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Abstract. Accurately monitoring the efficacy of disease-modifying
drugs in glaucoma therapy is of critical importance. Albeit high resolu-
tion spectral-domain optical coherence tomography (SDOCT) is now in
widespread clinical use, past landmark glaucoma clinical trials have used
time-domain optical coherence tomography (TDOCT), which leads, how-
ever, to poor statistical power due to low signal-to-noise characteristics.
Here, we propose a probabilistic ensemble model for improving the sta-
tistical power of imaging-based clinical trials. TDOCT are converted to
synthesized SDOCT images and segmented via Bayesian fusion of an en-
semble of generative adversarial networks (GANs). The proposed model
integrates super resolution (SR) and multi-atlas segmentation (MAS) in
a principled way. Experiments on the UK Glaucoma Treatment Study
(UKGTS) show that the model successfully combines the strengths of
both techniques (improved image quality of SR and effective label prop-
agation of MAS), and produces a significantly better separation between
treatment arms than conventional segmentation of TDOCT.

1 Introduction

Glaucoma is the leading cause of irreversible blindness. Evaluating the progres-
sion rate of the pathology is crucial in order to assess the risk of functional
impairment and to establish sound treatment strategies [1]. Clinically, optical
coherence tomography (OCT) is used as a surrogate measure to evaluate retinal
ganglion cell loss by measuring retinal nerve fibre layer (RNFL) thickness around
the optic nerve head (ONH), whereas standard automated perimetry (SAP) is
employed to assess the status of the visual field (VF) [1].

Glaucoma research has produced several clinical trials, trying to monitor the
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disease progression and the efficacy of disease-modifying drugs. Up until the in-
troduction of high-resolution spectral-domain OCT (SDOCT), trials relied on
time-domain OCT (TDOCT), characterized by lower quality acquisitions and
signal-to-noise (SNR) ratio. Thus, structural measurements in past studies pro-
vided low statistical power in detecting significant treatment effects. Such an
example is the UK Glaucoma Treatment Study (UKGTS) [1]. The UKGTS is
the only glaucoma study to assess the vision-preserving efficacy of one disease-
modifying drug with both VF and OCT outcome. Nonetheless, TDOCT infor-
mation could not be effectively combined with VF outcomes to improve detection
of a treatment effect. Improving the quality of image-related anatomical mea-
surements is therefore imperative for increasing statistical power in clinical trials.

While prospective studies seek to modify the statistical power determinants [2],
retrospective analyses aim to maximize effect size in order to gain insight on the
efficacy of disease-modifying drugs. For instance, optimal spatial image smooth-
ing [3] prior to analysis can improve statistical power to detect group differences.
In [4], it has been proposed to use reference images to guide statistical analysis
of a new dataset through transfer learning, and to select only relevant voxels
in novel studies. When image segmentation is required, multi-atlas segmenta-
tion (MAS) [5] is successful in leveraging diverse reference image information,
by propagating atlas labels to novel image coordinates.

Meanwhile, various methods for super resolution (SR) using convolutional
neural networks (CNNs), such as generative adversarial networks (GANs), have
been proposed to transform image quality and appearance [6,7,8,9,10]. In medical
imaging, GANs have been successfully employed to address the ill-posed nature
of cross-modal synthesis. For example, in [6,7,8], GANs have been proposed to
predict computed tomography (CT) and positron emission tomography (PET)
images from magnetic resonance imaging (MRI). Concerning signal enhancement
as well, in [9] and [10], synthesis was achieved at different resolution scales and by
enforcing cycle-consistency, albeit not focusing on medical applications. These
works may, however, present important limitations for SR in medical imaging.
First, due to the restricted view of GANs spatial window, preservation of spa-
tial smoothness and anatomical features in predictions is not always guaranteed.
Second, single GAN predictions are characterized by spatial and intensity vari-
ability. Therefore, in order to extract robust anatomical quantifications from the
output of GANs, principled schemes accounting for prediction uncertainty must
be developed. This requires, for instance, probabilistic modeling of the uncer-
tainty of the underlying signal distributions on distinct image parts, to preserve
anatomical structures and account for spatial coherency.

