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Efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations
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We introduce a simple but efficient method for grand-canonical twist averaging in quantum Monte Carlo
calculations. By evaluating the thermodynamic grand potential instead of the ground-state total energy, we
greatly reduce the sampling errors caused by twist-dependent fluctuations in the particle number. We apply
this method to the electron gas and to metallic lithium, aluminum, and solid atomic hydrogen. We show that,
even when using a small number of twists, grand-canonical twist averaging of the grand potential produces better
estimates of ground-state energies than the widely used canonical twist-averaging approach.
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I. INTRODUCTION

Many-body wave-function-based quantum Monte Carlo
(QMC) techniques such as variational Monte Carlo, diffusion
Monte Carlo (DMC), and auxiliary field Monte Carlo are
widely used to calculate ground- and excited-state properties
of real materials [1–11]. Many materials and properties that
cannot be described accurately using single-particle-based ap-
proaches have been studied successfully using QMC methods.
For example, QMC techniques have been used to elucidate the
nature of noncovalent and weak van der Waals interactions,
which are crucial in chemistry, biology, and biochemistry [3].
The most important contribution of QMC to materials science
and electronic structure theory has perhaps been to provide
input to mean-field-based methods, most notably via the QMC
calculations of the homogeneous electron gas [12] that led
to the first accurate local density approximation and have
directly or indirectly contributed to almost every exchange-
correlation functional devised since then.

QMC calculations of the properties of crystals and solids
use finite simulation cells subject to periodic boundary condi-
tions. The volume of the simulation cell is strongly restricted
for computational reasons, and the finite-size errors caused
by the replacement of an infinite solid by a small simulation
cell are large. Controlling these errors is one of the main
challenges faced in all QMC simulations of extended systems
[13–17].

Within the Born-Oppenheimer approximation, the Hamil-
tonian of an N-electron simulation cell can be expressed as
Ĥ = T̂ + V̂ , where T̂ is the electronic kinetic-energy (KE)
operator and V̂ is the operator for the interaction energy, in-
cluding electron-electron and electron-nuclear contributions:
V̂ = V̂e-e + V̂e-n. The expectation value of V̂e-e is often written
as the sum of two terms: 〈V̂e-e〉 = EH + Exc. The Hartree
energy EH is the classical Coulomb interaction energy associ-
ated with the electronic charge density ρe(r). The exchange-
correlation energy Exc contains the rest of the electron-
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electron interaction energy, including contributions from the
correlations between the positions of electrons and the an-
tisymmetry of the fermionic many-electron wave function.
The electron-nuclear interaction energy 〈V̂e-n〉 and the Hartree
energy EH are functionals of the electronic charge density
ρe(r), which normally converges rapidly as the number of unit
cells within the simulation cell increases. Thus, the finite-size
errors in these terms are small compared to those in other
components of the total energy. By contrast, the finite-size
errors in the exchange-correlation energy and the KE can be
very substantial. In this work, we introduce an efficient and
practical method for correcting the finite-size errors in the
dominant one-electron contribution to the KE.

II. SINGLE-PARTICLE FINITE-SIZE PROBLEM

In mean-field-like approaches such as density functional
theory (DFT), exact results for infinite periodic crystals can be
obtained by solving the Schrödinger equation within a single
primitive unit cell subject to Bloch boundary conditions.
Expectation values per unit cell of the infinite periodic system
are obtained by integrating over the first Brillouin zone, which
is equivalent to averaging over all possible Bloch boundary
conditions.

This approach does not yield exact results in many-particle
methods such as QMC. The problem is that the range of
the correlations between electron positions often exceeds
the size of the primitive unit cell. Reducing the system to one
primitive cell is then no longer acceptable. QMC simulations
are instead carried out in simulation cells comprising several
primitive cells. Exact results are obtained only in the limit as
the size of the simulation cell tends to infinity.

The long-range many-body correlation effects are included
in an approximate way in local and semilocal DFT calcu-
lations, where they are built into the exchange-correlation
functional. This functional, however, was parameterized with
the help of QMC simulations of large simulation cells.

