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ABSTRACT The pervasive deployment of connected devices in modern society has significantly changed
the nature of the wireless landscape, especially in the license free industrial, scientific and medical (ISM)
bands. This paper introduces a deep learning enabled passive radio sensing method that can monitor human
respiration and daily activities through leveraging unplanned and ever-present wireless bursts in the ISM
frequency band, and can be employed as an additional data input within healthcare informatics. Wireless
connected biomedical sensors (Medical Things) rely on coding and modulating of the sensor data onto
wireless (radio) bursts which complywith specific physical layer standards like 802.11, 802.15.1 or 802.15.4.
The increasing use of these unplanned connected sensors has led to a pell-mell of radio bursts which limit
the capacity and robustness of communication channels to deliver data, whilst also increasing inter-system
interference. This paper presents a novel methodology to disentangle the chaotic bursts in congested radio
environments in order to provide healthcare informatics. The radio bursts are treated as pseudo noise
waveformswhich eliminate the requirement to extract embedded information through signal demodulation or
decoding. Instead, we leverage the phase and frequency components of these radio bursts in conjunction with
cross ambiguity function (CAF) processing and a Deep Transfer Network (DTN). We use 2.4GHz 802.11
(WiFi) signals to demonstrate experimentally the capability of this technique for human respiration detection
(including through-the-wall), and classifying everyday but complex human motions such as standing, sitting
and falling.

INDEX TERMS Machine learning, deep transfer networks, opportunistic wireless networks, signs-of-life
detection, human activity monitoring, micro-Doppler signature, phase-sensitive detection.

I. INTRODUCTION
Human activities have been a indispensable component of
the healthcare informatics in both clinical and daily contexts
because of its value in ambient assistant living (AAL) and
detection of early symptoms of disease. In-home human
activity detection has attracted increasing attention because
of its indexing effect for understanding health, emotion, psy-
chology [1] and behavioural patterns [2] in residents. Thus,
detection and recognition of physical activities via direct and
indirect sensing data is a growing area of research. Within
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the framework of the Internet of Things (IoT) and smart
homes, healthcare sensors are experiencing a transition from
hospitals, care houses and laboratories into ordinary homes.
The SPHERE Project [3], developed by the University of
Bristol in the UK, is an exciting showcase that demonstrates
the detection of residential activity via the connected home
sensors such as cameras, wearable devices, environmental
sensors (measuring light, temperature, air quality, ambient
sound, humidity etc). The capability of the integrated sensor
platform for activity detection shows significant promise.
However, two problems must be addressed to ensure the fea-
sibility of real-world deployment for the technology. Firstly,
the intrusive nature of interacting and/or the data output from
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these technologies must be balanced e.g. the use of wearable
devices versus passive contactless sensors, or the accuracy
(e.g. high definition video stream) versus more private envi-
ronmental and meta data in the residential environments. Sec-
ond, the large-scale rollout of wireless connected sensors in
the ISM bands results in overcrowded spectrum that impacts
on interference control, media access scheduling and Quality
of service (QoS). Therefore, we introduce a non-invasive
and accurate technology that also maintains user privacy for
human activity detection (including respiration) based on
passive radio sensing.

