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Abstract

Quantics is a general purpose program package to simulate the time-evolution
of a molecular system by solving the time-dependent Schrodinger Equation.
The main code is based on the multi-configurational time-dependent Hartree
(MCTDH) algorithm in various variants, including the powerful multilayer-
MCTDH algorithm that has been used to propagate a wavefunction for up to
1000 degrees of freedom. MCTDH uses a contraction of traditional discrete
basis set representations of the Hamiltonian and wavefunction, and QUAN-
TICS includes a range of variable representation (DVR) grid basis sets and
collocation methods. Input is via ascii text files and for molecules with ana-
lytical potential functions no programming is required. A library of potential
functions is included to treat more complicated cases, and this can be added
to by the user. The code also includes the variational multi-configurational
Gaussian (VM CG) method that is based on a Gaussian Wavepacket expansion
of the wavefunction. vMCG can be run in a “direct” manner (DD-vMCG),
calculating the potential energy surfaces on-the-fly using a number of quan-
tum chemistry programs. In addition to wavepacket propagation, Quantics
can solve the time-independent Schrodinger equation for small systems and
can solve the Liouville-von-Neumann equation to propagate density matri-
ces. The Package includes auxiliary programs to help set up calculations and
analyse the output. Quantics is a community code of the UK Collaborative
Computational Project for Quantum Dynamics (CCPQ) and the European
E-CAM project, an e-infrastructure for software development run by the Cen-
tre Européen de Calcul Atomique et Moléculaire (CECAM). Through this it
has become a framework for general dynamics codes, for example enabling
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an external surface hopping code to use the QUANTICS input and operator
interfaces.

Keywords: Time-dependent Schrodinger Equation; Quantum dynamics
simulations; MCTDH; Wavepacket dynamics; Direct quantum dynamics;
Density matrix propagation.

PROGRAM SUMMARY

Program Title: Quantics
Licensing provisions: GPLv3L
Programming language: Fortran90. Some Fortran77, Fortran2003, C and python.
Size of Package: 120MB Number of lines of Code: > 1 million

Nature of problem:

Solving the time-dependent Schrodinger equation for a set of nuclei allows
a range of physical processes to be studied including all quantum effects. This
allows an experimental signal to be given a molecular interpretation. Typical
applications are scattering cross-sections or time-resolved spectra, but also rate
constants and other transport properties are possible. The exact problem to be
solved is defined by the Hamiltonian, which must be provided by the user, and the
initial wavepacket, again defined by the user. The final analysis of the evolving
wavepacket then provides the experimental signal or molecular property.

Solution method:

A range of methods are possible for solving the time-evolution of a wavepacket
(see main text). These can be broadly described as basis-set methods, in which
the wavepacket and Hamiltonian are expanded in a set of functions. Various
functions are possible, including grid-based sets (DVRs and collocation), and
Gaussian Wavepackets. The Wavepacket can then be propagated using a va-
riety of algorithms depending on the representation chosen. These include the
full numerically-exact solution, various versions of the multi-configurational time-
dependent Hartree method and approximate methods such as trajectory surface
hopping. Full details are given in the documentation provided with the package
and in a book and a number of review articles [1, 2, 3].

Additional comments including Restrictions and Unusual features:

The code has been tested on a number of linux distributions and compilers.
It works best with a bash environment and a gnu gecc / gfortran compiler greater
than version 4.8. The code is parallelised in parts using either OpenMP or MPI.
There is an suite of test calculations to test an installation.
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1. Introduction

The QUANTICS Package is a suite of programs for simulating the non-
equilibrium time-evolution of a molecular system including all quantum ef-
fects. The key aim is to solve the time-dependent Schrodinger equation as
completely and as accurately as possible for a wide range of physical pro-
cesses. The time-dependent Schrodinger equation (TDSE) is written
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where the molecular wavefunction, W, is a function of the nuclear coordinates,
q, and the Hamiltonian operator, H, is composed of the nuclear kinetic
energy T and potential function V. More generally, and especially for the
simulation of photo-excited molecules, the system is described by a set of
coupled potential surfaces and the TDSE is

o w(a,1) = (T1+ W(a)¥(q, 1) 3
where W is a matrix of potentials and couplings in a diabatic picture and
the nuclear wavefunction W is a vector with a component associated with
each state.

The TDSE is a first-order differential equation and the physical system is
specified by the coordinates and the potential function. It is an initial value
problem and so the process to be simulated is defined by the chosen initial
conditions. Typical examples of processes are branching ratios and cross-
sections for molecular scattering, photo-dissociation and photo-excitation.



The latter leads to an absorption or emission spectrum. By inclusion of a
time-dependent field in the Hamiltonian operator to simulate a light pulse,
time-resolved spectra can be simulated.

The TDSE describes a single pure state formed as a coherent superposi-
tion of eigenstates. Statistical mixtures (thermalised states) are better de-
scribed using a density matrix representation and the Liouville-von Neumann
equation (LvN)

5 ol dl1) = £(o) (4)

where p(q,q',t) = |¥(q,1))(¥(d',t)| is the density matrix and L(p) the Liou-
villian superoperator. For a closed system, the Liouvillian is the commutator
of the system Hamiltonian with the density matrix,

L(p) =[H,p] ()

For open systems, the “system” is coupled to an implicit environment. There
are a number of ways to treat this coupling, the most common being a Lind-
blad operator, which changes the Liouvillian to read

L(p)=[H, p)+i(VpVi—2LpvTv —1vivp) . (6)

In the following, the focus is on solving the TDSE, but extensions that can
be used to solve the LvN are also available in QUANTICS.

The most direct and accurate way to solve the TDSE is to use a time-
independent basis set to represent the wavefunction and Hamiltonian oper-
ator, effectively discretising the problem onto a multi-dimensional grid. The
initial wavefunction is setup as a non-stationary state, a wavepacket, that is
propagated in time using an integration scheme. The evolving wavepacket
can then be analysed to obtain the results: a property that can be related
to an experimental signal, or an expectation value that can be related to the
molecular evolution.

A numerically exact solution to the TDSE is obtained by representing
the wavepacket directly as a set of time-dependent coefficients of the time-
independent basis functions, which can be seen as amplitudes on the grid
points. This is referred to in the following as “standard” wavepacket dynam-
ics, or the standard WP method. If there are N basis functions for each coor-
dinate (degree of freedom), and f degrees of freedom, the multi-dimensional
grid has N/ points, and the computational effort scales exponentially with
system size. This restricts the solution in general to 4 or 5 degrees of freedom.
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To go to larger systems, the multi-configurational time-dependent Hartree
(MCTDH) method is used. In this, the wavepacket is expressed in a set of
time-dependent basis functions, known as single-particle functions (SPFs),
which in turn are described using the time-independent primitive basis func-
tions. MCTDH is thus a contraction scheme and in its most powerful form,
multi-layer MCTDH (ML-MCTDH), allows the time-evolution of wavepack-
ets to be simulated for over 100 degrees of freedom. The key to the MCTDH
method is that the equations of motion are variational and so convergence
of the basis set results in the numerically exact solution.

