only a power of 2 seems relevant, whereas higher powers are insignificant
in all specifications (unreported result). In this regard, the second column of Table 13
shows the flow-performance regressions when adding Return(t-1)2 as explanatory variable.
The positive coe�cient indicates that large returns (positive or negative) tend to increase
net-inflows (Flows) while leaving the �E coe�cient largely una↵ected. In order to allow
for asymmetry between squared negative and positive returns (as an indicator for return
volatility due to losses/gains), the last column in Table 13 uses a standard linear-piecewise
(LP) regression approach. The results show that the nonlinearity is purely driven by pos-
itive returns since the coe�cient on Return(t-1)2 is insignificant for negative returns. As
an illustration, Figure 14 compares the estimated Flows as a function of Return(t-1) for
di↵erent specifications. The results for the LP regression (which has the highest ad-
justed R2) are in line with the empirically documented convexity of the flow-performance
relationship for equity funds (Goldstein et al. (2017)). As for the previous subsection,
the model-generated AVs would be lower when allowing for a nonlinear flow-performance
relationship.
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Flow-Performance Relationship

Baseline Crisis
2003-14 2003-14 2008-09

Return(t-1) 0.2748** 0.4664** 0.5344 **
(0.0268) (0.0597) (0.0656)

Return(t-2) 0.1885** 0.1933** 0.2061 **
(0.0330) (0.0330) (0.0376)

Return(t-3) 0.0996** 0.1088** 0.1118 **
(0.0164) (0.0167) (0.0187)

Return(t-4) 0.0507 0.0591 0.0513
(0.0349) (0.0351) (0.0405)

Return(t-5) 0.0664** 0.0652** 0.0821 **
(0.0179) (0.0181) (0.0201)

Return(t-6) 0.1047** 0.1047** 0.1202 **
(0.0273) (0.0272) (0.0311)

Return(t-7) 0.0647** 0.0723** 0.0827 **
(0.0231) (0.0222) (0.0247)

Return(t-8) 0.0832** 0.0874** 0.0849 **
(0.0221) (0.0214) (0.0245)

Return(t-9) 0.0780** 0.0771** 0.0775 **
(0.0237) (0.0238) (0.0271)

Return(t-10) 0.0070 0.0094 0.0101
(0.0335) (0.0334) (0.0385)

Return(t-11) 0.0387 * 0.0484** 0.0408 *
(0.0177) (0.0178) (0.0193)

Return(t-12) 0.0351 * 0.0406 * 0.0397 *
(0.0164) (0.0165) (0.0184)

Flows(t-1) 0.0760** 0.0748** 0.0646 **
(0.0098) (0.0098) (0.0103)

Flows(t-2) 0.0848** 0.0850** 0.0813 **
(0.0073) (0.0072) (0.0072)

Flows(t-3) 0.0433 * 0.0432 * 0.0369
(0.0178) (0.0177) (0.0203)

Flows(t-4) 0.0332** 0.0333** 0.0340 **
(0.0092) (0.0092) (0.0105)

Flows(t-5) 0.1053 * 0.1053 * 0.1117
(0.0500) (0.0500) (0.0582)

Flows(t-6) 0.0162 0.0164 0.0218
(0.0187) (0.0187) (0.0217)

Flows(t-7) 0.0564 0.0559 0.0588
(0.0324) (0.0324) (0.0377)

Flows(t-8) 0.0114 0.0114 0.0117
(0.0215) (0.0215) (0.0250)

Flows(t-9) -0.0218 -0.0226 -0.0267
(0.0467) (0.0468) (0.0546)

Flows(t-10) 0.0223** 0.0218** 0.0198 *
(0.0069) (0.0069) (0.0076)

Flows(t-11) 0.0178** 0.0186** 0.0162 **
(0.0052) (0.0052) (0.0056)

Flows(t-12) 0.0309** 0.0311** 0.0307 **
(0.0060) (0.0059) (0.0066)

log(TNA(t-1)) -0.0058 -0.0058 -0.0064
(0.0033) (0.0033) (0.0039)

D(Return(t-1)<0) -0.0052 * -0.0021
(0.0024) (0.0024)

Return(t-1)⇥D(Return(t-1)<0) -0.4112** -0.4524 **
(0.0849) (0.0953)

Fama-MacBeth Yes Yes Yes
adj. R2 0.168 0.172 0.175
Obs. 306,570 306,570 270,655

⇤ p<0.05; ⇤⇤ p<0.01

Table 12: Flow-performance regressions. The first column reproduces the baseline specification from
the main part of the paper, columns two and three show results for an enhanced model in the spirit
of Goldstein et al. (2017) that include dummy/interaction terms for negative lagged returns for the full
sample and the crisis period, respectively. All regressions based on monthly data using the Fama-MacBeth
methodology (Newey-West standard errors in parentheses).