Generally, in QMC calculations of periodic systems, the
Hamiltonian Ĥ of the N-electron simulation cell exhibits two
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types of periodicity [18]:

Ĥ (r1, . . . , ri, . . . , rN ) = Ĥ (r1, . . . , ri + Rs, . . . , rN ) (1)

for all 1 � i � N and

Ĥ (r1, r2, . . . , rN ) = Ĥ (r1 + Rp, r2 + Rp, . . . , rN + Rp),
(2)

where Rs and Rp are the simulation-cell and primitive-cell
lattice vectors, and (r1, r2, . . . , rN ) are the electron coordi-
nates. The simulation-cell periodicity, Eq. (1), arises from
the periodic boundary conditions applied across the finite
simulation cell and does not hold in a real solid; the primitive-
cell periodicity, Eq. (2), also holds in real systems as long
as periodic boundary conditions are applied to the solid as a
whole.

Because of the two types of periodicity, the N-electron
wave function of the simulation cell obeys two types of
Bloch’s theorem:

�ks = Vks (ri, . . . , rN ) exp

(
iks ·

N∑
i=1

ri

)
, (3)

�kp = Ukp (ri, . . . , rN ) exp

(
ikp · 1

N

N∑
i=1

ri

)
, (4)

where Vks is invariant under the translation of any one electron
by a simulation-cell lattice vector Rs and Ukp is invariant
under the simultaneous translation of all N electrons by a
primitive lattice vector Rp. Without loss of generality, we can
assume that the simulation-cell wave vector ks lies within the
simulation-cell Brillouin zone and that the primitive Bloch
wave vector kp lies within the primitive Brillouin zone (which
is, of course, larger).

A many-body simulation with a nonzero ks is normally de-
scribed as being subject to twisted boundary conditions [19],
and averaging the results over different twists is called twist
averaging. The technique of twist averaging can be carried out
in the canonical ensemble (CE), which fixes the number of
electrons in the simulation cell, or in the grand-canonical en-
semble (GCE), which allows the number of electrons to vary
with the twist ks. Because of the existence of a sharp Fermi
surface and shell-filling effects, the use of twisted boundary
conditions is more important in metals than in insulators [19].

To clarify the origin of the shell-filling effects, consider
a finite simulation cell of noninteracting electrons subject to
twisted boundary conditions. The one-electron potential has
the periodicity of the primitive unit cell, so the single-particle
orbitals adopt the usual Bloch form, ψk = uk(r) exp(ik · r),
where uk(r) has the periodicity of the primitive cell. The
twisted boundary conditions require the Bloch wave vec-
tor to lie on a grid of points of the form k = ks + Gs,
where Gs is a reciprocal vector of the simulation-cell lattice.
There are exactly Nc such reciprocal vectors within the prim-
itive Brillouin zone, where Nc is the number of primitive unit
cells in the simulation cell. To make this more concrete, con-
sider a simulation cell consisting of Nc = L × L × L primitive
unit cells. The Bloch wave vectors then lie on an L × L × L
Monkhorst-Pack grid [20] within the primitive Brillouin zone,
offset from the origin by the twist ks, which lies within the
simulation-cell Brillouin zone.

To calculate, for example, the total noninteracting KE at
twist ks, a sum over contributions from the occupied orbitals
at all Nc distinct k points of the form ks + Gs is carried out.
In an infinite simulation cell, the sum becomes an integral
over the Brillouin zone, including contributions from every
single-particle orbital below the Fermi energy E f . The grid
of simulation-cell reciprocal lattice vectors Gs becomes finer
as the size of the simulation cell increases, so the integrand
is sampled more finely for larger simulation cells. In an
insulator, where the integrand is a smooth function of k, a
coarse quadrature grid is sufficient to yield accurate results,
but in metals, where the bands that cross the Fermi level are
occupied in some parts of the Brillouin zone and unoccupied
in others, the integrand is discontinuous, and the quadrature
errors are large. It is then necessary to increase the size of the
simulation cell or average over more twists to obtain accurate
results.

