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Abstract  

For computational methods aiming to reproduce colour names that are meaningful to 

speakers of different languages, the mapping between perceptual and linguistic aspects 

of colour is a problem of central information processing. This thesis advances the field 

of computational colour communication within different languages in five main directions. 

First, we show that web-based experimental methodologies offer considerable 

advantages in obtaining a large number of colour naming responses in British and 

American English, Greek, Russian, Thai and Turkish. We continue with the application 

of machine learning methods to discover criteria in linguistic, behavioural and geometric 

features of colour names that distinguish classes of colours. We show that primary colour 

terms do not form a coherent class, whilst achromatic and basic classes do. We then 

propose and evaluate a computational model trained by human responses in the online 

experiment to automate the assignment of colour names in different languages across 

the full three-dimensional colour gamut. Fourth, we determine for the first time the 

location of colour names within a physiologically-based cone excitation space through 

an unconstrained colour naming experiment using a calibrated monitor under controlled 

viewing conditions. We show a good correspondence between online and offline 

datasets; and confirm the validity of both experimental methodologies for estimating 

colour naming functions in laboratory and real-world monitor settings. Finally, we 

present a novel information theoretic measure, called dispensability, for colour 

categories that predicts a gradual scale of basicness across languages from both web- 

and laboratory- based unconstrained colour naming datasets. As a result, this thesis 

contributes experimental and computational methodologies towards the development of 

multilingual colour communication schemes. 
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Impact statement 

In today's global communication environments, understanding how people name colours 

is important for those wishing to develop effective digital image-related technologies. For 

example, there is growing interest in using colour naming data to improve applications in 

data visualisation, human-computer interaction, colour appearance modelling and e-

commerce. 

 

Since 2009, we have led an international collaborative project to collect unconstrained 

colour names with their corresponding colour ranges through an online experiment with 

thousands of observers in tens of languages (accessible at https://colournaming.org). 

This ongoing research is endorsed by the International Colour Association through its 

Study Group on the Language of Colour, and has attracted notable media attention, 

including articles in the Economist, New Scientist, United Press International and the 

Metro newspaper. We replicated the online experimental methodology in laboratory 

conditions to map, for the first-time, unconstrained colour names in the physiologically-

based cone excitation space adopted recently by the Commission Internationale de 

l’Éclairage (CIE). 

 

We developed robust computational tools trained by these multilingual datasets to 

automate the colour naming task across the full colour gamut. Through discussion with 

key companies in e-commerce, we have identified specific gaps in current capability with 

immediate applicability for our tools. We also successfully completed an EU-funded 

Short-Term-Scientific-Mission in Spain that made an advance towards the establishment 

of a procedure to improve the visualisation and accessibility of cultural heritage materials. 

Educational activities include the design of a colour card game, called Colours of Babel, 

which raised its funding goal in a crowdfunding campaign. The game has been played 

with university students as well as with the public in widening participation events in 

United Kingdom, Japan, South Korea and in United States. People can also engage on 

a day-to-day basis with our research through Colournamer, a web application where 

users can currently learn common colour names in seven languages.  

 

In addition to practical applications of our research, the dataset we are constructing, 

together with the analysis tools, allows us to explore basic issues about how colour 
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names are arranged within different languages. Preliminary research outputs of our 

national and international collaborations have been presented in conferences, as book 

chapters and journal articles while more journal publications are in sight. Indirect 

academic outputs include two journal articles with Prof. Semir Zeki, FRS, on categorical 

colour constancy for which I was invited to give a talk at the Design Museum, London. 

Furthermore, a new international collaboration with researchers from Goldsmiths, 

University of London and University of Nimes (France) received a BA/Leverhulme Small 

Research Grant to adopt our experimental methodology for measuring colour naming 

distributions of indigenous people in Namibia in 2018. As a result, this thesis has 

application, as well as, theoretical-oriented impact. 
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Introduction 

Colour naming describes the intriguing cognitive capacity to organise millions of 

discriminable colours into a smaller set of colour categories named, for example, as 

yellow, navy blue and dark olive green (Pointer & Attridge, 1998). Colours named in one 

language are given different colour names in other languages. Colour names vary across 

languages, lexically, in number and in range of reference. To augment colour 

communication within different languages, it is necessary to have a worldwide method 

for mapping perceptual to cognitive aspects of colour (Derefeldt, Swartling & Bodrogi, 

2004). 

 

The use of colour names in colour communication systems may seem inappropriate as 

they may convey different information to different speakers (Munsell, 1905). The advent 

of perceptual colour systems allows an unambiguous, numerical specification of colours, 

but the vast majority of people continue to use natural language in their everyday colour 

communication tasks, such as describing consistently the colour of a garment or a car in 

a continually changing visual world. People-centred design for scientific colour 

communication systems requires understanding of both the physical and the cognitive 

capabilities of the population it is addressed to (Bichard & Gheerawo, 2011). This need 

for better understanding calls for the development of new technologies through 

interdisciplinary research that will benefit each discipline and society as a whole. Colour 

naming has been the subject of many scientific disciplines including among others 

philosophy, psychology, physiology, linguistics, anthropology, and more recently 

computer science. Within computer science, existing computational colour naming 

methods essentially assume a universal system of a small number of colour categories 

but improved understanding of the differences between the large number of colour 

categories in each language of the world would improve their performance in interacting 

with their users (Evans & Levinson, 2009). Ultimately, to move towards the extension of 

human-artificial intelligence in the field of colour communication in multilingual 

environments, we will need to design data-driven colour naming systems without a priori 

theories of semantic universals that support the full complexity of colour languages 

across the world, including their relationship to physical, psychophysical and 

physiological aspects of colour. The work presented here extends previous research 

towards this direction. 
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In this thesis the field of colour communication within different languages is extended in 

five directions. Our work first focused on obtaining large colour lexicons in British and 

American English, Greek, Russian, Thai and Turkish and finding the distribution of 

colours for each name across the available colour gamut. We show that crowdsourced 

free colour naming methods offer a convenient and effective way to collect relevant data. 

Second, we compute linguistic, behavioural and geometric features for each common 

colour name and use a robust classifier to access the coherence of achromatic, primary 

and basic classes of colours based on these features. We show that members of 

achromatic and basic classes share coherent characteristics while this is not true for 

members of the primary classes. Third, we present a novel computational model that 

automates the colour naming task across the full three-dimensional gamut in different 

languages with excellent performance. Fourth, we locate unconstrained colour names in 

the physiologically-based cone excitation space adopted recently by the CIE through a 

calibrated laboratory-based experiment and show that both online and offline 

approaches produce consistent results. Fifth, we present a novel information theoretic 

measure that produces a gradual scale of basicness within different languages from both 

web- and lab- based unconstrained colour naming datasets. On the whole, this study 

aims to make the world a more colourful place by facilitating colour communication within 

different languages. 

1.1.  Thesis Structure and Contributions 

After the general introduction to this study presented here, in Chapter 2, we give a basic 

account of the underlying mechanisms and debates governing colour naming and the 

core components that this thesis is based on. This include a survey of colour spaces and 

colour difference measures, relevant colour naming experiments, an overview of existing 

colour naming models and information theoretic analysis in the context of colour 

language games. 

 

In Chapter 3, we present an ongoing experimental methodology performed online for 

mapping multilingual colour names to colour coordinates for the first-time in British and 

American English (Mylonas, Purver, Sadrzadeh, MacDonald & Griffin, 2015; Griffin & 

Mylonas, 2016; MacDonald & Mylonas, 2016; Mylonas & MacDonald, 2017; Mylonas, 

MacDonald & Griffin, 2017; Griffin & Mylonas, 2019), Greek, Russian (Griber & Mylonas, 

2015; Griber, Paramei & Mylonas, 2017; Paramei, Griber & Mylonas, 2018; Griber, 

Mylonas & Paramei, 2018), Thai (Katemake, Mylonas, MacDonald & Prasithrathsint, 

2015) and Turkish (Ulusoy, Griffin & Mylonas, 2017). In the collection of our behavioural 
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colour naming data, we extend earlier cross-cultural studies which used only the most 

saturated colour samples (n=330) on the surface of the Munsell system (Berlin & Kay, 

1969/1991; Kay, Berlin, Maffi, Merrifield & Cook, 2010; Lindsey & Brown, 2014), by also 

sampling (n=600) the interior of the colour solid. A further methodological improvement 

includes the departure from usual methods which would use a small number of observers 

and/or the use of only a restricted set of monolexemic terms (Berlin & Kay, 1969/1991; 

Boynton & Olson, 1987; Sturges & Whitfield, 1995). Instead, thousands of volunteers 

from linguistically and demographically diverse populations named freely a large number 

of colours online (Moroney, 2003; Mylonas & MacDonald, 2010; Munroe, 2010). We 

argue that participating in an online experiment in your own familiar environment, with 

your own equipment, and without the physical attendance of the examiner would give 

more ecological validity to the underlying categories responsible for colour naming 

(Reips, 2000). We also depart from previous research by taking the different colour 

names given by the observer in our online task to reflect a categorical distinction 

important to the observer; and in our data analysis, we will not use statistical procedures 

to look for similarities between given terms to summarise them into smaller groups 

(Lindsey & Brown, 2014). 

 

In Chapter 3, we also consider families of linguistic, behavioural and geometric features. 

Previous studies have shown that as the length of a word increases, the frequency of its 

use decreases, due to communicative pressures (Zipf, 1935; Piantadosi, Tily & Gibson, 

2011). Hence, our first linguistic measurement is the length of a colour name determined 

by the number of letters of each response in our online colour naming experiment (Brown 

& Lenneberg, 1954; Berlin & Kay, 1969/1991; Boynton & Olson, 1987). We will also count 

the number of derivative forms of each colour name, such as, ‘greenish, ‘greener, or 

‘pale green’ (Berlin & Kay, 1969/1991; Kerttula, 2007). Our third linguistic measurement 

is the frequency of colour names in a million of Twitter messages as a measure of 

psychological salience (Hays, Margolis, Naroll & Perkins, 1978, Corbett & Davies, 1997; 

Mylonas et al., 2015). In our second set of features, we consider the behavioural 

measurements of frequency of occurrence, response latency and agreement 

(consensus) across observers in our colour naming experiment that provide an indication 

of easy and hard to name colours (Brown & Lenneberg, 1954; Boynton & Olson, 1987; 

Sturges & Whitfield, 1995). The third set of measurements considers the geometrical 

characteristics of the regions of colour space corresponding to each colour name. Here, 

we measure the mean location – called a centroid (Boynton & Olson, 1987) – of each 

colour category in terms of their perceptual attributes: lightness, chroma and hue, their 

size / volume (Mylonas & MacDonald, 2016) and their shape-sphericity (Basser & 

Pierpaoli, 1996; Gärdenfors, 2000).  
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In Chapter 4, we make the claim that if a subset of colours has a foundational role in the 

system of colour naming, then that will leave measurable marks in the properties of those 

colours when compared to other colours. We employ machine learning methods to 

discover criteria in the above families of features of colour names and access the 

coherence of proposed special classes of colours, including achromatic, primary and 

basic classes. For the primary class we report the coherence of the Hering primary 

colours (black, white, red, green, blue and yellow) and for the basic class we report the 

coherence of the Berlin & Kay’s basic colour terms (Hering’s primaries plus purple, 

orange, pink, grey and brown). For the achromatic class we consider only three terms 

(black, grey and white) to check whether smaller classes are necessarily less coherent 

because they have fewer examples from which to determine a membership criterion. Our 

findings provide evidence to substantiate the coherence of basic and achromatic classes, 

but we found no support for the coherence of any version of a primary class. The 

examination of the contribution of the families of features in the assessment of the best 

performing basic class showed that none of the three families is as good as all three 

families together. These results provide evidence against primaries playing a 

fundamental role in the development of colour categories and challenge explanations 

based on this claim (Kuehni, 2005; Philipona & O’Regan, 2006; Regier, Kay & Khetarpal, 

2007). 

 

In Chapter 5, we focus on algorithmic components needed for applications. For example, 

given the numerical coordinates of a sample in some colour space, what is the best name 

to describe it in multiple languages? We present the evaluation of a range of 

computational models trained by human observers of the colour naming experiment to 

automate the assignment of colour names across the full three-dimensional (3D) colour 

gamut of different colour spaces (Mylonas, Andrews & Griffin, 2016). Each method is 

assessed by cross validation and scored by root-mean-square (RMS) of Bhattacharya 

distances between observed and interpolated histograms of colour naming responses. 

A Rotated Split Trees (RST) approach performs best in automating the colour naming 

task. An evaluation of RST in several colour spaces (linear RGB, sRGB, CIEXYZ 1931, 

CIELAB, CIELUV and CIECAM02-UCS) showed that overall the algorithm performed 

best in CIELUV, in agreement with the reports of a recent study on colour clustering 

(Douven, 2017). Using these tools, we infer histograms of naming responses for any 

colour, and compute their entropy as a measure of naming variability. Our analysis 

revealed structure of easy and hard to name regions on the interior as well as on the 

surface of colour space that can be used to guide decisions for easy and hard to identify 

colour palettes in colour design (Mylonas & MacDonald, 2017). A key contribution of this 
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chapter is the training of our computational colour naming model with multilingual 

datasets in British and American English, Greek, Russian, Thai and Turkish to assign 

colour names to colours across the full colour gamut rather than using only a single 

language of existing methods (Lammens, 1994; Seaborn, 2005; Mojsilovic, 2005; 

Benavente, Vanrell & Baldrich, 2008; Weijer, Schmid & Verbeek, 2007, Heer & Stone, 

2012; Parrage & Akbarinia, 2016). Our findings suggest that each language of the world 

should be approached in its own terms when automating the colour naming task, 

especially in the blue and green regions where some languages acquired prominent 

turquoise, sky blue and or lime green categories while others not. 

 

In Chapter 6, we determine for the first time the location of unconstrained colour names 

within the physiologically-based cone excitation space (Stockman & Sharpe, 2000; CIE 

170-1: 2006; CIE 170-2: 2015) through a laboratory-based experiment using a calibrated 

cathode-ray tube (CRT) monitor. The landmark colour names usually associated with 

unique hues (Boynton & Olson, 1987), red and green were not colinear with white but 

yellow was colinear through white with blue. Red was nearly complementary with 

turquoise and green with magenta. We also show that the loci of the basic colour terms 

obtained in the offline experiment are consistent with the loci of these names in the online 

experiment. Our findings support the validity of both, online and offline methods in 

estimating colour naming functions in laboratory and real-world monitor settings. 

 

In Chapter 7, we focus on which colour names are shared and well comprehended 

among speakers in each language. We extend upon previous cross-cultural research, 

which used multiple questionable criteria for the identification of basic colour terms 

(BCTs; Berlin & Kay, 1969/1991; but see Crawford, 1982; Saunders & van Brakel, 1997; 

Levinson, 2000; Biggam, 2012), by contributing a simple, language-independent 

measure – called dispensability – that produces a graded scale of basicness from both 

web- and lab- based unconstrained colour naming data in different languages (Mylonas, 

Stockman & Griffin, 2018). We show that in all three datasets in English (British, 

American and calibrated) the 11 BCTs of Berlin & Kay (1969/1991) had lower 

dispensability scores than all non-BCTs. Our measure was also able to capture the 

indispensability of the proposed second blue basic term in Greek, Russian, Thai and to 

a lesser degree in Turkish (Prasithrathsint, 1988; Sturges & Whitfield, 1995; Özgen & 

Davies, 1998; Androulaki, Gômez-Pestañ, Mitsakis, Jover, Coventry, Davies, 2006; 

Mylonas & MacDonald, 2016; Paramei et al. 2018). Our results support growing evidence 

that communication efficiency provides a better framework to understand colour naming 

than opponent theory (Jameson & D’ Andrade, 1997; Lindsey, Brown, Brainard, & 

Apicella, 2015; Regier, Kemp & Kay, 2015; Abbot, Griffiths & Regier, 2016; Gibson, 
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Futrell, Jara-Ettinger, Mahowald, Bergen, Ratnasingam, Gibson, Piantadosi & Conway, 

2017). 

 

In Chapter 8, we give a general discussion of the findings and limitations of this study 

while the thesis concludes in Chapter 9 with suggestions for future developments. 

1.2.  Published work 

Parts of this thesis have been published in the following papers:  

 

1.2.1. Direct 

1. Mylonas, D., Purver, M., Sadrzadeh, M., MacDonald, L., Griffin, L. D. (2015). The 

Use of English Colour Terms in Big Data. In AIC 2015 Midterm Meeting. Tokyo, 

Japan. 

2. Katemake, P., Mylonas, D. MacDonald, L., Prasithrathsint, A. (2015). 

Comparison Among Three Methods for Thai Colour Naming. In AIC 2015 

Midterm Meeting. Tokyo, Japan. 

3. Грибер Юлия Александровна & Милонас Димитрис (2015) Картография 

цвета: эмпирический анализ цветонаименований русского языка, Человек и 

культура. (In Russian, trans.: Yulia Griber & Mylonas Dimitris (2015) Color 

mapping: empirical analysis of color terms in the Russian language). 

4. MacDonald, L., Mylonas, D. (2016). Colour Naming: Linking Vision and Speech. 

In 3rd International Conference 'Colour, Culture, Science'. Kraków, Poland. 

5. Mylonas, D., Andrews, J., Griffin L.D. (2016). Variability in free colour naming 

across the full colour gamut. In AVA Christmas Meeting 2016. Queen Mary 

University of London, London, UK. 

6. Griffin L.D., Mylonas, D. (2016). Why so much talk about “red”? In AVA Christmas 

Meeting 2016. Queen Mary University of London, London, UK. 

7. Mylonas, D., MacDonald, L. (2017). Colour Naming for Colour Design. In Colour 

Design, ed. Best, J., Elsevier 

8. Mylonas, D., MacDonald L., Griffin, L.D. (2017). Differences in Color Naming 

between British and American English Speakers. In 13th AIC Congress, Jeju, 

South Korea. 

9. Griber Y., Paramei G.V., Mylonas, D. (2017). Gender Differences in Russian 

Colour Naming. In 13th AIC Congress, Jeju, South Korea. 

10. Ulusoy B., Griffin L.D., Mylonas, D. (2017). Turkish Colour Naming on the Net. In 

13th AIC Congress, Jeju, South Korea. 
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11. Paramei, G. V., Griber, Y. A., & Mylonas, D. (2018). An Online Color Naming 

Experiment in Russian Using Munsell Color Samples. Color Research & 

Application, 43(3), 358–374. https://doi.org/10.1002/col.22190 

12. Griffin, L. D., & Mylonas, D. (2019). Categorical colour geometry. PLOS ONE, 

14(5), e0216296. https://doi.org/10.1371/journal.pone.0216296 

13. Mylonas D., Stockman A., Griffin L.D. (2018) Basic Colour Terms are 

Indispensable. In AVA Christmas Meeting 2018, Birkbeck University of London, 

London, UK. 

14. Mylonas D., Griffin L.D., Stockman A., (2019) Mapping Colour Names in Cone 

Excitation Space. In 25th Symposium of ICVS, Riga, Latvia.  

15. Mylonas D. (2019) A Perpetual Ride to Knowhere, In Colour & Poetry, ed. Volley, 

J., The Small Press. 

 

1.2.2. Indirect 

1. Zeki S., Cheadle S., Pepper J., Mylonas D. (2017). The constancy of the colored 

after-images. Frontiers in Human Neuroscience, 11. 

2. Zeki S., Javier A., Mylonas D. (2019). The Biological Basis of the Experience and 

Categorization of Colour. European Journal of Neuroscience. 

 

1.2.3. In preparation 

1. Coherence of Achromatic, Primary and Basic Classes of Colour 

2. The indispensability of basic colour terms across languages. 

3. Locating unconstrained colour names in cone excitation space. 

4. Colour naming in American and British English. 

5. A multilingual computational colour naming model. 

6. Online and offline colour naming experiments. 

7. Colour naming in remote societies 

1.2.4. Invited Talks & Workshops 

1. Mylonas, D. (2015) The role of psychological primaries in cognitive colour 

spaces: a cross-cultural colour naming study. Talk in the Annual Colour Vision 

Meeting, Colour Group Great Britain, Inst. Ophthalmology, UCL, London, UK. 

2. Mylonas D. (2017) Where our brain meets the universe. Talk in the 

Chromophobia Colour in Architecture. Design Museum, London, UK. 

3. Mylonas D. (2017) Features of Green colour categories across languages. Talk 

in the Colour Green, Colour Group Great Britain, Newcastle, UK. 

https://doi.org/10.1002/col.22190
https://doi.org/10.1371/journal.pone.0216296
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4. Mylonas, D. (2018) Colour brings people together. Workshop in the Munsell 

Centennial Color, ISCC-AIC, Boston, US. 

5. Mylonas, D. (2018) Colour naming within and across languages. Workshop in the 

Munsell Centennial Color, ISCC-AIC, Boston, US. 

6. Mylonas, D. (2019) Mapping colour names in LMS cone excitation space. Talk in 

the Annual Colour Vision Meeting, Colour Group Great Britain. City University, 

London, UK. 

7. Mylonas, D. (2019) Colour naming: a perpetual ride to knowhere. Talk in the 

Colour & Poetry: A Symposium, Slade Research Centre, University College 

London, UK. 

 

1.2.5. Awards 

1. Mylonas D. (2015). Characterisation and visualization of cultural heritage 

materials through colour naming. COST-STSM-TD1201-041015-067757, 

European Cooperation in Science and Technology (Brussels, Belgium). 

2. Mylonas D. (2017). Differences in color naming between British and American 

English speakers. WD Wright Award, Colour Group Great Britain, UK. 

3. Mylonas D. (2019). Mapping colour names in cone excitation space. WD Wright 

Award, Colour Group Great Britain, UK. 

4. Mylonas D. (2019). Mapping colour names in cone excitation space. Applied 

Vision Association (AVA) Travel Award, UK. 
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Background  

This chapter gives a basic account of the underlying mechanisms governing colour 

naming. Its purpose is to give a general context of the basis and development of lexical 

colour categories. We then describe the core components that this thesis is based on, 

which include a survey of colour spaces and colour difference measures, relevant colour 

naming experiments, an overview of existing colour naming models and information 

theoretic analysis in the context of language games. 

2.1.  Colour naming and colour vision 

Colour naming is the process of organizing millions of discriminable colours (Pointer & 

Attridge, 1998) into a smaller set of categories named, for example, as red, orange and 

purple. In a short treatise, Aristotle (350 B.C.E.) was one of the first to theorize on the 

underlying mechanisms of colour categorisation. He suggested that five pure colours - 

crimson, green, cyan, purple and possibly yellow (Sorabji, 1972) - arise from the mixture 

of white (light) and black (darkness) and from these all the other impure or irregular 

colours are generated. Aristotle justified this reduction into seven rational categories to 

simple numerical ratios – similar to other senses – and offered an analogy with music 

concords: 

 

“…we may regard all these colours as analogous to the sounds that enter into music, and 

suppose that those involving simple numerical ratios, like the concords in music, may be 

those generally regarded as most agreeable; as, for example, purple, crimson, and some 

few such colours, their fewness being due to the same causes which render the concords 

few.” 

 (Aristotle 350 B.C.E. / trans. by Beare, 2000) 

 

This analogy between colour and the octave division of pitch influenced Isaac Newton 

(1730) in his prominent work to name initially five principal colours - red, yellow, green, 

blue and violet in the spectrum - and consecutively seven, by adding orange and indigo 

(Topper, 1990), arranged in a circular representation (see Figure 2.1). Neutral or 

achromatic colour names have no specific wavelengths and, as such, black was 

considered as the absence of colours and white as the presence of all colours. 
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Figure 2.1 Seven spectral colour names of Newton arranged in a circular representation 

(reproduced from Newton, 1730). 

Based on Newton’s findings and his wave theory of light, Thomas Young (1802) 

suggested that it is necessary to assume only a limited number of three principal colours 

- initially labelled red, yellow and blue, but later switched to red, green and violet - as it 

would be impossible for every receptor in the retina to be sensitive to all different 

wavelenths of light. Helmholtz (1911) extended the trichromatic hypothesis by 

suggesting three different types of receptors with overlapping sensitivities. The Young-

Helmholtz theory of trichromatic colour vision was supported by the colour matching 

studies of Grassmann (1853) and Maxwell (1872) which further advanced our scientific 

understanding of colour vision and led to the development of the Red, Green and Blue 

(RGB) additive colour models, which are widely used in input and output devices today. 

Trichromacy can predict with reasonable precision whether two coloured lights with 

different spectral power distributions match perceptually, but it cannot account for colour 

appearance phenomena. For example, why mixing yellow with blue lights would produce 

a perfect white. This limitation led Ewald Hering (1878/1964) to propose an ‘opponent 

colours’ theory, which assumes four chromatic processes arranged in opponent pairs 

(red versus green and yellow versus blue) and two achromatic processes (white versus 

black) to account for colour appearance, and, for the contestable observation that these 

colours are perceived to be unique while others are not (Hurvich & Jameson, 1957; but 

see also Malkoc, Kay & Webster, 2005; Bosten & Boehm, 2014). 

 

The two theories can be unified to provide a comprehensive explanation for colour vision 

by assuming that colour appearance mechanisms operate upon the output of the cone 

mechanisms. This is better explained in a mechanistic framework shown in Figure 2.2, 

where the first stage consists of the trichromatic properties of cones, the cone-opponent 

mechanisms subsist the second and the third stage consists of the colour-opponent 
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mechanisms of colour appearance (Judd, 1949; De Valois & De Valois, 1993; Stockman 

& Brainard, 2010).  

 

In the first stage, the three types of Long-, Medium- and Short- wavelength sensitive 

cones in the retina produce univariant responses relative to their absorbed amount of 

light (Rushton, 1972). The outputs of the three cones (L, M and S) are combined in the 

second stage by three postreceptoral mechanisms: L+M, L-M and S-(L+M). The first 

luminance mechanism adds the inputs from the L and M cones. The second antagonistic 

mechanism encodes signals in the range between turquoise and red by computing the 

difference between the L and M cones inputs; and consists effectively of a single main 

axis with only a modest – if any – contribution from the S cones. The output of this 

antagonistic stage is then modulated by the S cone in the third mechanism where the 

sum of L- and M- cone signals is differenced by the S-cone signal to split the main axis 

into two separate axes and encode signals varying from lime to purple. In the third 

conjectured stage, the outputs of the second stage mechanisms are summed to produce 

the four colour opponent mechanisms - Red/Green, Green/Red, Blue/Yellow and 

Yellow/Blue. These three stages illustrate the colour processing that takes place in the 

visual pathway from the cones of the retina to the visual cortex through the axons of the 

retinal ganglion cells and the lateral geniculate nucleus in the thalamus (Stockman & 

Brainard, 2010). 

  

The mechanisms of the second stage correspond well with the three physiologically and 

anatomically defined channels in the lateral geniculate nucleus (LGN; De Valois, 

Abramov & Jacobs, 1966; Derrington, Krauskopf & Lennie, 1984) and the three cardinal 

dimensions proposed by Krauskopf and his colleagues (1982). The later authors carried 

out psychophysical experiments to define three independent channels in colour vision, 

called cardinal directions. The first direction refers to luminance and the second and third 

ones to colour-opponent directions. Notably, these cardinal dimensions do not coincide 

with the labelled dimensions of the colour opponent mechanisms of the third stage 

proposed by Hering (1878/1964; Abramov & Gordon, 1994; Valberg, 2001; Wuerger, 

Atkinson & Cropper, 2005). Therefore, other higher-order colour mechanisms are 

required to account for colour appearance, but the nature of their involvement remains 

an open question in colour vision (Gegenfurtner & Kiper, 2003; Stockman & Brainard, 

2010). Subsequent studies showed evidence of activity of larger number of chromatic 

channels (Krauskopf et al., 1986; Gegenfurtner & Kiper 1992). Hansen & Gegenfurtner 

(2006) suggested multiple broadly tuned mechanisms, while Eskew and his associates 

suggested the existence of six unipolar postreceptoral colour mechanisms, rather than 

three bipolar mechanisms (Eskew, 2009; Shepard et al. 2016; 2017). 
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Figure 2.2. Three stage colour mechanisms. The first stage (top & bottom) involves L-, M-, S- 

wavelength sensitive photoreceptors. The second stage consists of the L-M and M-L cone 

opponent (top) and S-(L+M) cone opponent (bottom) mechanisms. The third stage includes 

the summation of the cone-opponent second stage mechanisms to produce the labelled 

colour opponent mechanisms (reproduced from Stockman & Brainard, 2010). 

 

The higher stages of colour processing take place in the visual cortex, where information 

from the retino-geniculate channels is combined to construct colour perception. Our 

understanding of the colour processing in the cortex is less clear. Livingstone & Hubel 

(1988) suggested a specialized system for colour processing based on their observations 

of segregated cells in layers of the primary visual cortex (V1) analyzing either luminance 

or colour information.  This was not supported by subsequent studies (Lennie, Krauskopf 

& Sclar, 1990, Gegenfurtner, Kiper & Fenstemaker, 1996). A key point with regards to 

the hue preference of cells in V1 (Lennie et al., 1990), in secondary visual cortex V2 

(Kiper, Fenstemaker & Gegenfurtner, 1997) and cells in LGN (Derrington et al., 1984) is 

that cortical cells do not respond to hues associated with the unique hues of Hering, but 

prefer instead intermediate hues such as limes and oranges. This tuning of cortical cells 

in V1 and V2 might play a role in the construction of colour categories, but their 

responses correlate predominantly with the wavelength composition of light and only with 

local colour contrasts (Lennie et al., 1990; Wachtler, Sejnowski, & Albright, 2003) rather 

than with the perceived constant colours of more naturalistic large fields of view (Zeki, 

1973, 1980, 1983).  
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Colour constancy is the ability of the colour vision system to discount changes in 

illumination conditions and assign constant colours to objects or surfaces in scenes. 

Mechanisms that mediate colour constancy can be grouped into two broad categories: 

a) chromatic adaptation at receptoral level (von Kries, 1905) and b) spatial ratio-taking 

operations at cortical level (Land & McCann, 1971, Zeki, 1980). The basic idea of 

chromatic adaptation models is that the three cone types in the retina selectively adapt 

to changes of illumination by dividing their Long, Medium and Short spectral sensitivity 

to light reflected from a coloured surface by their corresponding sensitivity to an 

estimated reflectance of a white surface under the same illumination. In contrast, Edwin 

Land (1974) proposed a computational theory (‘Retinex’) to account for colour constancy 

based on a comparison of three lightness measurements of the wavelength composition 

reflected from a surface and from its surrounds. Retinex hypothesise that the three 

lightness records correspond to the sensitivity of the three L-, M-, S- cones in the retina 

and the spatial comparisons take place in the cortex. Nevertheless, neither chromatic 

adaptation nor spatial computational methods can fully account for human colour 

constancy (Brill & West, 1986; Kraft & Brainard, 1999; Golz & MacLeod, 2002). By colour 

constancy, we should do not mean that the colour of an object preserves its exact shade 

across illuminations. The shade of a coloured surface will naturally change with changes 

in the wavelength-energy composition of the light in which it is viewed. Instead, objects 

maintain their perceived colour category to stabilise their appearance in different viewing 

conditions. Therefore, a better description would be ‘constant colour categories’, a 

definition than brings colour constancy closer to colour categorisation (Jameson, 1983; 

Olkkonen, Hansen & Gegenfurtner, 2009; Zeki et al., 2017; Zeki et al., 2019).  

 

The actual cortical site at which constant colour categories are generated attracted 

significant scientific interest. Zeki suggested that the extrastriate visual area V4 plays a 

critical role in colour constancy in both monkeys (Zeki, 1973. 1980, 1983) and humans 

(McKeefry & Zeki, 1997). The peak sensitivity of narrow-band cells in V4 is distributed 

through the spectrum - including the extra-spectral purple. This area can account for the 

narrow ranges in colour space of colour categories (Zeki, 1980). Subsequent studies 

challenged (Schein, Marrocco, & de Monasterio, 1982; Schein & Desimone, 1990; 

Shapley & Hawken, 2011 for a review) but also supported (Conway & Tsao, 2006; Wade 

et al., 2008; Tanigawa et al., 2010; Brouwer & Heeger, 2013) the existence of a colour 

processing centre in the brain. Another area suggested to be involved in the elaboration 

of colour categories is the inferior temporal (IT) cortex implicated also in object vision.  

Komatsu et al. (1992) found a uniform distribution of cells with colour preferences, even 

down to a very narrow range of colours such as pale pink and pale red but found no 
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activations for blue and cyan in this area. The involvement of the IT cortex in colour 

processing has also been confirmed by fMRI studies which show multiple colour-biased 

regions (Lafer-Sousa & Conway, 2013). These conflicting views suggest that V4 may not 

act in isolation, but in cooperation with multiple cortical areas for the construction of 

constant colour categories. 

 

Colour naming offers a direct and natural method of measuring colour constancy 

(Uchikawa, Uchikawa & Boynton, 1989; Troost & Weert, 1991; Foster, 2011, Zeki et al., 

2017). Moreover, the strong correlation between naming consistency across illuminants 

and across observers suggests a close link between categorical colour constancy and 

consistent colour communication (Olkkonen et al., 2009, 2010; Zeki et al. 2019). Colour 

naming is considered one of the last stages in colour processing and it is likely to involve 

both visual and language areas of the brain, even though further research is needed to 

draw firm conclusions. Rare cases of cortical damage where patients lost only the ability 

to name colours of objects (Damasio, McKee & Damasio, 1979; Davidoff, 1996) indicate 

the existence of a specialised area of the brain for colour naming processing. In a 

positron emission tomography study with healthy human subjects, the production of 

colour words activated the ventral temporal lobe – an anterior region to V4 associated 

with object knowledge (Martin, Haxby, Lalonde, Wiggs & Ungerleider, 1995). In recent 

neiroimaging studies, Brouwer & Heeger (2013) located activations in human V4 and 

VO1 during colour naming tasks while Bird and his colleagues (2014) found no 

activations in any of the traditional visual and language areas of the brain for categorical 

perception of colours. The elusive relationship between the psychophysical mechanistic 

stages, colour constancy and colour naming remains one of the unsolved mysteries in 

colour vision. 

 

2.2.  Primary colours in colour naming 

The primary colours are widely considered to be red, green, yellow, blue, black and white 

(Kaiser & Boynton; 1996). These colours have been also proposed as a universal basis 

for colour naming across languages (Berlin & Kay, 1969/1991; Kay & McDaniel, 1978; 

Regier, Kay & Cook, 2005). A range of explanations has been suggested about their 

fundamental role in colour categorization based on different stages of the physical-

optical-physiological causal sequence that underlies colour sensation.  

 

An explanation of the physical type is that the primary colours have special status in 

visual ecology (Shepard, 1992; Mollon, 2006) and in the subtractive mixing of colours as 
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occurs with pigments or in the additive mixing of colour lights. Further along the causal 

chain of colour sensation is the idea that the primaries are special because they 

correspond to sensations that have a less ambiguous relation to their underlying 

reflectance than other colours (Philipona & O’Regan, 2006). There are other theories 

that purely consider the range of possible cone responses; for example, that the 

primaries are maximally spaced within the 3D sub-volume of cone response space 

corresponding to possible surface colours. A widely cited account of this type by Regier, 

Kay and Khetarpal, (2007) based on the suggestion by Jameson & D’Andrade (1997) 

argues that colour categories are determined by optimising the division of an irregular 

perceptual colour space to maximize similarity within a category and minimise similarity 

across categories. Furthest along the causal physiological chain is the idea that the 

primaries align with postulated postreceptoral (opponent) channels (Kay & McDaniel, 

1978). As discussed earlier, these primary colour categories contain examples that are 

unique in that they are perceived to contain no other colour; and are considered an 

important physiological component in the formation of colour categories (Kuehni, 2005). 

 

Contrary to these theories is the view that primary colours play no special role in the 

formation of colour categories. The cultural view for the origin of all colour names holds 

that it is the need to communicate about the surface properties of objects that generates 

colour names (Brown & Lenneberg, 1954; Lucy & Shweder, 1979; Davidoff, Davies & 

Roberson, 1999; Levinson, 2000; Steels & Belpaeme, 2005; Davidoff, 2015; Gibson et 

al., 2017). Neurobiological findings do not support either the concept of primary colours 

in cortical regions (Hubel, 1988), as the wavelengths of peak sensitivity of neurons are 

distributed across the spectrum; while some neurons are sensitive to desaturated and 

extra-spectral colours that do not correspond to any single wavelength of light (Zeki, 

1980; Komatsu, 1992; but see Stoughton & Conway, 2008 and Mollon, 2009 for a reply). 

The idea that primary colours are associated with the opponent-process cells in early 

vision (Hering, 1878/1964; Hurvich & Jameson, 1957; De Valois et al., 1966) has also 

been disputed (Abramov & Gordon, 1994; Valberg, 2001; Wuerger, et al., 2005).  

