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(PIAAC) and the Programme for International Student Assessment (PISA). Monte Carlo 

simulations suggest that the pseudo-equivalent group design is particularly useful whenever there 
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for group-level comparisons. 
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Linking via Pseudo-Equivalent Group Design: Methodological considerations and an application 

to the PISA and PIAAC assessments 

 

Large-scale assessments are key components of accountability systems and have been 

increasingly used to monitor the performance of teachers, schools and education systems. The 

resulting growth in the availability of, and interest in large-scale assessments has in turn created 

awareness of the research and policy opportunities that could be gained from integrating results 

from different assessments.  

At the national level integrating information from different assessments through linking 

procedures allows monitor achievement growth when different assessments target different age 

groups or school grades or different geographical or temporal coverage. At the international 

level, linking assessments could support efforts to monitor progress towards the achievement of 

the Sustainable Development Goals in education (United Nations, 2017). Existing international 

assessments in fact cover different countries and world regions. Therefore, each study can paint 

only a partial picture of the progress made towards the provision of quality education to all. 

Linking could also allow to benchmark national results against international goals (see for 

example Hanushek & Woessmann, 2013) and create opportunities to study learning growth at the 

cohort level across countries by combining linked cross-sectional studies conducted at different 

time points. Finally, linking could shed light on inconsistencies between national and 

international assessments (Cartwright et al., 2003, p. 6; Szaleniec at al., 2013; Linn, McLaughin, 

& Thissen, 2009) and between different international assessments (Wu, 2009). 

However, proper linking can only be applied to very specific situations. The aim of this 

paper is to illustrate how the pseudo-equivalent group approach could be used to link large-scale 
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assessments in the absence of explicit linking designs. We present an analysis framework to 

estimate the expected performance of individuals in an achievement test given their performance 

in a different test in the absence of a design that allows direct comparisons across the two. We 

check the proposed method by running Monte Carlo simulations under different scenarios. 

Finally, we apply this framework to compare the performance in two large-scale international 

assessments: the Programme for International Student Assessment (PISA) and the OECD Survey 

of Adult Skills (PIAAC).  

Related Research 

 Concordance studies have been carried out in the past using large-scale international 

assessments. However, most existing concordance studies were conducted following the request 

of either policy makers responsible for test design, funding and implementation or were 

conducted directly by testing agencies to estimate the properties of different assessments. 

Therefore, such studies could implement adjustments during design and administration. The 

most common example of concordance analyses carried out using single, group, equivalent 

group or anchor test designs (Linn, 1975; Feuer et al., 1999) is when large-scale international 

assessments have been linked to national assessments. An overview of previous studies that 

aimed to link such assessments is presented in Table 1.    

Table 1.  

Studies establishing linkages between international and national assessments. 

Study Tests  Method Conclusions 

Beaton & Gonzalez, 

1993 

US National Assessment of 

Educational Progress (NAEP) 

and 

International Assessment of 

Educational Progress (IAEP) 

Distribution-matching in a 

single group design and linear 

linking 

The two approaches yielded 

similar results for average 

performing countries but were 

less consistent for low-achieving 

countries. 

Pashley & Phillips 

1993 

Projection technique based on 

linear regression in a single 

group design 

Johnson, 1998 NAEP and The Third 

International Mathematics 

and Science Study (TIMSS).  

Equivalent group design 

assuming equivalency of groups 

with various linking procedures 

Findings revealed that the three 

approaches yielded very similar Johnson et al., 2003 

Phillips, 2007 
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Jia, et al., 2104 Equivalent group and common 

items design;  calibration, 

statistical projection and 

statistical moderation 

predicted TIMSS results for US 

states based on their NAEP scores 

Lim, & Sireci, 2017 TIMSS and NAEP 

For three time points 

Equivalent group design 

assuming equivalency of 

groups; equipercentile linking 

Problem of not strictly “randomly 

equivalent” group noted  

 

Cartwright et al., 

2003 

British Columbia’s 

Foundation Skills Assessment 

(FSA) 

and PISA 2000 reading 

assessment 

Single group design (group of 

students sat both tests); several 

methods of linking 

Different linking methods gives 

similar results 

Radwan & Xu 2012 Ontario Secondary School 

Literacy Test 

PISA 2009 reading 

ACT, 2009 PISA and PLAN 

Yamamoto, 2002 PISA was linked to the 

International Adult Literacy 

Survey (IALS 

Common item and single group 

design using IRT methodology 

Results from the linking exercise 

indicated that PISA students 

could be reliably placed on the 

IALS scale 

Hambleton, Sireci, 

& Smith, 2009 

NAEP, TIMSS, and PISA  

 