In noninteracting systems, these two approaches (increas-
ing the size of the simulation cell or averaging over more
twists) are equivalent, and both are capable of giving exact
results. In interacting systems, increasing the size of the sim-
ulation cell still gives exact results, but averaging over twists
applied to a finite simulation cell does not. Because of the
long-range electronic correlations, no many-body simulation
for a finite simulation cell can be exact. In practice, we make
the simulation cell as large as computational limitations allow
and twist average to reduce the single-particle contributions to
the size error. The residual many-body size errors, which are
not removed by twist averaging results for a finite simulation
cell, are tackled using other methods [13–16].

In QMC simulations of spin-unpolarized systems, the
canonical twist-averaging approach works as follows. For ev-
ery twist ks, one constructs the determinantal part of the QMC
trial wave function by collecting the one-electron orbitals
(usually obtained from a DFT or Hartree-Fock calculation)
associated with all Nc points on the quadrature grid of points
of the form k = ks + Gs. The N/2 orbitals of lowest energy
are then doubly occupied. This guarantees that the number of
electrons in the simulation cell is independent of twist ks and
always equal to N . In the grand-canonical twist-averaging ap-
proach, only those one-electron orbitals for which the mean-
field (DFT or Hartree-Fock) energy eigenvalue lies below
the mean-field Fermi energy are doubly occupied. Hence, the
number of electrons depends on ks.

In noninteracting systems, grand-canonical twist averaging
is exactly equivalent to conventional Brillouin zone integra-
tion, which also considers contributions only from orbitals
within the Fermi surface. As the number of twists tends to
infinity, exact results are obtained. Canonical twist averaging
occasionally occupies orbitals outside the Fermi surface and
occasionally leaves orbitals within the Fermi surface unoccu-
pied. Assuming that the curvature of the bands crossing the
Fermi energy is positive, this add a small positive bias to the
energy estimate, even in a noninteracting system.

III. GRAND-CANONICAL TWIST AVERAGING
OF THE GRAND POTENTIAL

The conventional grand-canonical twist-averaging method
is not generally viewed as a practical approach because of the
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strong sensitivity of the total energy of the simulation cell to
the twist. This is primarily due to the ks dependence of the
number of electrons within the simulation cell. It is difficult
to get accurate results without sampling impractically large
numbers of twists [15,16].

To reduce the cost of twist averaging in the CE, various
techniques based on the selection of optimal twists have
been used [18,21,22]. In this section, we introduce a differ-
ent approach to twist averaging in the GCE, allowing total,
kinetic, exchange, and correlation energies to be obtained
accurately without using very many twists. The uncertainties
in results obtained using this GCE twist-averaging algorithm
are comparable to those in CE twist-averaging calculations.
Unlike CE twist averaging, however, GCE twist averaging
removes independent-particle finite-size errors exactly as the
number of twists tends to infinity, even for small simulation
cells. GCE twist averaging is thus, in general, to be preferred
to CE twist averaging.

Quantum Monte Carlo simulations of lattice models in
the grand-canonical and canonical ensembles were compared
recently [23,24], and it was shown that results obtained using
the grand-canonical ensemble converge more rapidly with
system size. Grand-canonical twist averaging was also em-
ployed as part of a QMC-based approach for estimating the
fundamental gap of insulators [25]. An approach similar to
ours was previously used to control the finite-size errors in
exact diagonalization studies of the one- and two-dimensional
Hubbard model [26–28], and Ref. [21] suggests the use
of an analogous technique in QMC. We are not aware of
any previous attempts to use this idea to improve the effi-
ciency of grand-canonical twist averaging in continuum QMC
simulations.

In the conventional GCE twist-averaging approach, results
are obtained by twist averaging the total energy,

E = 1

M

∑
ks

E (ks), (5)

where the sum is over the sample of M twist vectors ks and
E (ks) is the total energy for twist ks. If we consider a Hartree-
Fock calculation with only a single band for simplicity, E (ks)
is the energy of the Slater determinant containing all one-
electron orbitals ψks+Gs (r), with ks fixed and Gs chosen such
that |ks + Gs| lies within the Fermi surface.

Energies obtained using Eq. (5) are inaccurate for small
numbers of twists because the number of orbitals in the Slater
determinant is surprisingly sensitive to the twist ks. If, for
example, we consider a uniform electron gas with rs = 1,
choosing the system size such that the fcc simulation cell
contains 118 electrons on average, the actual electron number
varies from 102 to 128 (at least) as ks varies. These ±10%
fluctuations in particle number yield similarly large fluctua-
tions in the values of E (ks) and hence slow convergence of
the mean E with the number of twists.