 

There are at least three reasons why the special status of primary colours has been 

maintained despite the inability to match them to opponent-process physiology. First, it 

is still widely held that primary colours are necessary and sufficient to describe all colours 

(Hardin, 2005). Secondly, primary colours show higher frequency as qualifying 

adjectives in texts (Corbett & Davies, 1997). Third, many tasks have used only a 

constrained set of colour names, allowing authors to claim (see Ocelák, 2014 for 

arguments that the claim is spurious) that primary colour names are the most important 

for colour matching and naming (Berlin & Kay, 1969/1991; Boynton & Olson, 1987; 
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Sturges & Whitfield, 1995; Kay et al., 2010; Panorgias, Kulikowski, Perry, McKeefry & 

Murray, 2010). Nevertheless, the importance of primary colours has been disputed. 

 

The primary colours being the basis of colour naming systems has been questioned on 

conceptual grounds (van Brakel, 1993; Jameson & D’Andrade, 1997; Ocelák, 2014) and 

in a re-analysis of the World Color Survey (Kay et al., 2010) by Jameson (2010); but 

these concerns have not been met with widespread acceptance. Doubts have also been 

raised about the superiority of primary colour terms over non-primaries with respect to 

yielding consensus for naming (Boynton & Olson, 1987; Lindsey & Brown, 2006, 2009; 

Uchikawa & Boynton, 1987), for visual search (Wool, Komban, Kremkow, Jansen, Li, 

Alonso & Zaidi, 2015) and for hue cancelation (Malkoc et al., 2005; Bosten & Boehm, 

2014). Regarding hue cancelation, both studies above found no differences between 

unique-hue judgments of binary hues (i.e., orange, purple) and those of their 

corresponding primaries.  

2.3.  Basic colour terms in colour naming 

Berlin and Kay (1969/1991) suggested that after languages acquire terms for primary 

colours, they then acquire terms for grey, purple, brown, orange and pink, which, 

together with the primary terms make up the ‘universal basic colour terms’. These 

undergo a seven-stage evolution in the development of colour vocabulary with the 

following order of emergence: 

 

Stage I: Black and white 

Stage II: Red 

Stage III: Either green or yellow 

Stage IV: Both green and yellow 

Stage V: Blue 

Stage VI: Brown 

Stage VII: Purple, pink, orange, grey 
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Berlin and Kay defined BCTs by a combination of linguistic and psychological criteria: 

 

1. A BCT should consist only of a single word. 

2. Its scope should not overlap with any other colour term. 

3. It should not be restricted to a limited class of objects. 

4. It should be psychologically salient for speakers of the language in question. 

5. Its meaning is not divisible or determined by its parts. 

6. It is not the name of an object. 

7. It is not a foreign loan word. 

8. Its morphology is not complex. 

 

While these criteria might sound logical, they have been strongly criticised as being not 

equally applicable across languages (Lucy & Sweder, 1979; Saunders and van Brakel, 

1997; Biggam, 2012). For example, orange, which is considered a basic term in English, 

derives from the name of an object (fruit); and it is a foreign loan word from old French, 

therefore violating the sixth and the seventh criteria.  

 

Subsequent studies found that BCTs are responded to quicker and with greater 

consensus within and across observers than non-basic colour terms (Boynton & Olson, 

1987; Uchikawa & Boynton, 1987; Sturges & Whitfield, 1995; Regier et al. 2005; Lindsey 

& Brown, 2009). In machine vision, Griffin (2006) found that basic colour terms are 

performing better than any other set of colour terms in object classification tasks and 

proposed a pressure-to-optimality explanation for their basis. A symmetry analysis of the 

eleven BCTs by Griffin (2001) revealed similarities between the psychological structure 

of the basic colours and the physical structure of colour space (Figure 2.3). 
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Figure 2.3 The psychological structure of the Basic Colour Terms. The spheres correspond to 

the 11 BCTs and the lines their adjacencies (reproduced from Griffin, 2001). 

There has been considerable debate over what makes these eleven colour terms basic 

(see also Levinson, 2000; Lyons, 1995). Most importantly, Kay and his colleagues did 

not regard all basic terms as equivalent, even if subsequent investigations often did 

(Boynton & Olson, 1987; Sturges & Whitfield, 1995; Griffin, 2001, 2006; Yendrikhovskij, 

2001; Lindsey & Brown, 2014; Lindsey, Brown, Brainard & Apicella, 2015). In its current 

form, the Universalist hypothesis suggests that a biological explanation for the origin of 

basic colour terms may be true only for the six landmark colours corresponding to the 

opponent primaries of Hering, while the other five may be formed under the influence of 

higher cognitive mechanisms. Logically, this opens the way for languages to acquire 

more than eleven basic colour terms, and for secondary terms to be considered as a 

potential group out of which new basic colour terms can arise (Hardin & Maffi, 1997). 

2.4.  Basic colour terms in different languages 

In this section we summarise the identification of BCTs by previous studies in the 

American and British English, Greek, Russian, Thai and Turkish colour lexicons that will 

be used in this study. 

 

In American English, Berlin & Kay (1969/1991) reported eleven BCTs: white, black, red, 

yellow, green, blue, brown, purple, pink, orange and grey and classified English in the 

highest stage (VII) of evolution in the development of colour vocabularies. Boynton and 

Olson (1987) confirmed that American English speakers use the eleven BCTs more 
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consistently, with greater consensus and more quickly than non-BCTs in laboratory 

settings. Lindsey and Brown (2014) confirmed the importance of the eleven BCTs in the 

American colour lexicon but also reported nine additional statistically significant non-

basic colour categories featuring peach, teal, lavender and maroon as high-consensus 

terms. 

 

Sturges and Whitfield (1995) showed that BCTs have shorter response times and also 

higher consistency and consensus than non-BCTs in British English. Cream was 

suggested as a strong candidate for a missing twelfth BCT, but with a subtle lower 

consistency from the other eleven BCTs. Recently, Mylonas & MacDonald (2016) 

suggested the extension of the English inventory from 11 basic colour terms to 13 terms, 

with the addition of lilac and turquoise. The authors analysed colour naming responses 

from an online colour naming experiment and computed the mean of the ranks for each 

colour term across six different measures (frequency, consensus, response time, 

consistency, volume and inter-experimental agreement) to obtain a gradual index of 

basicness. In terms of index differences, separation from the lowest ranked BCTs, of 

white, red and orange, to lilac and turquoise was moderate; but there was a considerable 

jump in index value to the following non-basic term, tan (14th). Both terms appear to 

reduce the uncertainty of colour naming from using only the 11 BCTs, as lilac partitions 

the large colour category of purple in light and dark segments, while turquoise appears 

at the border between green and blue. 

 

The Greek colour language was studied through the literature of Homeric Greek and was 

categorized as Stage IIIb by Berlin & Kay (1969/1991). A recent study (Androulaki et al. 

2006) of Modern Greek colour terminology reported twelve BCTs including two blues: 

aspro/white, mavro/black, kokkino/red, kitrino/yellow, prasino/green, ble/blue, 

galazio/light blue, kafe/brown, gri/grey, mov/purple, roz/pink, and portokali/orange. 

Further evidence for the existence of the two basic Greek blues provided by two studies 

on Greek-English bilingualism (Athanasopoulos, 2009) and on categorical perception of 

the blue region between Greek, German and Russian speakers (Maier & Rahman, 

2018). 

 

Berlin and Kay (1969/1991) noted that Russian speakers may have 12 BCTs in their 

colour lexicons, including two blues: belyj/white, čërnyj/black, krasnyj/red, žëltyj/yellow, 

zelënyj/green, sinij/blue, koričnevyj/brown, fioletovyj/purple, rozovyj/pink, 

oranževyj/orange, seryj/grey and goluboj/sky blue. This exemption to the universal 

inventory of the eleven BCTs, triggered an abundance of studies confirming the second 

basic blue in Russian (Morgan & Corbett, 1989; Moss, 1998; Paramei, 2005). In a recent 
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study, we also verified that the two Russian blues divided the blue unitary area in English 

along the lightness dimension, and that their centroids deviated from the centroid of 

English blue (Paramei et al., 2018). 

 

Berlin & Kay (1969/1991) classified the Thai colour language as Stage VII with 10 BCTs, 

excluding grey but recent studies identified twelve BCTs including two blues: white 

/khaw/, black /dam/, red /dang/, yellow /leaung/, green /khiaw/, light blue /fa/, blue 

/namngen/, brown /namtan/, grey /thaw/, purple /muang/, pink /chompu/ and orange /som 

(Prasithrathsint, 1988; Engchuan, 2003). In a recent study, we compared the frequency 

and location of the twelve Thai basic colours terms in three experimental methodologies 

- two were conducted in controlled viewing conditions and one over the Internet 

(Katemake et al., 2015). Although the frequencies of colour names across the methods 

differed, they produced ranks within each method that were similar to the ranks obtained 

in the other two methods. We found good correspondence amongst the three methods 

in terms of the location of basic colour terms in terms of hue and lightness but large 

differences in chroma dimension. 

 

The Turkish colour lexicon was not investigated by Berlin & Kay (1969/1991), but 

consequent studies reported the existence of twelve BCTs including possibly two blues: 

beyaz/white, siyah/black, kirmizi/red, sari/yellow, yeşil/green, mavi/blue, 

kahverengi/brown, mor/purple, pembe/pink, turuncu/orange, gri/grey and lacivert/dark 

blue (Özgen & Davies, 1998; Ekici, Yener & Camgöz, 2006). The low consensus 

reported for the second blue term lacivert (Rätsep, 2011), diminished the claim for its 

basicness but in a recent analysis of the Turkish data of this study we found that lacivert 

was the fourth term with the highest consensus (Ulusoy et al., 2017). 

 

Overall, these results suggest that basicness is a continuous rather than a binary 

characteristic of lexical colour categories (Lindsey et al., 2014; Mylonas & MacDonald, 

2016; Gibson et al., 2017; Witzel, 2018; for a review). Furthermore, the existence of two 

basic blue terms dividing the unitary English blue area is far more common than 

previously thought and implies the existence of a Stage VIII in the development of basic 

colour terms. 

2.5.  Achromatic colours in colour naming 

The most common achromatic colour names include black, white, grey and their 

modifiers. White and black are considered pure categories according to the Aristotelian 

view (350 B.C.E.) as well as the opponent process theory (Hering, 1878/1964). Hering 
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differentiated the white - black opponent processes from the mutually exclusive 

chromatic opponent processes because grey appears simultaneously whitish and 

blackish. This view was challenged by previous studies, which suggested that grey is 

also a primary category as it shares similar characteristics with the other elemental 

categories (Dimmick 1925; Boring, 1949). Pure grey, they suggest, can be seen when 

white and black or other chromatic opponent axes are in a state of perfect equilibrium, 

but as such has no complementary colour. Quinn and his colleagues (1982) supported 

Hering’s view that grey is a composite colour, but their results were based on a small 

number of subjects (n=3) and a constrained experimental methodology. 

2.6.  Colour specification systems 

The mapping of perceptual and linguistic aspects of colour is essential in order to 

understand their relationship. Colour systems are usually three-dimensional geometric 

spaces because the human colour visual system is comprised of three types of receptors 

sensitive to long, medium and short wavelength of light that allow the description of 

colours with numerical coordinates as points (Kuehni, 2003). The representation of 

perceived colours in such space is often based on colour matching experiments without 

the use of language. Researchers can specify the referents of colour names in terms of 

coordinates in such colour systems. The grid of the colour system can be subdivided into 

regions/categories where the same colour name is used by a large number of observers. 

Using the same colour system in cross-cultural research allows measurements of 

differences and similarities of colour categories across languages. In the following 

sections, we briefly review colour systems which will be covered in this work to specify 

the referents of colour names. 

 

2.6.1. Munsell colour system 

The Munsell colour system was originally designed as an educational tool to help art 

students to describe colours and their relations (Munsell, 1905), but it was further revised 

with extensive visual experiments (Newhall et al., 1943) to standardise colour 

specification in virtually any area of colour application. The system consists of three 

perceptual dimensions - hue, chroma and value - in a cylindrical colour space (Figure 

2.4). The Munsell hue refers to the quality by which we distinguish one colour from the 

other, for example a blue from a green, and it is measured by degrees around horizontal 

meridians. The hue dimension is divided into five principal hues of Red (5R), Yellow (5Y), 

Green (5G), Blue (5B) and Purple (5P) along with 5 intermediate hues which are further 

subdivided into 10 steps. This produces 100 hue steps in the full cycle. Value refers to 

the relative colour quality of lightness or darkness within a colour and it is measured 
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vertically from black being set to 0 and white to 10. Chroma refers to the purity or intensity 

of a colour and it is measured radially from neutral axis towards the surface of the colour 

solid. Each hue is extended to its maximum chroma at each value forming an irregular 

spheroid.  

 

 

 

Figure 2.4 Munsell Colour system, reproduced by Jacob Rus, distributed under a CC BY-SA 

3.0. 

A major drawback of the Munsell system is that while each sample is specified 

colourimetrically, there are no mathematical equations to relate its coordinates to the 

physically measurable values of colourimetric coordinates. Another limitation is the 

unspecified colour appearance of the samples under different viewing condition 

(Fairchild, 2005). Finally, given the cylindrical shape of the solid, the uniformity of the 

sampling varies at different chroma levels. 

 

The positive characteristics and the accuracy of the colour reproduction of the Munsell 

books of colours influenced a large number of researchers to use this system extensively 

in colour naming studies (Brown & Lenneberg, 1954; Berlin & Kay, 1969/1991; Sturges 

& Whitfield, 1995; Olkkonen et al., 2009; Kay et al., 2010; Gibson et al., 2017). In the 

online colour naming experiment of our ongoing study (Mylonas & MacDonald, 2010), 

we employ 600 simulated chips spaced approximately uniformly in the Munsell colour 

system (see section 3.1. ). 
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2.6.2. OSA-Uniform Colour Scale 

As discussed above, the Munsell system suffers from poor uniformity because of its 

radial sampling. The Optical Society of America developed a colour order system based 

on a cuboctahedron structure, which results in the colour system consisting of a uniform 

spacing in all three dimensions (Nickerson, 1981). The O.S.A Uniform Colour Scales 

(UCS) consists of 424 colour samples on a regular 2-unit grid, where 12 samples 

surround each sample with equal distances in L, j and g notation (Figure 2.5). Despite 

its great uniform features, the limitation of the system to sample colour in constant hue 

and high chroma has reduced its practical applications and popularity (Berns, 2000). 

 

Figure 2.5 Cuboctahedral shell of OSA-UCS with 12 points at unit distance from central point 

where L,j,g = 0,0,0 (reproduced from Nickerson, 1981). 

2.6.3. The colourimetric system 

Colourimetry is the science of colour measurement where the objective is to specify a 

physically defined visual stimulus with numbers (Wyszecki & Stiles, 1982). In the CIE 

colourimetric system, this quantitative description of colour is expressed with a triplet of 

values X, Y, Z calculated in practice from spectra as: 
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𝑋 =∑𝑥̅𝑖𝑃𝑖𝛿𝜆

𝑖

 (2. 1) 

 

𝑌 =∑𝑦̅𝑖𝑃𝑖𝛿𝜆

𝑖

 (2. 2) 

 

𝑍 =∑𝑧𝑖̅𝑃𝑖𝛿𝜆

𝑖

 

 

(2. 3) 

where Pi δλ is the spectral radiant power distribution of the colour stimulus at the interval 

i of wavelength 𝜆 ∈ [360, 830] and x,̅  y,̅  z̅  are the colour matching functions of the 

standard colourimetric observer for stimuli at an angular subtense of 2° as defined by 

the CIE in 1931. For stimuli with an angular subtense size greater than 4°, CIE defined 

in 1964 the set of colour matching functions x̅10, y̅10, z̅10 of the supplementary standard 

colourimetric observer. CIE colour spaces are often referred to as device independent 

colour spaces, as they do not depend on any particular device or medium. 

 

These tristimulus values form a perceptual 3D space in which two stimuli sharing the 

same values under the same viewing conditions will, when viewed by an observer with 

normal trichromatic vision, match in colour. CIE complements the previous formalisations 

with the addition of a set of standard illuminants A, B, C and more recently the illuminant 

D series for natural daylights (Wyszeki & Stiles, 1982).  The CIE chromaticity diagram 

(Figure 2.6) is a plot for visualising colour stimuli of the CIE XYZ 1931 space in a 

chromatic plane defined by the coordinates x and y: 

 

 
𝑥 =

𝑋

𝑋 + 𝑌 + 𝑍
 (2. 4) 

 

 
𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
 

 

(2. 5) 

The CIE XYZ 1931 colour space is the basis for all CIE defined colour spaces where we 

can measure differences between any colour but lacks perceptual uniformity (MacAdam, 

1942); this limits its application in measuring the magnitude of the perceived differences 

between mismatched colour stimuli.  
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Figure 2.6 CIE 1931 chromaticity diagram. 

 

2.6.4. CIE 1976 L*u*v* (CIELUV) 

In 1976 the CIE proposed an approximately perceptual uniform colour space defined by 

the following transformation of CIEXYZ 1931 coordinates to L*u*v* coordinates in a 

rectangular grid (Wyszecki & Stiles, 1982): 

 

 𝐿∗  = 116(𝑌/𝑌𝑛)
1/3 − 16 

 

(2. 6) 

 

 𝑢∗ = 13𝐿∗(𝑢′ − 𝑢𝑛
′ ) 

 

(2. 7) 

 

 𝑣∗ = 13𝐿∗(𝑣′ − 𝑣𝑛
′ ) 

 

(2. 8) 

for Y/Yn > 0.01. For Y/ Yn ≥ 0.008856, a modified Lm* is defined as follows: 

 

 𝐿𝑚
∗ = 903.3𝑌 𝑌𝑛⁄  

 

 

 

(2. 9) 
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The quantities u′, v′ and un′, vn′ can be computed by: 

 

 𝑢′ = 4𝑋 (𝑋 + 15𝑌 + 3𝑍)⁄    𝑎𝑛𝑑   𝑣′ = 9𝑌 (𝑋 + 15𝑌 + 3𝑍⁄ )   

 

(2. 10) 

 

 𝑢𝑛
′ = 4𝑋𝑛 (𝑋𝑛 + 15𝑌𝑛 + 3𝑍𝑛)⁄    𝑎𝑛𝑑   𝑣𝑛

′ = 9𝑌𝑛 (𝑋𝑛 + 15𝑌𝑛 + 3𝑍𝑛)⁄   

 

(2. 11) 

 

where Xn, Yn, Zn are the tristimulus values of the illuminant, an example of which is the 

standard daylight illuminant D65 [95.047, 100.00, 108.883] which will be used 

extensively in this thesis. The un′, vn′ correspond to the chromaticity coordinates of the 

white point. The u′, v′ coordinates can be used to plot the UCS chromaticity diagram 

(Figure 2.7), and L* to predict the lightness of stimuli. CIELUV is also associated with the 

perceptual attributes of hue, chroma and saturation which can be calculated by: 

 

 ℎ𝑢𝑣 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑢
∗ 𝑣∗⁄ ) 

 

(2. 12) 

 

 𝐶𝑢𝑣 = √(𝑢
∗)2 + (𝑣∗)2 

 

(2. 13) 

 

 𝑆𝑢𝑣 = 𝐶𝑢𝑣
∗  /  𝐿∗ (2. 14) 

 

 

Figure 2.7 CIE 1976 UCS (u' v') chromaticity diagram. 
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The CIELUV colour space is used widely for coloured lighting applications, including 

display monitors. 

 

2.6.5. CIE 1976 L* a* b* (CIELAB) 

The CIELAB colour space was the second approximately perceptual uniform colour 
space proposed by CIE in 1976 and it is more often used in the printing industry. The L* 
a* b* coordinates are defined as follows: 

 

 𝐿∗  = 116(𝑌/𝑌𝑛)
1/3 −  16 if 𝑌/𝑌𝑛 >  0.008856 (2. 15) 

 

 𝐿∗  = 903.3 (
𝑌

𝑌𝑛
)  if 𝑌/𝑌𝑛 ≤  0.008856  

 

(2. 16) 

 

 
𝑎∗ = 500 [𝑓 (

𝑋

𝑋𝑛
)
1/3

−  𝑓 (
𝑌

𝑌𝑛
)
1/3

] 

 

 

(2. 17) 

 

 
𝑏∗ = 200 [𝑓 (

𝑌

𝑌𝑛
)
1/3

− 𝑓 (
𝑍

𝑍𝑛
)
1/3

] 

 

 

(2. 18) 

where Xn,Yn,Zn, represents the chosen reference white point, and if f(N/Nn)>0.00856 then 

f(N/Nn)=(N/Nn)1/3, otherwise fN/Nn=7.787(N/Nn)+16/116. The perceptual attributes of hue 

and chroma can be calculated using Equations (2.12 and (2.13 by replacing u* with a* 

and v* with b*. As the above ratios of the tristimulus values are not linear there is no 

chromaticity diagram for CIELAB, and hence no saturation. 

 

2.6.6. Colour differences  

The colour differences between stimuli in CIELUV can be calculated using 3D Euclidean 
distances: 

 

 𝛥𝛦𝑢𝑣 = [(𝛥𝐿
∗)2 + (𝛥𝑢∗)2 + (𝛥𝑣∗)2]1/2 

 

(2. 19) 

where ΔL, Δu* and Δv* denote the arithmetic differences between the coordinates of the 

stimuli in CIELUV. The same formulae can be used to measure colour differences in 

CIELAB by substituting a* for u* and b* for v* (Wyszecki & Stiles, 1982). This UCS 1976 
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formula is widely used but performs poorly for saturated colour stimuli, poorly in the 

sense that the ΔEuv values do not correlate well with perceived colour differences. To 

improve the uniformity of colour differences, CIE recommends the use of CIE ΔE2000 

formula in CIELAB that can be calculated from: 

 

 

𝛥𝛦00 = √(
𝛥𝐿′

𝑘𝐿𝑆𝐿
)
2

+ (
𝛥𝐶′

𝑘𝐶𝑆𝐶
)
2

+ (
𝛥𝐻′

𝑘𝐻𝑆𝐻
)
2

+ 𝑅𝑇 (
𝛥𝐶′

𝑘𝐶𝑆𝐶
) (
𝛥𝐻′

𝑘𝐻𝑆𝐻
) 

 

 

(2. 20) 

where kL, kC, kH in this thesis is set to unity. For details about the calculation of ΔL′, ΔC′, 
ΔH′, SL, SC, SH, RT, see Green (2002). Both formulae will be used for measuring 
differences between colour names in this study. 

 

2.6.7. Colour Appearance Models  

Colour appearance models (CAM) are developed with the aim of extending basic 

colourimetry to allow prediction of how colours appear in different viewing conditions. In 

the most common form, colour appearance models involve a chromatic adaptation 

transform, a dynamic response function and a transformation to a uniform colour space 

(Fairchild, 2005). CAM02 is the current recommended colour appearance model of CIE. 

As input data the model accepts the CIE XYZ 1931 tristimulus values of the colour 

sample, the tristimulus values of the white point, the adapting luminance, the relative 

luminance of the surround and a decision whether to apply the process of discounting 

the illuminant or not. The model can predict a wide range of colour appearance 

dimensions such as lightness, brightness, chroma, colourfulness, saturation and hue. It 

can also be used to predict the influence on colour appearance of different states of 

adaptation, surround and luminance levels. CAM02 Uniform Colour Space (Luo, Cui & 

Li, 2006) is an extension of the original model to improve its performance in predicting 

colour discrimination data while a new dataset of unique hues has been proposed to 

improve its hue uniformity and chromatic adaptation under mixed illumination conditions 

(Xiao, Wuerger, Fu & Karatzas, 2011; Xiao, Fu, Mylonas, Karatzas & Wuerger 2011; 

Xiao, Mylonas, Fu, Karatzas & Wuerger, 2011). In this thesis we will make little, if any, 

use of this type of models, and the description of their rather large number of equations 

– which result in computational failures in certain cases – is beyond its scope. The 

reported mathematical problems are addressed in the new CAM16 model (Li, Li, Wang, 

Xu, Luo, Cui, Melgosa, Brill, Pointer, 2017). 
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2.6.8. Default Internet RGB colour space sRGB 

The sRGB colour space was proposed by Microsoft and Hewlett-Packard as a default 

colour space for monitors, cameras, printers and the Internet (IEC, 1999). The sRGB 

space is based on the ITU-R BT.709-5 primaries, a typical overall transfer gamma 

function of 2.2 and specified viewing conditions that allow a straight-forward 

transformation to the CIE XYZ 1931 colour space from: 

 

RGBlinear = RGBsRGB / 12.92, if RGBsRGB ≤ 0.04045 

RGBlinear = (RGBsRGB + 0.055 / 1+0.055)2.4, if RGBsRGB > 0.04045 

 
[
𝑋
𝑌
𝑍
] = [

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] [

𝑅𝑙𝑖𝑛𝑒𝑎𝑟
𝐺𝑙𝑖𝑛𝑒𝑎𝑟
𝐵𝑙𝑖𝑛𝑒𝑎𝑟

] 
 

(2. 21) 

 

Currently sRGB is the default colour space for virtually all monitor manufacturers but 

some differences between implementations are to be expected. In an earlier industry 

related research project, we assessed the error of colour reproduction in a wide range of 

mobile display devices (Mylonas, Karatzas & Wuerger, 2010) and uncorrected LCD/TFT 

desktop monitor displays (Xiao & Mylonas, 2010), against an sRGB calibrated monitor 

(Apple Cinema). For each display the colour reproduction of a set of 18 × 18 × 18 

samples evenly distributed in the RGB cube were evaluated against a reference sRGB 

display using a Piecewise Linear Chromaticity Constancy (PLCC) characterization model 

and 21 spectroradiometric measurements. In total, we evaluated 11 desktop and laptop 

monitors (Apple MacBook, Asus, Dell, Hewlett Packard, Samsung, and Sony) and 4 

popular mobile displays (iPhone, Samsung, HTC and Nokia), under four different lighting 

conditions (daylight-D65, home-incandescent, office-CWF and dark). Overall, the mean 

colour reproduction error for the desktop displays was larger (ΔΕ00=8.06; STD=4.49) 

than for mobile displays (ΔΕ00=6.02; STD=1.75) while the mobiles were fairly consistent 

under the four lighting conditions (max STD=0.46; min STD=0.14). 

 

2.6.9. Physiologically relevant colour matching functions. 
 

Despite the practical success of CIE XYZ 1931, there is strong evidence that can be 

significant errors in the specifications of the 2° Standard Colourimetric Observer, as the 

colour matching functions are too insensitive at the shorter wavelengths of the visible 

spectrum (Stockman & Sharpe, 1999; Stockman, 2006). The precise specification of the 

cone spectral sensitivities is essential not only for modelling colour vision, but also for 

practical applications of colour matching, colour measurements and colour naming. CIE 

proposed (CIE 170-1:2006) a new set of physiologically-relevant cone fundamentals 
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based on data from experimental studies with real observers, aiming to ground 

colourimetry on physiology (Stockman & Sharpe, 2000). The cone fundamentals for 2° 

(see Figure 2.8) and 10° fields of Stockman & Sharpe (2000) were determined from 

spectral sensitivity measurements under chromatic adaptation of dichromatic and normal 

observers, and analysis of the 10° colour matching functions of Stiles and Burch (1958). 

These functions can be found online at www.cvrl.org. The tristimulus coordinates of L, M 

and S for a colour stimulus φλ(λ) can be then obtained by: 

 

 
𝐿 = 𝑘𝐿∫𝜑𝜆(𝜆) ∙ 𝑙 ̅ (𝜆) ∙ 𝑑𝜆 

 

(2. 22) 

 

 
𝛭 = 𝑘𝛭∫𝜑𝜆(𝜆) ∙ 𝑚̅ (𝜆) ∙ 𝑑𝜆 

 

(2. 23) 

 

 
𝑆 = 𝑘𝑠∫𝜑𝜆(𝜆) ∙ 𝑠̅ (𝜆) ∙ 𝑑𝜆  

 

(2. 24) 

where 𝑙(̅𝜆), 𝑚̅(𝜆), 𝑠̅(𝜆) are the cone fundamentals for 2 degrees visual dimeter colour 

stimuli normalised to unity peak and k are normalizing constants (CIE 170-2: 2015). 

  

Figure 2.8 Spectral sensitivities of L-, M-, S-cones for 2° (Stockman & Sharpe, 2000) 

 

http://www.cvrl.org/
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In 2015, CIE adopted a new set of colour matching functions 𝑥̅𝐹(𝜆), 𝑦̅𝐹(𝜆), 𝑧𝐹̅(𝜆) which 

are linear transformations of the 𝑙(̅𝜆), 𝑚̅(𝜆), 𝑠̅(𝜆) cone fundamentals (Stockman & 

Sharpe, 2000; CIE 170-1: 2006; CIE 170-2: 2015). The functions that determine the cone 

fundamental based tristimulus values for 2 degrees field size can be also obtained by a 

matrix equation: 

 

 

(

 𝑥̅𝐹(𝜆)

 𝑦̅𝐹(𝜆)

 𝑧𝐹̅(𝜆)
) = (

1,947 354 69 −1,414 451 23 0,364 763 27
0,689 902 72 0,348 321 89 0

0 0 1,934 853 43
)(

𝑙(̅𝜆)

𝑚̅(𝜆)

𝑠̅(𝜆)

) 

 

 

(2. 25) 

where λ=390nm to 830nm in 1 resolution steps (CIE 170-2: 2015). The new CIE XF, YF, 

ZF cone fundamental based tristimulus values can be then calculate by substituting 

𝑥,̅ 𝑦,̅  𝑧̅  in Equations 2.1-2.3 with 𝑥̅𝐹(𝜆), 𝑦̅𝐹(𝜆), 𝑧𝐹̅(𝜆). The cone fundamental based 

chromaticity diagram can be computed by substituting X, Y, and Z with XF, YF, ZF in 

Equations 2.4 and 2.5. 

 

2.6.10. Cone chromaticity diagram 

The CIE chromaticity diagrams do not provide a satisfactory visual relationship between 

the colour representations and the underlying cone-opponent mechanisms. Therefore, 

CIE recommends the use of the MacLeod & Boynton (MB; 1979) cone chromaticity 

diagram based on the cone fundamentals of Stockman and Sharpe (2000). In LMS, the 

MB diagram (Figure 2.9) is parallel to S-axis and the S dimension is scaled for 

convenience in the [0, 1] range. The total contributions of L- and M- cones remain 

constant within the plane to determine its orientation. MB chromaticity coordinates can 

be obtained for 2 degrees field size by the equations: 

 

 𝑙𝑀𝐵(𝜆) = 0,68990272 𝑙(̅𝜆)/(0,68990272 𝑙(̅𝜆) + 0,348 321 89 𝑚̅(𝜆)) 

 

(2. 26) 

 

 𝑚𝑀𝐵(𝜆) = 0,348 321 89 𝑚̅(𝜆)/(0,68990272 𝑙(̅𝜆) + 0,348 321 89 𝑚̅(𝜆)) 

 

(2. 27) 

 

 𝑠𝑀𝐵(𝜆) = 0,037 159 71 𝑠̅(𝜆)/(0,689 902 72 𝑙(̅𝜆) + 0,348 321 89 𝑚̅(𝜆)) 

 

(2. 28) 

where 𝑙(̅𝜆), 𝑚̅(𝜆), 𝑠̅(𝜆) are the cone fundamentals (Stockman & Sharpe, 2000; CIE 170-

1: 2006). 
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Figure 2.9 MacLeod-Boynton diagram of the spectral locus with s vs l coordinates based on 

L-, M-, S-cones for 2° (MacLeod & Boynton, 1979; Stockman & Sharpe, 2000). 

 

2.6.11. Derrington-Krauskopf-Lennie (DKL) colour space 

Chromaticity diagrams represent the initial encoding of light by the cones in the first stage 

of colour processing in the retina, but their dependence on the adapting white of the 

scene limits their applications for evaluating colour categories across different adaptation 

states (Krauskopf & Gegenfurtner, 1992). The Derrington-Krauskopf-Lennie (DKL; 1984) 

opponent modulation colour space represents the second stage of colour processing in 

which differential cone signals are combined into three postreceptoral mechanisms with 

respect to the adapting background (Brainard, 1996; in Kaiser & Boynton, 1996). The 

axes of DKL represent the proposed cardinal directions (Krauskopf et al., 1982) of a 

luminance: (L+M) and two, colour opponent mechanisms: L-M and S-(L+M). Note, 

however, that the loci of unique hues do not align with the cardinal axes of the DKL space 

nor do the boundaries of their corresponding categories. (Malkoc et al., 2005; Bosten & 

Boehm, 2014; Witzel & Gegenfurtner, 2018). 
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2.7.  Colour naming experiments 

In a seminal study, Brown & Lenneberg (1954) performed colour-naming experiments 

using the Munsell colour system to examine behavioural consequences of naming on 

recognition, known as linguistic codability. In their experimental procedure, the authors 

first mounted 240 colour samples of the most saturated Munsell colours on cards in a 

systematic arrangement and asked 5 subjects to pick the best example for eight colour 

terms in wide cultural use in English (red, orange, yellow, green, blue, purple, pink and 

brown) from these 240 chips. In a second task, 24 subjects were asked to name 24 

colour chips covering the colour space approximately uniformly; while including the 8 

chips that were most frequently picked for each colour name. The codability index was 

then measured in five ways: 

 

a) The mean number of syllables of colour names produced to each colour 

b) The mean number of words of colour names produced to each colour  

c) The mean reaction time for every colour sample 

d) Interpersonal agreement 

e) Intrapersonal agreement 

 

A colour name with high codability index would be a shorter word that is identified faster 

and with greater degree of agreement about the referent colour across observers. The 

second part of the experiment involved a recognition/memory task where subjects were 

exposed to four colours simultaneously. After the colours were removed, they were 

asked to identify them by pointing at them within a larger array of 120 colours. The 

authors found a high degree of correlation between codability and recognition.  

 

Berlin & Kay (1969/1991) used an elicitation method to identify the most common colour 

terms in different languages. They employed a stimulus palette with 320 of the most 

saturated colours for each value level and 10 achromatic tonal values from the Munsell 

system (Figure 2.10) and asked subjects to identify the best colour examples for each 

colour term in each language under unspecified viewing conditions. 

 



 

 49 

 

 

 

Figure 2.10. Colour Array of Munsell value vs hue (top). Basic Colour Terms in American 

English mapped on the Munsell array (bottom; Berlin and Kay, 1969/1991) 

The World Color Survey (WCS) was initiated in the late 1970’s to test the hypotheses 

advanced by Berlin and Kay regarding: (1) the existence of universal constraints on 

cross-language colour naming; and (2) the existence of a partially fixed evolutionary 

progression according to which languages gain colour terms over time. Colour naming 

data was collected in 110 unwritten languages using the same stimulus palette (Figure 

2.10) for a constrained naming task and a focus (best example) task. Kay and his 

colleagues (Berlin & Kay, 1969/1991; Kay & Regier, 2003; Kay et al., 2010) 

demonstrated that different languages tend to classify the surface of the Munsell system 

in a similar way, though with some differences. One of the most intriguing finding was 

that these inter-language differences were smaller than intra-language differences 

among individuals (Berlin & Kay, 1969/1991; Webster & Kay, 2007). The analysis of the 

data supported the conclusion that the colour space is partitioned under universal 

constraints and detected a hierarchical order in the lexical partitions (Kay et al., 2010). 
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Boynton and Olson (1987) conducted a colour naming experiment in American English 

to locate the referents of the BCTs in the OSA space. The experiment involved 424 

uniformly spaced colour samples, presented against a neutral grey background of 20% 

reflectance under a photoflood lamp of 3,200K. Response times (RTs) were measured 

from the onset of the stimulus to the start of the subject’s vocalisation. Six observers 

were asked to use solely monolexemic colour terms and a seventh was instructed to 

restrict his responses only to BCTs. Their study showed that the 11 BCTs were used 

more frequently, more consistently, with greater consensus and more quickly than non-

BCTs. The differences between individual were large but there was no overlap between 

the loci of the BCTs. The authors also suggested an emergent twelfth BCT in the region 

between white, yellow, orange, pink and brown. The word most frequently used for that 

region was peach, but it was not qualified as a BCT.  

 

In a follow-up study, Sturges and Whitfield (1995) located colour terms in the Munsell 

system for British English (Figure 2.11). The experiment involved 446 colour samples 

presented randomly against a neutral grey background of Munsell N7 (matte) under a 

CIE D65 simulator. Their results confirmed that BCTs have shorter response times and 

higher consistency and consensus than non-BCTs. An interesting finding was that purple 

ranked third in terms of consistency and frequency, along with short response times, and 

appeared to cover a larger area of the Munsell than the OSA space. Cream was 

suggested as a candidate for a twelfth BCT, as it was used frequently and consistently 

but with a clear differentiation from the other 11 BCTs. The different sampling, as well as 

the different illuminant under which the experiments were carried out, may explain the 

relatively large mean colour difference (ΔΕab=13.92) between the location of the 

chromatic basic colour terms of this study against the findings of Boynton & Olson (1987). 
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Figure 2.11 Location of focal samples of Basic Colour Terms on Munsell array reported by 

Berlin & Kay (1969/1991; discs) and Sturges & Whitfield (1995; squares). 