Equivalent group design 

assuming equivalency of 

groups; equipercentile linking 

Linking allowed to provide rough 

estimates of how well students 

from different countries perform 

Problem of not strictly “randomly 

equivalent” group noted  

 

Such linking studies used either single group design or equivalent group design assuming 

equivalence of groups through different linking procedures. The first type of linking (single 

group) is relatively rare since in most situations it involves the administration of an additional 

linking study on selected group of individuals and therefore implies additional costs. Moreover, 

conducting such a study requires designing proper test linking forms covering the core content 

from two different assessments, assuring that items will not be compromised, and assuring that 

test-takers answering linking forms and the original assessments do so in similar conditions.  

Equivalent group design is more common because it is less costly and easier to conduct, but its 

validity relies on the assumption of equivalence across groups. However, this assumption the 

might not hold in practice, a problem that is either implicitly or explicitly recognized in most of 

the studies. In practice, in most instances one cannot rely on the availability of neither single 

group, equivalent group or anchor test designs and alternative approaches must be used.  

 In many large-scale international assessments, background questionnaires identify 
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characteristics of respondents that can be used to develop pseudo-equivalent groups. The idea of 

using additional information to link different test forms has been investigated since the late 

1980s. However, most applications have so far been limited to linkages based on common items 

or common persons existed and additional background information was used in addition to 

facilitate linking (Cook, Eignor, & Schmitt, 1988; Lawrence & Dorans, 1990; Yu, Livingston, 

Larkin, & Bonett, 2004; Paek, Liu, & Oh, 2006).  

The literature on linking without common items and non-equivalent or not fully 

equivalent groups using statistical matching is small but growing. Haberman (2015) for example 

proposed a linking method for nonequivalent groups of examinees where the test forms lack 

common linking items or have unsatisfactory linking items. The procedure used background 

information concerning examinees to construct sample weightings via minimum discriminant 

information (Haberman, 1984). Haberman (2015) showed that the pseudo-equivalent groups 

approach, which uses background questions to link different test forms, produced results similar 

to equivalent group approaches. Wiberg and Bränberg (2015) showed that covariates could be 

used as substitutes for common items in a non-equivalent groups with covariates (NEC) design. 

Sansivieri and Wiberg (2017) proposed new methods for the NEC design with covariates using 

information from covariates in IRT observed-score linking, while Wallin and Wiberg (2017) 

used propensity scores based on covariates for kernel equating. Statistical matching was used to 

link PISA with the Teaching and Learning International Survey (Kaplan & McCarty, 2013).  

 The overwhelming conclusion of the studies reviewed is that linking does not yield 

results that can be used to compare individual scores unless assessments are similar in 

inferences, constructs, populations and measurement characteristics (Feuer et al., 1999). 

However, even in circumstances in which these conditions are not met, valid comparisons for 
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groups of the population can be made and scales can be compared. The validity and precision of 

such comparisons depend on the level of similarity (of constructs and testing conditions) 

between different assessments. In most cases the construct similarity condition was met (Wu, 

2009).  

General Method 

 A strategy to achieve pseudo-equivalence when attempting to link two large-scale 

assessments in the absence of random group design involves the following four steps. In the first 

step propensity scores (Rosenbaum and Rubin; 1983) are generated.  In the second step propensity 

scores are used to balance the groups and achieve pseudo equivalence. In the third step linking 

procedures are used on pseudo-equivalence groups to transform scales. Finally, in the fourth step 

a linking error is computed using bootstrap procedures.     

Propensity Score Model  

Rosenbaum and Rubin (1983) show that in a group of subjects with the same propensity 

score, the distribution of observed covariates is the same and therefore conditional equivalence is 

achieved.  Propensity scores can be estimated using various techniques, but the most popular 

approach is through logistic models (which we use), where treatment status (the version of the 

test) is the dependent variable and observed characteristics constitute the independent variables. 

Covariates that may need to be controlled for in order to effectively match the distribution of the 

two populations (sitting two different tests) include age, gender, socio-economic status or study 

programme (for example because different assessments may have a different focus in terms of 

schools/study programme or demographic groups).  