The observation that leads to a better algorithm is that
the thermodynamic free energy appropriate for use with the
grand-canonical ensemble is not the internal energy E but the
grand potential,

�(T,V, μ) = E (S,V, N ) − T S − μN, (6)

where the entropy S and particle number N appearing on
the right-hand side are to be regarded as functions of the
temperature T , the volume V , and the chemical potential μ.
Since we are working at zero temperature and fixed volume,
we simplify this to

�(μ) = E (N ) − μN. (7)

The clearest way to formulate the Legendre transformation
that yields �(μ) from E (N ) is to start with a function of two
independent variables, μ and N ,

�(μ, N ) = E (N ) − μN, (8)

and define �(μ) via a minimization:

�(μ) = MinN�(μ, N ) = MinN (E (N ) − μN ). (9)

This variational definition shows explicitly that the free en-
ergy � is a function of μ, not N , and yields, if we treat N as
continuous, the minimization condition,

dE

dN
= μ, (10)

from which one obtains the function N (μ) appearing on the
right-hand side of Eq. (7).

As in the standard approach to grand-canonical twist aver-
aging, we start by choosing a simulation cell and setting the
chemical potential μ. We then calculate the particle numbers
N (ks) and internal energies E (ks) for M different twists ks.
The only new feature is that we average the function of
two independent variables, �(μ, N ) = E (N ) − μN , instead
of E (N ). Since �(μ, N ) is stationary with respect to varia-
tions of N about the true particle number N (μ) at fixed μ, the
function �(μ, N ) is relatively insensitive to small changes in
N . The values of �(μ, N ) obtained using different twists are
therefore good estimates of �(μ), and the fluctuations in the
twist-averaged estimate of the grand potential,

�(μ) = 1

M

∑
ks

[E (ks) − μN (ks)], (11)

are small.
Once this estimate of �(μ) has been obtained, the internal

energy is easily found using the inverse Legendre transforma-
tion

E = � + μN, (12)

where μ is the chosen chemical potential and N is the ex-
pected number of electrons in the simulation cell for that
value of μ. When applied to a noninteracting system, this
grand-potential twist-averaging approach and the standard
GCE twist-averaging approach both yield the exact internal
energy as the number of twists tends to infinity, regardless
of the size of the simulation cell. However, the free-energy-
averaging approach yields more accurate results when the
number of twists is small.

The chemical potential μ is known because it was chosen,
but one might expect the exact value of N corresponding to
a given μ to be unknown in an interacting system. If this
were the case, the inverse Legendre transformation required to
obtain E from � could not be carried out exactly in interacting
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systems. The most obvious solution to this problem, which is
to estimate N via

N = 1

M

∑
ks

N (ks), (13)

is no good because the resulting internal energy estimate,

E = 1

M

∑
ks

[E (ks) − μN (ks)] + μ

M

∑
ks

N (ks)

= 1

M

∑
ks

E (ks), (14)

reduces to Eq. (5), reintroducing the sensitivity to twist and
concomitant large fluctuations.

Fortunately, in any practical example, even for a correlated
calculation, we do know the mean value of N corresponding
to any given μ. The Slater determinant part of the Slater-
Jastrow trial function for a given twist contains exactly the
same number of electrons as the corresponding mean-field
wave function, and the Jastrow factor does not change this.
The mean value of N , as obtained by an infinitely dense
twist sampling, is thus exactly the same as in the mean-field
case and is easily expressed in terms of the volume of the
mean-field Fermi surface:

N = V

(2π )3

∑
n

∫
BZ

H[μ − εn(k)] d3k, (15)

where V is the volume of the simulation cell, the sum-
mation is over the band index n, the integral is over the
primitive Brillouin zone (BZ), H (x) is the Heaviside step
function [H (x) = 0, x < 0; H (x) = 1, x > 0], and εn(k) is the
mean-field one-electron eigenvalue of band n at Bloch wave
vector k.