The MCTDH method in a number of variants is at the heart of the
QuaANTICS package. The package aims to be a general purpose code, with a
user friendly interface: for most calculations the input is entirely given in ascii
text files. It is portable, being written for the most part in standard Fortran
and tested with readily available compilers. It comes with an extensive set
of documentation and a user manual.

In this article, an overview of the code will be given. The theory behind
the algorithms has been published elsewhere and only a brief description of
the methods available is given, with references to the literature. After a
listing of the code capabilities, a brief history of its development is given.
Many people over the years have been involved in the code development, and
here the major developments are described and credited. Unfortunately there
is not space to credit all involved. This is done in the code documentation.
The relationship of the package to the Heidelberg MCTDH Package [1], from
which it evolved are also made clear. After this, in Sec. 4 the basic equations
being solved are given. The final sections describe the code structure (Sec.
5) and the basic usage (Sec. 6) to give a flavour of how the code is built up
and how it can be used.

2. Capabilities

The methods available in the QUANTICS Package to simulate the non-
equilibrium time-evolution of distinguishable particles are listed in Table 1.
In addition, to propagation in real time, propagation in imaginary time is
also available for most methods. This procedure, known as energy relazation
can be used to either obtain a single eigenfunction, or a set of eigenfunctions
using a block relazation scheme. There is also the possibility of the direct
diagonalisation of the Hamiltonian matrix in a grid-basis to directly obtain
the eigenvalues. For a full list of programs available in the QUANTICS Package



and their capabilities, see the documentation that is provided with the code.
This is in the form of html files describing the codes and options, and a user
guide with a short tutorial that is provided as a pdf file.

3. History of the Program

The QUANTICS Package started in the group of Lorenz Cederbaum at the
University of Heidelberg. The initial code was written by Uwe Manthe as
part of his PhD to run the very first MCTDH calculations [2, 3]. This was a
set of routines in Fortran77 that required compilation for each calculation to
select the relevant potential surface, integration scheme and other options.
Under the supervision of Hans-Dieter Meyer, together with Andreas Jackle
and Michael Beck, I put these routines together as a single program that
could select the different options and operators using ascii input files. The
program then grew into the Heidelberg MCTDH Package [1] able to solve the
time-dependent Schrodinger equation for distinguishable particles using both
the grid-based MCTDH algorithm as well as numerically exact calculations.
A key design feature from the start was treating molecules of any size (from
diatomic to 10 atoms or more), modularity, and ease of use. A suite of stand-
alone programs to analyse the output was also started including automatic
plotting using the GNUPLOT program.

The initial code included innovations for scattering calculations such as
an adiabatic correction to shorten the assymptotic grid [4] and the use of
complex absorbing potentials (CAPs) to calculate the reactive flux [5]. The
filter diagonalisation time-dependent approach to obtain the eigenvalues of
a Hamiltonian was added from the work of Michael Beck, helped by Fa-
bien Gatti [6, 7], along with time-independent calculations diagonalising the
Hamiltonian matrix. The ability to propagate a density matrix rather than a
wavepacket, including thermalisation or dissipative environments, was added
from the work of Andreas Raab and Irene Burghardt [8, 9].

One of the drawbacks of the MCTDH method is that it requires a partic-
ular form for the Hamiltonian. For efficiency, this operator must be written
as a sum of products of one-dimensional operators. This is not generally the
case for molecular potentials and Andreas Jéckle wrote the POTFIT program
that automatically fits a function into the desired form [10].

Early applications focused on scattering in the gas-phase [11] and on
surfaces [12, 13]. A novel two-dimensional discrete variable representation



Method Equation Basis

Solved Sets
Standard WP TDSE DVRs or FFT
MCTDH TDSE DVRs or FFT
ML-MCTDH TDSE DVRs or FFT
GMCTDH TDSE DVRs or FFT or GWPs
ML-GMCTDH TDSE DVRs or FFT or GWPs
pMCTDH(I) LvN DVRs or FFT
pMCTDH(II) LvN DVRs or FFT
ML-pMCTDH(I) LvN DVRs or FFT
ML-pMCTDH(II) LvN DVRs or FFT
pGMCTDH(II) LvN DVRs or FFT or GWPs
ML-pGMCTDH(II) LvN DVRs or FFT orGWPs
Standard WP TISE DVRs or FFT
vMCG TDSE GWPs
cIMCG TDSE GWPs
iMCG TDSE GWPs
DD-vMCG TDSE GWPs
TSH TDSE trajectories
DD-TSH TDSE trajectories
Integration Schemes Method
Chebyshev Standard WP
Second Order Differencing Standard WP
Split Operator Standard WP

Constant Mean Field (CMF)  MCTDH (not ML-)
Adams-Bashforth-Moulton all MCTDH and MCG

Burlisch-Stoer all MCTDH and MCG
Runge-Kutta all MCTDH and MCG
DVRs:

Harmonic Oscillator, Sine, Cosine, Exponential, Legendre, Laguerre

2D spherical harmonic basis sets:
Spherical Harmonic FBR, Extended Legendre, 2D Legendre

Table 1: Methods available in the QUANTICS Program



(DVR) for the rotational operator allowed systems with total angular mo-
mentum greater than zero to be studied [14]. The method was also used to
study the other great interest in Heidelberg: studying non-adiabatic systems
with the vibronic coupling Hamiltonian [15].

A significant breakthrough was my implementation of general, multi-
dimensional basis functions. The resulting saving in computational effort
allowed us to converge a converge a calculation of the absorption spectrum
of pyrazine including all 24 degrees of freedom [15, 16]. Given the exponential
scaling of quantum dynamics methods, this was a huge step forward from
the 3-4 dimensional systems that had been studied using these methods up
to this point. To ease the fitting of vibronic coupling models, the VCHAM set
of programs were added to the package by Christopher Cattarius, Andreas
Markmann and myself [17, 18]. VCHAM was updated more recently to in-
clude a range of diabatic potentials and fitting procedures by Simon Neville
and Christopher Robertson.

The next developments to be added to the package were the use of Gaus-
sian wavepacket basis sets in place of DVRs - known as the GMCTDH ap-
proach. Developed mostly by Irene Burghardt [19], this aims to break the
scaling problem further. This method, however, proved to be numerically
unstable and it took a number of years before we could get it to work reli-
ably. The initial interest in GMCTDH was due to the possibility of greater
efficiency in system-bath problems in which the bath is described by a set of
harmonic oscillators for which the Gaussian functions are perfectly adapted.
Later interest came from the possibility of using it as a direct dynamics algo-
rithm, in which the potential surfaces are calculated on-the-fly using a quan-
tum chemistry code. This has been a significant part of the development,
working together with Mike Robb, Benjamin Lasorne and Mike Bearpark
first at King’s College London and then Imperial [20, 21, 22].