Balancing the groups for pseudo-equivalence  

After generating propensity scores different approaches can be used to obtain the pseudo-
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equivalence of groups for linking: propensity score matching, stratification on the propensity 

score, inverse probability of treatment weighting (IPTW) and covariate adjustment (Austin, 

2011). There is no strong argument in favor of the application of a specific approach in the 

context of pseudo-equivalent group design. However, results from simulation studies suggest 

that propensity score matching and weighting techniques outperform others (Austin, 2009). 

While some authors advocate matching (Frölich, 2004) others prefer weighting (McCaffrey, 

Lockwood, & Setodji, 2013) We opt for weighting since this is computationally more 

parsimonious. Weighting involves generating predicted probabilities by using inverse probability 

weighting, with weights being constructed to reflect the average effect of treatment on the treated 

(ATT) (Austin, 2011). The choice of ATT rather than average treatment effect (ATE) should be 

the first choice whenever there are considerable differences in the distribution of key covariates 

in the populations captured in the two assessments and upper bound restrictions may be present. 

In order to reweight the B sample to match the A distribution for all individuals sitting test A, 

weights need to be set to 1 and for B such weights should reflect the propensity score. 

Transforming Scales Using Reweighted Data 

Applying propensity score weighting allows to obtain distribution parameters for the two 

tests in two pseudo-equivalent groups and to estimate score distributions for tests A and B. 

Concordance analysis can subsequently be performed by estimating a scale transformation 

function. In order to transform A scores in the B metric, the following linear transformation 

might be used (for a detailed discussion see Kolen & Brennan, 2004, p. 31-32): 

𝑙𝐵(𝐴) =
𝜎𝐵

𝜎𝐴
𝐴 + [𝜇𝐵 −

𝜎𝐵

𝜎𝐴
𝜇𝐴]      (1) 

Where A denotes scores from test A and B denotes scores from test B, 𝜇𝐴 and 𝜎𝐴 are the 

mean and standard deviation of A scores; 𝜇𝐵 and 𝜎𝐵  denote mean and standard deviation of B 
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scores after reweighting. Both equations express a simple linear function where  𝜎𝐴/𝜎𝐵(𝐴) is the 

slope and 𝜇𝐴 − 𝜎𝐴/𝜎𝐵𝜇𝐵 the intercept. Although other linking methods could be used (e.g. 

kernel linking), we opted for linear linking because it has the important advantage of simplicity: 

linear linking in fact results in two numbers (slope and intercept) which can be used easily by 

researchers interested in A-B concordance. In most situations simplicity does not come at the 

expense of precision. For example, the two methods yield virtually identical results in the 

empirical example presented (results can be requested from the authors).   

Computation of Linking Error 

If the means and standard deviations used to construct the linking function were error-

free, the transformed values could be treated as if they were observed values. However, 

transformation constants should be corrected for uncertainty arising from the use of estimation 

techniques. Such uncertainty can be introduced by adding a linking error to the estimated 

standard errors associated with the parameters of interest. Linking errors are used, for example, 

in PISA whenever trends in achievement for individual countries are conducted. The estimation 

of linking errors in the context of pseudo-equivalent groups lacks anchor items, test takers are 

different and there is only a partial overlap in the distribution of test takers along specified 

observed characterized across the two tests. Linking errors can be estimated by considering the 

discrepancies between linking parameters obtained using different samples of respondents.  

Linking procedures based on pseudo-equivalent group designs are prone to two 

systematic sources of error, which should be reflected in the uncertainty associated with 

estimates: error induced by weighting and measurement error. In order to correctly account for 

uncertainty, it is possible to use bootstrapping to account for weighting-derived uncertainty and 

plausible values to account for measurement error (Efron, 1982, p. 29-35).  
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Additional Considerations  

Working with large scale assessments like PISA and PIAAC involves using the plausible 

values (PVs) methodology (Wu, 2005) because test takers are not assigned a single score, but, 

rather, a set of plausible values representing realizations from random draws of the estimated 

posterior distribution of individual abilities. For each ability measure and for each participant 

five PVs were generated in PISA and ten PVs were generated in PIAAC. The analysis presented 

in this paper is based on the five PVs from PISA and the first five PVs from PIAAC (to enable 

matching with PISA). All analyses involving PVs were performed five times and results were 

combined using Rubin’s rule (Rubin, 1987). 