The chosen value of the chemical potential μ is, in practice,
taken from the same DFT or Hartree-Fock calculation used to
obtain the one-electron orbitals, so the DFT or Hartree-Fock
code ensures that the Brillouin zone integral above yields
exactly the right number of electrons per unit cell. This means
that we already know the value of N corresponding to the
chosen chemical potential μ and do not need to evaluate the
Brillouin zone integral again. In the next section, for example,
we report results for a simulation cell containing 96 aluminum
atoms, each with 3 valence electrons. The value of μ obtained
from the DFT code is such that N is exactly 96 × 3 = 288.

The mean-field chemical potential μ is not precisely equal
to dE/dN when E is the fully correlated energy. Conse-
quently, �(μ, N ) will not be exactly stationary with respect to
small variations of N about its mean and the twist sensitivity
of �(μ, N ) will be increased. As long as the mean-field
estimate of μ is reasonably close to the true interacting
chemical potential, however, the fluctuations about the mean
should still be much smaller than in the internal-energy-based
GCE twist-averaging approach. Furthermore, even when the
estimate of μ is inaccurate and the sensitivity of the grand
potential to the twist is large, the fully twist averaged energy
expectation value remains exact. The free-energy-based GCE
twist-averaging algorithm therefore works almost as well in
fully correlated QMC simulations as in mean-field calcula-
tions.

FIG. 1. System-size dependence of the calculated total energy
per electron of an rs = 1 uniform electron gas in the Hartree-Fock
approximation. Results obtained using canonical twist averaging of
the total energy, grand-canonical twist averaging of the total energy,
and grand-canonical twist averaging of the grand potential (free
energy) are shown. In all cases, a 3 × 3 × 3 grid of twists centered
on the � point was used.

It is reassuring to note that the free-energy-based GCE
twist-averaging method yields exactly the same results as the
internal-energy-based GCE sampling method in the limit as
the number of twists M tends to infinity, regardless of the
accuracy of the estimate of μ employed. Averaging the free
energy reduces the fluctuations but does not affect the final
estimate of the internal energy when the twist grid is fine
enough.

IV. RESULTS

A. Uniform electron gas

This section compares results obtained by applying three
different twist-averaging methods to the uniform electron gas
with rs = 1. The energies were calculated in the mean-field
Hartree-Fock approximation, so twist averaging is here being
used as an alternative to conventional Brillouin-zone averag-
ing of mean-field results. All calculations used a Monkhorst-
Pack grid of only 3 × 3 × 3 twists (not all inequivalent)
centered on the � point of the simulation-cell Brillouin zone.

Figure 1 shows that the “random errors” associated with
the grand-canonical free-energy averaging algorithm are
much smaller than those associated with the grand-canonical
internal energy averaging algorithm and no larger than those
associated with canonical twist averaging of the internal en-
ergy. The systematic error is dominated by the long-range
Coulomb contribution to the exchange energy, which cannot
be removed by twist averaging [13,15], but the additional
small positive bias caused by the approximation of the Fermi
surface implicit in the canonical twist-averaging algorithm
can, nevertheless, be resolved.

As can be seen in Figs. 2 and 3, the free-energy-based
GCE twist-averaging method works just as well for the kinetic
energy, the exchange energy, and, presumably, also other
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FIG. 2. System-size dependence of the calculated kinetic energy
per electron of an rs = 1 uniform electron gas in the Hartree-Fock
approximation. Results obtained using canonical twist averaging of
the kinetic energy, grand-canonical twist averaging of the kinetic en-
ergy, and grand-canonical twist averaging of the kinetic component
of the grand potential are shown. In all cases, a 3 × 3 × 3 grid of
twists centered on the � point was used.

components of the total energy. To obtain the kinetic and
exchange energies, one averages the kinetic and exchange
components of the grand potential,

�T = 1

M

∑
ks

[T (ks) − μT N (ks)], (16)

�Ex = 1

M

∑
ks

[Ex(ks) − μEx N (ks)], (17)

FIG. 3. System-size dependence of the calculated exchange en-
ergy per electron of an rs = 1 uniform electron gas in the Hartree-
Fock approximation. Results obtained using canonical twist aver-
aging of the exchange energy, grand-canonical twist averaging of
the exchange energy, and grand-canonical twist averaging of the
exchange component of the grand potential are shown. In all cases, a
3 × 3 × 3 grid of twists centered on the � point was used.

where T (ks) is the kinetic energy of the simulation cell
with twist ks, μT is the kinetic contribution to the chemical
potential, Ex(ks) is the exchange energy of the simulation
cell with twist ks, and μEx is the exchange contribution to
the chemical potential. For the Hartree-Fock free-electron gas
calculations carried out here, μT and μEx are given (in Hartree
atomic units) by μT = 1

2 k2
f and μEx = − 1

π
k f , where k f is the

Fermi wave vector.