At this point, the code was showing its age, being written in standard
Fortran77. At Birmingham, Kousik Giri then worked with me on converting
the code to Fortran90. This allowed a better use of dynamic memory allo-
cation (the older code uses C-routines to allocate large blocks of memory).
This code became the QUANTICS PACKAGE.

The next big step forward for the capabilities of the Heidelberg MCTDH
package was the implementation of ML-MCTDH by Oriel Vendrell [23]. This
was written in Fortran95 using derived types to elegantly enable the recursive
algorithm required to code this highly efficient method. It has been included
into QUANTICS, running faster than in the Fortran77 code due to a simpler
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interface.

Parallelisation of the MCTDH algorithm was first introduced in the Hei-
delberg package by Michael Brill using pthreads [24] and later extended to
using MPI. In QUANTICS, we have chosen to use the more readily avail-
able OpenMP in place of pthreads, implemented by Gareth Richings. The
MCTDH algorithm, however, is not easy to parallelise due to the intercon-
nectivity of the data. Only parallelisation over the terms in the Hamiltonian
has been implemented and this is effective when the potential expansion is
very long, for example in the benchmark calculations on the Zundel cation
[25]. Further improvements are required to improve general efficiency.

Recent developments on the QUANTICS package have mostly been to
the Gaussian wavepacket direct dynamics methods. Gareth Richings, lakov
Polyak and Eryn Spinlove were particularly involved in the implementation
of features such as propagation diabatisation [26] and Hessian updating [27].
Complementary developments have been made by Terry Frankcombe to use
the Grow methodology to produce potential surfaces from a set of data points
[28]. Recently, we have written an interface to a surface hopping code from
the group of Nadia Doslic [29] to provide direct comparisons with this popular
semi-classical method.

Over the years, other capabilities have been added. Time-dependent fields
can be a part of the operator to simulate directly time-resolved spectroscopic
signals such as photo-electron spectra [30]. Using this, Alex Brown and
Markus Schréder implemented an optimal control scheme [31], and Tom Pen-
fold local control [32]. A library of potential functions has been built up and
automatic spline fitting to data added by Cristina Sanz Sanz. Most recently,
we have returned to developing the density matrix approach to include ther-
malisation and environmental effects, and this has lead to an implementation
of multi-layer versions of the original Raab type II density matrix scheme.
This should get around the scaling problem of density matrix methods and
open new avenues for simulations. As a Gaussian wavepacket basis can be
used, direct dynamics density matrix propagation will also be possible.

Development has continued in Heidelberg on the original MCTDH pack-
age led by Hans-Dieter Meyer, who has been actively involved throughout
the code development in an inspirational as well as practical capacity. Frank
Otto and Markus Schroder were, in particular, involved in the parallisation
and general improvement of this package. There are three versions. Version
8.3 is the standard serial code for grid-based MCTDH calculations. Version
8.4 is the parallel version, and version 8.5 includes ML-MCTDH. These are
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now mature, well tested codes that are available on request. QUANTICS in-
cludes the functionality of all these versions and the user interface is the same.
The structures of the binary files with output from a calculation have been
changed to provide greater flexibility, but the reading of files is backward
compatible.

Throughout the development of this code, we have used revision control,
first PRCS (introduced to us by Stefan Wefing), then SVN, and now Git. A
set of automatic tests (known as the Elk Test after the car industry standard)
have also been developed to ensure that new additions do not break the code.
The package also has extensive documentation, and a user guide, the original
version of which was written by Michael Beck.

4. Solving the TDSE: Methods

The details of the algorithms implemented in Quantics are contained in a
book [33] and a number of review articles [34, 35, 27]. Only a brief overview
is given here of the different methods in terms of the ansatz used along with
their main properties and citations to original papers. Equations of motion
are not given.

4.1. The Time-dependent Schrodinger Equation
The TDSE is solved using the Direc-Frenkel variational principle:

<6\11|H—i%|\11) —0 . (7)

The different forms of the trial wavefunction define the methods. The varia-
tional principle ensures that the total energy and norm of the wavefunction
should be conserved.

Standard WP Method. To solve the TDSE, the wavefunction can be
expressed as a direct product expansion in a set of (usually one-dimensional)
time-independent basis functions [36, 37]:

V(g t)= ) Ajl...jf(t)xﬁ)(ql)---Xﬁf)(qu) , (8)

JieJf

where {Xg':) (gx)} are the set of functions for the x th degree of freedom and
Aj, .4, (t) the time-dependent expansion coefficients.
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The basis functions are either a discrete variable representation (DVR)
(38, 34|, or a collocation [36]. DVRs are constructed by diagonalising the
position operator in an analytic set of functions, such as harmonic oscillator
or Legendre functions. This leads to a set of localised functions in coordinate
space in which the potential operator is diagonal, while the kinetic energy
operator can be expressed analytically in the conjugate basis function space.
A number of DVRs are included in QUANTICS with properties suitable for
different coordinates.

A collocation method exactly represents the wavefunction at pre-defined
grid points. The potential energy operator is again taken as diagonal on the
grid points and the kinetic energy operator is evaluated by making use of
a Fourier Transform to take the wavefunction onto the conjugate momen-
tum grid, where the momentum is diagonal, followed by a reverse Fourier
Transform. For this reason it is referred to as an FFT basis.

The main effort in a wavepacket propagation calculation is the need to
evaluate integrals of the Hamiltonian in the basis set, i.e.

Hyy = (Q/[H|D;) (9)
where @ ; = Xﬁ) e Xﬁf Visa configuration with the multi-index JJ. The combi-
nation of localised functions with easy kinetic energy evaluation makes DVRs
and collocation methods efficient basis sets.

Both DVR and FFT bases effectively discretise the problem and methods
using these are referred to as grid-based. The wavefunction expansion coeffi-
cients in the standard WP method are therefore amplitudes at the grid points.
The standard WP method is simple and, as long as there are enough grid
points, a numerically exact solution of the TDSE. It can also be used together
with powerful integration schemes, such as split-operator or Chebyshev, to
allow efficient propagation. It does, however, suffer from the exponential
increase in the number of expansion coefficients with system size, i.e.

computational effort ~ NV (10)

where N is the basis set size for each degree of freedom. This limits the stan-
dard WP method to 3 or 4 degrees of freedom without the use of advanced
DVR basis sets or grid pruning techniques [39].