In the next two sections we test the approach described above using Monte Carlo 

simulations. We compare pseudo-equivalent group design to a design that assumes full 

equivalence. Next we illustrate how the approach works using an empirical example built on 

PISA and PIAAC data.   

 

Study 1: Monte Carlo Simulation 

 A key threat to the validity of the pseudo-equivalent approach is that the overlapping 

parts of the A group and the B group along covariate k may have different ability distributions. 

We run a Monte Carlo simulation to compare the pseudo-equivalent approach and the equivalent 

group approach and consider the impact of different levels of population overlap over a key 

covariate (in our case age) and different levels of correlations between age and ability. We also 

present results from a scenario that allows us to bridge the analysis conducted in Study 1 to 

Study 2, that is, a real data example using PIAAC and PISA data.  

Data and Method 
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 For the first scenario data were generated by sampling random variables that mimic 

age (the main covariate in the two assessments) from two distributions and generating ability 

scores correlated with age. For the first group, the age distribution had a mean of 15 and a 

standard deviation of one. For the second group, we generated 5 scenarios with the following 

means: 15, 16, 17, 18 or 20. The standard deviation was set to two in each scenario. 

Additionally, the first age distribution was truncated to have a maximum age of 17 years and 0 

months. The age distributions of the 5 scenarios were truncated to have a minimum of 15 and 0 

months.  

 This meant that only the first distribution included simulated data points for 

individuals younger than 15 and only the second distribution included simulated data points for 

individuals older than 17. Data points between the age of 15 and 17 constitute the overlapping 

region. Depending on the scenario considered, the overlap accounted for between 3% and 33% 

of the total simulated sample, representing between 300 and 3300 data points. The total size for 

the Monte Carlo experiment was set to 10,000 (5,000 for each group and scenario).  

 An ability variable was generated to have a mean of 500 and a standard deviation of 

100 in the pooled sample of individuals from two groups. In order to explore the sensitivity of 

our findings to an association between ability and age, ability was generated to correlate with 

age. We evaluated 3 levels of correlation: strong (0.5), medium (0.3) and weak (0.1). An 

additional auxiliary variable was generated from a standard normal distribution with a correlation 

of 0.35 with the ability variable. The auxiliary variable mimicked in the analysis phase the 

inclusion of additional covariates typically considered in analyses of assessment data. A 

correlation of 0.35 corresponds to an explained variance in achievement of around 12%, which is 

the lower bound of explanatory power of background variables such as socioeconomic variables. 
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 We put the results of the two assessments on different scales by subtracting 100 from 

the ability variable in the second group and divided the scale by 2 (no change for group one). 

 The two datasets allowed us to test two approaches to establish a link. The first was 

the pseudo-equivalent approach described in the General Method section. The second approach 

was linear linking: we used only on overlapping part of the age distributions (between 15 and 17) 

and treated groups as equivalent in this age range. We repeated the procedure just described 10 

000 times for each scenario. The performance of the two approaches was evaluated using 

standard indicators: bias (in original metric averaged across all replications), and root mean 

squared error (RMSE). 

 The second scenario for the simulations was designed to mimic real data used in 

Study 2 where PISA and PIAAC data are involved. We generated the data in the same way data 

were generated in the first scenario but we changed conditions, setting a medium level 

correlation between ability and age (-0.25), and a small overlap in age distributions. The size of 

the shared age group was set to 215 with a sample size of 4837 for PISA and 9366 for PIAAC). 

Similar to the first condition we compare the pseudo-equivalent and the equivalent group 

approach.  In the latter we impose age restrictions that mimic real data (observations with an age 

smaller than 15.25 and greater than 17 were excluded from the sample mimicking the PISA data, 

while observations with an age smaller than 16 were excluded from the sample mimicking the 

PIAAC data). 

 Performance was evaluated using bias and RMSE supplemented by mean squared 

error (MSE) empirical S.E., % gain in precision (indicating the inverse squared ratio of the 

empirical standard error of pseudo equivalent-group to that of the equivalent-group).  

Study 1 Results 
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 Figure 1 illustrates how the two approaches perform in terms of recovering the true 

mean for group two on the initial scale given different levels of correlations between age and 

ability. On the horizontal axis we present variations in the age distributions of group two (mean 

15,16,17,18 and 20) which determines the share of common persons between the two groups. 