This paper presents a novel method to improve the statistical power of clin-
ical trials with low quality images. Our methodology leverages Bayesian fusion
of GANs to infer morphological descriptors from low to high quality anatomi-
cal information. The transfer mapping is learned in an independent dataset and
the proposed method is demonstrated on the UKGTS, enhancing the power of
TDOCT via quality transfer from SDOCT. As a result, RNFL segmentations
are improved and further refined via the effective label-propagation of MAS.
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2 Materials and Methods

2.1 Data

We used two studies to validate and test our proposed methodology. For train-
ing and validation, we used the RAPID study: 82 glaucoma patients attended
for up to 10 visits within a 3-month period, consisting of 4.902 TDOCT (Stra-
tusOCT, ZEISS) and 1.789 SDOCT (SpectralisOCT, Heidelberg Engineering)
images. For testing, we used the UKGTS subset of participants with TDOCT
imaging available [1]: 373 glaucoma patients, attended for up to 2 years. Eligible
patients were assigned to treatment with Latanoprost 0.005% or placebo. The
UGKTS consists solely of 78.415 TDOCT (StratusOCT, ZEISS) images.

2.2 Proposed Methodology

The definition of our framework requires to address a number of challenges. First,
due to different acquisition protocols, the pairing between target SDOCT and
predictor TDOCT training images is ill-defined. To solve this issue, we propose
an automated method for target-predictor image pairing (Sec. 2.2.1). Second,
OCT signal is characterized by diverse degrees of noise and spatial information,
whereas RNFL segmentation is subject to variability due to the different at-
tributes of the synthesized images. This problem is tackled in Sec. 2.2.2, where
we present our method to obtain representations accounting for the different spa-
tial coherence of OCT images. Finally, in Sec. 2.2.3 we identify a probabilistic
consensus strategy for RNFL segmentations on the average synthesized image.

2.2.1 Training Pairs Generation

Although TDOCT and SDOCT images were acquired at each patient visit, there
is not a correspondence between the two sets of predictor and target modalities.
Our method finds a matching based on global and local image information rep-
resented by (i) the vessel profile given by the average retinal pigment epithelium
(RPE) pixel intensity, (ii) the internal limiting membrane (ILM) contour and
(iii) the average norm of the deformation fields between TDOCT and SDOCT
images within a patient’s longitudinal history. First, as the topography around
the ONH undulates, we flatten all images using a pilot estimate of the hyper-
reflective RPE layer. Hence, images are aligned according to a fixed vertical RPE
offset. We further exploit the RPE identification to detect the vessels, as they
appear as shaded bands in the RPE. We then segment the ILM contour (upper
high-contrast boundary on the dark-to-bright gradient image) and smooth it by
Gaussian Process interpolation. Iterative closest point was used to evaluate the
matching between the sets of features in (i) and (ii), and mutual information to
evaluate the image registration in (iii). We evaluate the robustness of our pairing
method on a benchmark of synthetic images with spatial variability, achieving
100% sensitivity (see Supplementary material). We note that a patient with N
TDOCT and M SDOCT can theoretically produce a maximum of N×M images.
Application to the RAPID dataset lead to 24.792 TDOCT and SDOCT pairs.
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2.2.2 Ensemble GANs

To account for the specific anatomical geometry and signal properties in OCT
images, we propose an adaptation of standard cycle-consistent GANs (cycle-
GANs) [10], to improve robustness and accuracy of the modality transfer. OCT
images have a very specific geometry where the background, i.e. vitreous cavity,
is clearly separated from the layers at the ILM. Thus, we used image stitch-
ing, exploiting the ILM identification, to separate background from layer signal.
Moreover, cycleGANs require a fixed window on which spatial filters and map-
pings are learned. However, since OCT signal and noise properties are charac-
terized by different spatial scales, a modality transfer method based on a fixed
spatial window might not be able to capture all the necessary spatial informa-
tion needed for synthesis. This reduces the chance for cross-modal distributions
to share supports in latent space. To address this problem, we propose an en-
semble of spatially coherent cycleGANs [10] to learn the TDOCT-to-SDOCT
mapping and to translate a TDOCT into a synthesized SDOCT image. The
scheme is the following. Each GAN is trained by employing a different spatial
window size: 128× 128, 256× 256 and 512× 512, learning a mapping from the
observed TDOCT image ITD and random noise vector z, to the target SDOCT
image ISD, G :