MCTDH. In contrast to the standard WP method, the MCTDH wave-
function is expanded in a time-dependent basis, referred to as single-particle
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functions (SPFs) [2, 34]

(g, t) = Y A, (00 (@ t) .. P (Qpt) (11)

jl---jp

which are in turn expanded in a time-independent DVR or FF'T basis which
is referred to as the primitive basis

A7 (Qurt) = D a0 (@Qu) (12)
The variational nature of the SPFs allows a more compact wavefunction
expansion as fewer basis functions are needed than grid-points to follow the
evolving wavepacket. Convergence on the numerically exact result is also
guaranteed.

A key feature is that the SPFs can be multi-dimensional, i.e. rather than
using f sets of one-dimensional functions, p sets of d-dimensional SPFs with
coordinates Q1 = (q1, g, - .- qa) are used. This reduces the exponent for the
scaling of the number of coefficients. The scaling is

effort ~ n? 4 pnN? | (13)

where n is the SPF basis set size and N the underlying primitive basis set
size. The first term on the right hand side of Eq. (13) is the number of
expansion coefficients, while the second term is the size of the d-dimensional
grids describing the SPFs. There is thus an optimum balance between com-
bining degrees of freedom together in a particle to reduce the first term, while
not combining too many together to prevent the second term becoming too
large. If all degrees of freedom are combined together the multi-dimensional
SPF becomes the wavefunction of the standard WP method.

MCTDH can be used for systems with up to 20 degrees of freedom. The
main bottleneck is the fact that, unlike in the standard WP method, the
Hamiltonian matrix elements are time-dependent and need to be re-evaluated
at each time step. This is prohibitively expensive unless the potential is a
sum of products with the same (or lower) dimensions as the SPFs, i.e.

Vig,.q0) = > ehD(@Q) ... hP(Q,) (14)

which means that only one-dimensional integrals are required. A potential
that is not a priori in this form can be efficiently fit using the POTFIT program
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that implements a procedure to optimally describe a potential in the desired
sum of products form [10]. Alternatively, the VCHAM programs can be used
to fit a vibronic coupling model potential suitable for the description of non-
adiabatic photophysics [17].

For systems with more than one electronic state, two different approaches
are possible. In the multi-set formalism, a different set of SPF's are used for
each electronic state:

=AY L0 (@1t e (@ t) (15)

331 ]f

where s is the index over electronic states. In contrast, in the single-set
formalism only one set of SPFs is used and the electronic states are explicitely
included as a vector

=53 40P (@Qut) D@ 1)) . (16)

S J1.--Jp

The multi-set formalism requires more SPFs, but as they can adapt optimally
to each state fewer configurations in total are required which can save effort.

ML-MCTDH. Larger systems can be treated by realising that multi-
dimensional functions can be treated in an MCTDH form. This leads to a
recursive layering structure, multi-layer MCTDH [40, 41, 23, 42]

U(g,t) = Y AL (0@ 1) ..ol P (Qht)

J1---Jp
i (25,1 K 2:5,dy K
PN QL) = D AT (@ QFR 1) ot QR 1)
Jl Jcl,.C
: (17)
K l 11/{,1 K l llid,,@ K
QL) = Z AL ()l QI 1) Ll QU
J1.- Jd,.i

where there is new superscript, [, referring to the layer. The lowest layer of
SPF's is described by a grid as in MCTDH. Only the single-set formalism is
possible with ML-MCTDH.

ML-MCTDH provides a very powerful tensor contraction of a multi-
dimensional wavefunction and it has been used for calculations with hun-
dreds of degrees of freedom [43, 44]. In the QUANTICS implementation, all
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primitive basis sets and Hamiltonians that can be used with MCTDH can
also be used with ML-MCTDH. The main drawback of the method is that it
can be difficult to converge calculations, as all sets of functions in the layers
need to be balanced. An initial contraction scheme also needs to be decided
on, known as a tree structure. Poor choices lead to calculations that are
harder to converge. The variational nature of the method, however, ensures
that convergence leads to the numerically exact result.

G-MCDTH. Rather than using grid-based SPFs, it is possible to use
parametrised basis functions for some of the particles and propagate the
parameters instead [19]

V(g t) = Y Ay, 00 t) =0 (Qnt) ... 0" (Qm,t)

jl---jp

<" (Qut) ... g (@Qpt) (18)

where ¢(*) are parametrised functions. While the formalism is general, at
present Gaussian basis functions (GBF) have been implemented with the
form

9(Q.t) = exp(Q"AQ +B'Q + C) (19)

with the complex variational parameters A, B, C. If the width matrix, A, is
kept fixed, and these frozen Gaussians remain separable, these basis functions
can be related to one-dimensional Gaussian wavepackets

9(g.t) = exp(—0(q — 90)* + ipo(q — qo) + i7) (20)

with width o, centre ¢y, momenta p, and phase . The use of GBFs has
two advantages over flexible grid-based SPFs. The first is that, while more
basis functions will be required for convergence, the number of parameters
that must be propagated will be reduced. The second is that as the basis
functions are localised, information on the potential is only needed around
the centre of the GBFs. Thus, for example, the integrals of an operator
in the Gaussian basis can be analytically obtained using the local harmonic
approximation (LHA) in which the potential is expanded to second order
around the GBF centres. This allows general potential functions to be used,
i.e. those not in sum of products form Eq. (14), at the expense of no longer
having exact integrals.

The G-MCTDH equations of motion are numerically unstable due to the
non-orthogonal nature of the basis, which can be overcomplete. This can
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lead to linear dependencies with corresponding integrator problems. The
method, however, has been shown to be very efficient for problems in which
a quantum system is connected to a bath of harmonic oscillators [45, 46].

vMCG. In the limit of only multi-dimensional frozen GBFs, the wave-
function ansatz is a superposition of GWPs [47]

V(q,t) = ZAjgj(OL t) (21)

This is known as the variational multiconfiguration Gaussian method [47, 27].
It can be related to other GWP approaches such as Multiple Spawning [48] or
Coherent Coupled States [49]. It can be shown that the variational equations
of motion for the GWP centres in vMCG are trajectories that can be written
as a classical part and a coupled “quantum” part. This coupling leads to
much faster convergence than other GWP methods in which the GWPs follow
classical trajectories [27].

cIMCG. If the coupling between GWPs in the vMCG method is ignored,
then the basis functions follow classical trajectories. cIMCG is computation-
ally faster and numerically more stable than vMCG, but has much slower
convergence on the full quantum mechanical result and is dependent on the
initial conditions chosen for a calculation [50].

iMCG. In the simplest variant of the method, the evolving wavefunc-
tion is represented by a superposition of functions and the initial weights of
the GWPs are kept fixed. The independent multi-configurational Gaussian
method is thus equivalent to solving the TDSE with a swarm of classical
trajectories [50].