Different from the regular sensing approaches which mod-
ulate the coded sensory data onto radio carriers for transmis-
sion, the concept in this paper makes use of radio bursts that
are already present in the environment. Rather than flooding
the existing RF environment with additional bursts, our work
aims to extract information from properties inherent to the
radio signals without demodulation and decoding. It is well
known that the properties of the radio signals are impacted by
the environmental characteristics during propagation, there-
fore a high correlation between radio signal properties and
the human activities (part of the environmental) is implicit.
However, extracting the human activity information from
the uncontrolled environmental radio signals is non-trivial.
We leverage both signal processing approaches and deep
learning to achieve this goal. A software defined radio (SDR)
prototype system is employed to demonstrate the concept.
The core signal processing technique used in this paper is
termed the cross ambiguity function (CAF) [4] which is able
to differentiate between the transmitted wireless signal and its
reflected counterparts in both time and frequency domains.
We postulate that the post CAF processing signal contains
two types of physical activities. type_i: activity that can be
direct correlatedwith one of the radio signal properties. In this
paper, we refer to respiration rate which has high visible cor-
relation with the phase variations of the signals reflected by a
subject under test. type_ii: activity for which interpretation is
beyond the scope of a direct observation and must therefore
rely on computational inference. In this paper we therefore
propose a novel Deep Transfer Network (DTN) for learn-
ing the relationship between the measured micro-Doppler
(µ-D) signature and everyday human activities. The classi-
fication methods employed in the network are the Sparse
representation classifier (SRC) and support vector machine
(SVM). The DTN [5] we propose is pre-trained by the Ima-
geNet vision dataset [6] but fine-tuned using a much smaller
dataset containing micro-Doppler signatures (µ-DS) relating
to everyday activities. Both cases are tested experimentally
using a software defined radio (SDR) system and unmodified
802.11 signals from a commodity WiFi access point. We also
validate our results and explain the mechanisms involved
with reference to the wireless network spatial geometries.
Moreover, we argue that the highly congested overcrowded
radio-frequency (RF) spectrum could actually be a beneficial
resource for monitoring people in wireless enabled envi-
ronments. These proof-of-principle results could lead to a

wide range low-impact, non-cooperative human activity and
respiration data collection in normal residential environments
for healthcare informatics.

The rest of the paper is organised as follow: Section II gives
a comprehensive review of recent related work. Section III
introduces the enabling cAF signal processing for extracting
phase information from signals, frequency offset estimation,
and our deep transfer network for classifying µ-DS informa-
tion. The experimental results and related discussion are pre-
sented in Section IV. Finally, Section V concludes the work
and provides some perspective on possible future directions
for the technology.

II. RELATED WORK
Using sensors to monitor human activities in home environ-
ment is not a brand new idea. Various direct and indirect
approaches have been tested or applied in the laboratory or
more practical scenarios, including auxiliary (or wearable)
sensors (accelerometers, gyroscopes, RFID etc.), environ-
mental sensors (camera, LiDAR, PIR, temperature, humidity,
smart meters etc.) and the radio sensors or indicators. In this
section, outline the types of sensors currently used for activity
monitoring within a healthcare context, and provide a ratio-
nale for the approach taken in our work.

A. AUXILIARY SENSORS
Auxiliary sensors are often used to monitor physical
human activity [7] and these include wearable techno-
logies [8]–[10], mobile phones [11] and radio frequency
identification (RFID) [12]. Among these, sensors embedded
in wearables and mobile phones such as accelerometers,
gyroscopes and gravity sensors are able to provide accurate
movement information that can be used to estimate activity
levels, classifying the activities and calibrating the physical
gestures. However, wearable technologies are associated with
physical discomfort and low rates of acceptance, especially
among the elderly. RFID based devices employ complex
transmitters and receivers, and require pre-planning in order
to optimally site the positions of the nodes [7]. Also, this
approach is often limited by short transmission distance of
RFID tags.

B. ENVIRONMENTAL SENSORS
Different from auxiliary sensors, environmental sensors have
the advantage of providing contactless activity detection.
We categorise these sensors into two types according to the
high-definition (HD) and low-definition (LD) environmental
sensors according the definition level of the data provided
by the sensor. The typical HD environmental sensors include
camera and LiDAR that usually can provide detailed pose and
gesture information by using the rich spatio-temporal rela-
tions between the pixels. Vision based sensors [13], [14] such
as MS Kinect and Intel RealSense have been investigated in
some healthcare projects [3]. However, in general, the video
camera systems suffer from poor contrast and their use in
home environments raises many privacy issues. The fact that
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high volume real-time HD data streams require a high quality
radio network or wired installation also limits deployment
in residential homes. The LD environmental sensors, for
example passive infrared (PIR), door/window sensors, tem-
perature, humidity meters etc lay at the other end of the scale.
These sensors require very limited network resources, but
only provide human activity information which also relies
heavily on annotation. PIR [15], [16] for example, is capable
of outputting coarse-grained room level existence [17], but
suffers from the high false alarms and is affected by varying
levels of brightness.