 The pseudo-equivalent approach yields a smaller bias than the equivalent group 

approach. In general, the higher the share of the common persons in the groups, the higher was 

the bias. This is not intuitive but it is because of differences in the shapes of ability distributions 

in different scenarios. When the share of common people is larger, ability distributions for the 

two groups in the common part were more different from when this share is lower. The RMSE 

for correlations of 0.5 and 0.3 is smaller for the pseudo-equivalent than for the equivalent group 

approach for all scenarios and the advantage of the pseudo-equivalent approach is particularly 

large when the common part and the distribution is larger and when the correlation between age 

and achievement is stronger. By contrast, when the correlation between age and achievement is 

low (0.1), the two approaches perform essentially on a par. 

Figure 1.  

Monte Carlo Simulation: Pseudo-equivalent vs. equivalent group approaches for mean recovery.  
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In Table 2 we present conditions mimicking the empirical analysis presented in Study 2. Both 

methods yield small positive biases, with the equivalent-group approach yielding a smaller bias 

than the pseudo equivalent-group approach. However, according to the empirical S.E., gain in 

precision, MSE, and RMSE indicators the pseudo equivalent-group approach is superior and 

brings higher overall precision. These results confirm that for the presented example, the pseudo-

equivalent group approach is preferable to the equivalent group approach, although the 

difference is not large. Moreover, the absolute values of RMSE suggest that we can achieve 

reasonable estimates of PIAAC population mean abilities on the PISA scale with the average 

error of 5 points on a scale that has a standard deviation of 100 points. 

Table 2.  

Results of Monte Carlo simulation study based on 10,000 replications 

Approach: Bias Empirical  

S.E. 

% gain in 

precision 

Mean 

squared 

error 

Root mean 

squared 

error 

Equivalent-group  .720 6.785 --- 48.390 5.537 



LINKING PISA AND PIAAC  14 

Pseudo equivalent-group  .889 6.089 24.175 39.636 5.027 

 

 In summary, results of Study 1 indicate that the pseudo-equivalent group approach 

should be used when the correlation between measured abilities and main covariates is high and 

the overlap between the distributions to be matched provide reasonable sample sizes (preferably 

higher than 1,000). In other cases, the pseudo-equivalent group approach may yield only small 

improvements or even be worse than an approach that uses the overlapping part of the age 

distribution as is done in equivalent group design. Preferably, researchers considering pseudo-

equivalent group designs should undertake a simulation study like the one presented in Table 2 

to determine whether the conditions they are faced with favour the use of the pseudo-equivalent 

group approach or not.  Table 2 suggests that in the case of PISA and PIAAC, a small 

improvement can be obtained over approaches that ignore imbalances across groups while 

achieving reasonable accuracy for scale transformation. These results motivate us to use the 

pseudo-equivalent group design in Study 2.     

 Study 2: Real Data Example Based on PISA and PIAAC  

PISA is a triennial large-scale low-stakes standardised assessment targeting the schooled 

population of children between the ages of 15 years and three months and 16 years and two 

months. The PIAAC target population is defined as “all non-institutionalised adults between the 

ages of 16 and 65 (inclusive) whose usual place of residence is in the country at the time of data 

collection”. PIAAC is a household-based study while PISA is a school-based study. Both 

assessment measure reading and mathematical skills (in PIAAC named literacy and numeracy).  

The PIAAC and the PISA frameworks are very similar. Both share the same (action-

oriented or functional) definition of skills. They share a common approach to the specification of 

constructs, a comparable definition of measured abilities, and similar content definitions and 
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contexts in which tasks are embedded (for more details see OECD, 2013b, p. 86-91). 

While PIAAC and PISA share many features, they differ along important dimensions. 

They have different target populations and operational procedures. Furthermore, while the main 

PISA instruments were paper-based in 2012, PIAAC was the first computer-based assessment, 

although individuals who lacked familiarity with a computer (or a willingness to sit a test with a 

computer) were offered a paper-based version of the test. PISA and PIAAC also vary in the 

response formats to test questions. PISA uses a greater variety of response formats than PIAAC.  