All of the MCG methods can be used in a direct dynamics mode [51,
20, 52]. In this, the potential functions are evaluated on-the-fly only when
required using quantum chemistry programs. The methods are then referred
to as DD-vMCG, DD-cIMCG and DD-iMCG respectively. The QUANTICS
program has interfaces to a number of quantum chemistry codes including
Gaussian [53], Molpro [54], Qchem [55] and Molcas [56].

4.2. The Liouville von Neumann Equation

The LvN is solved using the Hilbert-Schmidt scalar product in place of
the usual Hilbert space scalar product

((A|B)) =TrA'B (22)
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and the associated Dirac-Frankel variational principle that reads

((0plip — L(p))) =0 , (23)

where dp are variations in a trial density matrix [8]. There are two basic
different trial density operators.
pMCTDH (I). The type I density operators have the form

plad )= Ay 500 (QneL 1) ..o (Q, Q1) (24)

Ji--Jp

where o) are single-particle density operators (SPDOs). The variational
principle then provides equations of motion for the expansion coefficients
and the SPDOs.

pMCTDH (II). In contrast, type II density operators have the form

plad t) = Y Apen, O QL) el Q1)

F1eedpikr - Ky

X[ (Qpr 1)) (0 (@), 1) (25)

where ) are analogous to the usual SPFs of MCTDH.

The properties of pMCTDH(I) and pMCTDH(II) have been evaluated
9, 57] and while type(I) has the advantage of a quicker convergence, par-
ticularly for thermalised systems, it does not retain the total energy or
norm by construction. Density matrix propagation requires more effort than
wavepacket propagation, but in the QUANTICS code it is possible to use the
multi-layer formalism or GWP basis sets to alleviate this.

4.3. The Time-Independent Schrodinger Equation

For small systems (2-3 degrees of freedom), it is possible to obtain the
eigenvalues of a Hamiltonian by diagonalising its matrix representation in a
DVR. For this the Lanczos algorithm is used. In addition, a number of ways
to obtain eigenvalues are possible based on propagation methods, and thus
able to use the power of the MCTDH wavefunction form.

Energy Relaxation. If a wavepacket is propagated in imaginary time,
1t — 7, and at time 7 the wavepacket can be expanded in the eigenfunctions
of the Hamiltonian as:

U(r) = Z a;; exp” T (26)
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Program  Description
quantics Main program solving the TDSE, LvN and TISE.

potfit Transform a potential function into a sum of product
form using the potfit algorithm [10]

vcham Sets up and reads output from quantum chemistry cal-
culations to fit the parameters for a Vibronic Coupling
Hamiltonian [17]

filter Employs filter diagonalisation to obtain eigenvalues of a
Hamiltonian using time-dependent propagation [6]

fdc As filter, but for complex Hamiltonians

analyse This is a set of stand-alone programs (presently 40
codes) that can analyse the output from quantics. Us-
ing the free GNUPLOT program to provide visualisation,
these programs can perform operations such as check-
ing convergence by analysing grid and basis function
populations; plotting the potential surfaces and evolving
wavepacket; calculating spectra; analysing the database
from a DD calculation; Etc.

Table 2: Main programs in the QUANTICS Package

where E; are the eigenvalues and a; the contribution of the eigenstate to the
initial wavepacket. It can be seen that the contribution of an eigenfunction
decays exponentially with (imaginary) time to leave the ground-state eigen-
function at long-times. The algorithm is written to retain normalisation [34].

Block relaxation. To obtain excited-states, i.e. eigenstates other than
the ground-state, it is possible to use improved relaxation [58]. In this, a com-
bination of imaginary time propagation and diagonalisation of the Hamilto-
nian in the time-dependent basis allows a set of states to be obtained. The
Davidson algorithm is used for the diagonalisation of the low-dimensional
Hamiltonian.

Filter diagonalisation. The final method that can be used to obtain
eigenenergies uses short real-time propagations and diagonalisation to “filter”
out the eigenenergies in a pre-defined energy window [59].
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5. Code Structure

The QUANTICS Package is a set of programs, the main ones of which are
listed in Table 2. The structure of the central quantics code is shown in
Fig. 1 and demonstrates the general philosophy of the programs. The code is
broken up into a set of independent modules representing the different stages
of a quantum dynamics simulation. Communication between the modules is
via files, allowing calculations to be stopped and started at the different
stages. The input is given in, usually two, ascii files: These are described
below in Sec. 6. The basic parsing of the input is made in the eingabe
module (eingabe is german for input). This defines the type of calculation
to be made, where to find the different input required, and basic parameters
such as the start and final times for a propagation, of number of iterations
for a Hamiltonian matrix diagonalisation.

A quantum dynamics calculation then requires four stages, each of which
is dealt with by a different module.

1. The module rundvr “generates the DVR”. Here, the system coordi-
nates are defined, setting the number of nuclear degrees of freedom
and number of electronic states. For each degree of freedom, a prim-
itive basis set is defined and the integrals and grid points required to
represent a Hamiltonian are calculated. Results are stored in the file
dvr.

2. The module runoper “generates the operator”. Here the operator in-
formation is parsed from the input, and the dvr file read to get the
information on the system. An internal table is set up linking the op-
erators in the terms defining the Hamiltonian. The operators are then
given types. For example, a kinetic energy operator is usually a real
matrix, and a term in the potential a real vector. Finally the operators
are calculated. The information is then stored in the file oper. Any
combinations of the coordinates into multi-dimensional “particles” in
MCTDH calculations are automatically taken care of. The code also
tries to optimally combine terms in the Hamiltonian. In addition to
the Hamiltonian other operators are set up in an analogous way. These
may be required to set up the initial wavefunction or for the analysis.

3. The module runinwf “generates the initial wavefunction”. It can also
generate density matrices. The module reads from the input informa-
tion on how to build the initial wavefunction. The dvr and oper files
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Quantics

pbasis_section

integrator_section

EINGABE

auto

Sbasis_section(1)
oper _section

Sbasis_section(2)
init-wf_section

psi
check
gridpop
dvr
oper

RUNDVR RUNPROP — — ANALYSE

L) | |
{ oper

RUNOPER RUNINWF

run_section

POTFIT

natpot

Figure 1: Structure of the main quantics program. Square boxes represent the code
modules. The ovals receiving output from the modules are files, while the ovals providing
input to the modules are either files or sections in the input file.

are also read. The result from a previous calculation, e.g. a ground-
state vibrational wavefunction from an energy relaxation calculation.
If required an operator is applied to the initial guess, e.g. a dipole mo-
ment to provide initial excitation. The initial wavefunction is written
to the restart file.

4. The module runprop reads the dvr, oper and restart files, and selects
the appropriate routines for the asked for propagation. Various files are
written with the asked for information. for example the wavefunction
stored in the file psi at user specified intervals, the autocorrelation
function is stored in auto, and various values such as the energy, norm,
expectation value along each coordinate and diabatic state populations
in check. These files are in general binary, and can be read by the
analysis programs.