B. Real metallic systems

This section investigates the value of grand-canonical
grand-potential twist averaging in DMC simulations of real
metals.

The DMC calculations were carried out using the CASINO

QMC package [29] with Slater-Jastrow trial wave functions
and the Ewald method for treating the long-range Coulomb
interactions. The one-electron orbitals appearing in the Slater
determinants were generated within DFT using the QUANTUM

ESPRESSO plane-wave code [30] with Trail-Needs Dirac-Fock
pseudopotentials [31,32]. The Perdew-Burke-Ernzerhof gen-
eralized gradient approximation exchange-correlation func-
tional [33] was used, and the plane-wave cutoff energy was
set to 400 Ry to obtain results close to the complete basis-set
limit [34]. For Brillouin-zone integrations in metallic systems,
we used the Gaussian smearing scheme with the spreading
parameter set to 25 meV. The plane-wave representations
of the one-electron orbitals were transformed into a blip
polynomial basis [35], which is faster to evaluate in QMC
simulations. The Jastrow function consisted of polynomial
one-body electron-nucleus and two-body electron-electron
terms, the parameters of which were optimized by variance
minimization at the variational Monte Carlo level [36,37].
We found the effect of reoptimizing the Jastrow correlation
function for every different twist to be negligible, so the same
optimized Jastrow function was used for all twists. In all DMC
calculations a time step of τ = 0.005 hartree atomic units of
time was used.

Unlike the twists ks used to obtain the electron gas results
described in Sec. IV A, which were on a uniform Monkhorst-
Pack [20] grid within the simulation-cell Brillouin zone, the
twists used for the QMC simulations of real materials reported
here were chosen randomly. Since the twists are chosen
randomly, the twist-dependent changes in the total energy
may be treated as random variables. The chemical potential
μ was estimated from DFT calculations. To ensure that the
estimate of the DFT Fermi energy was accurate, a dense
24 × 24 × 24 k-point mesh was used.

When applying grand-canonical twist averaging to real
metallic systems at zero temperature, we set the chemical
potential μ to the single-particle Fermi energy of the infinite
system. As explained above, errors in the value of μ increase
the twist-dependent fluctuations in the grand potential but do
not affect the twist-averaged energy, so the small difference
between our choice of μ and the true interacting chemi-
cal potential is unimportant. We applied the grand-potential
twist-averaging method to three metallic solids: high-pressure
atomic hydrogen in the tetragonal crystal structure with
I41/amd symmetry [38], lithium in the fcc structure [39], and
fcc aluminum. The numbers of atoms in the simulation cells
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FIG. 4. Relative fluctuations in the number of electrons in
the grand-canonical simulation cell: δNe = NC

e − NGC
e , where NC

e

is the number of electrons occupying the simulation cell in the
canonical ensemble and NGC

e is the number in the grand-canonical
ensemble.

employed for the H, Li, and Al simulations were 128, 128,
and 96, respectively. We used 16 random twists for H and Al
and 18 random twists for Li.

Various exotic predictions have been made for atomic
metallic hydrogen, such as stability in a superfluid state or
as a room-temperature superconductor [40,41]. Calculation of
the phase diagram of hydrogen and its electronic structure
under extreme conditions is a challenging subject for first-
principles methods, not least because the results obtained
using DFT are severely affected by the choice of exchange-
correlation functional [42–44]. The limitations of DFT make
DMC simulations of solid hydrogen particularly valuable,
but the accuracy required is very high, and controlling the
DMC finite-size corrections is an important issue. This is
particularly the case when DMC is used to investigate the
phase diagram.