Data  

No attempts were made to link PIAAC and PISA at the international level during the 

design of the two studies. However, in PISA 2012, countries had the opportunity to extend the 

PISA target population through national options. In Poland students from grade 10 (16+) were 

sampled. These students participated in the study following the administration protocols and 

procedures that were implemented for the population of 15-year-olds. Results for the additional 

national sample were scaled together with the international sample. An important difference is 

that sampling of the international sample was based on students’ age while the national sample 

was grade based, capturing not only the age group that typically attends grade 10 (16 and 17-

year-old students in Poland) but also older ones. Older students could be attending grade 10 for 

different reasons, for example, 36% of students aged 18 and 19 (39 students in the sample) had 

repeated a year or more. Students might also have started school at a late age. It is reasonable to 

assume that 18- and 19-year-olds in the grade 10 sample are a highly selected group and that 

background variables are unlikely to adequately reflect the selection process leading such 

students to be in grade 10. Therefore, we excluded 18 and 19-year old students participating in 

PISA from the analysis. Table 3 presents the age distribution of the Polish samples for PISA 
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2012 and PIAAC.  

Table 3.  

Distribution of Age in the Polish samples of PISA and PIAAC 

 
Dataset Age 

 

<16 16 17 18 19 >19 Total 

PISA 3,526* 3,642 1,088 79* 28* 0 8,152 

PIAAC 0 93 123 157   702 8,291 9,989 

Total 3,526 3,735 1,211 236 730 8,291 18,141 

          Note: * excluded from linking  

The age distributions of the two assessments overlap but are highly unbalanced. Age 

differences between the two groups mean that it is not possible to use equivalent group design to 

derive concordance between the two assessments. Since populations in both surveys can be 

defined by age, which is observable, the concordance design could be treated as a missing data 

design, under the assumption of random missing cases, as detailed in Rubin (1974).  

 Method 

Two sets of covariates were used to generate propensity scores. The first was age 

(recorded to monthly precision) and its square term to account for nonlinear effects. Age was the 

most important predictor in the propensity score model since the random process assigning 

participants to each study operated mainly through this variable. Because compulsory schooling 

for the young cohorts captured in PISA and PIAAC in 2012 lasted until age 18 and selection into 

upper secondary had already occurred for students in our samples, education selection should not 

bias our results. Therefore, the probability of being sampled in either study can be considered to 

be a function of age and, conditional on age, samples should theoretically be equivalent. 

Because some discrepancies might occur, other selection-related variables were added to 

the second model to account for such unintended selection process. Since the response rate in 

PIAAC is lower than PISA (in Poland in 2012 the response rate was 56% for PIAAC and 88% 
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for PISA) (OECD, 2013a; OECD, 2013b), the primary selection mechanism unaccounted for in 

our study is the one induced by differential response rates. However, non-response bias analyses 

indicate that the Polish PIAAC sample is unbiased with respect to the underlying target 

population. We nonetheless add additional controls to the model to reduce any potential selection 

bias. PIAAC and PISA share few background variables. We control for the number of books at 

home at age 15, a strong predictor of cognitive ability, was included in both studies (Sikora et al., 

2019). The variable was coded as follows: 1= 10 books or fewer; 2= 11 to 25 books; 3=26 to 100 

books; 4= 101 to 200 books; 5= 201 to 500 books; 6= More than 500 books. Gender was also 

added as a control and full factorial interactions between all predictors were added to account for 

any possible sample selection mechanism. Gender differences in test-taking motivation have 

been well-documented (Borgonovi & Biecek, 2016).  

We generated weights using propensity scores to balance the two populations and achieve 

pseudo-equivalence. Linear linking was then applied to link the scales. We performed linking 5 

times because a set of 5 PVs was involved in linking. Finally linking errors were computed as 

described in the General Method section.  

Study 2 Results 

 We evaluated two models to generate propensity scores: a model that controls for age 

only and a model that includes the additional controls described above. The model with 

additional covariates fits the data slightly better (BIC -132840.554  vs -131890.072 and  Efron's 

R2: 0.940 vs 0.942)  than the one with only age as a covariate, but the difference between the 

two is small. The percentage of correctly classified individuals and the R2s in the two models are 

virtually identical. This confirms that “age” trumps all other effects when predicting propensity 

scores.  
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Results show that the estimated probabilities and weights associated with PIAAC 

participants being in the PISA sample approach zero at the age of 20, the upper bound for the 

PIAAC sample used in the analysis. This means that effectively only 1000 of the youngest 

respondents from PIAAC were used for linking: the very small weight associated with older 

PIAAC participants means that, in practical terms, they do not contribute any information to the 

estimation (see Figure A1 in the Annex.)  

Table A1 in the Annex presents descriptive statistics for key variables used in the 

analyses: age, number of books, % females, % of respondents who report being still in education 

(this variable is presented for validation purposes only). For PIAAC, results are presented before 

and after weighting. Table A1 suggests that the reweighted data match the PISA sample well.  