The package contains a large number of functions in a library to build up
operators. These operators are all indexed and given a name so that they
can be found after parsing the operators defined in the ascii input. Operators
in the library include both simple operators such as a%, x", sin(z) as well
as more complicated operators for angular momenta. Potential functions for
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particular molecular systems can be added via a interface. The interface
is then available to all the programs in the package so that, for example a
defined potential surface can be plotted, or a multi-dimensional potential
function broken into a sum of products form using the potfit program.

Direct dynamics calculations, in which the potentials are calculated on
the fly, store the information from the quantum chemistry calculations in a
database (DB). There is a low-level interface to quantum chemistry codes
that enables new codes to be used with minimal coding. During a propaga-
tion, quantics looks first in the database as to whether the potential surfaces
have already been calculated at an appropriate point (i.e. nearby in space
to the present point). Only if no suitable points are present will a quantum
chemistry calculation be performed. The interface sets up the calculation
in an ascii file from a template, runs the calculation and reads the output,
storing the new point in the DB. The DB at the end of a calculation is then
a representation of the potential surfaces and can be further analysed.

The program structure is designed to be able to provide the input to other
programs. For example, the DVR information could be used by reading the
dvr file. As a demonstration of the interaction between the package and
an external program, an interface has been written to a surface hopping code
from the group of Nadja Doslic in Zagreb. Using keywords, the quantics
code generates an operator and then calls the Zagreb surface hopping code,
which is entirely a stand-alone program as provided by the authors. When
a potential energy and gradient is required to drive the trajectories in the
swarm, the quantics potential routines are called. These can distinguish be-
tween analytic potentials and direct dynamics potentials, so the Zagreb sur-
face hopping is able to use any operator on an even footing to the quantics
own propagation methods. At the end of the calculation a short interface
then read the surface hopping output and saves it in quantics format to be
analysed by the analysis programs. The use of the same DB in either a
vMCG or TSH direct dynamics calculations is shown in Fig. 2.

6. Code Usage

The code is driven by an ascii input file. Illustrative examples are shown
in Figs. 3, 4 and 7 to give a flavour of how a calculation is set up and
controlled. For the most part, the text is free-format and case insensitive
providing keywords and options. Comments can be added to the file, started
with a # symbol. The file is divided into sections, which can go in any
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Figure 2: Communication used by the direct dynamics part of the quantics program via
a central database

RUN-SECTION: type of calculation to be made
PRIMITIVE-BASIS-SECTION: the coordinates, no. grid points etc.
SPF-BASIS-SECTION: the no. of MCTDH basis functions
OPERATOR-SECTION: file containing the operator
INIT_WF-BASIS-SECTION: the initial wavefunction
INTEGRATOR-SECTION: details of the integration scheme

Table 3: Sections in a quantics input file

order. Each section reflects a part of a quantum dynamics calculation and
are bound by the text XXX-section and end-XXX-section. The most usual
sections are listed in Table 3. All the sections and keywords are listed in the
package documentation.

The run-section defines the overall calculation, with information on
the type of calculation, initial time, final time and the output files to be
opened. An important keyword is name = string. This specifies a directory
(the “name” directory) into which all the output files from a calculation are
written. The output files have simple names such as psi or gridpop rather
than the more common use of a filestem with filetype. The system is then
defined in the primitive-basis-section. Here, labels are given to each
degree of freedom in a list, one degree of freedom per line. The labels are a
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primary descriptor and any short ascii string can be used. These labels are
used in subsequent sections to define the degrees of freedom, and are also
used in the output.

In this section, a primitive basis is also defined for each degree of freedom.
In Fig. 3 a three-dimensional calculation is specified with degrees of freedom
labelled rd, rv and theta. For the rd coordinate an FFT grid is used with
68 equidistant points running from 1.0 au to 9.04 au. For the rv coordinate,
a sine DVR is used with 48 points from 0.6 au to 6.24 au, while for the
the theta coordinate a Legendre DVR is used with 31 grid points based on
the even Legendre functions. In Fig. 4, four nuclear degrees of freedom are
specified, each using a harmonic oscillator DVR with different numbers of
grid points. In addition in this calculation, an electronic “degree of freedom”
is specified defining 2 electronic states.

In the spf-basis-section the number of single-particle functions (SPFs)
are defined, as required for an MCTDH calculation. The degree of free-
dom labels are used to map the SPF basis onto the primitive basis. In
Fig. 4 a “multi-set” basis is used, with different functions defining each
electronic state. Degrees of freedom can also be combined together in this
section and in Fig. 4 the degrees of freedom v1 and v9a are treated to-
gether using two-dimensional SPFs. If degrees of freedom specified in the
primitive-basis-section are not listed in this section, they are not in-
cluded in the dynamical calculation, i.e. a cut through the potential surfaces
defined by the full system is run. The coordinate for the missing degrees of
freedom is set to zero unless otherwise specified using a “point” DVR, which
is a specific single point.

The Hamiltonian (and other operators) are usually specified in a separate
file. The file name is given in the operator-section. This file is described
below, and examples shown in Figs 5 and 6. Any changes to the parameters
or operators in this file can be given here meaning that different calculations,
for example changing the mass of an atom to change an isotope, can be run
without editing the operator file. In Fig. 3 a complex absorbing potential
(CAP) along the degree of freedom rd is added to remove the outgoing flux.

The initial SPFs are defined in the init_wf-section. Various ways of
generating this are possible. In Fig. 4 the initial SPF's are harmonic oscillator
eigenfunctions for each degree of freedom. In Fig. 3, the initial SPFs for
rd are similar to harmonic oscillator functions (Hermite polynomials based
on a Gaussian function), while for rv a set of eigenfunctions from a one-
dimensional operator are used. This operator is specified in the operator file
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along with the Hamiltonian (see below). The final, theta, degree of freedom
uses Legendre functions.

This information is used to generate the initial wavefunction. For an
MCTDH calculation, a vector for the expansion coefficients is set up with
the vector index being the multi-index for a configuration of SPFs. Unless
otherwise specified, the first coefficient is given a value of 1.0 and all other
coefficients are set to zero. In this way, the initial wavepacket is specified as a
product of the first SPFs for each degree of freedom. Thus in Fig. 4 the initial
wavepacket is a simple separable harmonic oscillator ground-state function (a
Gaussian) along each degree of freedom. The initial electronic state is chosen
to be the second. This thus simulates a vertical excitation of the ground-
state wavefunction in the harmonic approximation. If a numerically exact
calculation is performed, the initial wavepacket is set up by multiplying out
the first SPFs for ech degree of freedom on the full multidimensional grid.
The coefficient vector is now a single number.