Davies & Corbett (1995) proposed a faster method of identifying BCTs. The procedure 

included two tasks: firstly, an elicited list task, and secondly, a process of mapping the 

names onto a set of 65 colour tiles to measure the frequency of colour names and the 

consensus across respondents respectively. For consensus, the authors adopted the 

dominance index and the specificity ratio described in Moss et al. (1990). Dominance 

index represents the number of colours for which each colour name was used by more 

than 50%, while the specificity ratio is calculated by dividing the total number of dominant 

responses of each name by their frequency to produce a stability scale. The authors 

estimated saliency of a colour term as a combined index of both the frequency of the 

term in the listing task and the consensus in the mapping task.  

 

Moroney (2003) used ‘distributed psychophysics’, to collect a small number of colour 

names from a large number of observers over the web. Participants were asked to give 

the best names for seven patches of colours selected randomly from a 6 × 6 × 6 non-

perceptually uniform grid sampling of the RGB cube, viewed on a display against a white 

background. Results of the online experiment were validated against the results of 

Boynton and Olson (1987) and Sturges and Whitfield (1995), both obtained under 

controlled laboratory conditions, and showed a high degree of correlation with the 

chromatic basic colours terms, expressed as hue angles in CIELAB. 

 

In 2009, we launched an ongoing colour naming experiment to collect broad sets of 

colour names within different languages with their corresponding colour ranges in sRGB 

and Munsell specifications over the Internet (Mylonas & MacDonald, 2010). The colour 
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naming responses are associated with metadata regarding the cultural background, 

colour deficiency, hardware/software components and viewing conditions of the 

observers. The experiment was initially translated in three languages, English, Greek 

and Spanish. In earlier studies, we presented the results of the English data collected in 

the period 2009-2010 (Mylonas & MacDonald, 2010; Mylonas, MacDonald & Wuerger, 

2010; Mylonas & MacDonald, 2016). From 2009 to 2018, the experiment was translated 

into twenty-two languages (English, Greek, Spanish, German, Catalan, Italian, traditional 

and simplified Chinese, Korean, French, Danish, Lithuanian, Thai, Portuguese, Swedish, 

Russian, Japanese, Turkish, Vietnamese, Dutch, Norwegian and Polish) and has 

gathered colour naming responses from many thousands of observers (until February 

2018, n=7,000). In this thesis, we consider – for the first-time – responses in American 

English, British English, Greek, Russian, Thai and Turkish for which up to 2018 we 

collected 5,000+ responses in each language. In Chapter 3, we provide details regarding 

the experimental procedure and the produced datasets. Ιn 2018, the interface of the 

ongoing experiment was redesigned to run on all new devices and minimize security 

threats (accessible at: https://colournaming.org). It is currently collecting colour naming 

responses in 11 languages but the data from the new interface will be considered in 

future studies.  

 

In a parallel online colour naming experiment, the author of the web comic XKCD, 

Randall Munroe (2010) collected a dataset of 3.4 million unconstrained responses mainly 

in English. This very large dataset is associated with metadata regarding the sex, 

language skills, colour-blindness, and information about the monitor settings. Observers 

were free to name as many sets of colour swatches as they liked presented against a 

white background. Each colour swatch was uniformly sampled from the full RGB cube. 

The dataset was made available to the public and was considered for training colour 

naming models by a number of subsequent studies (Heer & Stone, 2012; Lindner et al., 

2012). 

2.8.  Colour naming models 

A wide variety of colour naming models have been proposed to facilitate colour 

communication. In 1955, the National Bureau of Standards (NBS) published the ISCC-

NBS dictionary of colour names, based on the recommendations of the Inter-Society 

Color Council (ISCC), in order to facilitate colour communication between different colour 

vocabularies in the fields of art, science and industry (Kelly & Judd, 1955). This dictionary 

consists of 7,500 English colour names that represent 267 regions of the Munsell colour 

system. The dictionary is limited by the lack of systematic syntax of the system and its 

https://colournaming.org/
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specialised vocabulary. Nevertheless, this method of designating colours is an important 

documentation of colour naming and has inspired new colour naming systems to this 

day. 

 

The Colour Naming System (Berk, 1982) was designed with the intention to simplify the 

syntax of ISCC-NBS system. Hence it was formed by the same lightness and saturation 

values as the ISCC-NBS, except for the combined modifiers of brilliant, pale and deep. 

Additionally, the hue terms have been considerably simplified down to the basic colour 

terms of Berlin & Kay (1969/1991), with the exception of the pink term. This modification 

provides the CNS with a formal syntax so that the intermediate hues can be defined by 

the combination of all adjacent hue terms to generate a total of twenty-four hue names. 

The CNS system encodes in total 627 colour names quantised in HSL colour space, of 

which only 480 were actually realised, because of its cylindrical shape. Tominaga (1985) 

described a colour naming method for predicting the colour name of digitised colour 

samples. The colour-naming system was structured systematically with basic colour 

terms and modifiers to different levels of accuracy (see Figure 2.12). At level 1, the 

Munsell colour solid is assigned to 16 colour terms, at level 2 to 25 colour terms, at level 

3 to 92 colour names and lastly at level 4 to 236 colour names. The reported reliability of 

the system was satisfactory up to level 3. 

 

 

Figure 2.12 Colour naming block at Level 2 (Tominaga, 1985). 
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The computational colour naming model of Lammens (1994) was influenced by the fuzzy 

set theory of Kay & McDaniel (1978). Every colour was assigned to one of the eleven 

focal colour locations of basic colour terms (Berlin & Kay, 1969/1991) with a variant of a 

Gaussian distribution model: 

 

 

𝐺𝑛(𝑥) = 𝑒

−
1
2

(

 
√∑ (𝑥𝑖−𝜇𝑖)

2𝑁
𝑖=1

𝜎

)

 

2

 

 

 

(2. 29) 

where x-μ is the Euclidean distance of a point x to the mean μ of a colour category. 

  

A categorical colour mapping method was proposed by Motomura (1997) for cross-

media colour reproduction. The most interesting characteristic of this approach is the 

maintenance of an identical colour name in both source and destination mediums, while 

preserving the relative relationship of the colours of each categorical cluster. To 

determine the categorical classification of a colour to one of the eight chromatic basic 

colour terms plus an achromatic category, the author utilized a set of Mahalanobis 

distances: 

 

 

𝐷𝑖 = √(𝑋 − 𝜇𝜄)
𝑡∑ (𝑋 − 𝜇𝜄

−1

𝑖
) 

 

 

(2. 30) 

where X is a test colour, μι is an average vector of colour categories and Σi the covariance 

matrix of their distribution. 

 

Lin, Luo, MacDonald, Tarrant (2001a, 2001b) focused on the boundaries of each colour 

category instead of the location of the prototypes of each colour category. The 

distribution of the eleven basic colour terms was determined by a combination of 

unconstrained and constrained experimental data of English and Chinese subjects, 

according to which the borders of each category were confined by crisp thresholds. 

Seaborn et al., (2005) proposed a nonparametric model based on fuzzy k-means 

algorithm to measure similarity and dissimilarity between colours based on Sturges & 

Whitfiled (1995) data. Menegaz and her colleagues (2006) proposed a fuzzy partitioning 

of the colour space into the eleven categories of BCTs based on linear interpolation of 

membership functions obtained in psychophysical experiments. The test stimuli 

consisted of 424 samples from OSA-UCS set, each of which is associated to a vertex of 

a three-dimensional tetrahedron via a three-dimensional Delaunay triangulation of the 

CIELAB. Benavente et al. (2006; 2008) extended the computational model of Lammens 
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(1994) with a combination of Gaussian-Sigmoid distribution functions. Similarly, Parraga 

and Akbarinia (2016) proposed a physiologically inspired model of colour categorisation 

by concentrating on the boundaries of the basic colour terms based on Neural 

Isoresponsive Colour Ellipsoids (NICE) in a cone contrast space.  

Figure 2.13 shows the currently state-of-art performance of NICE classifying the surface 

colours of the Munsell system against psychophysical data (Berlin & Kay, 1969/1991; 

Sturges & Whitfield, 1995). An alternative, and considerably quicker approach for training 

colour naming models was described by Weijer et al., (2007). The authors estimated the 

colour distribution of the eleven basic colour terms from image statistics instead of colour 

naming experiments using Probabilistic Latent Semantic Analysis (PLSA): 

 

 𝑃𝐿𝑆𝐴 − 𝑏𝑔 = 𝑃(𝑧|𝑤) ∝ 𝑃(𝑧)𝑃(𝑤|𝑧) 

 

(2. 31) 

where P(z|w) describes the likely image pixels z that word w is referring to, and P(w|z) 

describes the distribution where image pixels z may be labelled by word w for classifying 

single pixels to colour names. The images for each colour term were retrieved using the 

Google Images API. 

 

 

 

Figure 2.13. Surface colours of the Munsell system categorised into eleven basic terms by 

NICE (Parraga & Akbarinia, 2016) and Berlin & Kay’s (1969; top) and Sturges & Whitfields’s 

(1995; bottom) psychophysical data shown by black lines. Cross marks denote differences in 

naming by the NICE model and Berlin & Kay’s results. 

Mojsilovic (2005) proposed a computational method for categorizing, naming, and 

extracting colour compositions of images. The author adopted the 267 colour regions of 

the ISCC-NBS system and employed a nearest neighbour classifier based on perceptual 
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distances in CIELAB. Moroney (2008) proposed a lexical classification method in which 

non-parametric histograms are used to represent the colour range of each colour name. 

The lexical processing algorithm functions on the n most frequently used colour names 

obtained from an ongoing web-based colour-naming experiment with thousands of 

participants. In 2008, Chuang et al. proposed a non-parametric probabilistic method to 

model the categorical association between colours: 

 

 𝑃(𝐶|𝑐) =∑𝑃(𝐶|𝑤)𝑃(𝑤|𝑐)

𝑤

 

 

(2. 32) 

where P(W|c) is the conditional probability for each word w that have be chosen to 

describe colour c, and P(C|w) the conditional probability of colour c being the cause of a 

word w. This model considers all possible words for describing a colour as a probability 

distribution, and as such is robust against the noise in the colour naming data set of 

unconstrained colour naming experiments. Heer & Stone (2012) extended this 

probabilistic model of colour naming using data from an online survey (Munroe, 2010) to 

develop a colour dictionary and colour selection and editing applications. The authors 

measured the degree that a colour is unique named by the entropy of the conditional 

probability P(W|c) defined as saliency: 

 

 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑐) = −𝐻(𝑃(𝑊|𝑐)) =∑𝑝(𝑤|𝑐) log 𝑝(𝑤|𝑐)

𝑤

 

 

(2. 33) 

Mylonas et al. (2010) proposed a probabilistic interpretation of Mahalanobis distances to 

automate the assignment of colours to a large number of common colour names (n=47) 

based on a Maximum a Posteriori estimator (Figure 2.14). For each colour name  from 

a set of colour names  offered by the observers for colour samples viewed 

against a neutral grey background, they calculated the empirical mean  and covariance 

matrix  of test colours . The probability density function was then estimated 

by: 

 

 
𝑓𝑛𝑜𝑟𝑚(𝑥|𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑦𝑒𝑥𝑝 (−

1

2
(𝑥 − 𝜇𝑦)

𝑇∑ (𝑥 − 𝜇𝑦)
−1

𝑦
) , 𝑥 ∈ {𝑥1, … , 𝑥𝑛} 

 

(2. 34) 

where  is the test colour specified by the triplet 𝑥 = (𝑥(𝐿), 𝑥(𝑎), 𝑥(𝑏))
𝑇 and  is a 

normalizing factor that depends on ,  and   and ensures that the sum of the 
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probability distribution is equal to 1. Using the Bayes’ theorem, the MAP estimator was 

then defined as: 

 

 
𝑦̂𝑀𝐴𝑃(𝑥) = argmax

𝑦∈{𝑦1,…,𝑦𝑇}
(
𝑓𝑛𝑜𝑟𝑚(𝑥|𝑦)𝑓(𝑦)

𝑃(𝑋 = 𝑥)
) 

 

(2. 35) 

   

The MAP estimator favours colour names with high probability to maintain congruence 

between observed and predicted data. This means that frequent and consistent colour 

categories tend to subsume less common and inconsistent neighbour categories. 

 

 

Figure 2.14. Segmentation of synthetic image to colour categories by MAP estimator with 

training set of 47 colour names (Mylonas et al. 2010). 

A similar approach to Weijer et al., (2007), was used by Lindner et al. (2012) to develop 

a multilingual colour thesaurus of 9,000 colour names. The authors translated manually, 

via dictionaries and single native speakers, 900 English colour names from an online 

colour survey (Munroe, 2010) to ten different languages and used a statistical framework 

to determine their colour distribution via the Google Images API. Recently, a 

convolutional neural network approach trained on thousands of hand-labelled images, 

was proposed for identifying pedestrians in public spaces, by classifying the colour of 

their clothes to the eleven BCTs (Cheng, Li & Loy, 2016). In the same domain of person 

re-identification, Yang et al., (2014) obtained satisfactory results using 16 terms while Yu 

et al., (2018) showed that considering 39 colour names in total outperformed earlier 

colour name descriptors on this task. 

2.9.  Information theory and colour language games  

Information theoretic analysis (Shannon, 1948) has also been used to shed light on the 

origin of colour lexicons in the context of language games (Wittgenstein, 2009/1953). 
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Language games were first introduced in colour naming studies by Lantz & Stefflre 

(1964) and were revived by recent computational approaches (Steels & Belpaeme, 2005; 

Loreto et al., 2012; Regier, Kemp & Kay, 2015; Lindsey et al., 2015; Gibson et al., 2017). 

 

In communication theory (Shannon, 1948), the entropy equation provides the total 

amount of information content in an entire probability distribution of an event x based on 

its frequency: 

 

 
𝐻(𝑋) = −∑𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑛

𝑖=1

 

 

(2. 36) 

where 𝑙𝑜𝑔2 produces units of entropy in bits. Lantz & Stefflre (1964) measured 

communication accuracy using a language game of encoders and decoders where 

subjects asked to assign a colour name to a colour from the Farnsworth-Munsell array 

in such a way that another person will be able to pick it up. The authors found that 

communication accuracy performed better than naming agreement to predict memory 

colours. Its high correlation with codability (Brown & Lenneberg, 1954) provided further 

evidence for the influence of language on non-linguistic behaviours. Steels & Belpaeme 

(2005) considered three philosophical propositions - nativism, empiricism and culturalism 

- as formal artificial intelligence (AI) models to explore the mechanisms of communication 

of a set of perceptually grounded colour categories within a population of autonomous 

agents. The authors showed that model-based colour categories between agents 

converge to allow effective communication. In other words, colour categories are 

achieved collectively through the communication process; therefore, supporting the 

influence of language in the formation of colour concepts.  

 

Partial evidence for the evolutional hierarchy of BCTs proposed by Berlin & Kay 

(1969/1991) was provided by Loreto and his associates (2012) using simulated language 

games between multiple agents. The authors found that agents achieved first consensus 

for colour names based on just-noticeable differences of specific regions of the hue 

dimension. In other words, they concluded that the perceptual structure of colour space 

can partly explain the hierarchy of colour categories. Agreement between pair of agents 

was measured by: 

 

 2∑ ∑ 𝑚𝑎𝑡𝑐ℎ(𝑖, 𝑗)𝑁
𝑗=𝑖+1

𝑁
𝑖=1

𝑁(𝑁 − 1)
 

 

(2. 37) 
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Regier et al., (2015) showed that the six primary colour categories (Regier et al., 2007) 

may be formed from communication pressures between simplicity (the number of colour 

terms) and informativeness (the precision of colour terms) using simulated language 

games based on multilingual data from WCS (Kay et al., 2010) and Kullback-Leibler 

Divergence to measure the information lost in communication: 

 

 
𝐷(𝑠 ∥ 𝑙) =∑𝑠(𝑖)𝑙𝑜𝑔 (

𝑠(𝑖)

𝑙(𝑖)
)

𝑖∈𝑢

 

 

 

(2. 38) 

where s is the actual colour naming distribution and l is an approximation to s for all 

colours u. 

 

Lindsey and colleagues (2015) used information theoretic analysis and simulated 

languages games based on colour naming data in Hazda, Somali and American English 

to show that even the smaller colour lexicon of a hunter-gatherer population aligns with 

other world languages. The authors measure the communication cost by mutual 

information: 

 

 
𝐺𝑀𝐼(𝐶𝑠; 𝐶𝑅) =∑𝑝𝑁(𝑠, 𝑟)𝑙𝑜𝑔2 (

𝑝𝑁(𝑠, 𝑟)

𝑝𝑁(𝑠)𝑝𝑁(𝑟)
)

𝑠,𝑟

 

 

(2. 39) 

where CR are the test samples in the language game, CS the utterances by the speaker 

for the test samples, pN(s,r) is a matrix of a joint distribution of the random variables CS 

and CR and pN(s), pN(r) are the marginal distributions on CS and CR. Gibson et al., (2017) 

showed that surprisal, an information theoretic measure of communication cost, tends to 

be higher for cooler than warmer colours reflecting according to the authors the 

usefulness of a colour. Surprisal is computed by: 

 

 
𝑆(𝑐) =∑𝑃(𝑤|𝑐)𝑙𝑜𝑔

1

𝑃(𝑐|𝑤)
𝑤

 

 

(2. 40) 

where the communication cost for each colour c is measured by summing the cost for 

each word w that might have be chosen to describe colour c multiplied by the log of the 

probability that colour c was the cause of a word w. 
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2.10.  Discussion 

In this chapter, we reviewed the main components of this thesis including colour vision 

mechanisms, their associated classes of colours, colour specification systems, colour 

naming experiments and models and information theoretic approaches in the context of 

colour language games. 

 

We have seen that the primary focus in colour vision research is the psychophysical 

specification of different mechanistic stages of colour processing in the visual pathway. 

The first stage defined by the spectral sensitivities of the three types of cones in the 

retina is now reasonably well understood but the relationship between the second stage 

of colour discrimination/detection mechanisms with the hypothetical third stage of colour 

appearance and the higher-order mechanisms of colour constancy and colour naming 

remains elusive. Doubts have also been raised about the fundamental status of the 

primary colours associated with the colour opponent mechanisms in the development of 

colour naming systems whilst the quest for a cross-culturally legitimate approach to 

identify basic colour categories within different languages remains unsettled. 

 

The Munsell system has been the gold standard in colour naming research but there is 

no straightforward way to map its coordinates to physical properties. The OSA space 

provides an exceptional geometry of equidistant colours but the ability to sample colours 

in high chroma is limited. In colourimetric spaces, we can represent all visible colours 

and because they are based on psychophysical measurements, they can be reasonably 

mapped on different stages of colour vision processing. For example, the new CIE XYZ 

2015 offers a chromaticity diagram with physiological axes as it is a linear transformation 

of the LMS cone fundamentals. The DKL space can be used to represent the second 

stage of colour processing and it is closely related to the CIE uniform colour spaces that 

are widely used to measure colour differences. Colour appearance models extent basic 

colorimetry and allow – to some extend – the prediction of how observers match colours 

under different viewing conditions. Finally, the practical success of sRGB in all areas of 

colour reproduction allows researchers to conduct colour naming research over the 

Internet. 

 

We described how earlier colour naming studies used these colour specification systems 

in the field and in laboratory settings and how information communication technologies 

have enabled new methods for collecting unconstrained colour naming data by 

crowdsourcing over the Internet. Despite the usefulness of experiments  

with carefully calibrated displays in the field of vision science, experimenters in colour 
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naming studies face several limitations. First, the controlled viewing conditions, while 

advantageous for accurate colorimetric specification of stimuli, limit the ecological validity 

of the predicted colour naming functions in real-world settings. Second, the pool of 

available observers is often constrained to a small number of college students or to the 

authors of the study that makes it difficult to generalize the results to heterogenous 

groups of the population. The large individual differences reported in colour naming 

studies makes the generalization of the experimental findings even more problematic 

(Webster & Kay, 2007; Lindsey & Brown, 2009). Furthermore, the constrained colour 

naming method is able to capture only a small fraction of the richness of colour languages 

of the world. 

 

In contrast, web-based colour naming experiments provide greater ecological validity 

than traditional approaches by allowing simultaneous participation of observers in their 

own familiar space, in their own time, with their own equipment and without the physical 

attendance of the examiner (Reips, 2000; Moroney, 2003, Mylonas & MacDonald, 2010; 

Munroe, 2010). A further methodological improvement includes the departure from usual 

methods which would use a small number of observers and/or the use of only a restricted 

set of monolexemic terms. Instead, thousands of observers from linguistically and 

demographically diverse populations name freely a large number of colours online and 

produce larger colour lexicons that improve the precision of colour names in colour 

space. Online methods also depart from previous research by distributing the colour 

naming task to minimize the influence of single individuals in estimating colour naming 

functions at a population level. In the collection of multilingual colour naming data, online 

experiments also extend earlier cross-cultural studies which used only the most 

saturated colour samples on the surface of the Munsell system (Berlin & Kay, 1969/1991; 

Roberson et al., 2005; Kay et al., 2010; Lindsey & Brown, 2014; Gibson et al., 2017), by 

also sampling the interior of the colour solid. Yet, online experimental methodologies 

often receive criticism as not meeting the exacting standards demanded for rigorous 

vision research because of the uncalibrated colour reproduction and viewing conditions. 

These unknown confounding factors contribute to a lack of complete quality control and 

the full potentials of crowdsourcing in colour research and applications remain in an 

infant stage. To respond to these criticisms, a direct comparison between web- and 

laboratory- based experimental methodologies in estimating colour naming functions in 

calibrated and uncalibrated settings respectively is essential. 

 

Computational methods are also becoming important in reproducing colour names that 

are meaningful to human observers (Harnard, 1987). The majority of earlier efforts 

constrained the focus of their research towards a small number of basic colour terms in 
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a single language rather than towards the development of colour naming systems that 

support subtler colour identifications in multiple languages described in this thesis. The 

idea that information theory can provide a better framework to advance our 

understanding in colour naming is gaining traction in the field. We described the use of 

information theoretic analysis to shed light on the basis and development of colour 

lexicons in the context of language games but – to our knowledge – there are no earlier 

reports of the inverse game that we describe in the last chapter of this thesis where the 

guess is about the name rather than the colour. 

 

In order to move towards the extension of human-artificial intelligence in the field of 

colour communication within different languages for basic and applied science, we will 

need to design data-driven colour naming systems that support the full complexity of 

colour languages across the world, including their relationship to physical, 

psychophysical and physiological aspects of colour. The work presented in this thesis 

extends earlier work in this direction.   
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Online colour naming experiment 

People use a large number of colour names to communicate about colours. Each name 

may consist of any number of words, such as yellow, salmon pink and light periwinkle 

blue. As we have seen in the literature review, multilingual data about unconstrained 

colour names and their colour referents across the full colour gamut is limited. In 2009, 

we designed an ongoing colour naming experiment to collect unconstrained colour 

names in English, Greek and Spanish with their corresponding regions across the full 

colour space over the Internet. In this thesis, we consider much larger colour naming 

datasets in American and British English, Greek, Russian, Thai and Turkish collected up 

to 2018. A description of the methods used in this study and its participants, will be 

followed by the data analysis techniques to obtain lexical, behavioural and geometric 

features of colour names from raw responses. In closing, we compare the location of 

BCTs in the above six language-datasets. 

3.1.   Materials and procedure 

An online colour naming experiment was designed to collect a small number of 

unconstrained colour naming responses from a large number of participants. 

Participation was voluntary and anonymous, and the experimental sessions were 

conducted after obtaining online informed consent (Varnhagen et al., 2005). In earlier 

studies, we presented the results of the English data collected in the period 2009-2010 

(Mylonas & MacDonald, 2010; Mylonas et al., 2010; Mylonas & MacDonald, 2016). In 

this thesis, we consider for the first-time responses in American English, British English, 

Greek, Russian, Thai and Turkish for which up to 2018 we collected 5,000+ responses 

in each language. The colour naming responses are associated with metadata regarding 

the cultural background, colour deficiency, hardware/software components and viewing 

conditions of the observers. 

 

Six hundred colour samples (see Figure 3.1) were selected from the Munsell Renotation 

Data set (Newhall et al., 1943), including eleven additional achromatic (greyscale) 

samples. The colour samples were specified in the sRGB standard colour space for the 

Internet, and out of gamut colours were removed. To achieve approximately uniform 

sampling, we followed the suggestions of Billmeyer in Sturges and Whitfield (1995); see 
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also Mylonas and MacDonald (2010). The colour stimuli were presented against a 

neutral grey background with a black outline of 1 pixel. Stimulus size (width by height) 

on the display was 147 by 94 pixels, which for a display resolution of 3.3 pixels per mm 

(83 pixels per inch) would be 45 by 30 mm, subtending an angle of approximately 5 by 

3.4 degrees at a viewing distance of 50 cm. 

 

 

Figure 3.1. Colour stimulus set (n=600) of online colour naming experiment in CIELAB space, 

a* vs. b* plane (left) and L* vs. C* plane (right). 

The experimental procedure consisted of six steps (see Figure 3.2). Depending on their 

expertise in colour technology, observers were first asked to set their display to sRGB 

settings either through an advanced instrument-based calibration procedure, or by a 

given basic set of instructions to adjust the manufacturer settings and the brightness of 

their monitor, so that all twenty- one steps of a grey scale ramp were visible. In the 

second step, participants answered questions related to their lighting conditions, their 

environment and properties of their display. In the third step, we screened our 

participants for possible colour deficiencies with a web-based Dynamic Colour Vision 

Test developed at the City University London (Barbur, Harlow & Plant, 1994). 

 

The fourth step involved an unconstrained colour-naming task: each observer was 

presented with a sequence of 20 randomly selected colours from the 600 total samples. 

Hence, our randomised order of single colour patches (Roberson, Davies & Davidoff, 

2000) avoided bias introduced by constant large target arrays (Berlin & Kay, 1969/1991; 

Kay et al., 2010) or by making a small constant selection for all observers (Lindsey et al., 

2015). The task instructions were always visible at the top of the screen. Observers were 

asked to type in the name of each colour patch with the most representative colour name 

that they could remember. To estimate naming consistency, one colour sample was 
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presented twice with more than ten stimuli between the repetitions but without notifying 

participants about the recurrence of the stimulus. Response times were measured from 

the onset of the stimulus to the observer’s first keystroke of the typed colour name. The 

next colour sample appeared after pressing return or clicking on a submission icon 

button. Observers were informed that the response time would be recorded. The web 

interface also included two questionnaires to collect information about the viewing 

conditions, display properties and cultural background of each participant. 

 

In the fifth step, we collected information about participant’s country of residence, 

nationality, language proficiency, educational level, age, gender and experience in colour 

applications. Finally, in the last step, participants are provided with a summary of their 

responses and an optional communication form for comments. The communication form 

is detached from the experimental data to ensure the anonymity of the participants. 

Screenshots of the interface are available in Figure A.1. 

 

Figure 3.2. Schematic diagram of the web-based colour-naming experiment. 

3.2.  Participants 

In this chapter, we present the colour naming responses in British English. The 

presentation of the American English, Greek, Russian, Thai and Turkish data can be 

found in Appendix A. We retrieved 10,000 raw responses from 500 British English 

observers of the online colour naming experiment. We excluded disruptive observations, 

for example numerical responses or responses in languages other than the language of 

the instructions (1%), and for further analysis only responses from participants with no 

self-reported colour deficiencies (90.3%) were considered. This filtering resulted in a 
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dataset for 447 respondents. Their mean age was 33 years (SD = 13 years). Females 

provided 63% of the responses while males provided 37%.  

3.3.   Data Cleaning 

In the raw responses, typographic conventions and leading/trailing spaces were 

removed. Hyphenated, comma separated and words in parenthesis were treated as 

multiword colour expressions. Different word orders (i.e. orange-red or red-orange) were 

considered as different names. Incomplete, numerical and responses written with 

characters of languages other than the language of the instructions of the experiment 

were excluded from the analysis. All capital letters were converted to lower case. Finally, 

a supervised semi-automatic spell-checking procedure was performed by a native 

speaker before the data analysis. We scrutinised only distinct colour names (n=478) 

given by two or more observers resulting in 7,405 responses. Unique responses from 

single observers were excluded because we could not be confident that other observers 

will understand the colour name used and therefore these responses were considered 

idiosyncratic. 

3.4.  Number of Words 

The occurrence of colour descriptors with varying word number for British English 

speakers was: monolexemic BCT 30%; monolexemic non-BCT 24%; two-word colour 

names 40% and colour descriptors containing ≥ 3 words 5% (Figure 3.3).  
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Figure 3.3 Number of words in colour descriptors for British English speakers. 

3.5.  Linguistic features 

In this section we present linguistic measurements of word length and derivative forms 

of colour names from the online colour naming experiments but also their frequency in 

linguistic data obtained from Twitter. 

 

3.5.1. Words length 

Colour name length, qualified as number of letters in all words of the name has been 

previously coincided with phonetic length and negatively correlated with frequency of 

usage and information content (Zipf, 1935; Piantadosi et al. 2011). The basic red and 

the non-basic tan were the colour names with the shortest length (Figure 3.4). Purple, 

yellow and orange were the basic terms with the longest length and were not ranked in 

the top 30 positions. 

 

British English

1 word (BCTs): 30%

1 word (non BCTs): 24%

2 words: 40%

3 words+: 5%
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Figure 3.4 Top 30 colour names with shorter word length for British English speakers. The 

coordinates of their centroids were used to colour each colour name. Colour reproduction 

may vary depending on the medium. 

3.5.2. Number of derivative forms 

Derivative production is a measure of the number of derivative types of a colour name in 

colour naming responses (Corbett & Davies, 1997; Kerttula, 2007). This includes, for 

example, the suffix –ish (e.g. greenish) or –er (e.g. greener) and compound colour words 

(e.g. light green or sea green). Green was found with the largest number of derivative 

forms followed by blue and pink (Figure 3.5). Turquoise and lilac were the non-basic 

terms with largest derivative production in the 10th and 12th position. Black (21st) was the 

basic colour term with the smallest number of derivative forms. The high rank of bluish 

can be explained by the common use of this term as modifier of blue tinted categories 

by the observers. 
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Figure 3.5 Top 30 colour names with highest number of derivative forms for British English 

speakers. 

3.5.3. Linguistic frequency 

Linguistic frequency is a measure of the usage of a colour name in a literary language 

(Hays et al., 1972). To examine the frequency of British English colour names in 

everyday online conversations, we measured their probability of occurrence in 1,036,103 

random tweets from the Twitter API. Similarly, to the online colour naming experiment, 

messages in Twitter are given voluntarily and provide greater volume and variability than 

other sources (Corbett & Davies, 1997). We consider this dataset as more representative 

of ordinary language use. We filtered Twitter’s public stream with the geo-location 

coordinates [-5.4, 50.1, 1.7, 55.8] that correspond to a rectangle with its edges 

approximately at the edges of Britain. We excluded tweets in other languages than 

English {‘lang’:’en’}. Each tweet was tokenised using the Natural Language Toolkit (Bird, 

Klein & Loper, 2009). Black followed by white and red were the most frequent colour 

names in Twitter (Figure 3.6). The 11 basic colour terms were found in the top 12 

positions. The basic term orange ranked in the 7th and the non-basic term cream ranked 

in the 4th position but they can also be used in a non-colour sense. 
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Figure 3.6 Top 30 most frequent colour names in Twitter for British English speakers. 

3.6.  Behavioural features 

In this section we present the behavioural measurements of frequency of occurrence, 

response time and consensus of colour names in the dataset obtained from the online 

colour naming experiment. 

 

3.6.1. Frequency of use in colour naming experiments 

Frequency in colour naming experiments quantifies the total number of times that each 

colour name was used to describe any colour stimuli by all observers (Boynton & Olson, 

1987; Sturges & Whitfield, 1995). This is determined by the extent of the category on 

colour space, and by the rate at which colours within this extent are named as such. 

Purple was the most frequent colour name followed by pink, blue and green (Figure 3.7). 

Green was nearly twice as frequent as the next most frequent colour brown. The least 

frequent basic term was white, found in the 22nd position and red in the 15th. The non-

basic terms lilac and turquoise were found in the 6th and 7th positions respectively while 

violet and light blue were in 11th and 12th positions. 
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Figure 3.7. Frequency of top 30 colour names in online experiment for British English 

speakers. 

3.6.2.  Consensus 

Consensus describes the agreement among observers in naming colour samples 

(Brown & Lenneberg, 1954; Boynton & Olson, 1987; 1990; Davies & Corbett, 1994; 

Sturges & Whitfield, 1995). Previous studies have defined consensus against a 

threshold. To provide a consensus measure for all names, we compute it as the peak of 

each naming distribution over colour samples by: 

 

 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑛) = 𝑚𝑎𝑥
𝑐∈𝐶

𝑃(𝑛|𝑐) (3. 1) 

 

where P(n|c) is the conditional probability that name n will be assigned to a colour c given 

the c=600 colour stimuli of the experiment and the n=478 distinct colour names offered 

by the observers. In Figure 3.8, we show the 30 colour names with the highest 

consensus. Red was the highest followed by blue and yellow. The top nine ranked colour 

names were all basic colour terms. Lilac was again found earlier than white and green 

while lime green and royal blue are equal to green.  
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Figure 3.8 Top 30 colour names named with consensus across samples and observers for 

British English speakers.  

3.6.3.  Reaction time 

The reaction time, also called latency, is the time required by each observer to complete 

a colour naming task (Brown & Lenneberg, 1954; Boynton & Olson, 1987; Sturges & 

Whitfield, 1995). In the online colour naming experiment, latencies were measured from 

the onset of the stimulus to the observer’s first keystroke of the typed colour name. 

Response time distributions are rarely Gaussian as their shape rises rapidly on the left 

followed by a long tail on the right. Therefore, we report the median range and 95% 

confidence interval of response latency for each colour name (Whelan, 2008). White and 

red were the fastest to name colours followed by pink and grey (Figure 3.9). Not all 

eleven basic colour terms ranked in the top positions. Pale khaki and lighter purple were 

found in the 9th and 10th position while purple in the 15th.  
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Figure 3.9 Median response time of top 30 fastest responding colour names for British 

English speakers. Error bars denote 95% confidence interval. 

3.7.  Geometric features 

In this section we present the geometric measurements of size, shape and location of 

colour names in colour space from the dataset obtained in the online colour naming 

experiment. 

 

3.7.1. Size 

The size of colour categories was measured by their volume in colour space. To 

approximate the volume of each lexical colour category in CIELAB, we first described 

the dispersion of their distribution by their covariance matrix. Volume was then measured 

as the square root of the determinant of the uncertainty ellipsoids. To avoid possible 

redundancies from the sampling used in the experiment that could in principle produce 

near to zero volumes for ellipsoids thin in one direction despite having substantial spread 

in other directions, we regularised the covariance matrix by adding an identity matrix 

multiplied by the mean colour difference of the four nearest neighbours across stimuli 

(mean ΔΕab = 7.14). The category with the label unknown that summarises all responses 

where participants replied ‘I don’t know’ covered almost the entire of colour space and 

was the largest category followed by puce for which it seems that participants didn’t know 

the referent colours for this name. The third largest category was violet and then green. 
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Only five basic terms were ranked in the top positions of the largest colour categories 

scale (Figure 3.10). There is a weak Pearson positive correlation between frequency and 

volume, r = 0.21, p <0.0025 (Figure 3.11) that confirms the differences between the two 

measurements. 

 

 

Figure 3.10. Volume of top 30 largest lexical colour categories in colour space for British 

English speakers. 
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Figure 3.11 Correlation between frequency and volume of colour names in online colour 

naming experiment. 

3.7.2.  Shape 

The shape of colour names in colour space was measured by their convexity. To assess 

convexity, the dispersion of each distribution of a colour name across samples was 

described by its covariance matrix. Sphericity was then defined as the fractional 

anisotropy of the covariance matrix. Fractional anisotropy (Basser & Pierpaoli, 1996) is 

a size invariant, pure-shape measure that ranges from 0 for isotropic spherically 

distributed 3-D data, up to unity for data which is constrained to a line, hence maximally 

anisotropic. Intermediate values indicated degrees of anisotropy. Hence, colour 

categories that are near spherical, whether large or small, will have low anisotropy 

scores; elongated categories will have high scores; and flattened categories will have 

intermediate scores (Figure 3.12). Dark grey was the most spherical colour category 

followed by terracotta and light brown (Figure 3.13). Brown and yellow were the only 

basic colour terms found in the top 30 positions. 
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Figure 3.12  Covariance ellipsoids of terracotta, cerise, white and royal blue. The fractional 

anisotropy of these examples is 0.33, 0.62, 0.86 and 0.90 respectively. The spheres indicate 

the location of colour samples producing the response, with volume proportion. 