{
ITD, z

}
→ ISD. As a result, we train six GANs: three with

background pairs and three with layer pairs. The synthesized backgrounds and
layers are stitched back according to the window size, i.e. I128×128, I256×256,
I512×512 and the average synthesized stitched image Ī is obtained. To preserve
the morphological correlation between training pairs, cycleGANs were trained
with windows centered at the same geometrical location in both pairs. Fig. 1
shows the proposed framework for OCT synthesis via the ensemble of GANs.
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Fig. 1: SDOCT synthesis via ensemble of GANs. Three GANs are trained with
backgrounds (box A) and three with layers (box B). Synthesized images are
stitched back and the average synthesized stitched image is obtained. Separation
of layers and background is illustrated with scissors.
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Fig. 2: (a) Stack of images, where k1, k2, k3, k4 are the distances between Ī and
I256×256, I128×128, I512×512 and ITDOCT. (b) Graphical model representing the
relationship between the model variables in MAS. Replications are illustrated
with plates. Shaded variables are observed.

2.2.3 Multi-Atlas Segmentation

Once the average synthesized stitched image Ī is obtained, the problem consists
in finding a robust RNFL segmentation accounting for the signal variability in-
troduced by the synthesis. We treat images as being in a stack where Ī is used as
test image, and, I128×128, I256×256, I512×512, and the original ITDOCT as atlases,
here denoted by {In(x)}n=1,...,4 (Fig. 2a). We want to propagate the atlas RNFL
labels to the novel test image coordinates, where the segmentation of each pixel
is decided through a label fusion approach. To account for the variability across
atlases, we rely on a Bayesian model averaging technique, the graphical model of
which is shown in Fig. 2b. Let {Ln(x)}n=1,...,4 be segmentations corresponding
to the atlases {In(x)}. We assume that these atlases are co-registered to the test
image Ī(x), with unknown labels L(x). A label fusion approach aims to estimate
the label map L associated with Ī, given the registered atlases. We assume that
the posterior probability of the segmentation p factorizes over pixels:

p(L|{In}, {Ln}, Ī) =
∏
x∈Ω

px(L(x)|{In}, {Ln}, Ī) (1)

To model px, we choose the local label fusion model from [5], which relies on
a latent discrete field M(x) that indexes which atlas generates the test image
and its segmentation at each location. The model further assumes that the im-
age intensities Ī and labels L are conditionally independent given the field M .
Following [5], we use a Gaussian likelihood term for the image intensities and a
LogOdds model based on the signed distance transform for the labels. We use
a prior for the field M that reflects lower reliability for the atlases associated
with lower registration accuracy [11]. For each 2D location x, the prior takes the
form p(M(x) = n) ∝ exp(−knα), where the coefficients kn, n = 1, 2, 3, 4, are
the distances between the test image Ī and the atlases, while α is a parameter
controlling the sharpness of the prior. Based on our experimental registration re-
sults, we empirically set the lowest distance value, k1 = 1, for the atlas I256×256,
and increasing ones, ki = i, for respectively the atlases I128×128, I512×512 and
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ITDOCT. The posterior probability for the labels is finally [5]:

p(L(x)|{In}, {Ln}, Ī) =

∑N
n=1N

(
Ī(x); In(x), σ2

)
eρDx[L(x);Ln]e−knα∑N

n=1 e
−knαN

(
Ī(x); In(x), σ2

) (2)

where N is the Gaussian probability density function; Dx is the signed distance
transform evaluated at location x; and σ2 and ρ are the likelihood parameters.

(a) TDOCT (b) SDOCT (c) Synthesized SDOCT

Fig. 3: OCT synthesis results via fusion of GANs. (a) and (b) illustrate a pair of
TDOCT and SDOCT images. (c) Synthesized SDOCT from (a).