In addition to building the initial wavefunction as described above, it is
also possible to read the wavefunction from a previous calculation, such as the
ground-state vibronic wavefunction from an energy relaxation calculation.
Operators, such as a dipole operator, can also be defined and applied to an
initial guess before the propagation begins.

The (optional) integrator-section defines the integrator to be used and
the associated parameters. Defaults are given for any missing parameters.
The input is finished with an end-input statement.

The files defining the operators for these calculations are shown in Figs. 5
and 6. The HAMILTONIAN-SECTION in both files defines the Hamiltonian. The
operator is coded in a table where each row specifies the term in the operator
expansion, and each column specifies the factor for a degree of freedom. This
follows the idea that the operator is specified as a sum of products

H=3 e;h®(g0)h? (@:)h (gs) ... (27)

The line beginning modes defines the order of the degrees of freedom in the
product. The first column is the expansion coefficients.

As described above in Sec. 5, quantics has a number of built in operators.
Other parameters are defined in the PARAMETER-SECTION, where units such
as H-mass, Angstrom or cm-1 can be used. In Fig. 5, the kinetic energy
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RUN-SECTION

name = hh2

propagation  tfinal = 120.d0 tout = 1.d0 tpsi = 1.40
psi gridpop steps

title = H+H2 reactive scattering.

end-run-section

OPERATOR-SECTION

opname = h3j0

alter-labels

CAP_rd = CAP [ 6.04 0.002 3] # starting point, strength, order
end-alter-labels

fast # This speed up of the calculation works only for natpots and CMF.
end-operator-section

SPF-BASIS-SECTION

rd = 14
TV = 10
theta = 10

end-spf-basis-section

PRIMITIVE-BASIS-SECTION

#Label DVR N Parameter
rd fft 68 1.00d0 9.040d0 # xi, xf
rv sin 48 0.60d0 6.240d0 # xi, xf
theta leg 31 0 even # 1_z, sym (all/even/odd)

end-primitive-basis-section

INTEGRATOR-SECTION

CMF/var = 0.1, 1.4-5
BS/spf = 7 , 1.d-6
SIL/A = 30 , 1.d-5

end-integrator-section

INIT_WF-SECTION

build
rd gauss 4.50d0 -8.00d0 0.256d0  # r0,p0, sigma_r
rv eigenf H2 pop=1 # pop=1 -> ground state
theta leg 0 0 sym # 1.z, 1, sym/no-sym
end-build

end-init_wf-section

end-input 24

Figure 3: Example input file for a calculation of H 4+ Hy scattering in Jacobi coordinates



RUN-SECTION

name = pyr4 propagate tfinal = 120.0 tout = 0.5 tpsi= 1.0
psi auto=twice steps gridpop

title = pyrazine 4-mode multi-set, linear model, no combinatioms.
end-run-section

OPERATOR-SECTION
opname = pyrmod4
end-operator-section

SPF-BASIS-SECTION
multi-set

v10a = 7, 7
vba = 12, 11
vl, v9a = 6, 5

end-spf-basis-section

PRIMITIVE-BASIS-SECTION

vi0a HO 22 0.0 1.0 1.0
v6a HO 32 0.0 1.0 1.0
vl HO 21 0.0 1.0 1.0
v9a HO 12 0.0 1.0 1.0
el el 2

end-primitive-basis-section

INIT_WF-SECTION

build
init_state = 2
v10a HO 0.0 0.0 1.00
v6a HO 0.0 0.0 1.00
vl HO 0.0 0.0 1.00
v9a HO 0.0 0.0 1.00

end-build

end-init_wf-section

end-input

Figure 4: Example input file for a calculation of the absorption spectrum of pyrazine in
normal mode coordinates
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operator in Jacobi coordinates is coded. This can be written:

2 2
T:( 1 1 )‘2 La__ L0 (28)

2 p R? + 244,12 T 21 p OR? QMTﬁ

where R is the scattering coordinate and r the diatomic bond length, with
reduced masses pg and p,., respectively. j is the angular momentum operator
for the rotation of the diatomic relative to the scattering coordinate. The
potential surface for H + Hy system is defined by the label V. This relates to
the operator defined in the LABELS-SECTION as the LSTH surface in Jacobi
coordinates.

In Fig. 6, the Hamiltonian is a four dimensional linear vibronic coupling
model in mass-frequency scaled coordinates. The table codes the operator

- W 8 2 1 0 —A 0
-3y () (01)+ (0 8) e
+ Z K’l('l)qi 0 + 0 )\QIOCL (3())

0 KJZ@)qi )\q10a 0

1=6a,1a,9a

where w; is the frequency of an oscillator, 2A the energy gap between the
states at the Franck-Condon point, and /iz(a) and A the coupling parameters.

In addition to the Hamiltonian, other operators can be defined. For exam-
ple, in the HAMILTONIAN-SECTION_H2 section in Fig. 5, a one-dimensional H,
operator is set up and given a label H2. This is used in the INIT_WF-SECTION
of the input file in Fig. 3 to define the initial SPFs for the rv degree of
freedom using the eigenfunctions of this operator.

In Fig. 7 an alternative format input for a direct dynamics calculation
is shown. While it is possible to use the sections described so far, it is
more intuitive to input the information on the system based on the atoms
and Cartesian coordinates used in the associated quantum chemistry calcu-
lation. In place of the PRIMITIVE-BASIS-SECTION, SPF-BASIS-SECTION and
INIT_WF-SECTION, an INITIAL-GEOMETRY-SECTION is used. This defines the
atoms and coordinates of the geometry around which the initial wavepacket
is based. This calculation runs in normal mode coordinates, specified by the
direct = nmodes keyword in the RUN-SECTION. As a result, the labels for
the normal modes along with the initial coordinates and frequencies are given
in the nmode to end-nmode block.

The information required for the direct dynamics is given in the DIRDYN-
SECTION. The quantum chemistry program to be used (MOLPRO) along with
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OP_DEFINE-SECTION

title

H+H2 Reactive Scattering in Jacobian Coordinates. J=0.

Minimum of H_2 curve: 4.74746 eV. Zero point energy of vib.: 0.270 eV
end-title

end-op_define-section

PARAMETER-SECTION

mass_rd = 0.6666666666667, H-mass # Reduced mass of H--H2 system
mass_rv = 0.50, H-mass # Reduced mass of H2 molecule

jtot =0 # Total angular momentum

jbf =0 # Projection on BF axis (K, or Omega).

end-parameter-section

HAMILTONIAN-SECTION

modes | rd | rv | theta
0.5/mass_rd | q™-2 | 1 | j"2
0.5/mass_rv | 1 | q9°-2 | j~2
1.0 | KE | 1 | 1
1.0 | 1 | KE | 1
1.0 Y

end-hamiltonian-section

LABELS-SECTION
V = 1sth {jacobian}
end-labels—-section

# The following one-dimensional hamiltonian is used to determine the
# eigenstates of H_2. These are then used as initial rv-spf’s.