 

 

Figure 3.13 Fractional anisotropy of top 30 most spherical colour names for British English 

speakers. 
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3.7.3. Location 

Centroids are a measure of the centre of mass of the location of colour categories in 

colour space. For each colour name, we determined its distribution over the colour stimuli 

in CIELAB and then computed the mean location of its domain for each of the three 

coordinates L*, a*, b*. The Cartesian coordinates a* and b* (Figure 3.14, top) were then 

converted to the perceptual coordinate of Chroma (C*) and shown against lightness L* 

(Figure 3.14, bottom).  Lime green and fuchsia were the colour names with the highest 

Chroma, while the highest lightness was found for white and the lowest for black.  
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Figure 3.14 Centroids of 30 common colour names in a*b* plane (top) and L*C* plane 

(bottom) of CIELAB for British English speakers. 
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3.8.  Centroids of Basic Colour Terms within different languages 

In order to explore the agreement between the BCTs across languages, in Figure 3.15 

we show their centroids in British English, American English, Greek, Russian, Thai and 

Turkish. Overall, except for blue, there is a very good correspondence between BCTs 

across languages in terms of hue, Chroma and Lightness. For the blue term, there is a 

good agreement between British, American and Turkish (mavi), but there are large 

differences against Greek (ble), Russian (sinij) and Thai (fa). The Thai main BCT for blue 

(fa) coincides more with the sky blue in Greek (galazio) and Russian (goluboj); while the 

main Greek blue term (ble) coincide well with the dark blues in Russian (sinij) and in Thai 

(namngen). The navy blue term in Turkish (laçikvert) appears to differ from the blue term 

(mavi) mainly in the lightness dimension with not much differences in the hue dimension. 

Furthermore, its location is not in good agreement with the dark blue BCTs in Greek, 

Russian and Thai.  

 

Table 3.1 shows the colour differences in terms of the CIE ΔΕ2000 formula between the 

BCTs in British English and all other above languages that confirms the good 

correspondence of the visual inspection. The second basic terms in the blue region 

proposed in Russian, Greek, Thai and Turkish are compared against the same blue 

centroid in British English. The best agreement is found between British and American 

English with a mean ΔΕ00=1.49, and the worst agreement is against Thai with a mean 

ΔΕ00=5.01. Except for blue, the comparison between British English and American 

English, Greek, Thai, and Turkish for the loci of the 10 BCTs results in mean ΔE00 of 

1.83, 2.13, 2.39 and 2.23 respectively. In Table A.1, we report the colour differences in 

terms of Euclidean distances ΔΕab and the pairwise Euclidean distances for each name. 

The largest colour difference was found in average >20ΔΕab between the blue BCTs 

while the term with the second largest colour differences was pink with a mean 

ΔΕab=4.52. The BCT with smallest mean colour difference across languages was purple 

ΔΕab=2.35. 
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Figure 3.15 Centroids of 11 BCTs in British English (circle), American English (square) and 

12 BCTs in Greek (diamond), Russian (asterisk), Thai (plus) and Turkish (cross) in a*b* 

plane (top) and L*C* plane (bottom) in CIELAB. Centroids with a hue angle >180° are 

shown on the left side and with a hue angle of <180° on the right side of neutral axis. 
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Table 3.1 Colour differences CIE ΔΕ2000 between centroids of BCTs in British English (Br) and 

American English (Am), Greek (Gr), Russian (Ru), Thai (Th) and Turkish (Tu). 

 
Br vs Am Br vs Gr Br vs Ru Br vs Th Br vs Tu 

white 1.55 3.02 1.49 2.36 2.58 

black 1.51 1.40 4.51 3.59 3.05 

red 1.08 0.96 2.59 0.59 0.56 

yellow 1.10 0.32 1.15 1.62 3.10 

green 2.16 1.21 3.31 2.30 0.67 

blue 2.70 14.31 16.98 17.24 2.26 

brown 0.72 0.84 1.89 2.68 0.93 

purple 0.75 1.65 0.55 1.51 1.51 

pink 0.97 1.85 1.41 1.56 3.00 

orange 1.39 2.51 1.43 5.21 3.13 

grey 2.43 4.58 2.95 2.44 3.77 

blue (2) NA 18.84 19.26 19.00 26.88 
      

mean 1.49 4.29 4.79 5.01 4.29 

 

3.9.  Discussion 

In this chapter, we presented an ongoing online colour naming experiment designed to 

collect a small number of unconstrained colour naming responses (n=20) from each of a 

large number of participants (n=500). In the collection of our behavioural data, we 

extended previous cross-cultural studies which used only the most saturated colour 

samples (n=330) on the surface of the Munsell system (Berlin & Kay, 1969/1991; Kay et 

al., 2010) by sampling (n=600) also the interior of the colour solid. A further 

methodological improvement includes the departure from usual methods which would 

use a small number of observers and/or the use of only a restricted set of monolexemic 

terms (Berlin & Kay, 1969/1991; Boynton & Olson, 1987; Sturges & Whitfield, 1995; 

Benavente et al., 2006; Lindsey & Brown, 2014; Parraga & Akbarinia, 2016). Instead, 

thousands of volunteers from linguistically and demographically diverse populations 

freely named a large number of colours online (Moroney, 2003; Mylonas & MacDonald, 

2010; Munroe, 2010). We argued, that participating in an online experiment in your own 

familiar environment, with your own equipment, and without the physical attendance of 

the examiner, would give more ecological validity to the underlying categories 
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responsible for colour naming. We also depart from previous research by taking the 

different colour names given by the observer in our online task to reflect a categorical 

distinction important to the observer. So, in the analysis of our data, we did not use 

statistical procedures to look for similarities between given terms to summarise them into 

smaller groups (Lindsey & Brown, 2014). 

 

We presented sets of lexical, behavioural, and geometric features of colour names 

obtained from the analysis of the behavioural responses in British English but also from 

linguistic data obtained from Twitter. None of the features alone were sufficient to 

demarcate the BCTs from non-basic colour names in agreement with earlier studies that 

required multiple criteria for this task (Berlin & Kay, 1969/1991; Corbett & Davies, 1997; 

Mylonas & MacDonald, 2016). Nevertheless, the obtained features will allow us to 

examine questions regarding the origin and development of colour categories in Chapter 

4.  

 

Except for blue, comparison of the centroid location of the BCTs showed a good 

correspondence (<=5 ΔΕ00) between languages despite the online experimental 

methodology and the linguistic diversity of the observers. Overall, these results 

demonstrate that different languages tend to categorise colours into BCTs similarly. 

However, the mean colour difference between British and American English was about 

3 times smaller than the mean colour differences between British English and the other 

4 test languages indicating that speakers of similar linguistic groups agree more on the 

location of BCTs than speakers of different languages. The large differences for blue can 

be explained by the proposed second basic blue in the languages other than English that 

splits the unitary blue category. In Russian, Greek and Thai these two basic blues 

correspond well but this was not the case in Turkish contrary to an earlier report (Özgen 

& Davies, 1998). The range of the basic blue term (mavi) in Turkish overlapped with the 

blue term in British English while the navy blue term (laçikvert) appear to differ from the 

blue term (mavi) mainly in the lightness dimension with no many differences in the hue 

dimension. These findings raise doubts for the basicness of the proposed second blue 

in Turkish.  We will revisit the important question of basicness of colour names within 

different languages in Chapter 7. 
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Coherence of Classes of Colour 

A range of explanations have been advanced for the systems of colour names found in 

different languages. Some explanations give special, fundamental status to a subset of 

colours from which all other categories derive. We argue that a subset of colours, if 

fundamental, will be coherent; meaning that there exists a non-trivial criterion which 

distinguishes them from the other colours. In Chapter 3, we presented a set of 

measurements for capturing features of colour names obtained in an online experiment 

and in linguistic usage data. Here, we make use of these features to test the coherence 

of subsets of achromatic, primary and basic colours. We apply a supervised machine 

learning method to discover criteria which distinguish subsets of colours, and so assess 

their coherence. We find that achromatic and basic colours are coherent subsets but not 

primaries. These results reinforce the ongoing argument against the special role of 

primaries in the formation of colour categories.  

4.1.  Coherent classes 

We make the claim that if a subset of colours has a foundational role in the system of 

colour naming then that will leave a trace in the properties of those colours, in comparison 

to other colours. We formalise this idea as a subset of colours forming a coherent class, 

defined by a generalisable membership criterion. We define a criterion to be 

generalisable if it can be reliably identified from a subset of members of the class. This 

rules out trivial list-membership style criteria. If we are able to show that some subset of 

colours cannot be distinguished by a generalisable criterion, and hence do not form a 

coherent class, we suggest that this presents a challenge to any explanation for colour 

naming that gives that subset a fundamental role, as no trace of that role exists. The 

class membership criteria that we will consider are based on sets of behavioural, 

linguistic and geometric features of colour names, presented in the previous chapter. We 

restrict our analysis to 73 colour names in wide cultural use which were produced at least 

20 times in our data to give us confidence in their measures. This accounts for 62% of 

the responses. In Appendix B, we report features for all 73 common colour names. 

 

In order to discover criteria that can distinguish class membership based on features we 

use methods from machine learning. These machine learning methods represent the 
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state-of-the-art in practical classification problems and subsume many previous classical 

theories such as ‘necessary and sufficient conditions’ (Berlin & Kay, 1969/1991), 

‘similarity to prototypes’ (Rosch Heider, 1972), or ‘networks of family resemblances’ 

(Rosch & Mervis, 1975). 

 

Specifically, we use membership criteria expressed by an ensemble (forest) of decision 

trees (Figure 4.1). Each decision tree expresses membership with a binary tree B of 

criteria such as ‘C is in X if 1 1f t , or 1 1f t  and 2 2f t , otherwise not’ – where C is a 

colour, X is a class, if   are feature values and it   are thresholds. The trees in an 

ensemble are purposely constructed to be different, so some trees may deem C to be a 

member of X, and others not. The proportion of votes for membership, across the 

ensemble, is considered a class membership confidence. So, while the decision 

boundary in feature space of an individual tree is necessarily piecewise-linear, axes-

aligned, and sharp, the decision boundary of an ensemble of trees can be curvilinear, 

and sharp in some parts while fuzzier in others. 

 

Figure 4.1 Graphical example of a decision tree ensemble for determing membership of a 

colour C to class X. Triangles denote nodes, circles binary decisions, red colour routes True 

decisions.   
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Effective algorithms (‘Random Forests’) for construction of ensembles of decision trees 

based on training examples, ensure that the trees are varied by constructing each on a 

different random subset of the training data; and by choosing the splitting feature at each 

branch of the binary tree not from all possible features, but from a different random 

subset. Random Forests have been shown to be highly effective for many diverse 

classification problems (Breiman, 2001; Gislason et al., 2006; Cutler et al., 2007). An 

advantage of them, useful for our application, is that they do not assume commensurate 

feature dimensions, or normally-distributed features values. 

 

To assess the coherence of a class of colours, we measure how well it is defined by a 

generalisable criterion. We enforce generalisability by using a leave-one-out evaluation: 

for each colour (in class or out) we build a random forest classifier using all other colours, 

together with their labels as in-class or out; and then evaluate the class membership 

confidence of the left-out colour using that classifier. Finally, we evaluate whether the 

membership confidences of in-class terms are higher than those of out-of-class terms. 

 

We report the coherence of the Hering primary class (black, white, red, green, blue and 

yellow) and the basic class (Hering’s primaries plus purple, orange, pink, grey and 

brown). Additionally, we report the coherence of an achromatic class (black, grey and 

white) to check whether smaller classes are necessarily less coherent because they 

have fewer examples from which to determine a membership criterion. In the Appendix, 

we report results for other plausible sets of primary and basic colours. 

4.2.  Families of features 

For each of the 73 common colours, three sets of behavioural, geometric and linguistic 

features were computed. For linguistic features, we use name length measured in letters; 

the number of derivative forms (e.g. greener, greenish, and sea green are all consider 

derivatives of green) in the online experiment; and usage frequency based on counts in 

the social media dataset. The behavioural features, computed from the online response 

dataset, are: frequency of occurrence, response latency and inter-subject consensus. 

The geometric features, computed from the online response dataset, are: the mean 

colour space location of the distribution of samples that generate that response, and the 

size and shape of that distribution.  
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4.3.  Classifier 

We constructed criteria for demarcating classes of colours using the Random Forests 

algorithm (Breiman, 2001). As an input, the algorithm receives a training dataset of 

colours, each described by a vector of the above feature values, and associated with a 

binary label indicating whether it is in-class or out-class. Based on this input, the 

algorithm creates an ensemble (forest) of 100 independently-generated decision-trees. 

We have confirmed that a larger forest does not change the results. 

 

Each tree is grown using a separate dataset created by bootstrap sampling-with-

replacement from the training data. Trees are grown down from a root node at which all 

training data arrives. At each node a feature dimension is chosen to be the basis for a 

splitting rule. The choice of dimension is made from a subset of all feature dimensions, 

chosen randomly for that node. Following the standard recommendation, if there are n 

feature dimensions, then the subset size is (rounded) square root of n; so, in our trees, 

at each node, a subset of three feature dimensions were considered out of the full eleven. 

Given the feature subset, the particular feature and threshold value that best segregates 

the data arriving at the node according to its labels is identified. The arriving data is then 

sent to left and right sub-nodes according to this criterion. Sub-nodes are iteratively 

constructed below nodes until leaf nodes are reached that receive only a single training 

data sample. After tree construction, the unique dataset generating the tree is discarded 

but the structure of the tree, the splitting dimension and threshold at each node, and the 

label of the datum in each leaf node is retained. 

 

After construction of the forest a new datum is classified by passing it through the 

structure of each tree, directing it to sub-nodes according to its feature values, and 

recording the label of the leaf node at which it finally arrives. The proportion of trees of 

the forest that classify it as in-class is the overall in-class classification confidence of the 

forest. 

4.4.  Colour classes 

We assess the class coherence of three subsets of colours: 

Achromatic (nin=3): white, black and grey. 

Primary (nin=6): white, black, red, green, yellow and blue. 

Basic (nin =11): white, grey, black, red, orange, yellow, green, blue, purple, pink 

and brown. 
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For each class, the other colours of the common set (nout=73-nin) were considered out-

of-class. 

4.5.  Evaluation of classification 

Evaluating classifiers on data on which they were trained is generally misleading. To 

avoid this, and to ensure that the computed class criteria are generalisable, we employ 

a leave-one-out cross-validation strategy. For each class that we assess, we build 73 

separate classifiers. Each is trained on 72 colours, with a different colour left out. The in-

class confidence of each colour is then computed by the classifier which was trained with 

it left out. To assess the coherence of a class we quantify the extent to which the class 

confidences of the in-class colours are higher than those of the out-of-class. For this 

quantification we use a measure based on rank precision. Precision is the fraction of 

correct positive classifications to a test class over all positive classifications. MAP is the 

mean average precision of the ranks at the top k positions, where k is the size of the test 

class. MAP will be 1.00 if all in-class confidences are higher than all out-of-class; 0.00 if 

all in-class confidences are lower than all out-of-class; and intermediate if the range of 

in-class confidences overlaps the range of out-of-class.  

 

To examine the importance of features for the coherence of each class, we repeat the 

full leave-one-out assessment and MAP computation, but with classifiers trained with 

only a subset of features. The subsets we assessed were: all features except one, two 

out of three families of features, and single families of features. The importance of 

features, or families of features, for each class of colours is quantified by how much the 

MAP score decreases compared to using all features. In the next section we examine 

the cohesion of achromatic, primary and basic classes, and determine the contribution 

of different features to that coherence.  

4.6.  Coherence of Achromatic class 

In our first assessment, we examined the coherence of an achromatic class consisting 

of black, white and grey. The Random Forests classifier gave all three in-class colours 

higher confidences than all non-class colours, giving a maximum possible MAP score of 

1.00. In Figure 4.2, we present the confidence for each colour to belong to the achromatic 

class. The in-class confidence of each colour is assessed by a classifier that is trained 

on all colours apart from it. White was the colour with the highest confidence, followed 

closely by black. Grey was found in the third position but with lower confidence. Light 

grey was the out-of-class colour with the highest in-class confidence.  
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Figure 4.2 Class confidences for the achromatic class. Only colours with an in-class 

confidence above 0 are shown for clarity. Numbered bars indicate class members. The 

display colour of each bar is the sRGB centroid of the distribution of samples generating that 

colour name response. 

4.7.  Coherence of Primary class 

As a primary class we took the six opponent Hering primaries: white, black, red, green, 

yellow and blue. The classifier produced a MAP score of 0.50. Examination of the 

confidences for individual colours (Figure 4.3) showed that this low coherence score was 

due to failure of the class criteria to generalise to all in-class members (especially yellow), 

and erroneous generalisation to non-class members (especially pink, grey and brown).  
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Figure 4.3 Class confidences for the primary class. See Figure 4.1 for additional notes. 

4.8.  Coherence of Basic class 

For the assessment of the basic class, we considered the 11 basic colour terms of Berlin 

& Kay (1969/1991), white, black, grey, red, orange, yellow, green, blue, purple, brown 

and pink. All basic colours were given higher confidences than all non-basic, resulting in 

a maximum possible MAP score of 1.00. Amongst the basics, blue, pink and brown were 

given the highest confidences and purple the lowest (Figure 4.4). Amongst the non-

basics, olive was given the highest confidence. 

 

A summary of all evaluations is given in Table 4.1. 

 

Table 4.1 MAP scores, expressing class cohesion, for achromatic, primary and basic classes. 

A score of 1 is perfect cohesion according to our assessment. 

Class MAP 

Achromatic class (n=3) 1.00 

Primary class by Hering (n=6) 0.50 

Basic class by Berlin & Kay (n=11) 1.00 
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Figure 4.4 Class confidences for the basic class. See Figure 4.1 for additional notes. 

4.9.  Feature Contribution 

To examine the importance of each feature and each family of features we assessed 

class coherences using different feature subsets, specifically: 

a) All features (n=11) 

b) All features bar one (n=10), eleven variants 

c) Behavioural plus Geometric features (n=8) 

d) Geometric plus Linguistic features (n=8) 

e) Behavioural plus Linguistic features (n=6) 

f) Geometric features (n=5) 

g) Behavioural features (n=3) 

h) Linguistic features (n=3) 
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Figure 4.5 Class coherence scores when a single feature is excluded [-], compared to when 

all features are used (top). 

When excluding individual features, the most important feature for the achromatic class, 

fittingly, is the Chroma feature as the MAP score was reduced from 1.00 to 0.33 when it 

is excluded (Figure 4.5). Exclusion of consensus, shape, lightness and linguistic 

frequency had no effect. For the primary class the most important feature was Linguistic 

Frequency, which reduced the MAP to 0.33 from 0.50 when excluded. Excluding 

frequency, response time, size, shape or chroma improved the MAP score. This is 

presumably because these features are useful to demarcate some of the class but 

generalise inconsistently. The greatest improvement was when Response Time was 

excluded, raising the MAP score from 0.50 to 0.67. In this case, pink and cream remain 

as false positives at ranks 5 and 6, with class confidences higher than green and yellow. 

For the basic class of colours none of the excluded features reduced the MAP score 

below 1.00. 
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Figure 4.6 Class coherence scores when one family of features is excluded [-], and when only 

one family of features is retained [+], compared to all features (top). 

 

Considering exclusion of single families of features: for achromatic, so long as geometric 

is retained the MAP score is 1.00, otherwise it is 0.33 (Figure 4.6). For primary, the 

exclusion of linguistic produced the lowest MAP score of 0.33 and the exclusion of 

behavioural the highest MAP score of 0.66. For basic, the exclusion of geometric and 

linguistic did not influence the coherence of the class with a MAP score of 1, but 

excluding the behavioural reduced the MAP score to 0.90 because cream was then given 

higher confidence than white and black. 

 

The assessment of retaining single families of features resulted in a MAP score 0.33 for 

the achromatic class when either behavioural or linguistic were retained, and a MAP 

score of 1 when geometric was retained. For the primary class, keeping only geometric 

features produced a MAP score of 0.17 while retaining the linguistic resulted in a 

maximum MAP score of 0.66. The retainment of either behavioural or linguistic alone 

produced a MAP score of 0.90 for the basic class, but geometric alone gave a MAP score 

of 0.54.  
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4.10.  Discussion 

A point of contention that frequently arises regarding the basis of colour categorisation 

is whether there are subsets of colours with a special fundamental status, from which all 

other categories derive. Different subsets have been suggested as fundamental, and no 

consistent assessment of each of their claims has been previously been made. Here, we 

argue that a fundamental subset of colours should form a coherent class, with a 

generalisable membership demarcating it. To test this, we analysed a large dataset of 

colour naming responses from an online colour naming experiment and public social 

media posts to examine the class coherence of achromatic, primary and basic colours. 

Our findings provide evidence to substantiate the coherence of basic and achromatic 

classes, but we found little support for the primary class. Indeed, the best generalisable 

criteria for demarcating the primaries consistently also capture secondary colours. These 

results suggest that the primary class of colours does not play a foundational role in 

colour categorisation. A summary of all assessments is given in Table 4.2 including the 

results for other plausible sets of primary and basic colours reported in Appendix B. 

 

In our assessment of the primary class, we considered the primaries of Hering’s 

opponent process theory because of a widely held view that these colours are the basis 

of colour naming systems across languages (Kuehni, 2005; Regier et al., 2005; Philipona 

& O’Regan, 2006). Still, the number and the members of the primary class vary in the 

literature (Aristotle, 350 B.C.E.; Newton, 1730; Maxwell, 1872; Hering, 1878/1964; 

Eskew, 2009; Skelton, Catchpole, Abbott, Bosten & Franklin, 2017). In Appendix B (see 

Table 4.2 for a summary), we tested primary classes with different proposed members 

than those of Hering but again we found no evidence to substantiate the coherence of 

any primary class. The coherence of primary classes proposed by Eskew (0.63), Aristotle 

(0.57) and Newton (0.57) was higher than Hering’s primary class, but those proposed by 

Maxwell (0.30) and Skelton et al. (0.40) were lower. All these primary classes are smaller 

(3≤ n ≥ 7) than the basic class (n = 11) but this does not explain their low MAP scores, 

since the even smaller achromatic class (n = 3) had perfect coherence (MAP = 1.00) 

because its members have distinctive, common characteristics. 
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Table 4.2 MAP scores, expressing class cohesion, for achromatic, primary and basic classes 

and all variants. A score of 1.00 is perfect cohesion according to our assessment. 

Class MAP 

Achromatic class (n=3) 1.00 

Primary class by Maxwell (n=3) 0.33 

Primary class by Hering (n=6) 0.50 

Primary class by Eskew (n=6) 0.63 

Primary class by Skelton (n=5) 0.40 

Primary class by Aristotle (n=7) 0.57 

Primary class by Newton (n=7) 0.57 

Random classes (n=6) μ=0.13 

Secondary basics + 1 of Hering’s primaries classes (n=6) μ=0.53 

Basic class by Berlin & Kay (n=11) 1.00 

Basic class by Berlin & Kay (n=11 + olive) 0.92 

Basic class by Berlin & Kay (n=11 + cream) 1.00 

 

 

Random classes with equal number of randomly selected colours (n = 6) had an average 

MAP score of 0.13 (Figure A.19), while an equally sized class of secondary basics 

colours (brown, orange, purple, pink and grey plus one of Hering’s primaries) had an 

average MAP score of 0.53 (Figure A.20). This indicates that primaries are not a 

completely haphazard class but are not more coherent than classes of secondary 

colours; consistent with previous studies in adults (Boynton & Olson, 1985) and in infants 

(Franklin, Pitchford, Hart, Davies, Clausse & Jennings, 2008). 

 

Considering why the class coherence was low for all systems of primary evaluated, we 

note that yellow (considered primary in all schemes) was consistently given low class-

confidence. The particular characteristics of yellow that might explain these results is its 

narrower distribution (see Figure A.9) and higher lightness (see Figure 3.14) than other 

chromatic members of the primary class. Interestingly, yellow was absent in Aristotle’s 

original text where he named only six out of the seven pure categories; and also missing 

from the wavelength sensitivities of cells in V4 reported by Zeki (1980). A second reason 

for the universally low coherence scores for primary classes were the consistently high 

in-class confidences given to pink and brown (non-primary in all schemes). Pink and 

brown, similarly to green and blue, were responded to very frequently, in a very short 

period of time and with very good agreement between subjects. It is also interesting to 

note that pink and brown appear as a symmetrically related pair within the cognitive 
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structure of the basic colours determined through analysis of similarity, relative lightness 

and adjacency (Griffin, 2001), suggesting that the salience of these two categories may 

have a shared explanation. 

 

In contrast to the poor coherence of the primaries, the 11 basic colours (Berlin & Kay, 

1969/1991) had a perfect MAP score of 1.00. The coherence of the basic class was also 

apparent when the classifier was trained with reduced features: behavioural or linguistic 

features alone gave a score of 0.90, together 1.00. Geometric features contributed little. 

Coherence of the basic class is unsurprising given that they were originally identified 

according to a criterion based on features similar to the ones we use. Our results are a 

confirmation that the Berlin and Kay’s basic colours can be distinguished from other 

colours by such a criterion in English.  

 

Discussion of the basic colours is frequently concerned with why these particular colours 

satisfy this criterion, rather than some other colours. Different candidate answers have 

been advanced, placing different emphasis on the role of physiology or natural world 

properties. On the one hand, Griffin (2001) has shown that the cognitive similarity 

structure of the 11 basic colours has a symmetry which corresponds to a symmetry of 

the cone response functions. At the other end of the spectrum of explanations, is 

grounding in the statistical regularities found in natural images (Yendrikhovskij, 2001), or 

optimal performance at tasks where semantics must be inferred from appearance 

(Griffin, 2006). Any explanation wherever it lies in the spectrum, must account for the 

variation in the number of basic colours across languages; and some authors have 

questioned whether the same set of basic colours is coherent in all cultures, dependent 

on the communication needs of semantic categories that are locally most important 

(Davidoff et al., 1999; Gibson et al., 2017). A cross-language extension of the current 

methodology could shed light on this.  

 

The examination for a possible additional 12th basic colour term in the supplementary 

section showed a slight deterioration of the coherence of the class, except when cream 

was added which also produced a perfect MAP score of 1.00. The reversal of the 

confidence ranking of cream and olive, when olive or cream is added to the basic class 

(compare Figure A.21 and Figure A.22) is surprising but explicable. Consider the 

category of flying birds. What animal is the closest to being in-class by generalising from 

the class? Possibly penguins, with emus further behind. But when penguins are grouped 

with flying birds, then the criterion which demarcates the class from all other animals 

would change substantially (promoting the importance of feathers perhaps), and emus 

could become more in-class than penguins. Cream was also suggested as a candidate 
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for a 12th basic colour terms in a previous study (Sturges & Whifield, 1995) but similarly 

to our findings with much lower scores than the other eleven basic terms. This indicates 

that the upper limit of the basic class has some fuzziness and new basic terms may arise 

(Hardin, 1997; Mylonas & MacDonald, 2016).  

 

Could our results be influenced by our online experimental methodology, the quality of 

features and absent features? Regarding the uncontrolled colour reproduction of the 

web-based colour naming experiment, the comparisons against results of previous 

studies conducted in laboratory conditions produced similar centroids for the primary 

colour names in English and in different languages (Sturges & Whitfield, 1995; Mylonas 

& MacDonald, 2016; Paramei et al., 2018). The agreement for the location of the basic 

terms, including achromatic and primaries, between British and American English in the 

online experiment (ΔE00=1) (Mylonas, MacDonald & Griffin, 2017) was better than what 

has previously reported between laboratory-based studies (ΔE00=7) (Boynton & Olson, 

1987; Sturges & Whitfield, 1995). Furthermore, the response times reported here, albeit 

longer than latencies recorded in laboratory settings, replicate the advantage of the basic 

terms and the equality of primary and secondary basic terms reported in previous studies 

(Boynton & Olson, 1987, Corbett & Davies, 1997). 

 

With respect to different computational approaches for determining the features of each 

colour, we recognise that there are alternative reasonable ways to compute some of 

these. For example, replacing the reported median response time with the mean as used 

in previous studies (Boynton and Olson, 1987) or replacing the probabilistic calculation 

of consensus of this study with a more information-based computation (Gibson et al., 

2017). We have not found that variants of computations for either response time or 

consensus substantially alters our results.  

 

A possible missing feature could be the purity of each colour and a hue cancelation task 

could provide a better measure than our naming task to determine the coherence of 

primary classes. Nevertheless, previous studies (Malkoc, et al., 2005; Bosten & Boehm, 

2014) found no differences between unique-hue judgments of non-primary (i.e., orange, 

purple) and primary hues (i.e. red, yellow, green and blue), suggesting that inclusion of 

such a feature would not be sufficient to make the primaries coherent. A different type of 

missing feature would be relational features, such as the good configuration of colours 

in a class (Jameson & D’Andrade, 1997; Regier et al., 2007). Our class coherence 

approach is unable to accommodate relational features since they belong jointly to a 

class, not separately for each colour. Indeed, we consider that the most compelling 
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justification for most systems of primaries is not their fundamental role in colour 

categorisation but their practical success in subtractive or additive colour mixing. 

 

In conclusion, we show that primary colours do not form a coherent class, whilst 

achromatic and basic classes do. These results provide evidence against primaries 

playing a fundamental role in the development of colour categories and challenge 

explanations based on this claim.  



 

 98 

  

Computational colour naming models 

In this chapter, we present a range of computational colour naming models to automate 

the assignment of colour names to colours across the full three-dimensional colour 

gamut. We evaluate the performance of four supervised nonparametric algorithms (1-

NN, kNN, Random Forests and Rotated Split Trees) trained by responses from human 

observers in the online colour naming experiment. The best performing algorithm, 

Rotated Split Trees (RST), is also evaluated in several colour spaces (linear RGB, sRGB, 

CIEXYZ 1931, CIELAB, CIELUV and CIECAM02-UCS) where it achieved the best 

performance in CIELUV. Using this method, we infer histograms of naming responses 

for any colour, and compute their entropy as a measure of naming variability in colour 

space. We also compare the classification of the most saturated colours of the Munsell 

Array into colour terms by RST against previous colour naming models based on 

monolexemic psychophysical data. We then show the performance of RST in 

segmenting a synthetic colour wheel when trained by British and American English, 

Greek, Russian, Thai and Turkish speakers. 

5.1.  Learning from colour naming data 

Machine learning is a subfield of Computer Science that provides computers the capacity 

to automate a learning task without being explicitly programmed. It is being used in many 

applications across fields such as search engines, computer vision, natural language 

processing, medical imaging and computational finance. In colour naming studies, 

machine learning methods have been used to map perceptual and linguistic aspects of 

colour with an aim to reproduce colour names that are meaningful to human observers.  

 

To automate the colour naming task, the majority of studies make use of supervised 

models trained by responses of human observers (Lammens, 1994; Lin et al., 2001b; 

Mojsilovic, 2005; Seaborn, 2006; Benavente, 2008; Chuang et al., 2008; Mylonas et al., 

2010; Parraga & Akbarinia, 2016) or annotated images (Weijer et al., 2007; Lindner et 

al., 2012). Interestingly, an unsupervised colour categorization model based on the 

minimum perceptual distance criterion for natural image statistics produced a system of 

basic colour categories that resemble those of human observers (Yendrikhovskij, 2001; 

Berlin & Kay, 1969/1991). Similarly, the use of reinforcement learning resulted in 
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distributions similar to universal colour categories based on the communication between 

multiple agents for uniform and natural distributions of colours (Belpaeme & Bleys, 2005). 

Given that the performance of the latter two approaches in order to reproduce human 

colour categories have been demonstrated only for a small number of basic categories, 

we will focus here on supervised models trained by the large number of unconstrained 

colour names in different languages of the online colour naming experiment. In 

supervised learning, the computer is given a training set with a known property (e.g. an 

RGB triplet with a label such as red) as an input and the task is to predict this property 

for new instances (e.g. the colour name for an unlabelled RGB triplet). For classification 

problems the task is to predict whether or not a name is applicable to a test sample, while 

for regression problems the task is to predict the distribution of names for a test sample. 

 

Computational colour naming approaches can be also grouped into parametric and non-

parametric models based on their assumption for the form of the underlying mapping 

function from colours to names. On one hand, parametric models are easier to use as 

the training data is characterised with a set of predefined tuneable parameters that 

determine the shape of each colour category (Lammens, 1994; Benavente, 2008; 

Parraga & Akbarinia, 2016; Griffin & Mylonas, 2019). On the other hand, non-parametric 

models make fewer strong assumptions about the mapping function and the shape of 

the categories is determined by the training data (Mojsilovic, 2005; Seaborn, 2006; 

Weijer et al., 2007). In this chapter, we present the performance of four supervised 

nonparametric algorithms, which make fewer assumptions than parametric approaches 

and, as a result, provide wider applicability and increased robustness.  

5.2.  Methods 

The training set for our models consists of n = 600 approximately uniformly distributed 

colours x and T = 1544 distinct colour names y in British English offered by 500 observers 

in the online colour naming experiment. To generalize our observations from the training 

labelled points {(xi, yi)}i=1
𝑛 , with 𝑥 = (𝑥(𝐿), 𝑥(𝑎), 𝑥(𝑏))

𝑇 and 𝑦 = (𝑦1, … , 𝑦𝑇) to the entirety of 

colour space in CIELAB, a regression-based machine learning model 𝑀 = 𝑓(𝑥), can be 

applied to predict the histogram of naming responses for any colour. The assignment of 

the most likely colour name 𝑦 ∈ 𝑌 to a test colour 𝑥̃ specified by the triplet 𝑥̃ =

(𝑥̃(𝐿), 𝑥̃(𝑎), 𝑥̃(𝑏))
𝑇 can be then expressed as: 

 

 𝑦̂(𝑥̃) = argmax
𝑖

𝑓(𝑥̃𝑖) 

 

(5. 1) 
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In the following sections, we describe a set of supervised nonparametric models with an 

aim to infer a function 𝑓(𝑥̃𝑖). 

 

5.2.1. Nearest neighbour and k-Nearest Neighbours  

A nearest-neighbour (NN) approach is a simple algorithm that works well for basic 

machine learning problems. It only requires a colour metric to be chosen to determine 

the distances between test colour 𝑥̃ and training colours x. In CIELAB, an appropriate 

distance metric could be the CIE ΔΕab (Euclidean distance) or the more recently 

proposed CIE ΔΕ00 colour difference formulae. A k-Nearest Neighbours algorithm allows 

you to specify the k closest training samples and here the optimal k that minimises the 

error between observed and predicted histograms is determined using two modes of 

cross validation described in the following section. Given our training set of colour points 

X = x1, ..., xn with their naming responses Y = y1, ..., yT, and an optimal k, a kNN algorithm 

aggregates the histogram of colour names among the k closest neighbours of test colour 

𝑥̃ to predict its histogram of naming responses by: 

 

 
𝑓(𝑥̃) =  

1

𝐾
∑ 𝑦𝑖

𝑥𝑖∈𝑁𝑘(𝑥̃)

 (5. 2) 

 

where 𝑁𝑘(𝑥̃) are the k closest training observations to query colour 𝑥̃. For k = 1 the 1-

nearest neighbour algorithm is expected to produce good results for individual colours 

near the centre of categories, but the predictions would be sensitive to noise near the 

boundaries of categories. Larger values for k will be more robust to noise and would 

produce smoother predicted lexical colour categories but it might produce larger errors 

for individual colours. A very large k would result in over-smoothed boundaries between 

categories. Changing the value of k can change the assigned colour name for each test 

colour, and different values for k perform differently for different test colour sampling that 

make the prior selection of the most appropriate k problematic. 

5.3.  Random Forests 

Random Forests (RF) can be viewed as a method for choosing an adaptive k for each 

test colour 𝑥̃ in a kNN framework (Lin & Jeon, 2012). RF is a popular ensemble decision 

trees algorithm that is being used here in regression mode (Breiman, 2001). A decision 

tree is a collection of nodes and branches in a treelike structure, where the internal nodes 

split for each decision. Directed branches represent possible decisions leading to leaf 

nodes where the final decision is being made. In addition, the non-parametric nature of 
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regression trees makes the decision models more robust as they rely on fewer 

assumptions - at the cost of having less power than parametric models – and this makes 

them suitable for the large colour lexicons in many languages. However, when decision 

trees are fully grown, they can lead to overfitting on the training set with poor 

generalisation performance. Ensemble learning methods, like RF, reduce the variance 

of the expected generalization error by ensembling randomly constructed decision trees 

– a process known as bagging. 