3 Experiments and Results

3.1 Experimental Setup

We compared our method with respect to the results obtained with each single
GAN used in our pipeline (Fig. 1), to a label fusion strategy on the GANs out-
put, and to the original images provided by the StratusOCT machine. Testing
on UKGTS was instead performed by quantifying the statistical power relative
to the measurements obtained with our method, as compared with those de-
rived from the StratusOCT, following the same evaluation protocol from prior
image-to-image translation studies [10]. To quantify the quality of the synthe-
sized SDOCT images, we segmented their RNFL and compared the resulting
average RNFL thickness with the original SDOCT average RNFL thickness.
The intuition is that if we can produce realistic SDOCT images, an off-the-shelf
segmentation model should output the same RNFL thickness obtained with the
original data. We adopt the layer segmentation model of Mayer et al. [12]. For
label fusion, as atlases, we used the segmented RNFL sections of the synthesized
SDOCT and the original TDOCT RNFL segmentation. For the test image, we
used the average synthesized stitched image in which we registered the retinal
layers of the atlases. We used the method from [13] for non-rigid registration
of OCT layers, and computed predictions for the final RNFL labels with Eq. 2.
The parameters were kept constant for all experiments: σ2 = 625, ρ = 30µm−1,
α = 1mm−1. Decaying weights were set depending on the agreement measured
when evaluating GANs performance individually. We used 9-Block Resnet mod-
els as generators, and 70 × 70 PatchGANs as the two discriminators [10]. All
experiments were performed on a NVIDIA Titan X (12GB) GPU.
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Table 1: Limits of agreement, mean difference, correlation of all methods versus
ground truth, and mean SD of the first three visits difference for both eyes.

Method
GAN Label Fusion

StratusOCT
128x128 256x256 512x512 Direct Proposed

95% LOA [22.53, -18.7] [16.9, -14.2] [23.34, -19.35] [11.72, -9.72] [8.11, -6.73] [26.64, -22.95]
Mean Diff. 1.92 1.44 1.99 1.00 0.69 1.84
Pearson r 0.79 0.85 0.71 0.89 0.92 0.76
Mean SD 2.27 1.87 3.01 1.33 1.29 2.67
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Fig. 4: Bland-Altman plots on the agreement between all methods versus ground
truth on RAPID. The proposed method leads to significantly better agreement.

3.2 Results

Table 1 shows the 95% limits of agreement (LOA), mean difference, correlation
and the mean standard deviation (SD) of the difference for three visits across
all subjects of the RAPID study. GAN256×256 yields better scores compared
to GAN128×128 and GAN512×512. Label fusion, without image stitching, on the
average synthesized image outperforms the individual output of GANs, while a
further improvement is obtained by integrating image stitching. These results
suggest that combining the synthesized images of each GAN enables us to take
advantage of the strengths of all architectures. Fig. 4 illustrates the compatibility
of the measurements with respect to the ground truth SDOCT segmentation
in Bland-Altman plots. Our approach not only manages to produce a RNFL
segmentation close to the ground truth, but also reduces the variability in the
measurements. We applied our method to the TDOCT images available from
the UKGTS and subsequently segmented the newly synthesized SDOCT images.
Table 2 shows the results of our method compared to the original StratusOCT.
We appreciate a statistically significant improvement in the separation between
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treatment and placebo groups (p = 0.0017), leading to sensibly lower sample
size in power analysis.

Table 2: Comparison of rate of RNFL change between our method and Stratus
OCT in the UKGTS. Significant difference between treatment and placebo pro-
gression rates (p < 0.05, Mann–Whitney U test) is indicated with (*). Sample
size for 80% power with p = 0.05.

Method
StratusOCT Proposed

Treatment Placebo Treatment Placebo

Mean (SD) (µm/visit) 0.0344 (1.964) -0.0733 (2.066) -0.0760 (1.5019) -0.341 (1.8027)
Diff. in mean rate (95% CI) 0.107 (-0.358 to 0.574) 0.265* (-0.118 to 0.648)

Sample size 5495 616

4 Discussion and Conclusion

We presented a probabilistic ensemble model for enhancing the statistical power
of clinical trials with RNFL thickness change outcome derived from TDOCT.
Our approach is based on image synthesis and semi-automated segmentation of
synthesized SDOCT images, integrating label fusion with image stitching and
deep learning to further improve statistical separation between treatment groups.
The proposed methodology appears robust and flexible both in terms of archi-
tecture and label fusion. Future work will focus on modifying a regularization
scheme to improve conditioning on RNFL and on integrating, in parallel, multi-
ple resolution scales.
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