HAMILTONIAN-SECTION_H2

modes | rd | rv | theta
1.0 | 1 | KE | 1
1.0 | 1 | v:H2 | 1

end-hamiltonian-section

end-operator

Figure 5: Input file defining the operators in a calculation for the scattering of H+Hy



OP_DEFINE-SECTION
title Pyrazine 4-mode model, linear coupling. end-title
end-op_define-section

PARAMETER-SECTION

wlO0a = 0.09357, ev
wba = 0.0740 , ev
wl = 0.1273 , ev
w9a = 0.1568 , ev
delta = 0.46165, ev
lambda = 0.1825 , ev
k6al =-0.0964 , ev
k6a2 = 0.1194 , ev
ki1 = 0.0470 , ev
k12 = 0.2012 , ev
k9al = 0.1594 , ev
k9a2 = 0.0484 , ev

end-parameter-section

HAMILTONIAN-SECTION

modes | el | vioa | v6a | v1 | v9a
1.0*xw10a | 1 | KE | 1 | 1 | 1
0.5*w10a | 1 g2 11 |1 |1
1.0*xw6a | 1 | 1 | KE | 1 | 1
0.5*xw6a | 1 | 1 l 972 | 1 | 1
1.0*xwl | 1 | 1 | 1 | KE | 1
0.5%wl | 1 | 1 1 [ g21]1
1.0%w9a | 1 | 1 | 1 | 1 | KE
0.5%w9a | 1 | 1 1 |1 | g2
-delta | S1&1 | 1 | 1 | 1 | 1
delta | S2&2 | 1 | 1 | 1 | 1
lambda | s1&2 1 q |11 |1 |1
k6al | s1&1 |11 |1q |1 |1
k622 | s242 |1 |1q |1 |1
k11 | S1&1 | 1 [ 1 | q | 1
k12 | S2%2 | 1 | 1 | q | 1
k9al | S1&1 | 1 | 1 | 1 | q
k9a2 | S2%2 | 1 | 1 | 1 | q

end-hamiltonian-section

end-operator

Figure 6: Input file defining the vibronic coupling Hamiltonian for a calculation of the
absorption spectrum of pyrazine



the method (CASSCF) are specified. Other parameters control how often
new points are stored in the database (DB), which is stored in the directory
specified by the data keyword. The options controlling the MOLPRO calcu-
lation are controlled using a template file, shown in Fig. 8. This is put in
the DB directory and used to create the MOLPRO input file.

7. Installation and Testing

The package is installed using a script, install_quantics, found in the
install directory. On a standard linux installation (e.g. Opensuse, Ubuntu
or Debian) with a gfortran or intel compiler the package should install
automatically accepting the defaults of the script. The installation configu-
ration can be changed by altering the configuration files, as described in the
documentation. While the code is complete, it is possible to link to external
BLAS and LAPACK for better performance. It is also possible to compile
different versions of the code (e.g. serial, OpenMP, or different compilers),
which then obtain a type, e.g. quantics.omp or quantics.intel.

To use the package, the environment variable $QUANTICS DIR needs to be
set, which points to the root directory of the installation. By default, the
installation script writes this to the .bashrc file. Once installed, the test
suite can be run by typing elk _test_gen in a new directory. If all the tests
run without any error messages, the package is ready. The documentation
can be found by pointing a web browser to $QUANTICS_DIR/doc/index.html.
This gives access to a set of pages with descriptions of the programs and
options. The installation procedure also compiles the user manual, which
can also be accessed from this index page. This contains a tutorial, as well
as detailed descriptions of how to use the code.
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RUN-SECTION

name = h2o0-4s-dd

propagation direct = nmodes ngwp = 7

title = water direct dynamics

tfinal = 100.0 tout = 0.5 tpsi= 0.5

psi gridpop update steps auto normstop = 1.0d-6
end-run-section

INITIAL-GEOMETRY-SECTION
nstates = 4 init_state = 2
cartesian = angst
0 0.0000000000 0.0000000000 0.1121548697
H 0.0000000000 0.7611532929 -0.4805424348
H 0.0000000000 -0.7611532929 -0.4805424348
end-cartesian
nmode
1A1 -0.0819 1705.12, cm-1 width = 0.7076
2A1 0.1985 3835.80, cm-1 width = 0.7326
3B2 0.0000 3964.83, cm—-1 width = 0.7810
end-nmode
end-initial-geometry-section

DIRDYN-SECTION
data = h20-4s-dd_dddata
transfile = water-opt-nosym.out

qcprogram = molpro method = cas
ener0 = -76.143191
dd_diab=global dbsave hess_upd

db = rdwr dbmin = 0.25 dbave=0.0

nbasis = 24

subcmd = /home/software/bin/run_molpro09 , 2
end-dirdyn-section

end-input

Figure 7: Example input file for a direct dynamics calculation of the photoexcitation of
water using normal mode coordinates
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*xxwater

nosym
geomtyp=xyz
geometry={

3

water geometry
<geometry>

b

basis=6-31Gx**
$0rbread:{matrop;read,oldorbitals,file=<orbfile>;save,oldorbitals,2140.2,orbitals}$

! State 1
{multi,gradient=1.0d-6,energy=1.0d-8;0cc,9;
start,2140.2;

closed,1;
$Force:CPMCSCF,grad,1.1,accu=1.0d-8,record=5101.1;$
wf,10,1,0;

state,4;

weight,0.25,0.25,0.25,0.25;

orbital,2141.2;

orbprint,100;

}

$Force:{Force;SAMC,5101.1}$
$Freq:{Frequencies,analytical ,noproject,new;print,hessian}$

! State 2
$Force:{multi,gradient=1.0d-6,energy=1.0d-8;0cc,9;start,2141.2;closed,1;
CPMCSCF,grad,2.1,accu=1.0d-8,record=5102.1;wf,10,1,0;state,4;
weight,0.25,0.25,0.25,0.25;}$

$Force:{Force;SAMC,5102.1}$
$Freq:{Frequencies,analytical,noproject,new;print,hessian}$

1 2-1
$NACT:{multi,gradient=1.0d-6,energy=1.0d-8;0cc,9;closed,1;start,2141.2;
cpmcscf,nacm,2.1,1.1,accu=1.0d-10,record=5105.1;wf,10,1,0;state,4;
weight,0.25,0.25,0.25,0.25;}$

$NACT:{Force;SAMC,5105.1}$

Figure 8: Part of a direct dynamics template file for a 4-state calculation on water using
MOLPRO to obtain the potential surfaces a§the CASSCF level of theory. The directives
for only 2 states are shown
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