 

Given our training set of colour points X = x1,..., xn with their naming responses Y = y1, 

..., yT, and a free parameter B = 100 trees, bagging constructs a forest of B uncorrelated 

regression trees fb = {T1,…,TB} by sampling for each tree T a random subset of the training 

set with replacement. At each node, the feature to split is selected as the best amongst 

a randomly chosen subset of features of the labelled set of training samples. The splitting 

process continues for each node until the Gini impurity index (Breiman, Friedman, Stone 

& Olshen, 1984) cannot be further decreased. The trees in an ensemble are purposely 

constructed to be independent, so some trees may predict a distribution of Y for X, and 

others not. The decision boundary in feature space of RF can be curvilinear, and sharp 

in some parts, while fuzzier in others. After training, the histogram of naming responses 

for test colour 𝑥̃ is estimated by averaging the predictions of all trees on 𝑥̃ by: 

 

 
𝑓(𝑥̃) =

1

𝐵
 ∑ 𝑓𝑏(𝑦𝑏

𝐵

𝑏=1

) 

 

(5. 3) 

where B is the number of trees, b the tree index, and 𝑦𝑏 is the histogram of naming 

responses on the training points 𝑥𝑏 computed as their arithmetic average. 

5.4.  Rotated Split Trees  

Similarly, to Random Forests, the Extra-Trees algorithm constructs a set of random 

binary decision trees but each tree is growing using the whole training dataset selected 

without replacement and splits nodes at random (Geurts, Ernst & Wehenkel, 2006). The 

produced extreme randomised split trees overcome the perturbations caused by the 

search for the optimal split during tree growing (Breiman, 2001; Cutler & Zhao, 2001) 

with competitive performance in terms of accuracy and computational efficiency. 

Considering that tree-based ensembles are essentially a set of hyper-rectangles that can 

be sensitive to rotations when partitioning the decision space; prior the construction of 

each random split tree, we also randomly rotate the representation space to further 

induce diversity within the constructed forest and as a result to improve the accuracy of 



 

 102 

the algorithm at determining the form of colour categories in a three-dimensional space 

(Blaser & Fryzlewicz, 2016; Andrews, Jaccard, Rogers & Griffin, 2017).  In this work, this 

Rotated Split Trees (RST) approach is being used to predict the histogram of colour 

names for test samples in regression mode. 

 

Given our training set of colour points X = x1, ..., xn with their naming responses Y = y1, 

..., yT, and free parameter B = 100 trees, RST ensembles B random-split tress, fb = 

{T1,…,TB} by using for each tree T the full training set. Prior to any splitting, a proper 

rotation matrix R is generated using Householder QR decomposition (Householder, 

1958; Blaser & Fryzlewicz, 2016). This rotation matrix is orthogonal with positive diagonal 

elements, and the attribute space, for each tree, can be then rotated to give a unique 

coordinate system and increase the diversity in the construction of regression trees. As 

opposed to un-rotated trees, the rotated trees have different orientation and vastly 

dissimilar data partition and are capable of producing smoother non-axis parallel decision 

boundaries. For growing a tree, RST splits the training data at each node independently 

of the target variable at random, unlike the optimum criterion of RF. Top-down binary 

recursion continues until no further splits are possible, that is, until all samples have been 

partitioned into their own leaf node. The predictions of each tree are then aggregated to 

predict the distribution of colour names for a test colour sample 𝑥̃ by: 

 

 
𝑓(𝑥̃) =

1

𝐵
 ∑𝑦𝑏

𝐵

𝑏=1

 

 

(5. 4) 

where B=100 is the number trees, b is the tree index, and 𝑦𝑏 is the histogram of naming 

responses on the training points 𝑥𝑏 computed as their arithmetic average. 

5.5.  Evaluation Metric 

To assess the performance of each colour naming model M, we measure how well it is 

defined by generalisable criteria. We enforce generalisability by using a Leave-One-Out 

and Leave-Planes-Out cross-validation. In the Leave-One-Out mode, we exclude a test 

chip from the training data, predict its histogram of colour names from the trained model, 

and score the difference between the predicted and observed histograms using 

Bhattacharyya (1943) distances. We aggregate scores for each chip in turn left out using 

the RMS Bhattacharyya distances. In the Leave-Planes-Out mode, we exclude the test 

chip and all the chips with the same, chroma, or lightness or hue dimensions. And again, 

we score each interpolation method by RMS of Bhattacharyya distances: 
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𝑅𝑀𝑆𝐸 = 𝑎𝑟𝑐𝑐𝑜𝑠𝐵𝐶(𝑝, 𝑞) = ∑√𝑝  √𝑞

𝑥∈𝑋

 

 

(5. 5) 

where p and q are the predicted and observed colour naming distributions for colour x 

respectively. The range of the Bhattacharyya angle is between 0 for perfect overlap and 

1.5708 (π/2) for complete separateness. 

5.6.  Interpolation of colour naming responses across the full colour gamut 

In Table 5.1, we compare the performance of the different computational models. The 

first step in our procedure was to quantify the minimum RMSE that could be achieved 

given the sparseness of data. We resampled the distribution of colour names across 

samples 100 times and we measured the overlap between observed and bootstrapped 

distributions with an RMSE = 0.51. In the second step, we measured as a baseline 

performance the RMSE between the observed distributions and the mean distribution of 

all other test samples using the leave-one-out with an RMSE = 1.35 and leave-planes-

out with RMSE = 1.36 cross validations.  

 

The 1-Nearest Neighbour interpolation approach based on ΔΕab and ΔΕ00 colour 

difference formulas produced RMSEΔΕab = 1.11 and RMSEΔΕ00 = 1.10 for the Leave-One-

Out and RMSEΔΕab = 1.19 and RMSEΔΕ00 = 1.16 for the Leave-Planes-Out cross 

validations respectively. For kNN, RF and RST, we also present the results of applying 

a square root (SQRT) transformation to the histograms that empirically improved their 

performance. In this variant, we interpolated the square root of the histograms, and then 

squared and normalised them to unit sum after estimating at a test colour. The k-Nearest 

Neighbours method produced the minimum RMSE using the ΔΕ00 colour difference 

formula, but it required tuning the number of k nearest neighbours for different cross 

validation modes. Random Forest with 100 trees, performed slightly worse in the Leave-

One-Out validation, but it is sensitive to rotation of the feature axes and its performance 

deteriorated in the Leave-Planes-Out validation. The RST with 100 trees performed best 

in terms of accuracy and simplicity of parameter tuning. We limited the number of trees 

to 100 because there was no need to further increase the processing time in terms of 

RMSE (Figure 5.1) while increasing the number of trees to 500 would, in practice, 

increase the error again (Probst & Boulesteix, 2017). In Figure 5.2, we show an example 

of observed and predicted distributions for a single colour sample using RST and in 

Figure 5.3 the total histogram of RMSE for RST. 
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Table 5.1 Comparison of interpolation methods for automating the colour naming task 

  Leave-One-Out Leave-Planes-Out 

Resampling 0.51 

Baseline 1.35 1.36 

1-NN (ΔEab) 1.11 1.19 

1-NN (ΔE00) 1.10 1.16 

k-NN (ΔEab) 1.00, k=9 1.06, k=8 

k-NN (ΔE00) 1.00, k=9 1.05, k=7 

RF 1.08 1.19 

RST 1.03 1.10 

k-NN (ΔEab-SQRT) 0.90 k=15 0.96 k=11 

k-NN (ΔE00-SQRT) 0.89 k=18 0.96 k=9 

RF (SQRT) 0.92 1.04 

RST (SQRT) 0.91 0.96 

 

 

 

Figure 5.1. Root mean square error between observed and predicted colour naming 

distribution per number of trees for RST. 
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colour names 

 

Figure 5.2. Observed (top) and predicted colour naming distributions for a test colour 

(id=321) using RST in leave-one-out (middle) and leave-planes-out (bottom) cross validation 

modes. 
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RMS Cosine Distance 

 

 

RMS Cosine Distance 

 

Figure 5.3. RMSE histogram between observed and predicted distributions using RST in 

leave-one-out (top) and leave-planes-out (bottom) cross validation modes. 
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5.7.  Variability in colour naming 

As an example of RST in operation, in this section we infer histograms of naming 

responses for any colour and compute their entropy as a measure of naming variability. 

First, we classified cross-sections of the sRGB gamut to the maximum predicted colour 

names in CIELAB (Figure 5.4). In L*<50, purple and brown were the largest categories 

followed by green, dark green, and pink and black. In L*>50, colour names with the 

largest partitions were green and pink followed by lilac, grey, yellow and turquoise.  

 

    

Figure 5.4. Most likely colour names at each colour estimated by RST on planes of sRGB 

gamut in CIELAB for lightness levels of L*=20, 40, 60 and 80 (from left to right). Coordinates 

of their centroids were used to colour each name category. 

Second, in Figure 5.5 we present the variability in colour naming distributions measured 

by their entropy. The entropy of colour name distributions was lower at the corners of the 

gamut and around the neutral axis. These low entropy regions are associated to the 

eleven basic colour terms but also to lilac, turquoise and light blue.  

 

    

Figure 5.5. Contour of entropy of colour naming distribution overlaid on planes of sRGB 

gamut in CIELAB for lightness levels of L*=20, 40, 60 and 80. Low entropy in areas enclosed 

by contour. 

We also compared the variability of free colour naming at basic colour foci in English 

(Berlin & Kay, 1969/1991), with the variability at non-focal locations on the exterior of the 

Munsell colour space (Figure 5.6). At foci, the mean and standard deviation were 2.13 

and 0.53 respectively; at non-foci 2.93 and 0.65. All foci of basic colour terms fall in 

regions of low entropy, except red. Foci red were most frequently named as red but were 
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also named as orange, brick red, terracotta and maroon. Low variability was also 

observed for light blue, turquoise and lilac. 

 

Figure 5.6. Contour of entropy of colour naming distribution overlaid on Mercator of the 

Munsell Colour System. Low entropy in areas enclosed by contour. Foci of Berlin & Kay 

(1969/1991) are shown in black circles. 

5.8.  Evaluation of colour spaces 

To investigate whether the choice of colour space influences the results of the 

classification model, we compared the performance of RSTsqrt using Leave-One-Out and 

Leave-Planes-Out cross-validations in several colour spaces (RGB-linear, CIE XYZ 

1931, CIELAB, CIELUV and CIECAM02), assuming the sRGB viewing conditions (IEC, 

1999). As in our evaluation above, each colour space was scored by RMS of 

Bhattacharyya distances shown in Table 5.2. 
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Table 5.2 Comparison of colour spaces for interpolation of colour naming distributions using 

RSTsqrt. 

 
Leave-One-Out Leave-Planes-Out 

RGB (linear) 0.99 1.03 

sRGB 0.99 1.03 

CIEXYZ1931 0.97 1.14 

CAM02UCSsRGB 0.95 1.02 

CIELABD65 0.92 0.97 

CIELUV D65 0.91 0.96 

 

Overall, the predictions of the RSTsqrt algorithm were better in the approximately 

perceptually uniform colour spaces (CIELAB, CIELUV, CAM02-UCS) than in the non-

uniform (RGB, sRGB, CIE XYZ 1931) spaces. The best colour space in terms of 

accuracy of predictions in both cross-validation modes was by a margin, CIELUV. 

5.9.  Comparison to earlier colour naming models 

To compare the performance of RST against previous colour naming models based on 

the monolexemic psychophysical data of Berlin & Kay in American English (1969/1991) 

and of Sturges and Whitfield (1995) in British English, we first followed the approach 

described by Guest & Laar (2000) and restricted the responses to their last word resulting 

in 320 distinct colour terms instead of just the eleven terms of previous colour naming 

models. We trained the RST with these monolexemic responses and inferred their 

histograms for the 330 patches of the simulated Munsell array in CIELUV. 

 

RST assigned the 330 chips to 16 colour terms (11 BCTs plus turquoise, lilac, maroon, 

peach, mauve and teal) by taking the peak of the estimated distribution for each chip. In 

Figure 5.7 we show the segmentation of the colour chart by RST compared to the 

classification reported by Berlin & Kay (1969/1991), shown with black boxes. RST 

classified all foci of BCTs to their corresponding categories but misclassified 27 patches 

at the borders of the categories which were often classified to a non-BCT.  

 

In Figure 5.8, we show the segmentation of the simulated Munsell array against Sturges 

& Whitfield’s colour naming results drawn with black boxes. Despite the five additional 

non-BCTs identified by RST, all the patches 100% of the BCTs categories were assigned 

to the correct term. 
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In Table 5.3 we show the comparison of the performance of the RST model against 

previous colour naming models of Lammens’s Gaussian model (LGM; 1994); 

MacLaury’s English Speaker (MES; 1992); Benavente and Vanrell’s Triple Sigmoid 

model (TSM; 2004); Seaborn’s fuzzy k-means model (SFKM; 2005); Benavente et al’s 

Triple Sigmoid- Eliptic Sigmoid model (TSMES; 2008); van de Weijer et al’s Probabilistic 

Latent Semantic Analysis (PLSA; 2007); Parrage & Akbarinia’s Neural Isoresponsive 

Colour Ellipsoids model (NICE; 2016); and Mylonas et al’s Maximum a Posteriori (MAP; 

2010).  

 

We trained our earlier colour naming model (MAP; Mylonas et al., 2010) using the same 

dataset of 320 monolexemic terms similarly to the RST model as described above. MAP 

identified 17 colour terms on the Munsell array and its performance against the results 

of both Berlin & Kay and Sturges & Whitfield can be found in Appendix C. MAP was able 

to classify all foci of BCTs to their corresponding categories but misclassified 34 patches 

at the borders of the categories against the results of Berlin & Kay. Against the results of 

Sturges & Whitfield, MAP misclassified only 1 out of 111 chips at the lime green region 

between green and yellow. 

 

RST performed equally well (100%) with other state-of-the-art colour naming models 

(SFKM, TSMES and NICE) on Sturges & Whitfield’s results while RST identified five 

additional terms on the Munsell array. This means that the estimated distribution of BCTs 

using the RST model is tighter than those of previous models that constrained their 

responses only to the eleven BCTs. On the other hand, the performance of RST against 

Berlin and Kay’s results, as to be expected given the additional categories, was poorer 

than other models constrained to the 11 BCTs. 

 

Figure 5.7 Segmentation of simulated Munsell array into 16 monolexemic colour terms by 

RST model. Coordinates of their centroids were used to colour each name category. Berlin 

and Kay’s foci of BCTs in American English are drawn with dots and their distribution with 

black boxes. Cross marks denote differences in naming by the RST model and Berlin & Kay’s 

results.  
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Figure 5.8 Segmentation of simulated Munsell array into 16 monolexemic colour terms by 

RST model. Coordinates of their centroids were used to colour each name category.  Sturges 

& Whitfield’s mapping of BCTs in British English are drawn with black boxes.  

 

Table 5.3 Comparison of colour naming models on the Munsell array (n=330 chips) against 

Berlin & Kay (1969/1991) and Sturges & Whitfield (1995) results. The data for LGM, MES, 

TSM, SFKM, TSEM, PLSA and NICE was obtained from Table 4 in Parrage & Akbarinia (2016). 

Berlin & Kay results 
  

Sturges & Whitfield 

results 
 

Coincidences Errors %  
 

Coincidences Errors %  

LGM 161 49 23 
 

92 19 17 

MES 182 28 13 
 

107 4 4 

TSM 185 25 12 
 

108 3 3 

SFKM 193 17 8 
 

111 0 0 

TSEM 193 17 8 
 

111 0 0 

PLSA 187 23 12 
 

109 2 2 

NICE 206 4 2 
 

111 0 0 

MAP 176 34 16 
 

110 1 1 

RST 184 27 13 
 

111 0 0 

 

5.10.  Computational colour naming within different languages 

For automating the colour naming task in different languages, we trained the RST model 

using the multilingual datasets in British and American English, Greek, Russian, Thai 

and Turkish, in order to segment the colour space into lexical colour categories. For 

clarity, we visualise the categories on a two-dimensional (2D) plane. We created a 

synthetic image by taking a cross section of a conic representation of the HSL colour 

solid where the additive and secondary primaries (red, green, blue and yellow, cyan, 
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magenta) are arranged around the outside edge of the solid at maximum Saturation of 1 

and Lightness of 0.5. The HSL coordinates were then converted to CIELUV via sRGB. 

The synthetic image is not isoluminant in CIELUV but has hills and valleys (Figure 5.9). 

 

  

 

Figure 5.9 Segmentation of synthetic test image. Test image in CIELUV (1st row – left), test 

image in HSL (1st row – right). Segmentation of test image by American English (2nd row – 

left), by British English (2nd row – middle), by Greek (2nd row – right), by Russian (3rd row – 

left), by Thai (3rd row – middle) and by Turkish (3rd row – right) colour names. Coordinates 

of their centroids were used to colour each name category. Some small categories cover <1% 

of the synthetic image. 

Learning from British English speakers, the RST algorithm assigned the colour 

coordinates of the synthetic image into 30 colour names. The seven largest categories 

were BCTs including green, blue, grey, pink, purple, yellow and orange. Red and brown 

were the 10th and 13th largest categories. Black and white were not assigned to any 
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coordinate as these regions were not sampled in the synthetic image. Turquoise (8th) 

and lime green (9th) were the non-basics with the largest coverage in the test image with 

lilac (11th) and beige (12th) found also to cover regions larger than brown. Red was 

restricted to the most saturated colours with salmon, peach, pink and orange covering 

the pale region of the same hue angles. Turquoise was assigned to pixels all the way 

from the neutral axis to the limit of the gamut while lilac was restricted to the pale regions 

of purple.  

 

Trained by American speakers, RST identified 26 colour names in the synthetic image. 

Similar to the segmentation by British English, the seven largest categories were BCTs 

– with red and brown being the 10th and 17th largest categories respectively. Turquoise 

was found again as the 8th largest category followed by tan (9th). Lavender, instead of 

the British lilac, was the 11th largest category. Salmon was assigned to the 13th largest 

category while magenta and teal to the 15th and 16th largest categories respectively. No 

pixels were assigned to lime green or to chartreuse.  

 

Learning from the Greek dataset, RST identified 28 lexical colour categories in the test 

image. The five largest categories were the BCTs green (prasino), purple (mov), grey 

(gri), blue (ble) and pink (roz). Yellow (kitrino) was the 8th, orange (portokali) was the 10th, 

red (kokkino) was the 12th and brown (kafe) was the 19th largest categories. Sky blue 

(galazio) the proposed second blue basic category in Greek was the 6th largest category 

covering regions from the neutral axis to the limits of the gamut. Similarly, turquoise 

(tirkuaz) was the 7th most common category. Lime green (lahani) and fuchsia (fouxia) 

were also very popular categories followed by beige (bez), salmon (somon) and olive 

(ladi). Lilac (lila) was assigned to only 3 pixels.  

 

In the synthetic image segmented by RST using the Russian dataset, 23 categories were 

identified. The largest categories were the BCTs grey (seryj), pink (rozovyj), and green 

(zelënyj). Blue (sinij), purple (fioletovyj) and yellow (žëltyj) were the 6-8th largest 

categories while orange (oranževyj) was the 10th; with red (krasnyj) the 12th and brown 

(koričnevyj) the 14th most popular categories. The second basic blue (goluboj) was the 

4th while the non-basics lime green (salatovyj), turquoise (birûzovyj) and lilac (sirenevyj) 

were the 5th, 9th and 11th largest categories respectively.  

 

Learning colour names from Thai speakers, the RST algorithm identified 46 colour 

names in the synthetic image. Again, the seven largest categories were the BCTs green 

(khiaw), grey (thaw), sky blue (fa), pink (chompu), purple (muang), yellow (leaung) and 

orange (som). Brown (namtan) and red (dang) were the 10th and 12th largest categories. 
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The proposed second basic blue (namngen) was the 9th most common category. The 

largest non-basics were light green (khiawon) and light purple (muangon). Compared to 

all other languages, the turquoise category in Thai (faomkhiaw) was assigned to a much 

smaller number of pixels (>1%). 

 

The RST algorithm identified 26 colour names when was trained by Turkish speakers. 

The six largest categories were the BCTs, green (yesil), pink (pembe), blue (mavi), grey 

(gri), purple (mor) and yellow (sari). Orange (turuncu) was the 9th, red (kirmizi) the 11th 

and brown (kahverengi) the 15th largest categories. The proposed second basic blue 

(lacivert) was not found in the synthetic image. Turquoise (turkuaz) and lilac (lila) were 

the 7th and 9th largest categories. 

5.11.  Discussion 

In this chapter, we evaluated several supervised nonparametric colour naming models 

using Leave-One-Out and Leave-Planes-Out cross-validation. Each method was scored 

by RMS of Bhattacharya distances between observed and interpolated histograms of 

colour naming responses. A Rotated Split Trees (RST) approach demonstrated the best 

performance. RST is a supervised nonparametric model that chooses each attribute and 

split at random rather than by selecting the attribute that best splits labelled sets of 

training samples (Geurts et al., 2006; Breiman, 2001). In addition, the random rotation of 

its decision space infuse diversity within the constructed forest and improves its accuracy 

at determining the form of colour categories in a three-dimensional space (Blaser & 

Fryzlewicz, 2016; Andrews, Jaccard, Rogers & Griffin, 2017). Nonparametric models 

make fewer assumptions about the shape of colour categories than parametric 

approaches and as a result provide wider applicability and increased robustness. 

 

An evaluation of the predictions of RST in several colour spaces (linear RGB, sRGB, 

CIEXYZ 1931, CIELAB, CIELUV and CIECAM02-UCS) showed that overall the 

algorithm performed best in approximately perceptually uniform colour spaces (CIELAB, 

CIELUV, CAM02-UCS) than in the non-uniform (RGB, sRGB, CIE XYZ 1931) spaces. 

The best colour space in terms of accuracy of predictions was CIELUV in agreement 

with a recent study that suggested CIELUV as the best space for performing colour 

clustering algorithms (Douven, 2017). These results reinforce the CIE recommendation 

for using the CIELUV colour space for colours displayed on display monitor that was the 

presentation mode of our online colour naming experiment. 
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Using RST, we inferred histograms of naming responses for any colour, and computed 

their entropy as a measure of naming variability. All foci of basic colour terms fall in 

regions of low entropy, except red. Foci red were most frequently named as red but were 

also named as orange, brick red, terracotta and maroon. Low variability was also 

observed for light blue, turquoise and lilac. 

 

We also compared the classification of the most saturated colours of the Munsell Array 

into colour terms by RST against previous colour naming models (Lammen, 1994; 

MacLaury; 1992; Benavente & Vanrell, 2004; Seaborn, 2005; Benavente et al, 2008; 

Weijer et al., 2007; Mylonas et al., 2010; Parrage & Akbarinia, 2016). Despite the 

identification of 16 (11 BCTs + turquoise, teal, lilac, mauve and maroon) distinct colour 

terms rather than only the 11 BCTs considered by previous models, RST achieved the 

same level of state-of-the-art performance for the psychophysical results of Sturges & 

Whitfield (1995). The performance of RST against Berlin and Kay’s results in American 

English was poorer than the performance of other models constrained to the 11 BCTs at 

the boundaries of colour categories. However, the early data of Berlin & Kay’s study 

(1969) was not generated from a colour naming task but from a best example task, and 

as such they are not appropriate to evaluate category boundaries. The assumption that 

BCTs can name all colours on the surface of the colour space is not supported by 

empirical findings (Boynton & Olson, 1987; Sturges & Whitfield, 1995; Mylonas & 

MacDonald, 2016). 

 

Furthermore, we trained RST with multilingual datasets in British and American English, 

Greek, Russian, Thai and Turkish from the online colour naming experiment to segment 

a synthetic colour wheel that includes the most saturated regions of the RGB cube. 

Overall our nonparametric model produced linear boundaries between categories except 

for categories falling in the interior of the colour space like the achromatic grey and skin 

colours. Except for white and black which were not sampled in the synthetic image, the 

other 9 BCTs were assigned relatively to large categories in all languages. Turquoise 

occupied also a large well-defined region of the colour space between blue and green 

extending from the neutral axis to the limits of the gamut in all languages except in Thai. 

Despite the relatively low sampling of the light purple region in the synthetic image, lilac 

was also very popular in all languages except in Greek. These results support the 

suggestion of adding turquoise and lilac to the set of BCTs not only in English but also 

in other languages (Mylonas & MacDonald, 2016). Our results also support the addition 

of the proposed second basic blue terms – galazio in Greek (Androulaki et al., 2006; 

Athanasopoulos, 2009), goluboj in Russian (Morgan & Corbett, 1989; Paramei, 2005; 

Paramei et al. 2018) and namngen in Thai (Prasithrathsint, 1988; Engchuan, 2003) – to 
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the set of BCTs, as the these categories covered large regions in these languages but 

not in the other test languages. Our findings do not offer support to the proposed second 

basic blue term, lacivert, in Turkish (Özgen & Davies, 1998; Ekici et al., 2006) as it was 

not assigned to any colour of the synthetic image. A specific analysis assessing the 

basicness of colour categories is presented in Chapter 7. 

 

In conclusion, we presented a supervised nonparametric computational colour naming 

model in order to automate colour naming within different languages. Our tools and data 

allowed the analysis of colour names across the full 3D colour gamut and revealed 

structure in the interior of colour space. Our model performs best in CIELUV and 

achieves the same level of state-of-the-art performance as earlier models while it 

identifies 5 additional colour categories on the surface of the Munsell system. The 

performance of the model in different languages is also supported by the empirical 

findings of earlier studies in colour naming of these languages. 
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Offline colour naming experiment 

Online colour naming experiments are often criticised for the uncalibrated colour 

reproduction of different displays and viewing conditions of the participants. On the other 

hand, laboratory- based (offline) experiments are also judged as being unable to predict 

colour names in real world monitor settings. To respond to these criticisms, a comparison 

between web- and laboratory- based experimental methodologies in estimating colour 

naming functions is needed. Furthermore, an accurate measurement of colour names 

represented on a fundamental scale with physiological axes is of great importance. The 

recent establishment of the physiologically-based colour matching functions (Stockman 

& Sharpe, 2000; CIE 170-1:2006; CIE 170-2: 2015) provides a satisfactory determination 

of the cone excitation space, but its relationship to higher-order cognitive processes of 

colour appearance remains uncertain. In this chapter, we determine the location of colour 

names within the new cone excitation space through an unconstrained colour naming 

experiment of 600 simulated samples of the Munsell system on a calibrated CRT monitor 

and compare the findings against the results of the online experiment. 

6.1.  Internet- and laboratory- based colour experiments  

Online experimental methodologies often receive criticism as not meeting the exacting 

standards demanded for rigorous colour research. Web-based colour naming 

experiments provide greater ecological validity than traditional approaches by allowing a 

large number of participants to name colours freely in their own environment, in their own 

time, with their own equipment and without the physical attendance of the examiner 

(Reips, 2000; Moroney, 2003). Laboratory-based experiments on the other hand, offer 

the opportunity to calibrate and characterise the colour reproduction device, usually a 

cathode-ray tube (CRT) monitor, using a colorimetric specification and controling the 

viewing conditions. This linear relationship between the RGB monitor and, for example, 

the new CIE colour matching functions is an important requirement for the accurate 

determination of the location of colour names within a cone excitation space. However, 

predicting colour naming functions based on responses from only a small number of 

observers in a laboratory test environment also has limitations. Here, we compare the 

results of the online colour naming experiment against an offline colour naming 
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experiment and at the same time investigate the performance of the latter in estimating 

colour naming functions measured under uncalibrated conditions. 

6.2.  Cone excitation space and colour naming 

In Chapter 2, we described the physiologically-relevant cone fundamentals (Stockman & 

Sharpe, 2000) and their linear transformations into a new set of colour matching 

functions recently adopted by the CIE (CIE 170-1: 2006; CIE 170-2: 2015). This precise 

specification of the L, M, S cones spectral sensitivities provides the basis to represent 

colour in a cone excitation space, but its relationship with colour appearance 

mechanisms is still unknown. Earlier attempts to link colour names to cone excitations 

(Cao, Pokorny & Smith, 2005; Parrage & Akbarinia, 2016) focused only on a small 

number of 11 basic colour terms (Berlin & Kay, 1969/1991) and utilised the cone 

fundamentals based on the revised by Judd and Vos, CIE 1931 colour matching 

functions (Smith & Pokorny, 1975; Wyszecki & Stiles, 1982). Smithson and her 

colleagues, utilised differences of response time in a reverse Stroop task to map the new 

cone fundamentals to five focal colours of red, orange, yellow, green and blue (Smithson, 

Khan, Sharpe & Stockman, 2006). In the experiment described in this chapter, we set 

out to measure directly, for the first-time, unconstrained colour naming distributions in 

the new CIE adopted physiologically-based cone excitation space (Stockman & Sharpe, 

2000; CIE 170-1:2006; CIE 170-2: 2015). 

6.3.  Materials and procedure 

Observers were seated one metre away from a CRT monitor (22-inch Mitsubishi 

Diamond Pro, 2070SB) in an otherwise dark room with neutral grey painted walls. The 

CRT monitor was calibrated using a ColorCal CRS (Cambridge Research Systems) 

colorimeter and characterised using a RadOMA spectroradiometer (Gamma Scientific, 

San Diego, California) positioned at 1 metre distance and aiming straight at the centre 

of the screen. The measured CIE 1931 chromaticity coordinates of the white point of the 

monitor were x = 0.3126, y = 0.3296 with a correlated colour temperature of 6507K and 

a luminance of 80.17cd/m2. The stimulus presentation and response timing were 

controlled by PsychoPy-version 1.84.2 software (Pierce, 2007) and by a DATAPixx 

display driver (Vpixx Technologies Inc.) with 16 bits per RGB gun resolution. The spectral 

power distribution for each R, G and B gun of the CRT monitor and a linearity evaluation 

can be found in Appendix C. The task of the observers was to name out loud the colour 

of the stimulus, so that others will know to which colour they were referring. Observers 

were free to use as broad or narrow names as they liked. A head-mounted microphone 
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was used to record vocal responses. Response times are measured using a detection 

limit of 4 standard deviations of the blank (silence) to avoid false positive responses due 

to noise. 

6.4.  Observers 

Ten international English speakers from Britain, Unites States and Australia (3 males, 7 

females, mean age 46.5 years; SD = 14.3) living in London for more than 10 years 

participated in the experiment. All observers were screened for colour vision deficiencies 

using the City University Test (Fletcher, 1978). Participants provided written informed 

consent and were compensated with cash for their time. The study was approved by the 

Research Ethics Committee at the University College London (3387/001). 

6.5.  Stimuli 

Test stimuli were uniformly coloured 2 degrees of visual diameter discs with a black 

outline of 1 pixel against a D65 neutral grey with luminance of 40cd/m2. Similar to the 

sampling of the online colour naming experiment, the stimuli consisted of 589 simulated 

samples from the Munsell colour order system plus 11 achromatic samples. The 600 

colour samples were presented one at a time in random order for each observer. 

 

6.5.1. Correction of spectral reflectance of Munsell chips  

The Munsell colour system (Munsell, 1905) was designed with the objective of 

representing perceptually uniform visual spacing of Hue, Chroma (saturation) and Value 

(lightness) dimensions. The system was revised and specified colorimetrically for CIE 

illuminant C and the 1931 standard observer (Newhall et al., 1943). The resulting Munsell 

Renotation Dataset (MRD) is available at the website of the Munsell Color Science 

Laboratory. By constrast, the Munsell Book of Colour is a physical reproduction of the 

system available in glossy or matte finish editions. The Measured Spectral Reflectance 

Data (MSRD) of the matt Munsell chips are accessible at the website of the Spectral 

Color Research Group at the University of East Finland. A number of studies (e.g. 

D'Andrade & Romney, 2003; Olkkonen et al., 2009; Vazquez-Corral, O’Regan, Vanrell 

& Finlayson, 2012; Skelton et al., 2017) assumed that the colourimetry of MRD and 

MSRD data match, but in Figure 6.1, we show the differences between them (n=1021) 

in CIELAB for consistency with earlier reports by Derhak and Berns (2012) and Li & Lee 

(2014). The main differences are found in the Chroma and Lightness dimensions with a 

mean colour difference of CIE ΔE00 = 3.2652; SD = 0.9238. 



 

 120 

  

Figure 6.1 Errors between intersection (n=1021) of Munsell Renotation Dataset (markers) 

and Munsell Spectral reflectance  Dataset, Matte edition (tails) in a* vs. b* (left) and 

L*(lightness) vs. C*(chroma; right) planes of CIELAB. 

We followed the method described by Derhak and Berns (2012) to correct the spectral 

reflectance of MSRD from 390nm to 780nm at 1nm wavelength resolution. For each of 

the 1021 common samples of MRD and MSRD, we estimated a transformation matrix E 

(391 × 3) computed by: 

 

 𝐸 = 𝑅𝐶−1 (6. 1) 

where R is a matrix of spectral reflectance of MSRD (1021 × 391) and C-1 is the pseudo-

inverse matrix (1021 × 3) of the corresponding tristimulus values of MRD. The corrected   

spectral reflectance Rcorr can be then computed by: 

 

 𝑅𝑐𝑜𝑟𝑟 = 𝑅 + 𝐸(𝐶𝑟𝑒𝑓 − 𝐶)  (6. 2) 

 

where Cref is the tristimulus values of the MRD and C the tristimulus values of the MSRD. 

Hereinafter, we use the corrected reflectance Rcorr for the Munsell chips. 

 

6.5.2. Transformation of CIE XYZ 1931 tristimulus coordinates of the 

Munsell Renotation Data to CIE XYZ 2015 

To specify the colour samples of MRD used in the online experiment (n=589) – some of 

which are not included in the MSRD – in a cone excitation space, the CIExy 1931 

chromaticities and the luminance of MRD should be linearly transformed to the L-, M- 

and S- cone fundamentals (Stockman & Sharpe, 2000; CIE 170-1: 2006). However, the 
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V(λ) used in the CIE XYZ 1931 standard observer is profoundly insensitive at the short 

wavelengths of the spectrum and is not linearly related to CIE LMS 2006 (Stockman & 

Sharpe, 1999). Although there is a linear model for mapping CIE LMS 2006 cone 

fundamentals to CIE XYZ 2015 chromaticities (CIE 170-1: 2006; CIE 170-2: 2015), there 

is no linear relationship between CIE LMS 2006 and CIE XYZ 1931 (Golz & MacLeod, 

2003). Instead, we utilise the fmincon function of Matlab to implement a constrained 

nonlinear multivariable optimisation and find the best transformation matrix shown in 

Equation 6.3 that minimises the RMSE between the intersection of CIE XYZ 1931 of 

MRD, and of CIE XYZ 2015 derived from the corrected MSRD.  

 

 
(

𝑋15
𝑌15
𝑍15

) = (
0.9708 0 0
0.0130 0.9669 0.0175
0 0 0.9102

)(

𝑋31
𝑌31
𝑍31

) 

 

 

(6. 3) 

In Equation 6.4, we give the inverse of the transformation matrix for changing the CIE 

XYZ 2015 coordinates of MRD back to CIE XYZ 1931.   

 

 

 

 

(
𝑋31
𝑌31
𝑍31

) = (
1.0301 0 0
−0.0138 1.0342 −0.0199

0 0 1.0987
)(
𝑋15
𝑌15
𝑍15

) 

 

 

(6. 4) 

In Figure 6.2, we show the RMSE before and after the optimisation routine. The main 

errors were found in the z dimension (RMSE = 3.7848) that is related to the short 

wavelength sensitive cone (Stockman & Sharpe, 1999). This error was reduced 

substantially (RMSE = 0.3760) after applying the optimised transformation matrix of 

Equation 6.3. Then, we checked whether any of the colour stimuli were out of gamut 

using a round-trip clipping method and no stimuli were found above the 3 RMSE (or 

5ΔΕab) threshold (Kang, 2006). Figure 6.3 shows the 589 colour samples of the MRD 

used in the online experiment in the new chromaticity diagram (CIE 170-2: 2015). 
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Figure 6.2 Root-Mean-Square Errors (RMSE) between tristimulus values X, Y and Z of 

Munsell Renotation Data in CIE XYZ 1931 and of corrected Spectral reflectance  Munsell 

Data in CIE XYZ 2015 (top). RMSE between tristimulus values X, Y and Z of transformed 

Munsell Renotation Data to CIE XYZ 2015 (Eq 6.3) and of corrected spectral reflectance 

Munsell Data in CIE XYZ 2015 (bottom). 
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Figure 6.3 Simulated Munsell chips of different luminance levels (n=589; discs) and Red, 

Green, Blue phosphors (squares) of CRT monitor in CIE 2015 chromaticity diagram. Outline 

draws the gamut of the CRT monitor. 

In the next step of our sampling procedure, we added 11 achromatic colour samples 

which are missing in the original Munsell Renotation Data. The nine samples specified 

at the mean plane for each level of Munsell Value and two samples, a white and a black, 

at the extremes of the RGB cube [R, G, B = 1, 1, 1] and [R, G, B = 0, 0, 0]. This resulted 

in a total of 600 colour stimuli. The final step involved a transformation of the CIE XYZ 

2015 coordinates of the 600 stimuli to LMS cone excitation space shown in Figure 6.4 

via the linearized CRT monitor and the cone fundamentals of Sharpe & Stockman (2000). 
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Figure 6.4 Colour stimuli (n=600) of colour naming experiment in CRT gamut in LMS cone 

excitation space. Outline draws the gamut of the CRT monitor. 