Figure 4 shows the relative fluctuations in the number of
electrons in the grand-canonical simulation cell as a function
of twist vector. The numbers of electrons per atom averaged
over the 16 random twists for H and Al and 18 random twists
for Li may be evaluated as in Eq. (13). The results are 2.98(2),
0.99(2), and 1.00(1), for Al, Li, and H, respectively. As the
number of twists increases, the average number of electrons
per atom converges to the number of valence electrons per
atom as specified by the pseudopotential. Figure 5 shows
our DMC results for metallic H, Li, and Al. The horizontal
axis indexes the twists used, and the vertical axis shows the
total internal energy per atom for that twist. The red triangles
[Ec(ks)] are energies calculated in the canonical ensemble,
with the number of electrons in the simulation cell fixed.
The black diamonds [EEM

gc (ks)] are energies calculated in the
grand-canonical ensemble, with the number of electrons in the
simulation cell dependent on the twist vector. The superscript
EM stands for “energy method,” indicating that these results
were not obtained using the grand potential. As expected,
the grand-canonical energy per atom is considerably more
sensitive to the twist than the canonical energy per atom.

FIG. 5. Twist dependence of the total DMC energy per atom
for metallic H in the I41/amd structure, fcc Li, and fcc Al. The
red triangles are internal energies Ec calculated using canonical
simulations in which the number of electrons in the simulation cell is
fixed. The black diamonds are internal energies EEM

gc calculated using
grand-canonical simulations in which the number Ne of electrons in
the simulation cell depends on the twist ks. The blue triangles are
energies which are calculated by EGPM

gc = �(ks, Ns ) + μ〈Ne〉 where
�(ks, Ns ) is the grand-canonical potential defined as EEM

gc − μNe(ks )
and 〈Ne〉 is the average number of electrons. The statistical errors in
all data points are smaller than the symbols.

The blue triangles in Fig. 5 are energies calculated using
the grand-potential method (GPM):

EGPM
gc (ks) = �(ks, N (ks)) + μ〈N〉, (18)
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TABLE I. The lattice parameters used (in Å) and total energies
(in eV/atom of metallic H, Li, and Al) obtained using canonical
twist averaging (Ec), grand-canonical twist averaging of the internal
energy (EEM

gc ), and grand-canonical twist averaging of the grand
potential (EGPM

gc ). When working in the grand-canonical ensemble,
twist averaging the grand potential is much more efficient than twist
averaging the internal energy.

System a c/a Ec EEM
gc EGPM

gc

H 1.21 2.55 −12.31(6) −12.3(2) −12.33(6)
Li 3.21 1.0 −6.957(2) −6.965(5) −6.964(3)
Al 4.01 1.0 −56.31(4) −56.5(3) −56.51(4)

where

�(ks, N (ks)) = EEM
gc (ks) − μN (ks) (19)

is the estimate of the grand potential per atom at twist ks and
〈N〉 is the average number of electrons per atom as defined
by the pseudopotential. The standard deviation of EGPM

gc is
much smaller than that of EEM

gc for all of the cases studied,
but especially for Al, which has a larger number of electrons
in the simulation cell.

The twist-averaged DMC energies for each system are
reported in Table I. In all three metals the grand-canonical
twist-averaged energy lies below the canonical twist-averaged
energy. Because all three twist-averaging methods made use
of the same random set of twists, the statistical errors in energy
differences are likely to be considerably smaller than those in
total energies.

V. CONCLUSION

This paper presented a simple but efficient approach to
twist averaging in the grand-canonical ensemble. We ex-
plained that it is better to average the grand potential �(μ)
than the internal energy. Once the average of the grand po-
tential has been found, the internal energy can be obtained
via a Legendre transformation, E (N ) = �(μ) + μN , where
μ is the chosen chemical potential and N is the exact number
of electrons per simulation cell. Unlike conventional grand-
canonical twist averaging of the internal energy, the grand-
potential approach does not require very large numbers of
twists to provide accurate total energies, and unlike conven-
tional canonical twist averaging, the results are not biased
when the simulation cell is small. This makes grand-potential
twist averaging in the grand-canonical ensemble suitable for
use in simulations of real metallic systems, where the compu-
tational cost is a crucial factor.

[1] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev.
Mod. Phys. 73, 33 (2001).
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