Figure 2 illustrates concordance scores estimated using age-only propensity score 

weighting and weighting based on age and additional controls. The linear linking of the PISA 

and PIAAC math-numeracy assessment is presented in the left panel while the linking between 

the PISA and PIAAC reading-literacy assessment is presented in the right panel.  

Figure 2.  

Concordance between PISA and PIAAC using different weights and 5 plausible values 
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Figure 2 suggests that the variability in the slope of linking functions is very small overall 

but is largest in the upper and lower tails of the proficiency distributions. Since linear functions 

are used, the larger differences observed in the tails reflect variability in the slopes of the five 

sets, but not variability within each of the five functions, which is constant. This suggests that 

linking is less accurate in the upper and lower tails of proficiency. The difference in linking 

estimates between the two weighting procedures (age-only and age + additional controls) is 

small. Most of the variance in the estimated slopes is due differences in estimates across 

plausible values (i.e. variance due to measurement error) rather than variance across weighting 

estimates.   

Table 4 presents linking constants that can be used to transform the PISA scales into 

PIAAC scales and vice-versa. Constants are presented for each of the five plausible values and 

can be applied to respondent level data. To transform scales from aggregates,  constants should 

be derived from average slopes and intercepts from the five plausible values.  

Table 4.  

Linking constants for linear linking 

Mathematics/Numeracy Reading/Literacy 

Weighting 

procedure  

  From PISA to 

PIAAC  

From PIAAC to 

PISA  Weighting 

procedure  

  From PISA to 

PIAAC  

From PIAAC to 

PISA  

PV  Slope  Intercept  Slope  Intercept  PV  Slope  Intercept  Slope  Intercept  

age only  

1 0.459 15.867 2.178 -34.561 

age only  

1 0.452 43.196 2.214 -95.624 

2 0.450 19.649 2.221 -43.637 2 0.469 32.929 2.134 -70.267 

3 0.472 13.557 2.117 -28.706 3 0.465 36.207 2.150 -77.830 

4 0.461 12.997 2.171 -28.222 4 0.465 34.269 2.153 -73.771 

5 0.462 14.957 2.167 -32.412 5 0.440 51.457 2.276 -117.090 

Average 0.461 15.406 2.171 -33.507 Average 0.458 39.612 2.185 -86.916 

age + 

additional  

1 0.464 11.734 2.155 -25.286 

age + 

additional  

1 0.459 37.329 2.178 -81.299 

2 0.465 10.538 2.152 -22.675 2 0.492 18.956 2.033 -38.541 

3 0.488 5.147 2.051 -10.558 3 0.483 25.738 2.069 -53.254 

4 0.482 -0.411 2.074 0.851 4 0.486 21.561 2.060 -44.411 

5 0.478 5.222 2.093 -10.929 5 0.458 40.773 2.182 -88.946 

Average 0.475 6.446 2.105 -13.719 Average 0.476 28.871 2.104 -61.290 
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The parameters reported in Table 4 allow to convert individual PISA scores into PIAAC 

scores and vice versa. In practice, many researchers and policy makers are interested in 

identifying concordance values and the associated margin of error for specific scores. Important 

scores are absolute benchmarks of proficiency defining levels of competencies according to the 

PISA and PIAAC assessment frameworks (the PISA and PIAAC proficiency levels) (OECD, 

2013a; OECD, 2013b) and specific percentiles characterising low levels of achievement (10th 

percentile), high levels of achievement (90th percentile) and the median. 

Table A2 in the Annex illustrates the linking conversion (and the precision of such 

conversion) for the six PISA mathematics proficiency levels and the seven PISA reading 

proficiency levels by reporting the transformed scores estimated with age-only weighting and 

with age and additional variables weighting, as well as standard errors associated with each 

transformed score. Table A3 illustrates the linking conversion for the scores characteristing the 

five PIAAC proficiency levels in numeracy and literacy. Linking errors for scores in the middle 

part of the distributions are considerably smaller than at the extremes.  

Table 5 presents two sets of standard errors for the mean, the 10th, 50th and the 90th 

percentiles. The first set takes into account measurement, sampling, and linking uncertainty, 

while the second set takes into account measurement and sampling uncertainty. Results indicate 

that by neglecting linking error, standard errors are heavily underestimated at the 90th and 10th 

percentiles, while at the mean and at the median, discrepancies are smaller.  