6.6.  Colour naming dataset 

The vocal responses were transcribed and entered in a table for further analysis and the 

audio files were archived. The colour naming dataset includes in total 7,400 naming 

responses for 600 colour samples from ten observers. Half of the observers (n=5) 

repeated the entire experiment a second time to measure intra-observer consistency of 

the responses. The data from one session of one observer was discarded because the 

transcription of the responses was not feasible due to clipped audio files. From the 6,000 

responses offered in the first session from all observers, here we consider only 247 

distinct colour names including a not-known category, given by two or more observers 

resulting in 4,812 responses. Unique responses from single observers were excluded 

because we could not be confident that other observers will understand the colour name 

used and therefore these responses were considered idiosyncratic. 



 

 125 

6.7.  Analysis per name 

In the naming responses, 50% of the data included single terms, 42% two word- and 8% 

three- word descriptions. The 11 basic colour terms proposed by Berlin & Kay 

(1969/1991) in English accounted for 35% of the responses and other non-basic single 

terms in 15% (Figure 6.5). 

 

 

Figure 6.5 Number of words in colour naming dataset of lab-based colour naming 

experiment. 

In Figure 6.6, we show the top 30 most frequent colour names offered by the observers 

in the offline experiment. These names account for 63% of responses. We chose 30 for 

clarity of the visualisation, but also because non-expert observers are able to identify 30 

colour names in their native language without training (Derefeldt & Swartling, 1995). 

Green was the most frequent term, followed by pink, purple and blue. The not-known 

category that summarizes all empty responses was found in the 8th position. Lilac, a non-

basic colour term, was more frequent than the basic grey, yellow and white. White was 

the least frequent basic term followed by the non-basic terms, turquoise and magenta. 

35%

15%

42%

8%

1 word Basic

1 word non-Basic

2 words

3+ words
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Figure 6.6 Top 30 most frequent colour names in offline experiment. Basic Colour Terms 

are drawn with discs and non-basics with squares. 

 

In Figure 6.7, we present response times for the fastest named colours. Response time 

distributions are rarely Gaussian as their shape rises rapidly on the left followed by a 

long tail on the right. Therefore, we report the median and its 95% confidence interval of 

response latency for each colour name (Whelan, 2008). Black, white and pink were the 

fastest named categories; followed, unexpectedly, by the non-basic term, olive. Navy, a 

non-basic term, was also the 7th most quickly named colour. The slowest to name basic 

term was grey, ranked in the 19th position. 
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Figure 6.7  Top 30 fastest responding colour names in offline experiment. Basic Colour 

Terms are drawn with discs and non-basics with squares. Error bars denote 95% confidence 

interval. 

Consistency measures the agreement between two responses for the same sample from 

observers who repeated the experiment twice. In total, 62% of the repeat responses 

were consistent between the first and second presentation. Colour names varied in how 

often they used consistently. In Figure 6.8, we show a rank of the 39 most consistent 

colour names from the 246 distinct colour names. Here, all basic terms were ranked in 

the top 11 positions but lilac, a non-basic term, was also equally consistent with black 

and white. Green had the largest number of samples named consistently, followed by 

pink, purple and blue. The top six position resemble the rank of the most frequent names.   



 

 128 

 

Figure 6.8 Consistent colour names in offline colour naming experiment. Basic Colour 

Terms are drawn with discs and non-basics with squares. 

6.8.  Location of Basic Colour Terms based on the CIE XYZ 1931 

In this section, we use the inverse transformation matrix (Eq. 6.4) to represent our results 

and measure distances between the location of colour terms in the approximately 

uniform colour spaces of CIELAB and CIELUV which are based on the CIE XYZ 1931. 

The reason for using the CIE XYZ 1931 coordinates instead of the CIE XYZ 2015 is two-

fold. First, at this stage of development there is no uniform colour space associated with 

the new CIE XYZ 2015 where we can measure meaningful distances between colour 

terms. Second, the relationship between the CIE XYZ 1931-based results of our online 

and of previous studies is not linear to the new CIE LMS 2006 and CIE XYZ 2015. We 

will present our results in the new cone excitation space in the next section (6.9.  

 

In Figure 6.9, we compare centroid location for the 11 BCTs estimated in the offline study 

with the centroids obtained in our online experiment and the earlier laboratory-based 

studies of Boynton & Olson (1987), and Sturges & Whitfield (1995). There is a good 

correspondence between the 4 sets of data that can be also accessed in Table 6.1 in 

terms of CIE ΔΕ 2000 colour differences. The smallest mean colour differences were 

observed against the online data (ΔΕ00 = 4.58), despite the uncalibrated colour 

reproduction of the web-based experiment. Yellow and orange had the smallest 

differences and black the largest. The largest discrepancies were observed against 

Boynton & Olson’s study (ΔΕ00 = 9.67) because the authors located the basic terms in 

the OSA space that has a different geometry and is less saturated than the Munsell 
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system. In Table 6.2, we report the coordinates of the centroids of the BCTs of the offline 

and online study in CIELAB (D65). 

 

Figure 6.9 Comparison of centroids of Basic Colour Terms obtained in the offline (discs), 

online (stars), Boynton and Olson (1987; diamonds), and Sturges and Whitfield (1995; 

squares) studies in CIELAB (D65) based on XYZ 1931. 

Table 6.1 Colour differences using the CIE ΔΕ 2000 formula between centroids of Basic Colour 

Terms in CIELAB (D65) based on XYZ 1931. 

 
Offline vs Online Offline vs B&O Offline vs S&W S&W vs B&O 

black 11.99 17.65 12.75 7.36 

blue 3.03 7.25 9.90 6.80 

brown 6.91 8.51 12.64 7.74 

green 2.91 10.46 3.99 13.56 

grey 5.07 5.19 7.44 5.21 

orange 2.47 5.97 1.95 7.17 

pink 2.82 12.72 12.96 5.21 

purple 4.58 14.00 8.42 6.00 

red 5.01 6.44 5.73 6.56 

white 2.98 9.35 2.12 10.33 

yellow 2.58 8.81 7.06 5.12 
     

Mean 4.58 9.67 7.72 7.37 
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Table 6.2 Location of centroids of Offline and Online colour naming experiments in CIELAB 

(D65) based on XYZ 1931. 

 
Offline Online 

 
L* a* b* L* a* b* 

black 12.32 13.17 -8.69 10.17 2.43 0.35 

blue 52.81 6.09 -39.60 49.91 7.33 -38.93 

brown 36.52 20.81 17.25 33.60 15.81 23.64 

green 58.56 -29.76 20.50 57.97 -33.06 26.81 

grey 53.66 2.01 -7.08 56.02 0.69 -1.89 

orange 63.06 32.20 48.97 61.11 31.31 52.52 

pink 64.15 45.63 -15.56 62.83 47.60 -10.60 

purple 39.63 47.02 -47.32 36.24 41.81 -36.88 

red 44.83 59.04 21.69 42.70 55.49 29.37 

white 88.84 3.06 -3.59 90.14 1.82 -0.81 

yellow 83.39 -3.62 57.96 82.19 -6.84 64.50 

 

6.8.1. Location of centroids and perceptual structure  

To explore whether perceptual structure – embedded in the 600 simulated Munsell 

samples named in both online and offline experiments – can explain the consistent 

location of their BCT centroids, we used the k-means algorithm to construct a set of 

imaginary colour naming systems based on Euclidean distances between the colour 

samples in CIELAB without any colour naming observation (Zaslavsky, Kemp, Regier & 

Tishby, 2018). 

 

The k-means algorithm clustered the 600 samples in k categories, where k was set to be 

equal to the number of distinct colour names in the offline study (k = 247) offered by at 

least two observers. Then, we constructed a distance matrix between the centroids of 

the hypothetical k categories, and the centroids of the observed categories obtained in 

the offline experiment and then we assigned optimally the first to the latter categories 

using the Munkres assignment algorithm, also known as the Hungarian method (Kuhn, 

1955). We repeated this process 50 times and computed the mean Euclidean colour 

differences in CIELAB between the observed and hypothetical centroids to stabilise the 

procedure. 

 



 

 131 

Despite the relatively large k value for the number of hypothetical colour categories that 

should minimise the error by definition, the mean colour difference between offline and 

hypothetical BCT centroids was ΔΕab = 14.61, double than the mean ΔΕab = 7.30 between 

the observed BCT centroids of the offline and online experiment. The mean colour 

differences between hypothetical and online BCT centroids was even larger ΔΕab = 

16.54. The mean agreement between each imaginary colour naming system was ΔΕab = 

12.59. Setting k = 11 equal to the number of BCTs in English would produce larger colour 

differences between hypothetical and observed BCTs of the offline ΔΕab = 22.02 and 

online ΔΕab = 24.16 experiments. Therefore, perceptual structure embedded in the 

approximately uniformly distributed colour sampling used in both online and offline 

experiments cannot explain the good agreement between their BCT centroids. In Table 

6.3, we report the Euclidean colour differences (ΔΕab) between centroids of BCTs 

obtained in the offline and online colour naming experiments and an indicative k'-means 

imaginary colour naming system. Larger differences between hypothetical and observed 

BCTs were found for purple, followed by red and orange; the smallest was found for grey. 

 

Table 6.3 Euclidean colour differences ΔΕab (D65) based on XYZ 1931 between centroids of 

BCTs in online, offline and an indicative imaginary colour naming system based on k-means. 

 
Offline vs. Online Offline vs. k'Means Online vs. k'Means 

black 14.20 9.61 9.83 

blue 3.22 15.84 14.42 

brown 8.62 19.31 14.14 

green 7.15 17.55 10.68 

grey 5.85 2.32 6.41 

orange 4.15 22.08 18.79 

pink 5.50 7.37 10.60 

purple 12.15 26.16 38.05 

red 8.72 21.72 27.84 

white 3.31 12.12 10.06 

yellow 7.39 1.96 7.48 
    

Mean 7.30 14.19 15.30 

 

6.8.2. Individual differences on the location of Basic Colour Terms 

Centroids of BCTs were computed for each of the ten individual observers of the offline 

experiment to quantify their differences in colour naming (Figure 6.10). Although the 
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centroids for each BCT are clustered together for all individuals; there is considerable 

variation between individual observers with a mean colour difference between their 

centroids of ΔΕ00 = 7.91. The smallest differences were found for red (ΔΕ00 = 4.77) and 

the largest for blue (ΔΕ00 = 15.48). These inter-individual differences in BCT centroid 

location are larger than inter-experimental differences between the online and offline 

population mean (ΔΕ00 = 4.58) reported in the previous section. The inter-individual 

differences are also larger than the inter-language differences (ΔΕ00 = 5.01) reported in 

Chapter 3. 
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Figure 6.10 Location of BCT centroids for each individual observer in a* b* (top) and L* C* 

(bottom) planes of CIELAB (D65) based on XYZ 1931. Centroids with a hue angle >180° are 

shown on the left side and with a hue angle of <180° on the right side of neutral axis. 
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6.8.3. Colour names and unique hues 

Earlier studies reported a good correspondence between unique hue settings and the 

corresponding colour names red, green, blue and yellow (Kuehni, 2005). To explore the 

relationship between colour names and unique hue settings, in Figure 6.11 we compare 

the centroids of the lab-based colour naming responses against the unique settings that 

we reported in an earlier study in CIELUV (Xiao, Fu, Mylonas, Karatzas & Wuerger, 

2011). Except for blue, there was a good correspondence of the unique hue settings and 

the corresponding colour terms. The smallest hue difference between mean unique hue 

settings and centroids of colour terms was found for yellow Δh = 1.8, followed by green 

(Δh = 6.46) and red (Δh = 6.65). The largest hue difference was found for blue with Δh = 

14.65. The centroids of the colours names usually associated with unique hues, red and 

green were not colinear with white but yellow was colinear through white with blue. Red 

was nearly colinear with turquoise and green with magenta. In the next section we locate 

colour terms in the physiologically-based cone excitation space to examine further the 

relationship between colour naming and colour vision mechanisms. 

 

 

Figure 6.11  Centroids (squares) of red, green, blue, yellow, turquoise and magenta and 

unique hue settings (diamonds) reported by Xiao et al., (2011) in u*v* plane of CIELUV 

(D65) based on XYZ 1931. 
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6.9.  Mapping colour names in cone excitation space 

A precise measurement of colour names in a cone excitation space with physiological 

axis is of great importance for basic and applied colour research. Here, we report a) 

centroids of BCTs b) consensus of naming each sample, c) response times required to 

name each sample, d) the foci and centroids of dominant colour names, e) the 

connectedness between dominant names and f) a colour naming model for dominant 

colour names, in the LMS cone excitation space (Stockman & Sharpe, 2000; CIE 170-

1:2006). 

 

In Figure 6.12, we show the centroids of the 11 BCTs as squares and the 600 colour 

samples of the lab-based experiment as discs in CIE LMS 2006 where the size of each 

disk is related to the proportion of the most frequent name for each sample. The larger 

the disk, the higher the consensus for naming this sample. Inspecting the figure reveals 

clusters of colour samples named with high consensus corresponding roughly to the 11 

BCTs of Berlin and Kay (1969/1991) with some unidentified high consensual regions. 

 

Figure 6.12 Naming consensus for each colour sample (discs) and centroids of BCTs 

(squares) in LMS cone excitation space. The larger the disc, the higher the consensus. 

Outline draws the gamut of the CRT monitor. 

 



 

 136 

In Figure 6.13, we show again the centroids of BCTs and the mean response latencies 

required for naming each sample. There is a moderate Pearson negative correlation 

between response time and consensus, r = -0.39, p < 0.001 (Figure 6.14). Hence, longer 

response times were observed at the borders between colour categories where there is 

an overlap of colour naming distributions than for regions closer to the limits of the colour 

gamut named with higher consensus. Both measures, consensus and response time, 

will be used to identify the best examples (foci) of dominant colour categories in the next 

section. 

 

Figure 6.13 Mean response time required to name each colour sample and centroids of 

BCTs (squares) in LMS cone excitation space. The larger the disc, the longer the average 

response time required to name each sample. Outline draws the gamut of the CRT 

monitor. 
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Figure 6.14 Correlation between consensus of naming and responses time required to name 

each sample in CIE LMS 2006. 

6.9.1. Foci and centroids of dominant colour names  

In this section, we report the best examples, called focal colours, of colour names. Focal 

colours are determined by the shortest mean response time of colours within categories 

named with consensus across observers (Boynton & Olson, 1987). We give foci for all 

dominant colour names over other names (>=50%) used to describe each colour sample 

together with their corresponding centroids in CIE LMS 2006 to show the direction of the 

most consensual regions within each category (Figure 6.15). In Figure 6.16, we present 

the results in the 2D Macleod-Boynton (1979) cone-opponent chromaticity diagram 

based on Stockman & Sharpe’s (2000) fundamentals, where the axes correspond to the 

L/(L+M) and S/(L+M) retino-geniculate main pathways (Krauskopf et al., 1982). In Table 

6.4, we give the coordinates of the focal colours in the Munsell system with their 

consensus level and response time. 
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Figure 6.15 Focal colours (discs) of dominant colour names and their centroids (squares) 

connected with black lines in CIE LMS 2006. 

 

Figure 6.16 Focal colours (discs) of colour names with dominance of >=50% and their 

centroids (squares) connected with black lines in the Macleod & Boynton diagram. Dotted 

horizontal and vertical lines correspond to the adapting background chromaticities. 

Spectrum locus is shown with a thick black line and the selected wavelengths are given in 

nm. 
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Table 6.4 Response time (RT), consensus and specification of foci of dominant colour 

categories in Munsell coordinates based on CIE LMS 2006. 

 

Only 3 samples named as black, white and orange were named with 100% consensus. 

The foci and centroid of white overlapped with the foci of black but the centroid of black 

was shifted towards the purple region because most of the dark purplish tones at Munsell 

Value 1 were named as black. At 75% consensus, we found all eleven BCTs plus cream 

describing 52 samples. At >50% consensus, we found in addition to the 12 names of the 

previous level, 8 more colour names including turquoise, lilac, magenta aubergine, lime 

green, and the dark modifiers of blue, green and brown. In total, 20 dominant colour 

names were assigned to 243 samples.  

 

Overall focal colours were closer to the spectrum locus than centroids. Except for the 

achromatic colours all other 17 pairs of centroids and foci of colour names lie within the 

axes of colour discrimination relative to the adapting background in the MB diagram 

Names hue Value Chroma RT Consensus 

Aubergine 10P 2 8 2.20 0.63 

Black NA 0 0 1.13 1.00 

Blue 5PB 5 14 1.51 0.88 

Brown 2.5YR 4 4 1.75 0.89 

Cream 7.5YR 9 2 2.86 0.75 

Dark blue 7.5PB 2 4 2.11 0.57 

Dark brown 7.5YR 2 4 1.85 0.63 

Dark green 7.5GY 2 4 1.55 0.67 

Green 10GY 4 8 1.42 0.89 

Grey NA 6 0 1.90 0.88 

Lilac 7.5PB 7 6 1.91 0.51 

Lime green 5GY 8 12 1.44 0.63 

Magenta 7.5P 5 18 1.46 0.60 

Orange 2.5YR 5 10 1.31 1.00 

Pink 10P 6 12 1.19 0.89 

Purple 5P 3 14 1.43 0.88 

Red 5R 4 12 1.52 0.86 

Turquoise 10BG 6 8 1.77 0.63 

White NA 10 0 0.92 1.00 

Yellow 5Y 8 12 1.47 0.75 
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(Skelton et al., 2017). But, the location of some centroids (turquoise, lilac, purple, yellow, 

lime green, cream and dark brown) near these lines indicate that some categories might 

cross over the axes and requires further investigation (see section 6.10. for modelling 

the full extent of colour categories).   

 

6.9.2. Linked colour categories in LMS 

Lexical colour categories share their boundaries with each other in colour space. To 

reveal overlapping colour names in a cone excitation space, we measured their 

connectedness. Two lexical categories are connected when the same colour is identified 

with both names (Boynton & Olson, 1987). Figure 6.17 shows the connectedness of all 

dominant colour names.  

 

The 11 BCTs tend to share fewer common samples between them than non-basic terms. 

Red and pink shared the most common samples between BCTs. Purple and green are 

the most connected categories, followed by grey, brown and blue. Lime green, yellow, 

cream, turquoise and magenta exhibit the smallest number of connections with other 

names. Green is neither connected to red nor to purple. Blue is not connected to yellow 

or to orange. Unexpectedly, yellow is not connected to white and cream seem to be a 

crucial node connected with yellow, orange, white, pink and green. Non-BCTs tend to 

share a larger number of common samples with other categories. Turquoise is strongly 

connected to blue and less so to green, while lilac is strongly linked to purple and pink. 

Magenta overlaps strongly with pink and purple. Lime green is more connected to green 

than to yellow.  
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Figure 6.17 Connectedness of dominant colour names in CIE LMS 2006. The colour and 

location of the discs corresponds to the coordinates of the centroids of the colour 

categories. The lines between the circles link colour categories that share common colour 

samples. The width of the lines indicates the number of these common samples. 

6.10.  Segmentation of cone excitation space 

To generalise our observation from the 600 points used in the experiment to the entire 

3D colour gamut of the CRT RGB monitor in cone excitation space, we used a 

probabilistic colour naming model based on Maximum a Posteriori (MAP) described in 

Mylonas et al. (2010). We used the MAP method rather than the RST approach because 

the performance of the latter deteriorates in non-uniform colour spaces (see Table 5.2). 

 

The algorithm was trained by all dominant names identified with >=50% of consensus to 

segment in LMS a grid of 215 = 32,768 points uniformly distributed in the RGB cube of 

the CRT into 20 lexical colour categories (Figure 6.18). Coordinates of the centroids of 

the dominant colour names were used to colour each category. 
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Figure 6.18 Warm (top-left) and cool (top-right) side-views of uniform RGB grid of 32768 

points in LMS of the CRT gamut. Segregated warm (bottom-left) and cool (mottom-right) 

side-views of RGB grid of 32768 points by MAP into n=20 dominant names. Coordinates of 

the centroids of the dominant colour names were used to colour each category. 

The regions with the highest purity of L, M and S cone excitations were assigned to red, 

green and blue colour names respectively. Yellow was assigned to regions with 

contributions mainly from L and M cones. S cone contribution to red was minimal. White 

requires contribution from all three cones and black from none. Turquoise covers the 

region that requires strong contribution from M and S cones, while magenta was 

localised to areas with substantial contribution of L and S cones. None of the chromatic 

corners of the LMS space were the most typical samples of the six colour names. 

 

For more clarity, we visualise the categories on a 2D plane. Similarly to 5.10. , we created 

a synthetic image by taking a cross section of a conic representation of the HSL colour 

solid where the additive and secondary primaries (red, green, blue and yellow, cyan, 

magenta) are arranged around the outside edge of the solid at maximum Saturation of 1 

and Lightness of 0.5. The HSL coordinates were then converted to LMS cone excitation 
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space via RGB of the CRT monitor and the cone fundamentals of Sharpe & Stockman 

(2000). The MAP colour naming model was trained again by dominant names identified 

with >=50% of consensus and segmented the synthetic image in 16 (black, dark brown, 

dark green and aubergine were not assigned to any pixels) lexical colour categories. 

Coordinates of the centroids of the dominant colour names were used to colour each 

category. We show the results of segmenting the synthetic image in HSL (Figure 6.19) 

and in the cone chromaticity space of MacLeod and Boynton (1979) in Figure 6.20. 

 

     

  

Figure 6.19 Synthetic cone image in HSL (left) segregated by MAP trained by dominant 

names with >=50% of consensus (right). Coordinates of the centroids of the dominant 

colour names were used to colour each category. 

The largest number of pixels of the synthetic image (Figure 6.19) were assigned to pink, 

followed by blue and green. Dark blue, red and magenta ware the smallest categories. 

Qualitative features include a near circular achromatic region, with brown, cream, lilac 

and dark blue nested in the interior of the space.  

 



 

 144 

  

Figure 6.20 Synthetic image in MacLeod and Boynton diagram (left) segregated by MAP 

trained by dominant names with >=50% of consensus (right). Dotted horizontal and 

vertical lines correspond to the adapting background chromaticities. 

 

In the MB diagram the achromatic colours white and grey are the centre of the space 

surrounded by chromatic colours. The synthetic image did not cover black regions. Along 

the horizontal axis of L/(L+M) with S cone values smaller than the horizontal axis 

originating from the chromaticities of the background, we found a greenness to redness 

dimension with low to high values respectively. Lime green, yellow, cream, brown and 

orange are localised between green and red. As the S cone contribution increases above 

the horizontal axis of the background green turns to turquoise and then to blue with a 

small dark blue region at low L/(L+M) values. As L/(L+M) increases colours change to 

lilac, purple and then to pink and magenta at the very high L/(L+M) values. Some 

categories share straight boundaries while for others the boundaries form a curvature.  

 

The chromaticity diagram of MB distorts significantly the colour space because the S 

dimension is arbitrary set by definition. For example, the size of the purple category in 

the diagram appears disproportionally larger than the size of green category in HSL 

space. This gets clearer when we plot the results in the Derrington, Krauskopf and Lennie 

(DKL; 1984) cone contrast space in Figure 6.21. 
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Figure 6.21 Synthetic image in DKL (left) segregated by MAP trained by dominant names 

with >=50% of consensus (right). Dotted horizontal and vertical lines correspond to the 

adapting background chromaticities. Axis are scaled by the pooled contrast to produce unit 

response for each mechanism. 

Despite the unevenness of lightness levels in the synthetic image, in DKL the proportions 

of the categories are better represented than in the MB diagram. Yellow and purple cross 

the vertical- and blue and pink cross the horizontal- axes originating from the background 

chromaticity. Green is confined at the negative values of S-(L+M) and L-M while red is 

nearly confined at the positive L-M and the negative S-(L+M) values. 

6.11.  Summary and Discussion 

A criticism that often arise is whether the uncontrolled colour reproduction and viewing 

conditions of online colour naming experiments meet the requirements for rigorous 

colour research. Laboratory-based experiments are also often judged as not being able 

to generalise their results to real world monitor settings. In this chapter, we assessed the 

precision of our uncalibrated colour naming experiment conducted over the Internet 

against a calibrated experiment – using the same sample set and background – 

performed in a laboratory environment, and the ability of the later to estimate colour 

naming functions in real-life monitor settings. We found a better correspondence 

between the loci of the BCTs in our online and offline experiments (>5ΔE00) than between 

previous lab-based studies (<7ΔE00; Boynton & Olson, 1987; Sturger & Whitfield, 1995); 

while we showed larger variations between the BCT centroids for individual observers 

(<7ΔE00). Overall, these findings suggest that online and offline colour naming 

experiments produce consistent results and support the validity of both methods in 

estimating colour naming functions in laboratory and real-world monitor settings. 
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Considering that inter-experimental differences were found to be smaller than the intra-

experimental differences among individuals, it has been conjectured that languages 

gravitate to an optimal set of categories and return to them despite departures from the 

norm by individual speakers (Bimler, 2005; Griffin, 2006; Regier et al., 2007). In Chapter 

3, we reported a maximum mean ΔΕ00 = 5 between the BCT centroids of British English 

and Thai speakers. In this chapter, we confirm the findings of earlier studies (Berlin & 

Kay, 1969/1991; Webster & Kay, 2007) in that intra-language differences among 

individuals are larger than inter-language differences. It can be now convincingly argued 

that averaging a small number of colour naming responses from a large number of 

participants in a crowdsourcing experiment offers a better agreement between the 

underlying categories responsible for colour naming (ΔΕ00 = 1 between British and 

American English BCTs) compared with averaging a large number of responses from a 

small number of different individuals in controlled viewing conditions (ΔE00 = 8; Shapiro, 

Carl & Varian, 1998; Surowiecki, 2005; Yi, Steyvers, Lee & Dry, 2012). 

 

In regard to the range of possible cone responses as an explanation for the mechanisms 

that pressure colour categories to optimality, we examined a widely cited account of this 

type suggesting that colour categories are determined by optimising the division of an 

irregular perceptual colour space to maximise similarity within a category and minimise 

similarity across categories (Jameson & D’Andrade, 1997; Regier et al., 2007). In our 

assessment, as to whether perceptual structure can explain the consistent location of 

the BCT centroids, we used a k-means algorithm operating on CIELAB distances to 

construct a set of imaginary colour naming systems (Zaslavsky et al., 2018). A 

comparison of observed BCT centroids against a set of BCTs from the hypothetical 

colour naming systems (ΔEab = 15) showed that perceptual structure embedded in the 

stimuli set alone cannot explain the agreement (ΔEab = 7) between our online and offline 

experiments. 

 

A second aim of this chapter was to map for the first-time unconstrained colour names 

in the physiologically-based cone excitation space adopted recently by the CIE 

(Stockman & Sharpe, 2000; CIE 170-1:2006; CIE 170-2: 2015). This new cone excitation 

space includes a better representation of the spectral sensitivities of the long-, middle- 

and short- wavelenth cones (L, M, and S) than the widely used CIE XYZ 1931 colour 

matching functions – especially at short wavelengths – but its relationship with higher-

order cognitive processes is uncertain. Here, we contribute an optimised transformation 

matrix that allows future researchers to transform the Munsell Renotation Dataset from 

the CIE XYZ 1931 under illuminant C to the new CIE XYZ 2015 colour matching functions 

under the more natural and widely used daylight illuminant D65. Furthermore, we 
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contribute to the research community a calibrated colour naming dataset for 600 

simulated Munsell samples consisting in total of 7,400 unconstrained naming responses 

from 10 English observers. Our dataset will be be useful for testing hue uniformity for the 

next generation of colour appearance models that will be based on the new CIE XYZ 

2015 colour matching functions. 

 

In the naming responses, 50% of the data included single terms, 42% two-word and 8% 

three-word descriptions. The eleven basic colour terms (Berlin & Kay, 1969/1991) 

occurred in 35% of the responses. This is comparable with the number of words found 

in the multilingual datasets of our online colour naming experiment described in Chapter 

3. We argue that constraining the responses in colour naming experiments (Berlin & Kay, 

1969/1991; Boynton & Olson, 1987; Olkkonen et al., 2009; Kay et al., 2010) produces a 

rather over-simplified picture of the complexity found in natural colour lexicons by 

overlooking in some cases more than 65% of other possible responses that can be very 

useful in basic and applied research (Zeki, 1983; Mylonas & MacDonald, 2012). 

 

The eleven BCTs were used frequently by our observers but lilac, a non-basic term, was 

used more frequently than the basic grey, yellow and white. The latter was the least 

frequent BCT, followed closely by turquoise and magenta. Considering the response 

time of the vocal responses, the rank of the colour names with the shortest latencies 

included both basic and non-basic colour names. Black, white and pink were the fastest 

named categories but the non-basic terms, olive and navy were found in the 4th and 7th 

position respectively. The slowest to name basic term was grey, ranked in the 19th 

position. In terms of consistency between responses of observers that repeated the 

experiment twice, the eleven BCTs plus lilac were found at the top 12 positions. We also 

identified the centroids and focal colours of dominant lexical colour categories. Only 

black, white and orange were used with 100% consensus. In the consensus level of 

>=75%, we found all eleven BCTs plus cream. In the lowest level of consensus (>=50%), 

we found eight additional names: turquoise, lilac, magenta, aubergine, lime green, and 

the dark modifiers of blue, green and brown. These findings contradict earlier reports of 

constrained colour naming studies (Boynton & Olson, 1987; Uchikawa and Boynton 

1987) that report BCTs are used more quickly, more consistently and with greater 

consensus than any other colour name. Instead our results support the view that 

basicness is a gradual rather than a discrete characteristic of lexical colour categories, 

and the eleven BCTs do not constitute the upper limit of basic categories (Moss et al., 

1990; Mylonas & MacDonald, 2016; Paramei et al., 2018; Witzel, 2018 for a review). This 

is not to say that the eleven BCTs are not important in the English colour lexicon – they 

ranked in the top positions in most measures – but that cream, lilac and turquoise also 
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constitute strong BCT candidates in British English (Sturges & Whitfield, 1995; Mylonas 

& MacDonald, 2016). The strong candidacy of cream is also supported by our 

examination for a possible 12th basic colour term in Chapter 4, where the addition of 

cream to the 11 BCTs produced a perfect coherence score for the Basic class. 

 

In regard to the perceptual attributes of dominant colour names, overall focal colours 

were more saturated than centroids. This confirms the importance of saturation in the 

selection of the best examples of chromatic categories (Berlin & Kay, 1969/1991; Rosch 

Heider, 1972; Regier et al., 2005; Olkkonen et al., 2010; Lindsey et al., 2015). The 

vertical axis of S/(L+M) in MB diagram originating from the background chromaticity 

coincides with the centroids of purple and yellow at high and low values respectively. 

The horizontal axis of L/(L+M) is positioned between red and pink at high values, and 

between blue and green at low values. These results confirm not only the large 

discrepancies between colour discrimination mechanisms and the axes of colour 

appearance mechanisms (Abramov & Gordon, 1994; Webster et al., 2000; Valberg, 

2001; Wuerger et al., 2005), but also the discrepancies between the sensitivity of these 

second stage mechanisms to hue differences and the boundaries of colour categories 

(Malcoc et al., 2005, Witzel & Gegenfurtner, 2013, 2018; Shepard et al., 2017; Witzel, 

2018). 

 

Considering the relationship between colour names and unique hues, the foci of the 

landmark colour names usually associated with unique hues, red and green (Boynton & 

Olson, 1987) were not colinear with white but yellow was colinear through white with 

blue. Red was nearly colinear with turquoise and green with magenta through white. The 

foci of cyan could also align with red but turquoise was offered more frequently and with 

higher consensus to describe this region. Except for blue, there was a good 

correspondence of the landmark colour names with the location of unique hue settings 

in CIELUV space (Xiao et al., 2011). These results support the strong relationship 

between the four landmark colour names and the associated colour-opponent 

mechanisms of the hypothetical third stage of colour appearance. For the relative larger 

hue differences between the location of the blue unique hue and the foci-centroid pair of 

the blue colour term, we argue that the collinearity between blue, yellow and white in our 

colour naming data as well as their more vertical alignment in MB diagram corresponds 

better to variation in the signal of the short-wave sensitive cones than the larger 

modulation of the ratio of the long- and middle- wave signals of the more oblique line of 

the unique blue and yellow settings (Mollon, 2006). Failures of colinearity of red and 

green unique hues settings suggest either a single non-linear mechanism or multiple 

unipolar mechanisms; while the curved blue and yellow unique hue vectors suggest 



 

 149 

some additivity failure (Stockman & Brainard, 2010). Our findings suggest that 

considering three bipolar or six unipolar chromatic mechanisms would produce a system 

with complementary relationships between the opponent pairs (Helmholtz, 1852; 

Pridmore, 2008; Shepard et al., 2017). On the whole, the good correspondence with a 

large unique hue dataset further supports the usefulness of our data to evaluate colour 

appearance models. 

 

Considering the overlapness of colour categories in cone excitation space, purple and 

green were the most connected categories, followed by grey, brown and blue. The large 

number of connections of purple and green can be explained by their larger extent in 

colour space. Lime green, yellow, turquoise and magenta exhibited the smallest number 

of links with other names as they were located closer to spectrum locus than other colour 

terms. Basic colour terms tend to share a small number of common samples between 

them, with the strongest link found between red and pink. Cream was found to be a 

crucial node linked with yellow, orange, white, pink and green; and our findings support 

the suggestion of a missing BCT in this area (Boynton & Olson, 1987; Sturges & 

Whitfield, 1995). Strong links were also found between turquoise and blue and between 

lilac, pink and purple implying that there is a considerable overlap between the suggested 

additional BCTs turquoise and lilac and their neighbours (Mylonas & MacDonald, 2016). 

As expected from Hering’s opponent theory, green was not linked to red, and blue was 

not linked to yellow. However, red was not connected to yellow, and orange serves as 

an important node between them. Yellow and orange were not connected to the 

achromatic categories. Contrary to earlier results (Boynton & Olson, 1987) we report a 

weak link between red and blue. Other unpaired BCTs were green-purple, blue-orange 

and brown-blue. In the practice of many artists, green complements purple, and blue 

complements orange while brown can be seen as a muted darker orange (Goethe, 1840; 

Gage, 1993). 

 

For the generalisation of our observations from the 600 stimuli used in the experiment to 

the entire 3D gamut of the CRT monitor in cone excitation space, we employed a 

Maximum a Posteriori estimator (Mylonas et al., 2010). The regions with the highest 

purity of L, M and S cone excitations were assigned to red, green and blue colour names 

respectively. These findings support traditional accounts (Maxwell, 1872) for the labelling 

of cone excitations while it contradicts the results of recent studies that assigned the 

highest values of L excitation to orange (Cao et al., 2005) or to yellow (Pridmore, 2011, 
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2013). The combined signals from L and M cones at maximum intensity were assigned 

to yellow, from L and S cones to magenta and from M and S cones to turquoise.   

 

The visualisation of MAP’s classification on a 2D plane of MB’s chromaticity diagram 

confirms our previous conclusions that the vertical axis of S/(L+M) originating from the 

background chromaticity is crossing purple and yellow while the horizontal axis of 

L/(L+M) crosses turquoise and pink. At very high values the L/(L+M) coincides with the 

boundary between pink and red. In DKL colour space the positive pole of the S-(L+M) 

dimension coincides with the centroid of purple and it’s negative with an area close to 

the boundaries of yellow. The negative pole of the L-M dimension coincides with 

turquoise and the positive with pink. The L-M axis coincides also with the boundary 

between blue and green and the boundary between pink and red at low values of the 

negative pole and high values of the positive pole respectively. It is clear that any 

interpretation that colour categories are constrained within the cardinal axes of colour 

discrimination mechanisms should be treated with caution, especially when the hue 

sampling is too coarse and the saturation of the samples varies (Skelton et al., 2017; 

Witzel & Franklin, 2014; Witzel, 2018). It is unclear why the proposed inherent, hard-

wired, categories are constrained within the axes of colour discrimination in infants 

(Skelton et al., 2017) but in adults purple and yellow categories cross over the axes 

(Malcoc et al., 2005, Witzel & Gegenfurtner, 2013, 2018; Witzel, 2018) while unique hues 

are overall stable across the life span (Schefrin & Werner, 1990; Wuerger, 2013). In 

addition, the size and shape and of lexical colour categories varied in the three colour 

spaces (LMS, MB and DKL) and the question of which is the most appropriate space to 

measure these features of colour names remain open. 

 

Supplementary qualitative features include a near circular achromatic region, with brown, 

cream, lilac and dark blue nested in the interior of the cone chromaticity diagram. Yellow, 

orange, red, magenta, purple, turquoise and lime green cover mainly the very saturated 

areas while blue, green and pink extend from the achromatic to the most chromatic 

regions. Some categories share straight boundaries (blue-purple, pink lilac), while for 

others (red-pink, orange-yellow, brown) the boundaries form a curvature. The existence 

of borders with curvature raise questions about whether this is the true form of categories 

in colour space, or an artefact of the models and training data (Moroney, 2008; Cao et 

al., 2015). 
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The indispensability of basic colour terms  

Unconstrained colour naming experiments are able to capture a great deal of the large 

colour lexicons found in many languages of the world. Yet, establishing which colour 

names are shared and well comprehended by most speakers in each language has 

proved to be a non-trivial task that requires multiple criteria and combinations of 

associated measures. In this chapter, we employ information theoretic analysis in the 

context of language games to define a simple metric that identifies basic colour terms 

from unconstrained colour naming data in different languages. 