Flow-Performance Relationship

Baseline Non-lin. Non-lin.
LP

Return(t-1) 0.2748** 0.2820** 0.2496 **
(0.0268) (0.0365) (0.0420)

Return(t-2) 0.1885** 0.1956** 0.1946 **
(0.0330) (0.0331) (0.0330)

Return(t-3) 0.0996** 0.1129** 0.1105 **
(0.0164) (0.0166) (0.0169)

Return(t-4) 0.0507 0.0522 0.0522
(0.0349) (0.0353) (0.0351)

Return(t-5) 0.0664** 0.0718** 0.0718 **
(0.0179) (0.0183) (0.0180)

Return(t-6) 0.1047** 0.1058** 0.1080 **
(0.0273) (0.0267) (0.0267)

Return(t-7) 0.0647** 0.0753** 0.0739 **
(0.0231) (0.0223) (0.0221)

Return(t-8) 0.0832** 0.0922** 0.0884 **
(0.0221) (0.0211) (0.0211)

Return(t-9) 0.0780** 0.0802** 0.0794 **
(0.0237) (0.0238) (0.0239)

Return(t-10) 0.0070 0.0065 0.0065
(0.0335) (0.0335) (0.0334)

Return(t-11) 0.0387 * 0.0428 * 0.0458 *
(0.0177) (0.0181) (0.0178)

Return(t-12) 0.0351 * 0.0435** 0.0391 *
(0.0164) (0.0166) (0.0168)

Flows(t-1) 0.0760** 0.0748** 0.0750 **
(0.0098) (0.0098) (0.0097)

Flows(t-2) 0.0848** 0.0843** 0.0846 **
(0.0073) (0.0072) (0.0072)

Flows(t-3) 0.0433 * 0.0428 * 0.0427 *
(0.0178) (0.0178) (0.0177)

Flows(t-4) 0.0332** 0.0331** 0.0331 **
(0.0092) (0.0092) (0.0092)

Flows(t-5) 0.1053 * 0.1054 * 0.1051 *
(0.0500) (0.0500) (0.0500)

Flows(t-6) 0.0162 0.0162 0.0164
(0.0187) (0.0187) (0.0188)

Flows(t-7) 0.0564 0.0564 0.0563
(0.0324) (0.0324) (0.0324)

Flows(t-8) 0.0114 0.0114 0.0111
(0.0215) (0.0215) (0.0215)

Flows(t-9) -0.0218 -0.0225 -0.0223
(0.0467) (0.0467) (0.0467)

Flows(t-10) 0.0223** 0.0218** 0.0221 **
(0.0069) (0.0069) (0.0070)

Flows(t-11) 0.0178** 0.0184** 0.0185 **
(0.0052) (0.0052) (0.0052)

Flows(t-12) 0.0309** 0.0308** 0.0309 **
(0.0060) (0.0059) (0.0059)

log(TNA(t-1)) -0.0058 -0.0057 -0.0057
(0.0033) (0.0033) (0.0033)

Return(t-1)2 1.8305**
(0.3478)

Return(t-1)2⇥D(Return(t-1)<0) 1.1678
(0.9019)

Return(t-1)2⇥D(Return(t-1)>0) 3.3900 **
(1.0757)

Fama-MacBeth Yes Yes Yes
adj. R2 0.168 0.171 0.174
Obs. 306,570 306,570 306,570

⇤ p<0.05; ⇤⇤ p<0.01

Table 13: Flow-performance regressions. The first column reproduces the baseline specification from
the main part of the paper, column two shows results for an enhanced model, column three shows a
piecewise linear specification that distinguishes between negative and positive returns, respectively. All
regressions based on monthly data using the Fama-MacBeth methodology.
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Figure 14: Estimated flow-performance relationship, as shown in Table 13, for the baseline linear model
(black line; dotted lines show std. errors) and the extended model which includes the quadratic return
(blue line). We also show the extended linear-piecewise model which estimates separate parameters for
squared positive and negative returns (red line).