Table 5.   

Standard errors for mean 10th, 50th and 90th percentiles  

  Statistic Sampling + Measurement + 

Linking 

Sampling + Measurement Underestimation of error by 
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 mean  4.80  5.24  4.10  4.85  2.96  3.44  2.36  2.54  62%  52%  73%  91%  

p10th  7.13  8.30  6.88  8.29  2.73  3.23  4.46  4.87  161%  157%  54%  70%  

p50th 4.79  5.27  4.05  4.80  3.08  3.52  2.50  2.67  56%  50%  62%  80%  

p90th 6.39  7.26  4.67  5.80  4.85  5.71  2.12  2.78  32%  27%  120%  109%  

P
IA

A
C

 

li
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P
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mean  10.65  11.22  9.87  10.93  7.57  8.38  6.36  6.32  41%  34%  55%  73%  

p10th 14.99  17.11  18.36  20.45  7.36  8.12  11.71  11.83  104%  111%  57%  73%  

p50th  11.20  11.83  9.61  10.65  8.28  9.15  6.11  6.12  35%  29%  57%  74%  

p90th 15.81  17.27  9.88  11.70  11.05  12.56  5.72  6.65  43%  38%  73%  76%  

Discussion 

We show that the pseudo-equivalent group design can enhance the quality of linking in 

the presence of non-equivalent groups and illustrate how it performs compared to equivalent 

group design in the presence of variables that can be used to balance the groups. Monte Carlo 

simulations suggest that pseudo-equivalent group design is particularly useful whenever there is 

a large overlap across the two groups with respect to balancing variables and when the 

correlation between such variables and ability is medium or high.  

We applied the pseudo-equivalent group approach to establish linkages between the PISA 

and PIAAC assessments and find that the results we obtain provide reasonable accurate linking 

that can be used for group-level comparisons. We applied the pseudo-equivalent group approach 

to link PISA and PIAAC because, although the two assessments differ along a number of 

dimensions (in particular age), there is a high degree of similarity in the two assessment 

frameworks and both tests are low-stakes for test-takers: similarities in frameworks and test 

motivation are key preconditions for using the pseudo-equivalent group approach. We estimate 

scale transformations across the two studies using a combination of statistical matching through 

propensity scores and linear transformation in matched samples.  

A successful production of a concordance in this setting depends on the ability of the 

propensity score technique to capture the selection process. Theoretically, the selection process 
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should be captured by age only since random age-restricted samples were taken from both 

assessments. Therefore, samples, conditional on age, should, in theory, be equivalent. However, 

different sampling frames between the studies and access to respondents might have a bearing on 

results. In PISA, schools are the primary sampling unit and students are sampled within selected 

schools. PIAAC samples were drawn directly from the national registry. Discrepancies in the 

overlap between the national registry and the schooled population should not be a major issue in 

Poland, a country where the PISA sample selectivity is low and the PISA target population 

(which comprises students enrolled in schools at grade 7 or above) reflects well the overall 

population of the same age group. Education is compulsory in Poland up to the age of 18 

(Eurydice, 2013) and graduation rates are high: 94% of 25-34 year-olds held the equivalent of a 

high-school degree in 2012 (OECD, 2013a). However, since sample selection processes might 

vary between samples, reducing their equivalence we employed two additional conditional 

variables: gender and the number of books individuals reported having in their homes at the age 

of 15 (as well as interactions between these variables), since these might play a role in the 

selection process. 

 The application of the pseudo-equivalent group approach to PISA and PIAAC is 

interesting for both methodological and substantive considerations. At the methodological level, 

linking the PISA and PIAAC samples requires to link two studies that overlap with respect to 

age, but the overlap is small because PIAAC captures a considerably wider population in terms 

of age spectrum than PISA (such that a large proportion of the PIAAC sample consists of 

individuals who are over 20, while the primary PISA target population consists of 15-year-old 

students). Furthermore, because ability is correlated with age in PIAAC, linking PISA and 

PIAAC allows us to apply the Monte Carlo simulation framework that we developed to explore 
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under which conditions pseudo-equivalent group approach outperforms the equivalent group 

approach. At the substantive level, establishing a link between PISA and PIAAC could enable 

policy makers and researchers to explore issues of achievement growth and how this may differ 

across population groups. However, because all our estimates were conducted using PISA and 

PIAAC Polish samples, the may not be easily generalizable to other countries.  
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