7.1.  The identification of Basic Colour Terms 

The number of colour names in languages is often large, as that makes colour 

communication easier and improves the accuracy of colour naming (Lantz & Stefflre, 

1964). Yet, only a small number of colour names are shared and comprehended well by 

most speakers in each language (Brown & Lenneberg, 1954).  

 

In a seminal study, Berlin and Kay (1969/1991) proposed a total universal inventory of 

eleven basic colour categories, the Basic Colours Terms (BCTs), corresponding to the 

English black, white, red, yellow, green, blue, brown, orange, purple, pink and grey. 

Berlin and Kay did not regard all basic terms as equivalent; the first six were described 

as ‘primary basic’ and the remaining five terms as ‘derived’ or ‘secondary basic’. Berlin 

& Kay’s criteria for the identification of BCTs was based on multiple factors (e.g. single 

word terms that are not the name of an object, see section 2.3. for all eight criteria) 

judged by experts as not being equally applicable across languages (Crawford, 1982; 

Saunders & van Brakel, 1997; Levinson, 2000; Biggam, 2012). Others have segregated 

basic colour categories on more rigorous behavioural criteria such as frequency, 

response time and consistency, but not without applying language-specific criteria such 

as restricting the responses to single word terms (Boynton & Olson, 1987; Sturges & 

Whitfield, 1995; Corbet & Davies 1997; Lindsey & Brown, 2014, Mylonas & MacDonald, 

2016). These criteria have been applied to determine a limited number of basic colour 

terms within different languages across the world, but current consensus suggest that 

basicness is not a simple dichotomous but more a continuous gradual characteristic of 
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lexical colour categories, and the quest for a more cross-culturally legitimate approach 

remains unsettled (Witzel, 2018; for a review). 

 

The question underlying this chapter is what is meant by ‘basicness’ in information 

technology-enabled communication systems with an aim to establish a language-

independent scale of basicness from unconstrained colour naming responses in different 

languages. In the context of colour naming, basic colour terms refer to the degree that 

linguistic signifiers are shared and comprehended by most speakers in each language 

to communicate their categories of colour sensations. This depends broadly on the 

responses of the human visual system (Berlin & Kay, 1969/1991; Kay & McDaniel, 1978; 

Griffin, 2001; Regier et al., 2007), the referents in the environment (Mollon 1982; Webster 

& Mollon, 1997; Yendrikhovskij, 2001) and the communication needs of the social group 

(Brown & Lenneberg, 1954; Lucy & Shweder, 1979; Davidoff et al., 1999; Levinson, 

2000; Gibson et al., 2017).  

 

Along these lines, in Chapter 3 we presented families of lexical, behavioural, and 

geometric features of unconstrained colour names in different languages, but none was 

sufficient to demarcate alone BCTs from non-basics. In Chapter 4, a robust classifier 

required training by more than one family of these features to produce perfect coherence 

between members of the Basic class while the coherence for members of the Primary 

class was much lower for all available features. This multiplicity of measures is subject 

to high risk in being applied differently by different researchers for demarcating BCTs in 

different languages. At the same time, consistent with recent studies (Lindsey et al., 

2015; Regier et al., 2015, Gibson et al., 2017), our findings imply that informativeness 

provide a better framework to advance our understanding in colour naming than the 

hypothetical primary colours of the opponent theory (Hering, 1878/1964). Here, we 

employ information theoretic analysis in the context of language games to propose a 

simple metric to determine the degree of basicness of unconstrained colour names in 

different languages. 

7.2.  Methods 

Recently colour names have been studied by measuring their communication 

effectiveness using information theoretic analysis in the context of language games 

(Lindsey et al., 2015, Regier et al., 2015; Gibson et al., 2017). For example, in Figure 

7.1 ‘Alice’ is presented with a colour (step 1), which she names (step 2). ‘Bob’ then 

attempts to guess the colour from the name (step 3). How many tries will Bob on average 

take to guess the colour?  
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Figure 7.1 Communication game for colour chips. ‘Alice’ is presented with a colour (step 1), 

which she names (step 2). ‘Bob’ then attempts to guess the colour from the name (step 3). 

Assuming Alice names colours like the population average, and Bob guesses optimally, 

then performance is computable from colour naming data as: 

 

 

 

(7. 1) 

where P(n|c) is the conditional probability that name n will be chosen for a colour c, and 

P(c|n) that colour c was the cause of a naming n. In Figure 7.2, we show the surprisal of 

c = 600 colour samples named in the online colour naming experiment using n = 478 

distinct colour names in British English offered by at least two observers. 
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Figure 7.2 Surprisal of colour samples named in the online colour naming experiment by 

British English speakers. 

Overall, surprisal tends to be higher for cooler than warmer colours (Gibson et al., 2017) 

reflecting in our view the larger perceptual extents of categories in the cool region of 

colour space (see for example the extent of BCTs mapped on Munsell array by Berlin & 

Kay in Figure 2.10). Our claim is further supported by the strong Pearson positive 

correlation between surprisal and the extent of the category across samples, r = 0.56, p 

< 0.001 compared to the weak negative Pearson correlation r = -0.14, p < 0.001 between 

surprisal and ambiguity in naming, measured by the entropy of colour naming 

distributions over samples (Figure 7.3). 
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Figure 7.3 Correlation between extent and surprisal (top); entropy and surprisal (bottom) 

of colour naming distributions. 

Having determined the surprisal for each chip, we were interested in defining a measure 

of basicness for lexical colour categories. For inspiration, consider Figure 7.4 which 

shows the conditional probability of yellow – a basic term – and coral – a non-basic term 

– over chips in the online colour naming experiment. First, we observe that yellow is 

more frequent overall than coral. Also, for a number of samples, yellow was the most 

likely colour name whilst for coral there are always a substantial fraction of other colour 

names that have been used to describe them. However, neither overall frequency nor 

consensus is sufficient to fully separate BCTs from non-basic colour names (see Figure 

7.5). In terms of frequency measured here as the sum of P(n|c) for each category, lilac 
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and turquoise are more frequent than orange, yellow, grey, red, black and white (Lindsey 

& Brown, 2014; Mylonas & MacDonald, 2016). While, in terms of consensus measured 

as the peak response rate of P(n|c) for each category, lilac was again found earlier than 

white and green; lime green and royal blue are equal to green. Therefore, an alternative 

measure is needed to capture the importance of BCTs. 

 

 

Figure 7.4 Conditional probability of names n: yellow (top) and coral (bottom), given 

colours c, over chips. 
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Figure 7.5 Frequency (top) and consensus (bottom) of colour names. BCTs are drawn with 

disks and non-basic names with squares. 
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Here, we unite frequency and consensus with a novel information theoretic measure, 

which we call dispensability, for colour categories that we hypothesised would predict 

basicness. Our dispensability measure is an analogue of the surprisal measure (Figure 

7.6) but instead of measuring the importance of colour chips (Gibson et al., 2017), it is 

concerned with measuring the importance of colour names. Alice is given a colour name 

(step 1) and points at a colour (step 2) which could give rise to the name. Bob then 

attempts to guess the name (step 3) from the indicated colour. How many tries will Bob 

on average take to guess the name?  

 

 

 

Figure 7.6 Communication game for colour categories. Alice is given a colour name (step 1) 

and points at a colour (step 2) which could give rise to the name. Bob then attempts to 

guess the name (step 3) from the indicated colour. 

If Alice chooses colours for names according to colour naming data, and Bob is optimal 

in his guessing, then performance can be computed as  

 

 

 

(7. 2) 

Dispensability will be low for a name, if a fraction of the chips that can be so named, are 

named by that term. Dispensability takes into account for each colour name, the colours 

for which all other names are rarely used. In other words, dispensability determines 

basicness by identifying which are the superordinate colour names that cannot be 

replaced with any other name – hence the title we have given to our measure. 

 

We computed dispensability using all available colour naming datasets from the 

unconstrained online colour naming experiment in British English, American English, 
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Russian, Greek, Turkish and Thai presented in detail in Chapter 3 and in Appendix A. 

We have also considered the English dataset obtained in the offline colour naming 

experiment presented in Chapter 6.  

 

For the c=600 colour samples in the online colour naming experiment, 500 British English 

observers offered 7,405 responses using n=478 distinct colour names shared by at least 

two observers. In American English, we obtained 8,948 responses from 500 observers 

using n=483 distinct colour names. In Greek, 500 participants gave 5,870 responses, in 

which n=314 colour names were distinct. From 500 Russian observers, we obtained 

n=342 distinct colour names from 7,802 responses. In Turkish, we obtained n=285 

distinct colour names from 4,727 responses of 309 observers. In Thai, 255 observers 

gave 3,516 responses using n=284 distinct colour names. Finally, in the offline 

experiment, 10 English speakers offered 4,684 responses using n=246 unique colour 

names. In all language datasets, only colour names that were offered by two or more 

observers were considered. 

7.3.  Results 

In Figure 7.7, we show the 30 most indispensable colour names ordered from low to high 

dispensability in all datasets. We chose 30 because non-expert observers are able to 

identify 30 colour names in their native language without training (Derefeldt & Swartling, 

1995).  

 

Dispensability varies with colour name and remarkably, for all three datasets in English, 

all BCTs (Berlin & Kay, 1969/1991) had lower dispensability scores than all non-BCTs. 

For example, in British English the score for yellow was 1.39, for the American English 

was 1.46 and for the laboratory-based English dataset was 1.28; while for mustard, the 

scores were 2.32, 3.10 and 2.11 respectively. The range of dispensability for basic terms 

was 1.39-1.90 for the British English speakers, 1.14-1.89 for the American English and 

0.81-1.40 for English speakers of the laboratory-based experiment. For non-basic terms, 

the ranges were 2.04-4.49, 2.01-4.49 and 1.75-3.25 for British, American and laboratory 

English speakers respectively. In British English, the 11 BCTs were followed closely by 

turquoise and lilac; but there was a considerable jump in dispensability value to the 

following non-basic term, beige. In American English, the last BCT green was followed 

firmly by peach, salmon, and maroon while the separation was bigger with the 15th, dark 

green. In the English dataset from the laboratory-based experiment, there was a clear 

separation between the 11 BCTs and the non-basics lime green, beige and dark green 

in terms of dispensability scores. 



 

 160 

 

In terms of dispensability, the two proposed basic terms that describe the unitary English 

blue category in Greek (ble in 7th and galazio in 11th), Russian (sinij in 5th and goluboj in 

8th) and Thai (fa in 3rd and namngen in 10th) were ranked in the top 11 positions but in 

Turkish the first blue term (mavi) was ranked in the 6th and the second blue term (lacivert) 

was ranked in the 13th position. In Greek, we identified an additional indispensable colour 

term for the olive category (ladi) that was ranked in the 12th position earlier than the last 

basic term grey (gri) that was ranked in the 13th position. Olive green was also ranked in 

the 17th position in the dispensability rank of the American English and in 20th in the 

English of the offline experiment. 



 

 161 

 

 

 



 

 162 

 

 

 

0

0.5

1

1.5

2

2.5

3
d

is
p
e
n

s
a
b

ili
ty

English - Offline

w
h
it
e

b
la

c
k

o
ra

n
g

e
g

re
e

n
b

ro
w

n
p
u

rp
le

y
e

llo
w

re
d

g
re

y
b
lu

e
p
in

k
lim

e
 g

re
e

n
b
e
ig

e
d
a
rk

 g
re

e
n

lil
a
c

d
a
rk

 b
ro

w
n

d
a
rk

 r
e
d

tu
rq

u
o
is

e
c
re

a
m

o
liv

e
 g

re
e

n
m

u
s
ta

rd
d

a
rk

 p
u
rp

le
d
a

rk
 b

lu
e

p
a
le

 l
ila

c
le

m
o

n
 y

e
llo

w
m

u
s
ta

rd
 y

e
llo

w
m

a
g

e
n

ta
p

a
le

 g
re

y
a
u

b
e

rg
in

e
n
a
v
y
 b

lu
e

0

0.5

1

1.5

2

2.5

3

d
is

p
e
n

s
a
b

ili
ty

Greek

m
o
v

ro
z

k
it
ri

n
o

k
a
fe

p
o

rt
o

k
a
li

k
o
k
k
in

o
m

p
le

le
u
k
o

p
ra

s
in

o
m

a
u

ro
g

a
la

z
io

la
d

i
g
k
ri

m
o

u
s
ta

rd
i

s
o
m

o
n

fo
u
x
ia

k
y
p
a

ri
s
s
i

ti
rk

o
u
a
z

a
s
p

ro
e

n
to

n
o
 b

e
ra

m
a

n
k
h
a
k
i

lil
a

a
n
o
ic

h
to

 k
it
ri
n

o
m

p
o

rn
to

k
e
ra

m
id

i
m

p
le

 s
k
o
u
ro

la
c
h

a
n

i
g
k
ri

 a
n

o
ic

h
to

z
a
c
h
a
ri

p
o

ly
 a

n
o
ic

h
to

 k
it
ri
n
o



 

 163 

 

0

0.5

1

1.5

2

2.5

3

d
is

p
e
n
s
a

b
ili

ty

Russian

b
e
ly

j

ro
z
o

v
y
j

s
in

ij
fi
o

le
to

v
y
j

z
e

lë
n
y
j

g
o

lu
b
o

j

s
e
ry

j

k
ra

s
n

y
j

të
m

n
o
-z

e
lë

n
y
j

b
ir
û
z
o

v
y
j

b
o
rd

o
v
y
j

s
a
la

to
v
y
j

të
m

n
o

-s
in

ij
s
ir
e
n

e
v
y
j

p
e

rs
ik

o
v
y
j

të
m

n
o
-f

io
le

to
v
y
j

b
o

lo
tn

y
j

të
m

n
o

-b
o

rd
o

v
y
j

s
v
e

tl
o
-s

v
e
tl
o

-g
o
lu

b
o
j

s
v
e

tl
o
-s

e
ry

j
s
v
e
tl
o

-r
o
z
o
v
y
j

s
v
e
tl
o
-m

a
lin

o
v
y
j

â
rk

o
-r

o
z
o
v
y
j

0

0.5

1

1.5

2

2.5

3

d
is

p
e

n
s
a
b

ili
ty

Thai

d
a

m
c
h
o
m

p
u fa

s
o
m

th
a
w

le
a
u

n
g

n
a

m
ta

n
k
h

a
w

m
u
a

n
g

n
a
m

n
g
e

n
d

a
n

g
k
h

ia
w

m
u
a

n
g
o

n
c
h

o
m

p
u
k
h

e
m

p
h
a

tt
h

e
n

k
h
ia

w
th

u
e

p
m

in
s
o
m

o
ro

t
n
a
m

ta
n

k
h
e

m
le

a
u

n
g

tu
n

fa
o

n
th

a
w

o
m

fa
k
h
ia

w
s
a
th

o
n
s
a

e
n
g

k
h
ia

w
k
h
im

a
k
h
ia

w
k
h

im
a

k
h

e
m

k
h
ia

w
k
h

ri
m

d
a
n
g

lu
e
a

tm
u

le
a

u
n

g
k
h
a

ik
a
i

th
a
w

k
h

e
m

la
w

e
n
d
o

e
k
h
ia

w
o

n



 

 164 

 

 

Figure 7.7 Dispensability of colour names within British English, American English, English-

Offline experiment, Greek, Russian, Thai and Turkish (from top to bottom). The 11 Basic 

Colour Terms of Berlin & Kay (1969/1991) are drawn with disks, proposed additional basic 

terms with diamonds and non-basic colour names with squares. 

To explore whether there is quantintative evidence for the upper limit to the number of 

BCTs within each language in Table 7.1 we express the dispensability ‘gap’ between last 

BCT and first non-BCT as a fraction of the standard deviation of dispensability scores for 

the 11 BCTs of Berlin and Kay (1969/1991), and of the proposed BCTs (see 2.4. The 

largest fraction was found in the laboratory-data for the 11 BCTs while for the proposed 

BCTs the largest fraction was found for the Russian data. The lowest fraction was 

observed in the American English, Thai and Turkish dispensability scales. On the whole, 

the low number of statistic scores imply dispensability is a gradual scale. 
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Table 7.1  Dispensability fraction of the step between last BCT and first non-BCT and variance 

of BCTs for the 11 BCTs of Berlin & Kay and proposed BCTs (Engchuan, 2003; Ozgen & Davies, 

1998; Androulaki et al., 2006; Mylonas & MacDonald, 2016; Paramei et al., 2018).   

 
11 BCTs Proposed BCTs 

British English 0.35 0.84 

American English 0.11 NA 

English - Offline 1.86 0.02 

Greek 1.00 1.01 

Russian 1.22 1.27 

Thai 0.18 0.19 

Turkish 0.09 0.06 

 

Overall, our dispensability analysis shows that basicness is not a simple dichotomous 

but a continuous gradual characteristic of lexical colour categories. The order of the most 

indispensable colour names varies in each language. Colour names with the low 

dispensability scores neither resemble the evolutionary hierarchical order (Berlin & Kay, 

1969/1991) nor give a special status to the primary colour categories. Languages with 

two basic blue terms are not an exception in this regard, but rather form a majority in the 

colour naming datasets of this thesis. 

7.4.  Discussion 

The identification of colour names that are shared and well comprehended among 

speakers in each language has proved to be a non-trivial task that requires multiple 

criteria and combinations of associated measures. These criteria have been strongly 

criticised as not being equally applicable across languages (Saunders & van Brakel, 

1997; Levinson, 2000; Biggam, 2012) while their multiplicity is vulnerable to high risk of 

being applied differently by different researchers for demarcating BCTs in different 

languages.  

 

In this chapter, we argue that basic colour categories are indispensable and propose a 

simple information theoretic measure of basicness that combines the frequency and 

consensus of colour names between speakers in each language. Dispensability 

determines basicness by identifying which are the superordinate colour names that 

cannot be replaced with any other name – hence the title we have given to our measure.  
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To test the performance of our information theoretic measure, we considered 

unconstrained colour names in British and American English, Greek, Russian, Thai and 

Turkish from an online experiment, along with a calibrated English dataset from a 

laboratory-based experiment. Dispensability varied with category and produced a graded 

scale of basicness. Most remarkably, for all three datasets in English the 11 BCTs (Berlin 

& Kay, 1969/1991) had lower dispensability scores than all non-BCTs while also being 

able to capture the indispensability of the proposed second blue basic term in Greek, 

Russian, Thai and to a lesser degree in Turkish. Dispensability does not identify the 

BCTs because they are commonly used (e.g. dark green is more frequent in our datasets 

than white). Rather it works because for each there are colours for which all other names 

are rarely used. These findings suggest that information theory is well-suited to provide 

a simple language-independent measure to determine the degree of basicness of 

unconstrained colour names within different languages, and can reveal the emergence 

of unknown basic categories that may not meet the conceptual criteria of Berlin & Kay 

(1969/1991). 

 

In our assessment of dispensability for British English; the 11 BCTs were followed closely 

by turquoise and lilac, but there was a considerable jump in dispensability score to the 

following non-basic term beige. The candidacy of lilac and turquoise as BCTs was also 

supported in our earlier study (Mylonas & MacDonald, 2016), where we analysed colour 

naming responses from the online colour naming experiment and computed the mean of 

the ranks for each colour term across six different measures (frequency, consensus, 

response time, consistency, volume and inter-experimental agreement) to obtain an 

gradual index of basicness. Both terms appear to reduce the uncertainty of colour 

naming from using only the 11 BCTs, as lilac partitions the large colour category of purple 

into light and dark segments; while turquoise stabilises the large boundary area between 

green and blue. Beige appears in the area between white, yellow, pink and orange which 

attracts a large number of different names, such as cream, peach, tan and salmon, and 

has been claimed as a region with a missing BCT (peach in Boynton & Olson, 1987; 

cream in Sturges & Whitfield, 1995). This is also supported by the high consensus of 

cream obtained in our laboratory-based experiment of Chapter 6 and the examination 

for a possible 12th basic colour term in Chapter 4, where the addition of cream to the 11 

BCTs produced a perfect coherence score for the Basic class. 

 

Considering the results in American English, the last BCT green was followed firmly by 

peach, salmon and maroon while the separation was bigger with the 15th colour, dark 

green. Lindsey & Brown (2014) applied Zipf’s law (1935) to colour naming frequencies 

and reported a steep decrease in frequency of colour terms beyond the 15th term in 
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American English colour lexicon. They also found that peach, teal, lavender and maroon 

were named with high consensus across observers. The low dispensability of peach and 

salmon provides additional evidence for a missing BCT in this hard-to-name region. The 

high indispensability of maroon was not found in the responses of British English 

speakers who more often offered the dark modifier of red to describe this region. We 

note the close similarity of teal to turquoise, and also lavender to lilac which were ranked 

in the 23rd, 19th, 18th and 41st position by our dispensability measure. On the whole, our 

dispensability measure ranked in the top 11 positions the same BCTs for British and 

Americans English speakers. However, the highly indispensable colour names closely 

following the BCTs were different between the two groups. This suggests that the 11 

BCTs in English are more universally shared between English speakers than non-basic 

terms. This is also evident from the remarkably small mean colour difference between 

the BCTs in American and British English (ΔE00=1.49) reported in Chapter 3. The 

universality between English speakers of the 11 BCTs is also supported by the analysis 

of the international English dataset of the lab-based experiment. Here, we found a clear 

separation between the 11 BCTs and the non-basics lime green, beige, dark green, lilac, 

dark brown, dark red, turquoise and cream; with a second jump in terms of dispensability 

score at the 20th olive green. 

 

In regard to the dispensability index of the two proposed basic terms that describe the 

unitary English blue category in Greek (ble/blue in 7th and galazio/sky blue in 11th), 

Russian (sinij/blue in 5th and goluboj/sky bue in 8th) and Thai (fa/sky blue in 3rd and 

namngen/blue in 10th); these terms were ranked in the top 11 positions, but in Turkish 

the first blue term (mavi/blue) was ranked in the 6th and the second blue term 

(lacivert/navy blue) was ranked in the 13th position. These results are generally 

consistent with previous reports on the 12 BCTs in Greek, Russian and Thai as well as 

on the uncertainty about the basicness of the second blue term in Turkish (Androulaki et 

al., 2006; Morgan & Corbett, 1989; Prasithrathsint, 1988; Ozgen & Davies, 1998).  

 

In Modern Greek, Androulaki and her colleagues (2006) reported twelve BCTs including 

two blues (ble and galazio). The differentiation of the blue English category into two basic 

blue categories in Greek was also supported by the semantic shifts of category 

prototypes with different levels of Greek-English bilingualism (Athanasopoulos, 2009). 

The two basic blue categories in Russian (sinij and goluboj) were reported by Berlin and 

Kay (1969/1991). This exemption to their universal inventory of the eleven BCTs and the 

possibility of an additional evolutionary stage in the development of colour lexicons 

(Stage VIII) triggered a large number of studies that confirmed the second basic blue in 

Russian (Morgan & Corbett, 1989; Paramei, 2005; Paramei et al. 2018). In Thai, Berlin 
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& Kay (1969/1991) reported only 10 BCTs and a single sky blue basic term (fa) but recent 

studies identified twelve BCTs including grey (thaw) and two blues (fa and namngen) 

(Prasithrathsint, 1988; Engchuan, 2003). Thai is the only language in our investigation 

where the sky blue term (fa) has lower dispensability than the blue term (namngen). The 

status of the proposed navy blue category as a BCT (lacivert) is less certain in Turkish. 

Ozgen and Davies (1998) reported that navy blue (lacivert) term was offered frequently 

and with high consensus but the term violated the non-inclusion criterion of Berlin & Kay 

(1969/1991) with regard to the main blue category (mavi). A consequent study (Ekici et 

al., 2006) supported its basicness by reporting similar response time for this navy blue 

term and the other 11 BCTs. Contrary, a more recent study reported a low consensus for 

the navy blue term (Rätsep, 2011) but in the analysis of the Turkish data of this study, 

we found that lacivert was the fourth term with the highest consensus score (Ulusoy et 

al., 2017).   

 

In Chapter 3, we showed that in Russian, Greek and Thai the loci of their two basic blues 

correspond well and their centroids deviated from the centroid of English blue. This was 

not the case in Turkish. The range of the basic blue term (mavi) in Turkish overlapped 

with the blue term in British English while the navy blue term (laçikvert) appear to differ 

from the blue term (mavi) mainly in the lightness dimension with no obvious differences 

in the hue dimension. Except for blue, the comparison between British English and 

American English, Greek, Thai, and Turkish for the loci of the other 10 BCTs showed a 

very good correspondence with a mean ΔE00 of 1.83, 2.13, 2.39 and 2.23 respectively. 

An equivalent second basic blue term has been reported recently also in Italian (Paggetti, 

Menegaz, & Paramei, 2015). Taking into account the results of this chapter in conjunction 

with the evidence described above we confirm the postulation of the existence of an 

additional evolutionary Stage VIII in the development of colour lexicons for Greek, 

Russian and Thai, but for Turkish further investigation is needed. 

 

In Greek, we identified an additional indispensable colour term for the olive category 

(ladi) that was ranked after the second basic blue term (galazio) in the 12th position but 

earlier than the last basic term grey (gri). Olive trees and their by-products play an 

important role in the diet and culture of classical and modern Greeks (Boardman 1976; 

Trichopoulou & Lagiou, 1997). Olive green was also ranked in the 17th position in the 

dispensability rank in the American English and in 20th in the English of the offline 

experiment; while in Chapter 4, the examination of olive as 12th member of the Basic 

class in British English produced the second highest coherence score after cream. 

Contrary to English, in our Greek dataset, olive was used as a modifier of green in less 

than 0.5% of its total occurrences while frequently attracting both light and dark modifiers. 
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These results are consistent with previous reports on the basic colour terms in Modern 

Greek (Androulaki et al., 2006) where olive (ladi) and sky blue (galazio) where also found 

with higher basic status than grey. In case that these findings will be further confirmed 

by consequent studies the Greeks may be postulated having 13 BCTs. 

 

With regard to the order of dispensability ranks across languages, we found that the 

order of the most indispensable colour names varied in each language. White and black 

were often ranked in the top positions as it would be expected by the evolutionary 

sequence hypothesis (Berlin & Kay, 1969/1991) but this was also true for yellow, purple, 

orange, brown and pink. Red was never found earlier than the 6th position and green 

occupied more often the last positions of the BCTs. Yellow was found earlier than red in 

all test languages. Clearly, our dispensability analysis cannot be used to deduce a fixed 

universal sequence across languages (Berlin & Kay, 1969/1991, Loreto et al., 2012). 

This is not to say that the evolutionary sequence hypothesis is valid or not since our data 

can only provide a snapshot in time of these fully developed colour languages and the 

importance of colour categories in different languages may not necessarily follow their 

order of emergence (Lindsey & Brown, 2006). Nevertheless, we found no evidence for 

the priority of primary basics over secondary basics in our dispensability scales. These 

results reinforce earlier conclusions that primary basics do not play a fundamental role 

in colour naming systems (Zeki, 1980; Boynton & Olson, 1987; Malkoc et al., 2005; 

Bosten & Boehm, 2014). 

 

Instead, our results support growing evidence that communication efficiency provides a 

better framework to understand colour naming than opponent theory (Jameson & D’ 

Andrade, 1997; Lindsey et al., 2015; Regier et al., 2015; Abbot et al., 2016; Gibson et 

al., 2017). This hypothesis, following in part the categorisation principles of Rosch 

(1978), proposes that colour naming systems are based on optimising the balance 

between simplicity and informativeness. On one hand, a simple colour naming scheme 

with a small number of names would be easier to use. On the other hand, an informative 

scheme with a large number of names would maximise the precision of colour names in 

colour communication. Our dispensability measure provides the average amount of 

information conveyed by each colour name in bits and based on this scale one could in 

principle optimise the granularity of colour naming schemes in different languages 

described in Chapter 5.  
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Discussion 

The work presented in this thesis constitutes part of ongoing interdisciplinary research in 

which we explore the intriguing activity of communicating a large number of discriminable 

colours using a smaller set of colour names, with an ultimate aim to facilitate colour 

communication within different languages. 

8.1.  Online and offline colour naming experiments 

We started our investigation in Chapter 3 by asking thousands of people over the Internet 

to name freely a small number of colours in American and British English, Greek, 

Russian, Thai and Turkish. We extended previous cross-cultural studies which used only 

the most saturated colour samples on the surface of the Munsell system (Berlin & Kay, 

1969/1991; Kay et al., 2010) by sampling also the interior of the colour solid. In addition, 

we departed from usual methods which would use a small number of observers and/or 

the use of only a restricted set of single-word names (Berlin & Kay, 1969/1991; Boynton 

& Olson, 1987; Sturges & Whitfield, 1995; Benavente et al., 2006; Lindsey & Brown, 

2014; Parraga & Akbarinia, 2016). Instead, thousands of volunteers from linguistically 

and demographically diverse populations named freely a large number of colours online 

(Moroney, 2003; Mylonas & MacDonald, 2010; Munroe, 2010). We argued that 

participating in an online experiment in your own familiar environment, with your own 

equipment, and without the physical attendance of the examiner would give more 

ecological validity to the underlying categories responsible for colour naming.  

 

Despite the uncalibrated colour reproduction of the online experimental methodology and 

the linguistic diversity of the observers; except for blue, we found a good correspondence 

between the location of their proposed BCTs (<5 ΔΕ00). Consistent with earlier studies 

(Berlin & Kay, 1969/1991; Boynton & Olson, 1987; Uchikawa & Boynton, 1987; Sturges 

& Whitfield, 1995; Regier et al. 2005; Lindsey & Brown, 2009; Paramei et al., 2018), 

these results demonstrate that different languages tend to categorise colours into BCTs 

similarly but with some important differences. The mean colour difference between 

British and American English (ΔE00 = 1.5) was about 3 times smaller than the mean 

colour differences between British English and Greek (ΔE00 = 4.3), Russian (ΔE00 = 4.8), 

Thai (ΔE00 = 5.0) and Turkish (ΔE00 = 4.3) indicating that speakers of similar linguistic 
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groups at a population level agree more on the location of BCTs than speakers of 

different languages (Davidoff, 2015). From our earlier assessment of the colour 

reproduction error in uncalibrated monitors against sRGB reported in Chapter 2 (ΔE00 = 

8.0 for desktops and ΔE00 = 6.0 for mobiles), we were expecting moderately larger 

differences and we speculate that the similar stimuli and background configuration in the 

interface of the experiment led to some kind of perceptual stabilisation of colours 

(Webster, 2011; Foster, 2011; Zeki et al., 2019). 

 

To respond to the criticism whether the uncalibrated colour reproduction and viewing 

conditions of online colour naming experiments meet the requirements for rigorous 

colour research, as well as to criticism of generalizing from laboratory-based experiments 

estimates of colour naming functions in real-world monitor settings, we also collected a 

large number of unconstrained colour naming responses from a small number of 

participants using a calibrated CRT monitor in laboratory settings. The agreement for the 

location of the basic terms between our web- and laboratory- based experiments (ΔE00 

= 4.6) was satisfactory and superior of the agreement (ΔE00 = 7.4) between previous 

laboratory-based studies (Boynton & Olson, 1987; Sturges & Whitfield, 1995). The larger 

differences between earlier studies can be explained by the usage of different colour 

order systems to map the colour naming distributions. A comparison between the loci of 

BCTs between individual observers of our offline experiment showed that inter-

experimental and inter-language differences in the online experiment were smaller than 

the intra-experimental differences (ΔΕ00 = 7.9) among individuals. These findings are in 

agreement with the reports of previous studies that intra-language differences among 

individuals are larger than inter-language differences (Berlin & Kay, 1969/1991; Webster 

& Kay, 2007). The intra-language measure was not available for the online datasets 

because each individual named only 0.3% of the 600 total colour samples of the 

experiment. These results suggest that online and offline colour naming experiments 

produce fairly consistent results and support the validity of both methods in estimating 

colour naming functions in calibrated and uncalibrated monitor settings.  

 

Considering the question of which experimental methodology (online or offline) produces 

the best agreement for the underlying categories responsible for colour naming, we 

found that averaging a small number of colour naming responses from a large number 

of participants in an uncalibrated crowdsourcing experiment produced a better 

agreement (ΔE00 = 1.5, colour difference between British and American English BCTs) 

than averaging a large number of responses from a small number of different individual 

in a calibrated laboratory-based experiment (ΔΕ00 = 7.9, colour difference between BCTs 

of individuals) (Shapiro et al., 1998; Surowiecki, 2005; Webster & Kay, 2007; Yi et al., 
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2012). Nevertheless, in the calibrated dataset from the laboratory-based experiment, we 

mapped for the first-time unconstrained colour naming distributions in the 

physiologically-based cone excitation space recently adopted by the CIE that allowed us 

to examine with more confidence the relationships between colour naming and colour 

vision mechanisms (Stockman & Sharpe, 2000; CIE 170-1:2006; CIE 170-2: 2015). 

8.2.  Colour naming and 1st stage of colour vision mechanisms 

It has been hypothesised that languages gravitate to an optimal set of categories and 

return to them despite departures from the norm by individual speakers driven by cultural, 

biological or behavioural mechanisms (Bimler, 2005; Regier et al., 2007; Griffin, 2006). 

Considering the range of possible cone responses as an explanation for the mechanisms 

that pressure colour categories to optimality, in Chapter 6 we examined a widely cited 

account of this type suggesting that colour categories are determined by optimising the 

division of an irregular perceptual colour space to maximise similarity within a category 

and minimise similarity across categories (Jameson & D’Andrade, 1997; Regier et al., 

2007). In our assessment, as to whether perceptual structure can explain the consistent 

location of the BCT centroids between our online and offline experiments, we used a k-

means algorithm to construct a set of imaginary colour naming systems based on 

Euclidean distances between the 600 approximately uniformly distributed simulated 

Munsell samples in CIELAB (Zaslavsky et al., 2018). A comparison of observed BCTs 

loci of the lab-based experiment against optimal sets of BCTs from the hypothetical 

colour naming systems (ΔEab = 14.61) showed that perceptual structure embedded in 

the stimuli set alone cannot explain the agreement (ΔEab = 7.30) with the online data. 

These results are consistent with previous reports on model-based colour categories 

where consensus between agents was achieved through the communication process 

(Steels & Belpaeme, 2005). Perceptual structure could be a prominent account if the 

focus of the research would be artificially constrained on the six primary basics mapped 

only on the uneven, in terms of saturation, surface of the Munsell system, but it cannot 

account for the consistency of all BCTs when mapped on an approximately uniformly 

distributed grid of samples. This highlights the necessity of sampling the surface as well 

as the interior of the colour solid in colour naming studies (Buchsbaum & Bloch, 2002; 

Paramei, 2005; Mylonas & MacDonald, 2010; Ocelák, 2014; Witzel, 2018).  

 

In regard to labelling long-, medium- and short- wavelength cone excitation mechanisms 

for facilitating their communication to wider audiences; a probabilistic colour naming 

model trained by participant responses assigned the regions with the highest purity of L, 

M and S cone excitations in the gamut of a CRT monitor to the traditional red, green and 
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blue colour terms respectively, but these were not the most typical samples of the three 

colour categories (Maxwell, 1872; Mylonas et al., 2010). In addition, the region with the 

highest contributions from L and M cones was assigned to yellow. Turquoise was 

assigned to the region with the maximum contributions from M and S cones and magenta 

was localised to areas with the strongest contributions from L and S cones. We note that 

single cones are colour blind and applying these labels in different settings – e.g. 

wavelength peak cone sensitivity – can be misleading (Rushton, 1972; Stockman & 

Brainard, 2010).  

 

An examination in Chapter 4, for whether the three cone excitation mechanisms leave 

their traces in the properties of their associated colour names, compared to other colours, 

showed that red, green and blue do not form a coherent class. This supports the ongoing 

argument against the special role of first stage mechanisms in the formation of colour 

categories (Wuerger et al., 2005; Witzel & Gegenfurtner, 2013). 

8.3.  Colour naming and 2nd stage of colour vision mechanisms 

Consistent with earlier studies was also the discrepancy between the bipolar cardinal 

directions of the second stage mechanisms with the landmark colour names usually 

associated with the unique hues in DKL colour space (Abramov & Gordon, 1994; 

Valberg, 2001; Wuerger, Atkinson & Cropper, 2005). The negative side of the L-M axis 

coincided with the boundaries between blue and green, and the positive with the 

boundary between red and pink. The negative S-(L+M) axis crossed yellow, and the 

positive crossed over the centroid of purple. These were also evident in the presentation 

of the results in the MacLeod & Boynton (1979) cone chromaticity diagram. These results 

confirm not only the large discrepancies between colour discrimination mechanisms and 

the axes of colour appearance mechanisms (Abramov & Gordon, 1994; Webster et al., 

2000; Valberg, 2001; Wuerger et al., 2005), but also the discrepancies between the 

sensitivity of the second stage mechanisms to hue differences and the boundaries of 

colour categories (Malcoc et al., 2005, Witzel & Gegenfurtner, 2013, 2018; Shepard et 

al., 2017; Witzel, 2018). 

 

Considering whether the second stage mechanisms play a fundamental role in colour 

naming and leave measurable traces to their associated colour names compared to 

others, in Chapter 4 we assessed the coherence of the proposed labels for six (Shepard 

et al., 2017) and five (Skelton et al., 2017) inherent mechanisms. We found that both 

subsets of colour names do not form a coherent class, and support earlier conclusions 

that subcortical and higher-order second stage mechanisms are not the basis of colour 
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naming systems (Abramov & Gordon, 1994; Webster et al., 2000; Valberg, 2001; 

Wuerger et al., 2005; Malcoc et al., 2005, Witzel & Gegenfurtner, 2013, 2018; Witzel, 

2018). However, the examination of multiple higher-order colour discrimination 

mechanisms in addition to, or beyond the four cardinal dimensions showed an improved 

coherence between their associated colour names and it is an important step towards 

the right direction in understanding the relationship between perceptual and linguistic 

aspects of colour (Hansen & Gegenfurtner, 2006; Eskew, 2009; Shepard et al., 2017). 

 

These findings highlight also the discrepancy between infant and adult colour categories 

in English (Skelton et al., 2017; Witzel, 2018). It is unclear why the proposed inherent, 

hard-wired, categories are constrained by the axes of colour discrimination in infants, but 

here the purple and yellow categories of adults, cross over the axes (see also Malcoc et 

al., 2005, Witzel & Gegenfurtner, 2013, 2018; Witzel, 2018). Unique hues have been 

found overall stable across the life span (Schefrin & Werner, 1990; Wuerger, 2013). 

8.4.  Colour naming and 3rd stage of colour vision mechanisms 

In our assessment of the relationship between colour naming and the opponent 

mechanisms of colour appearance (Hurvich & Jameson, 1957), except for blue, we found 

a good coincidence between the location of colour terms red, green and yellow and the 

corresponding unique hue settings (Xiao et al., 2011; Kuehni, 2005). The centroids of 

red and green were not colinear with white in the cone chromaticity diagram, but yellow 

was colinear through white with blue, confirming the consistent failure of linearirty for the 

opponent pair of unique red and green mechanisms (Chichilnisky & Wandell, 1999; 

Wuerger et al., 2005). Red was nearly colinear to turquoise, and green to magenta. The 

location of cyan would also align with red but turquoise was used by our observers more 

frequently and with higher consensus to describe this region.  

 

An explanation for the misalignment of red and green and the alignment of blue and 

yellow in chromaticity space is that their location coincides to sensations that have a 

simpler relation to their underlying reflectance than other colours (Philipona & O’Regan, 

2006). Failures of colinearity between red-green or blue-yellow suggest either single non-

linear mechanisms or multiple unipolar mechanisms of cone absorption combinations 

(Chichilnisky & Wandell, 1999; Stockman & Brainard, 2010; Shepard et al., 2017). For 

the relative larger hue differences between the location of the blue unique hue and the 

foci-centroid pair of the blue colour term, the collinearity between blue, yellow and white 

in our colour naming data as well as their more vertical alignment in the cone chromaticity 

diagram corresponds better to variation in the signal of the short-wave sensitive cones 
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than the larger modulation of the ratio of the long- and middle- wave signals of the more 

oblique line of the unique blue and yellow settings (Mollon, 2006).  

 

The location of the unique blue (Xiao et al., 2011) corresponds better with the second 

sky blue basic terms in Greek (galazio), Russian (guloboj) and Thai (fa) reported in 

Chapter 3, but the existence of two basic blues in these languages that split the unitary 

blue category in English (see also Newton, 1730) challenges physiological as well as 

ecological explanations for the basis of the blue mechanism (Kuehni, 2005; Regier et al., 

2007; Philipona & O’Regan, 2006; Mollon, 2006). Furthermore, the colour differences 

between the primary basic terms across languages were considerable larger (ΔE00 = 

6.25) than differences between secondary basic terms (ΔE00 = 3.31) and there is no 

evidence that these so-called landmark colours are acting as such (Boynton & Olson, 

1987; Steels & Belpaeme, 2005). 

 

Similarly, our examination in Chapter 4 on the coherence of classes of colours showed 

that the six members of the primary class (white, black, red, green, yellow and blue) 

produced a similar coherence score with an equally sized class of secondary basics 

colours (brown, orange, purple, pink and grey plus one of Hering’s primaries). These 

findings are consistent with recent studies (Malkoc, et al., 2005; Bosten & Boehm, 2014) 

that found no differences between unique-hue judgments of non-primary (i.e., teal, 

orange, purple and lime) and primary hues (i.e. red, yellow, green and blue). Hue 

cancelation procedures may be used to derive colour opponent mechansisms as charted 

quantitatively by Hurvich and Jameson (1957) but say little about which colour categories 

play a fundamental role in the development of colour naming systems. The relationship 

between peak wavelength sensitivity of cells and psychophysical colour opponency is 

also too loose to account for colour appearance in terms of the physiological one (De 

Valois et al., 1966, Derington et al., 1984; Valberg, 2001; for a review). Our findings 

indicate that primaries are not a completely haphazard class but are not more coherent 

than classes of secondary colours; consistent with the results of earlier studies in adults 

(Boynton & Olson, 1987), infants (Franklin, et al., 2008) and monkeys (Zeki, 1980). 

 

Collectively, this thesis provide evidence against Hering’s primaries playing a 

fundamental role in the development of colour categories and challenge explanations 

based on this claim (Berlin & Kay, 1969/1991; Kay & MacDaniel, 1978; Kuehni, 2005; 

Philipona & O’Regan, 2006; Regier et al., 2007). In agreement with an earlier study 

(Bosten & Boehm, 2014), we argue that unique hue settings should be accepted for what 

they are; examples in lexical colour categories that have the least trace of the anchor 

colour names. Accordingly, we claim that unconstrained colour naming procedures 
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provide a better estimation for the location of the opponent mechanisms than constrained 

hue cancelation tasks and suggest that considering three bipolar (red-turquoise, green-

magenta and blue-yellow) or six unipolar chromatic mechanisms (red, turquoise, green, 

magenta, blue and yellow) that produce complementary relationships between the 

opponent pairs would better account for colour appearance phenomena than the 

primaries of the opponent theory (Chevreul, 1839; Helmholtz, 1852; Hurvich & Jameson, 

1957; Pridmore, 2008). 

8.5.  Colour naming and colour constancy 

Colours named in both online- and offline- experiments were perceived relative to their 

spatial context, and the overall good correspondence between BCTs across languages 

and in experiments conducted in variable viewing conditions could be explained by their 

similar stimulus and background configuration. Light emitted from each test stimulus was 

compared with the light emitted from the surrounding neutral grey background and the 

visual system of the observers either adapted to the background chromaticity or a ratio 

between the two was taken to assign a constant colour name to each test sample. The 

net result of these operations, which cannot be separated given the experimental set up 

of this thesis, is that colour perception becomes largely independent of the uncontrolled 

viewing conditions and the uncalibrated monitors of the online experiment, thus leading 

to a perceptual stabilisation of colours. This stabilisation of colour can be due to short-

range, long-time-course adaptation, in the receptors or due to nearly instant, long-range, 

ratio-taking operations in the cortex or, most likely due to a combination of both 

processes (von Kries, 1905; Land, 1974; Zeki, 1980; Brill & West, 1986; Fairchild & 

Lennie 1992; Fairchild & Reniff 1995; Rinner & Gegenfurtner, 2000, 2002). 

Understanding what retinal information is being used by the visual system to stabilise 

colours in the cortex and then to connect it with the first and second mechanistic sites of 

adaptation is of critical importance but only partially developed research (Uchikawa et 

al., 1989; Zaidi, 1998; Golz & MacLeod, 2002; Stockman & Brainard, 2010). 

 

It is difficult to generalise findings based on spatially uniform backgrounds used in the 

experiments of this thesis to account for natural scenes that have complex spatial 

structure (Stockman & Brainard, 2010; Conway, Eskew, Martin, Stockman, 2018). To 

investigate colour categorization in complex scenes, we asked in a parallel study whether 

subjects of different linguistic and ethnic backgrounds categorize different colours when 

light reflected from patches of different colour reflect the same wavelength-energy 

composition in a Land Colour Mondrian display (Figure 1 in Zeki et al., 2019). For each 

test colour sample, we adjusted the amount of long, middle and short-wave light reflected 
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from each patch to a constant ratio of 60% long-, 20% middle- and 20% short- wave light. 

Participants were asked to match the colour of the eight test patches in the Mondrian 

display with one of 44 colour chips from the Munsell Book of Color (Figure 2 in Zeki et 

al., 2010). Our experimental set up replicated Land’s (1974) experiment but we were 

interested in the colour category instead of hue, to which matches were made. Similar to 

the results presented in Chapter 7 of this thesis, the variability in the responses was 

lower for reddish than bluish hues reflecting the smaller perceptual extents of categories 

in the warm region rather than in the cool region of colour space (Figure 3 in Zeki et al., 

2019; Berlin & Kay, 1969/1991; Mylonas & MacDonald, 2016; Gibson et al., 2017). In 

terms of colour categories, except for blue, we found very little variability across subjects 

and colours, consistent with the results presented here in Chapter 3 and with the strong 

correlation between naming consistency across illuminants and across observers 

reported by Olkkonen et al., (2009). Collectively, these results suggest a strong link 

between categorical colour constancy and consistent colour communication. 

 

To examine whether chromatic adaptation or spatial ratio-taking operations can explain 

colour constancy in a second parallel study, we asked participants to name and match 

the after-image colour of central patches in Land Colour Mondrian displays that reflected 

the same wavelength-energy composition but appeared as different colours (Figure 1 in 

Zeki et al., 2017). For example, would a surface that reflects more long-wave light but 

appears green in a complex Mondrian scene would result in a green as chromatic 

adaptation model would predict or a red after-image as a spatial computational model 

would predict? Our results showed that the colour of the after-images belonged to the 

family of colours complementary to the perceived colour of the viewed patches (Figures 

3 and 4 in Zeki et al., 2017). Therefore, the colour of the after-image – like the colour 

itself – depended on the ratio of light of different wavebands reflected from each test 

patch and their surrounds. In addition, the uniformity of the colour naming responses for 

the after-images followed again the relative size of these terms in our colour naming 

experiment presented in Chapter 3. Overall, the findings of both studies using complex 

spatial scenes demonstrated the close linkage between long-range spatial ratio-taking 

operations in the cortex and colour categorisation (Zeki et al., 2017, 2019). 

 

These cortical ratio-taking operations have been described earlier as colour constancy 

(Land, 1974; Zeki, 1980; Brill & West, 1986; Foster, 2011); but describing the end product 

as constant colour category is preferable because what does not change as a result is 

in fact the colour category, not the hue – the latter changes when surfaces are viewed in 

different viewing conditions (Zeki et al., 2017, 2019). In a proposed cognitive architecture 

(MacDonald & Mylonas, 2016), these incoming constant colour categories are generated 
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in V4 and compared to stored categorical object colours in long-term memory by a 

parallel processing network for the identification of the colour. For a verbal response, the 

cognitive match recalls the underlying colour name for articulation. In accordance with 

Hunt (2004), “the basis of judgement is usually a comparison between the colour 

perceptions aroused by the reproduction, and a mental recollection of the colour 

perceptions previously experienced when looking at similar objects”. In other words, we 

argue that while the process of colour categorisation is an inherent mechanism, the 

stored lexical colour categories are acquired through learning. Our claim is further 

supported by the overall good correspondence of colour terms loci across languages 

presented in Chapter 3 and 5, while the number of colour names in each language varied. 

In agreement with recent studies, our results support a reconciliation between the 

opposite views that called into question whether colour categories are formed under the 

influence of perceptual mechanisms, or whether language influences the structure of 

colour categories (Regier & Kay, 2009; Kemp & Regier, 2012; Gibson et al., 2017). 

Contrary to recent suggestions (Regier & Kay, 2009; Witzel, 2018), however, we believe 

that this debate is not-resolved yet and can be still fruitful in advancing our understanding 

on inherited and acquired colour mechanisms (Zeki, 2009; Zeki et al., 2019). 

8.6.  Computational colour naming models 

In our evaluation of several supervised nonparametric colour naming models using 

cross-validation, a Rotated Split Trees (RST) approach performed best. RST chooses 

each attribute and split at random (Geurts et al., 2006) while the random rotation of its 

decision space infuse diversity within the constructed forest and improves its accuracy 

at determining colour categories in a three-dimensional space (Blaser & Fryzlewicz, 

2016; Andrews, Jaccard, Rogers & Griffin, 2017). When we trained the RST model with 

colour naming responses in different languages the output of the model showed 

universal patterns, but these were not without language-specific differences. For 

example, the predicted categories were consistent with earlier reports on the existence 

of a second blue basic term in Greek, Russian and Thai while this category was absent 

when the model was trained by the British, American and International English datasets 

(Androulaki et al., 2006; Athanasopoulos, 2009; Corbett & Morgan, 1988; Moss, 1988; 

Morgan & Corbett, 1989; Paramei, 2005; Paramei et al. 2017; Prasithrathsint, 1988; 

Engchuan, 2003; Mylonas & MacDonald, 2016). Furthermore, except in Thai, the model 

predicted a well-formed, non-basic, turquoise category in all other colour naming 

datasets in agreement with our earlier study on the importance of this term in colour 

naming (Mylonas & MacDonald, 2016). 
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The evaluation of RST in several colour spaces showed that the model performed best 

in the approximately uniform colour space of CIELUV while its performance deteriorated 

in the non-uniform CIE XYZ and RGB spaces. This is in agreement with a recent study 

that suggested CIELUV as the best space for performing colour clustering algorithms 

(Douven, 2017). It also implies that our colour naming model performed best when 

connected to the output of second stage mechanisms, rather than the output of first stage 

mechanisms. In this thesis, we considered only the classification of single colours viewed 

against a uniform grey background. For the automatic assignment of colours to names 

in complex images, an earlier study showed improvements when their colour naming 

model was connected with the output of a Retinex type of algorithm that models long-

range spatial operations (Benavente, 2006); while more recent approaches fuse colour 

naming descriptors with higher-level shape information and colour attention 

representations (Khan et al., 2012; Weijer et al., 2013).  

 

Our comparison of the performance of RST on predicting the distribution of the 11 BCTs 

on the surface of the Munsell array against existing computational colour naming models 

(Lammen, 1994; MacLaury; 1992; Benavente & Vanrell, 2004; Seaborn, 2005; 

Benavente et al, 2008; Weijer et al., 2007; Mylonas et al., 2010; Parrage & Akbarinia, 

2016) showed that RST achieved state-of-the-art performance for the psychophysical 

results of Sturges & Whitfield (1995); while identifying 16 categories in total (11 BCTs + 

turquoise, teal, lilac, mauve and maroon). It is important to note that excepting our earlier 

MAP model (Mylonas et al., 2010), all other models constrained their predictions only to 

the 11 BCTs. The strong assumption that BCTs can name all colours is not supported 

by empirical findings (Boynton & Olson, 1987; Sturges & Whitfield, 1995; Mylonas & 

MacDonald, 2016). However, the predictions of RST were equally good with these 

models and in many cases better without this constrain. We argue that the use of the 

surface colours of the Munsell array and the focus on the distribution of the 11 BCTs is 

of limited value and out-of-date for comparing the performance of modern computational 

colour naming models. People use in their native language 30-50 colour names without 

training to describe both saturated colours and also paler colours in the interior of the 

colour space (Chapanis, 1965; Derefeldt & Swartling, 1995). We suggest instead the use 

of a synthetic image described in Chapter 5 and 6 to present the performance of 

computational models trained by unconstrained colour naming responses (see also 

Griffin & Mylonas, 2019). 
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8.7.  Information theory and Basic Colour Terms 

Existing methods for the identification of BCTs within different languages require multiple 

criteria and combinations of associated measures (Berlin & Kay, 1969/1991; Boynton & 

Olson, 1985; Corbet & Davies 1997; Lindsey & Brown, 2014; Mylonas & MacDonald, 

2016). These criteria have been strongly criticised as not being equally applicable across 

languages, while their multiplicity is vulnerable to high risk of being applied differently by 

different researchers (Saunders & van Brakel, 1997; Levinson, 2000; Biggam, 2012; 

Witzel, 2018). In Chapter 3, we confirmed earlier studies that no single lexical, 

behavioural, or geometric feature available from online colour naming data was sufficient 

to identify BCTs from non-basic colour terms. This was also the case for the calibrated 

data from our laboratory-based experiment described in Chapter 6. Furthermore, in 

Chapter 4, the well-established Random Forest classifier (Breiman, 2001) required 

training by more than one family of these features to produce perfect coherence between 

members of the Basic class (Berlin & Kay, 1969/1991). Therefore, the quest for a simple 

and a cross-culturally legitimate approach for demarcating BCTs from non-basics was 

unsettled (Witzel, 2018). 

 

In our view, basicness refers to the degree that linguistic signifiers are shared and 

comprehended by most speakers in each language to communicate their categories of 

colour sensations. Accordingly, in Chapter 7, we claimed that basic colour categories are 

indispensable and proposed a simple information theoretic measure of basicness that 

we call dispensability. The evaluation of our measure using unconstrained colour names 

in British and American English, Greek, Russian, Thai and Turkish from an online 

experiment along with a calibrated English dataset from a laboratory-based experiment 

showed that dispensability varied with category and produced a graded scale of 

basicness. Critically, for all three datasets in English the 11 BCTs (Berlin & Kay, 

1969/1991) had lower dispensability scores than all non-BCTs, while the metric was also 

able to capture the indispensability of the proposed second blue basic term in Greek, 

Russian, Thai as well as the uncertainty about the basicness of the second blue term in 

Turkish (Androulaki et al., 2006; Paramei et al. 2017; Prasithrathsint, 1988; Ozgen & 

Davies, 1998). In Chapter 3, we showed that the loci of the two basic blue terms in Greek, 

Russian and Thai corresponded well, and their centroids deviated from the centroid of 

English blue, but this was not the case in Turkish. These findings support the postulation 

of the existence of an additional evolutionary Stage VIII in the development of colour 

lexicons (Berlin & Kay, 1969/1991) for Greek, Russian and Thai but further research is 

needed for the second blue term Turkish. 
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In British English, the 11 BCTs were followed closely by turquoise and lilac but there was 

a considerable jump in dispensability score to the following non-basic term, beige. This 

is in agreement with our recent study where we found that these terms are strong 

candidates to be included in the English basic inventory based on an aggregated scale 

of six measures (Mylonas & MacDonald, 2016). Both terms appear to reduce the 

uncertainty of colour naming from using only the 11 BCTs as lilac partitions the large 

colour category of purple in light and dark segments while turquoise stabilises the large 

boundary area between green and blue. In American English, the last BCT green was 

followed firmly by peach, salmon, and maroon while the separation was bigger with the 

15th, dark green. Lindsey & Brown (2014) applied Zipf’s law (1935) to colour naming 

frequencies and reported a steep decrease in frequency of colour terms beyond the 15th 

term in American English colour lexicon. They also found that peach, teal, lavender and 

maroon were named with high consensus across observers. In the international English 

dataset of the laboratory-based experiment, we found a steep step between the 11 BCTs 

and the non-basics lime green, beige, dark green, lilac, dark brown, dark red, turquoise 

and cream. These findings show that while the 11 BCTs are universally shared between 

English speakers, the following indispensable colour names may vary. 

 

Our dispensability measure does not identify the BCTs because they are the maximally 

spaced in colour space, nor because they are commonly used (Regier et al., 2007; 

Lindsey & Brown, 2014); but instead combines the frequency and consensus of colour 

names between speakers in each language in an informative way to identify which are 

the superordinate colour names that cannot be replaced with any other name – hence 

the title we have given to our measure. 

 

Considering the hierarchical order of the BCTs at each evolutionary stage (Berlin &Kay, 

1969/1991), the ranks of the most indispensable colour names varied in each language. 

White and black were often ranked in the top positions but this was also true for purple, 

orange, brown and pink. Red was never found earlier than the 6th position and green 

more often occupied the last positions of the BCTs. The low indispensability score of 

orange, pink and brown cannot be predicted by the unevenness in terms of saturation of 

the colour space. Consistent with our earlier findings previously discussed, we found no 

evidence for the priority of primary basics over secondary basics in terms of 

dispensability. Instead, our results support growing evidence that communication 

efficiency provides a better framework to understand colour naming than opponent 

theory (Jameson & D’ Andrade, 1997; Lindsey et al., 2015; Regier et al., 2015; Abbot et 

al., 2016; Gibson et al., 2017). In closing, our findings suggest that information theory is 
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well-suited to provide a simple language-independent measure to determine the degree 

of basicness of unconstrained colour names within different languages. 
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Conclusions 

The aim of this thesis is to advance the field of colour communication within different 

languages. First, we reviewed previous work on colour vision and its relationship to 

colour naming. We also surveyed a range of colour spaces and earlier colour naming 

experiments, models and information theoretic approaches on which our work is based 

on. Second, we showed that large colour lexicons in different languages can be 

crowdsourced through an online colour naming experiment. Third, we employed 

classification theory to access the coherence of achromatic, primary and basic classes 

of colours based on their linguistic, behavioural and geometric features. Fourth, we 

evaluated a range of computational models trained by speakers of different languages 

of the colour naming experiment to automate the assignment of colour names across the 

full three-dimensional gamut. Fifth, we compared the findings between online- and 

laboratory- based colour naming experiments and mapped colour names in a 

physiologically-based cone excitation space. Finally, instead of multiple conceptual 

criteria and combination of variable measures, we proposed a novel information theoretic 

measure – called dispensability – to identify basic colour terms from unconstrained 

colour naming data across languages. The main findings of this thesis are given below: 

 

• Online experimental methodologies offer considerable advantages over 

traditional approaches to obtain unconstrained colour naming responses in 

different languages from thousands of observers. The location of colour 

categories corresponds well between web- and laboratory- based experiments 

and our findings support the validity of both methods in estimating colour naming 

functions in controlled and real-world monitor settings. 

 

• The application of machine learning methods to discover criteria in linguistic, 

behavioural and geometric features of colour names and to distinguish classes 

of colours, showed that achromatic and basic colours are coherent classes but 

not primaries. These results reinforce the ongoing argument against the special 

role of primaries in the formation of colour categories. 

 

• An evaluation of several computational colour naming models and colour spaces 

using cross-validation showed that a Rotated Split Trees (RST) approach applied 
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in CIELUV produced the best performance. A comparison against earlier 

methods showed that our approach achieves state-of-the-art performance while 

it identifies five additional categories on the surface of the Munsell system. Our 

tools and data in operation were able to demonstrate the automation of the colour 

naming task across the full three-dimensional colour gamut in different 

languages. 

 

• A laboratory-based colour naming experiment using a calibrated CRT monitor 

allowed us to accurately map for the first-time unconstrained colour names in the 

physiologically-based cone excitation space adopted recently by the CIE. In cone 

chromaticity diagram, yellow was colinear through white with blue, red was 

complementary to turquoise, and green to magenta. The regions with the highest 

purity of L, M and S cone excitations were assigned to red, green and blue colour 

names respectively while he combined signals from L and M cones at maximum 

intensity were assigned to yellow, from L and S cones to magenta and from M 

and S cones to turquoise.   

 

• The dispensability measure produced a graded scale of basicness where basic 

colour categories within different languages and experimental methods had lower 

scores than non-basics. These findings suggest that information theory is 

pertinent to provide a simple language-independent measure to determine the 

degree of basicness of unconstrained colour names within different languages 

and reveal the presence of additional basic categories. Our results confirm the 

existence of two basic blue terms in Greek, Russian and Thai. 

9.1.  Future work 

There are many ways to further improve colour communication within different 

languages. Above all, in the collection and analysis of unconstrained naming responses 

in additional languages for colours on the surface but also in the interior of the colour 

space. The recently redesigned interface of the online colour naming experiment has 

been already translated in 13 languages and gathered more than 100,000 responses in 

the first year of operation. Also, the design of a simple offline interface for collecting vocal 

colour naming responses using calibrated monitors, offers the opportunity to obtain 

responses in fieldwork and or in controlled laboratory conditions. Cross-cultural 

comparisons could shed more light on the relationship between perception and 

language.  
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The work described in the present thesis on the mechanistic linkage between how people 

perceive colours and how they communicate their perceptions through language created 

more questions than answers. What is certain is that mapping linguistic to perceptual 

aspects of colour will allow us to augment colour communication within and across 

different languages and between humans and machines. The implication of increasing 

the capability of humans to articulate and comprehend colour percepts with technological 

aids can enhance the understanding of our and other people’s perceptions and bring us 

together to make the world a more colourful place. 
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Appendix 

 
 

Appendix A Supplementary Material for Chapter 3 
 

 

Figure A.1 Interface of the online colour naming experiment in the period between 2009 

and 2018 consisting of six steps. Snapsots of the website can be found at: 

https://web.archive.org/web/*/colornaming.net 
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Appendix A.1  Colour naming datasets 
The following description of the dataset follow an alphabetical order of the languages in 

question. 

 

Apendix A.1.1 American English 
 

For the American English dataset, we retrieved 10,000 raw responses from 600 

observers. Excluding disruptive observers (0.5%) and observers with possible colour 

deficiency (10.4%) resulted in a dataset for 448 American English speakers. Their mean 

age was 33 years old (SD=14 years). Females offered 58% and males 42% of the 

responses. Excluding unique responses from single observers resulted in 7,546 

responses with 436 distinct colour descriptors. The occurrence of colour descriptors with 

varying word number was: monolexemic BCT 30%; monolexemic non-BCT 31%; colour 

terms with one modifier 36% and colour descriptors containing ≥ 3 words 4% (Figure 

4.3). Due to rounding, percentages may not add up to 100% throughout this section. 

 

Figure A.2 Number of words in colour descriptors for American English speakers. 

Apendix A.1.2 Greek Dataset 
For the Greek dataset we considered 10,000 raw responses from 600 observers. 

Excluding disruptive observers (1%) and observers with possible colour deficiency 

(18.8%) left 324 observers. Their mean age was 32 years old (SD=9 years). Females 

offered 64% and males 36% of the responses. Excluding unique responses from single 

observers resulted in 5,871 responses with 313 distinct colour descriptors. Of these, 37% 

American English

1 word (BCTs): 30%

1 word (non BCTs): 31%

2 words: 36%

3 words+: 4%
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involved BCTs (n=12); 34% monolexemic non-BCTs; 26% two-word responses and 2% 

three or more words (Figure 4.5). 

 

Figure A.3 Number of words in colour descriptors for Greek speakers. 

Apendix A.1.3 Russian 
The Russian dataset consisted of 10,000 raw responses from 600 Russian speakers. 

Excluding observers with possible colour deficiency (10.2%) left 449 observers. Their 

mean age was 24 years old (SD=9 years). Females offered 62% and males 38% of the 

responses. Excluding unique responses from single observers resulted in 7,802 

responses with 342 distinct colour descriptors. The occurrence of colour descriptors with 

varying word number was: monolexemic BCT (n=12) 38%; monolexemic non-BCT 26%; 

colour terms with one modifier 34% and colour descriptors containing ≥ 3 words 2% 

(Figure 4.6). 

Greek

1 word (BCTs): 37%

1 word (non BCTs): 34%

2 words: 26%

3 words+: 2%
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Figure A.4 Number of words in colour descriptors for Russian speakers. 

Apendix A.1.4 Thai 
The Thai dataset was smaller and consisted of 5,100 raw responses from 255 observers. 

Excluding observers with possible colour deficiency (16.1%) left 202 observers. Their 

mean age was 29 years old (SD=10 years). Females offered 73% and males 27% of the 

responses. Excluding unique responses from single observers resulted in 3,516 

responses with 287 distinct colour descriptors. The task of counting the number of words 

in Thai responses automatically is challenging due to the fact that there are no spaces 

between words. Hence, we report here only the percentage of monolexemic BCTs (33%) 

and all the other responses combined (67%). In Thai, when people name colours, often 

put the word ‘สี’ in front of its name that means colour; this was excluded from the 

analysis. 

 

Apendix A.1.5  Turkish 
The Turkish dataset consisted of 6,180 raw responses from 309 observers. Excluding 

observers with possible colour deficiency (6.5%) left 273 observers. Their mean age was 

28 years old (SD=8 years). Females offered 68% and males 32% of the responses. 

Excluding unique responses from single observers resulted in 4,727 responses with 285 

distinct colour descriptors. The occurrence of colour descriptors with varying word 

number was: monolexemic BCT (n=12) 34%; monolexemic non-BCT 25%; colour terms 

with one modifier 37% and colour descriptors containing ≥ 3 words 3% (Figure 4.7). 

 

Russian

1 word (BCTs): 38%

1 word (non BCTs): 26%

2 words: 34%

3 words+: 2%
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Figure A.5 Number of words in colour descriptors for Turkish speakers. 

 

 

Table A.1 Euclidean distances ΔΕab between centroids of BCTs in British English (Br) and 

American English (Am), Greek (Gr), Russian (Ru), Thai (Th) and Turkish (Tu). The last column 

shows the mean distance across languages per term. 

 
Br vs Am Br vs Gr Br vs Ru Br vs Th Br vs Tu mean per term 

white 1.49 3.64 1.55 2.55 2.57 2.61 

black 1.35 1.89 3.48 3.88 3.18 3.18 

red 2.36 3.31 3.90 1.16 2.09 3.16 

yellow 1.97 0.84 1.69 2.47 5.98 2.68 

green 3.98 2.76 3.77 4.33 0.86 3.73 

blue 3.73 19.26 25.43 26.14 4.27 22.12 

brown 1.05 1.24 2.95 3.35 1.26 2.58 

purple 0.97 2.57 0.89 1.93 3.25 2.35 

pink 2.35 4.13 2.96 3.37 4.33 4.52 

orange 1.75 3.86 2.57 8.13 5.01 4.43 

grey 2.52 4.04 3.06 2.03 3.17 2.66 

blue (2) NA 27.83 29.45 26.97 33.04 20.75 
       

mean 2.14 6.28 6.81 7.19 5.75 6.23 

Turkish

1 word (BCTs): 34%

1 word (non BCTs): 25%

2 words: 37%

3 words+: 3%
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Appendix B Supplementary Material for Chapter 4 
 

In this section we present three sets of behavioural, geometric and linguistic features 

computed for each common colour name given more than 20 times in the British English 

dataset. These sets of features were used in the assessment of the coherence between 

members of classes of colours presented in Chapter 4 and supplemented here. 

 

Appendix B.1 Behavioural Features 
The behavioural features include frequency of occurrence, consensus and response 

time. 

 

 

Figure A.6 Frequency of colour names in online experiment. Radial length indicates 

percentage of all responses that were exactly the indicated term. 
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Figure A.7 Colour names with consensus (radial scale) across samples and observers. 

 

Figure A.8 Median response time (radial scale, secs) of responding colour names. 
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Appendix B.2 Geometric features 
 

The geometric features include the size (volume) and shape (anisotropy) in colour space. 

For the location see of centroids of colour categories in colour space see Figure 0.1. 

 

 

Figure A.9 Volume (radial scale, units are cubic (ΔEab) of lexical colour categories in colour 

space. 
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Figure A.10 Fractional anisotropy (radial scale, high values indicate non-spherical shape) of 

colour categories in colour space. 
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Appendix B.3 Linguistic features 
The linguistic features include the frequency in ordinary communication, the length of the 

words and the number of derivative forms. 

 

 

Figure A.11 Frequency of colour names in Twitter messages. Note that the 13 last colour 

names were not found in the Twitter dataset. 
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Figure A.12 Name length (radial scale is number of letters) of colours. 

 

 

Figure A.13 Number of derivative forms (radial scale) of colours. 
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Appendix B.4 Coherence of alternative primary classes 
The assessment of coherence of the seven pure or regular colour categories as 

described by Aristotle (350 B.C.E.) produced a MAP score of 0.57, higher than that for 

Hering primaries but still distinctly less than the ideal of 1. As with the Hering primaries 

the leading problem terms were low in-class confidence for yellow, and high in-class 

confidence for out-of-class pink (Figure A.14). 

 

Figure A.14 Coherence of colour names for being members of primary class (n=7). 

 

We also considered the 7 colour categories of the spectrum named by Newton (1730). 

The MAP score for these members of the class was 0.57. Pink and brown were found at 

the top of the confidences ranking. Indigo was given a class confidence of 0 and it is not 

shown in the figure (Figure A.15). The outlier status of indigo, amongst Newton’s spectral 

colours, is consistent with explanations for its inclusion (McLaren, 1985). 
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Figure A.15 Coherence of colour names for being members of primary class (n=7b). 

 

The third primary class considered was the three primaries of Maxwell (1872): red, green 

and blue. Coherence was quantified by MAP score as 0.33. Pink was a false positive 

found at the top of the confidences ranking, with green in the 2nd place and blue in the 

4th. Red was found in the 17th position (Figure A.16). 

 

Figure A.16 Coherence of colour names for being members of Maxwellian primary class 

(n=3). 
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The fourth primary class considered was the more recent suggestion by Eskew (2009) 

for six unipolar labelled mechanisms: red, orange, yellow green, blue and purple. The 

classifier produced a MAP score of 0.62. Pink and brown were found again at the top of 

the coherence rank and grey in the 6th position (Figure A.17). 

 

Figure A.17 Coherence of Eskew’s primary class (n=6b). 

The final primary class considered was the recent suggestion (Skelton et al., 2017) for 

five biological mechanisms – red, yellow, green, blue and purple - reported in infants’ 

categorization of colour. The coherence assessment of this class produced a MAP score 

of 0.40 with green and blue found in the 3rd and 4th position, purple in the 8th, yellow in 

the 9th and red in the 11th position. Pink and brown were found at the top of the rank 

(Figure A.18). 
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Figure A.18 Coherence of Skelton’s primary class (n=5). 

To determine the typical MAP scores for classes consisting of six member colours, we 

selected random sets of six colours from the 73 most common and measured the 

coherence of these random classes. The mean MAP score for five random classes was 

0.13. In Figure A.19, we show for example the random class with the highest MAP score 

(0.33) consisting of dark brown, bright blue, sky blue, bright purple, terracotta and indigo. 

Bright blue and bright purple were found in the two top positions whilst terracotta was 

given a class confidence of 0 and it is not shown in the figure. 

 

Figure A.19 Coherence of a random class (n=6). 
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We also accessed the coherence of equally sized secondary classes consisting of five 

secondary basic terms (brown, purple, pink, orange and grey) plus one of Hering’s 

primaries. The mean MAP score of these classes was 0.53 similar, if not higher, to the 

MAP score of primaries. For example, in Figure A.20 we show the coherence for a 

secondary basics plus green class that produced a MAP score of 0.67. Yellow and blue 

were given the highest confidence followed by pink, brown and green. Grey was the in-

class member with the lowest confidence. 

 

Figure A.20 Coherence of secondary basic terms class plus Green (n=6). 

 

Appendix B.5 Coherence of basic classes 
 

To examine the coherence of the basic class if we would just add the 12th term with the 

highest in-class confidence we assessed the coherence of the basics plus olive (see 

Figure 14). The coherence deteriorated from a MAP score of 1.00 to a MAP score of 

0.917 because cream is assessed as more confidently in class than olive (Figure A.21). 

We also examined all 62 non-basics as an additional 12th basic colour. Cream was the 

only term that produced a MAP score of 1.00 but with a much lower confidence value 

than the other 11 basic terms (Figure A.22). All other colour names produced a MAP 

score of 0.917 or less by predicting all the 11 basic terms correctly except their self.  
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Figure A.21 Coherence of the basics plus olive (n=12). 

 

Figure A.22 Coherence of the basics plus cream (n=12). 
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Appendix C Supplementary Material for Chapter 5 
 

In this section, we present the performance of the MAP model (Mylonas, MacDonald & 

Wuerger, 2010). 

 

Figure A.23 Segmentation of simulated Munsell array into monolexemic colour terms by 

MAP model (Mylonas et al., 2010). Berlin and Kay’s foci of BCTs in American English are 

drawn with dots and their distribution with black boxes. 

 

Figure A.24 Segmentation of simulated Munsell array into monolexemic colour terms by 

MAP model (Mylonas et al., 2010). Sturges & Whitfield’s mapping of BCTs in British English 

are drawn with black boxes. 
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Appendix D Supplementary Material for Chapter 6 
 

In this section, we present the colourimetry and linearity test of the CRT display monitor. 

 

Figure A.25 Spectra power distribution of red, green and blue phosphors of CRT monitor 

using a Radoma spectro-radiometer. 

 

Figure A.26 Linearity test of calibrated CRT monitor measured by a ColorCal CRS 

colorimeter produced a linear fit of R2= 0.9999. 
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