C. RECEIVED SIGNAL STRENGTH AND CHANNEL STATE
INFORMATION
Measurements based on the received signal strength indica-
tion (RSSI) and the channel state information (CSI) - read
from network interface card (NIC) drivers - have become
popular in recent years for human activity estimation. Pat-
wari et al [18] employ a tomographic approach to achieve
accurate localization performance using RSS measurements
from distributed radio transceivers. Additionally, the authors
in [19]–[21] discuss using variations in the RSSI of bothWiFi
and Bluetooth signals within indoor scenarios for human
presence detection, activity and location estimation. The
WiGest system described in [22] has even been shown to rec-
ognize arm and hand gestures usingRSSI. Other systems such
as WiDraw [23], Wi-See [24], CARM [25] and Wi-Key [26]
use dedicated commercial off-the-shelf (COTS) 802.11 NIC
to estimate angular and frequency components from the
recorded CSI, and successfully demonstrate in human body
poses and recognition of hand gestures. We highlight here
the reliance of these approaches on communications data
provided by the drivers of commodity network devices.

D. ACTIVE RADIO SENSING
Aside from using the commodity wireless network devices
for activity sensing, various other studies have exam-
ined the use of dedicated radio transceivers that enable
higher-frequency carriers and bespoke waveform designs
optimised for human activity sensing. These active systems
operate with improved range and Doppler resolutions permit-
ting the detection of human physiology such as the beating
of the heart. Wi-Track for example [27] and [28] transmits
a wideband frequency-modulated continuous-wave (FMCW)
signal to achieve accurate indoor human target tracking, even
for multiple targets. [29] employs the similar FMCW signal
to monitor breathing and heart beats from stand-off distances.
In [8] and [30], the authors demonstrate the ability of an
ultra-wideband (UWB) radar on 60 GHz for tracking the
movements and activities of personnel. However, disadvan-
tages associated with active systems include the increased
cost of having a dedicated transmitter, inherent coverage
limits from large attenuation and narrow directional beams
of high carrier frequencies, and the requirement to obtain a
spectrum licence to operate within various bands.

E. PASSIVE RADIO SENSING
To overcome the limitations associated with active RF trans-
mitters, human activity detection and classification based
on passive sensing has attracted significant research atten-
tion [31] and [32] as it offers a promising non-cooperative
and non-invasive solution for indoor sensing. In passive
operation, the sensing system captures the transmitted radio
signal from an illuminator of opportunity (e.g. a WiFi AP)
as well as reflected radio signals from the environment (in
separate receive channels). The passive system identifies
human activity information by differentiating the signals
from two channels in frequency and time domains. In the
context of the human activity recognition, the frequency
shift (Doppler) is more popular as its direct correlation with
the dynamic movements. Use-cases include through-the-wall
person detection [31], [32], body gesture recognition [33],
[34], and respiration detection using Doppler [35] and small
movement detection based on phase shifts from indoor wire-
less signals [36].

This paper focus on passive radio sensing because of its
ability to provide non-invasive, highly accurate, low privacy
sensing in residential areas. But without control of signal
waveform and system geometry, passive systems often show
large variance on signal representation and performance.
This fact brings challenges on interpreting the detailed or
inconspicuous human physical movement and recognition
rate stability in passive radio sensing. Thus, we work on
advanced signal processing and deep learning technology on
the passive captured radio signals to push the passive radio
sensing technology towards real-world deployments.

III. PROCESSING AND MACHINE LEARNING
FRAMEWORK
In this paper we adopt an end-to-end framework that inte-
grates i). a highly sensitive phase extraction technique for
respiration detection and ii). a deep transfer network for daily
activity recognition, based on the CAF processing (time-
frequency differentiating). The signal and data processing
framework is illustrated in Fig. 1. Our phase-sensitive instan-
taneous Doppler technique described in Section III-B1 iden-
tifies very a small physical movement. Similar sensitivity
would require tens or even hundreds ofmilliseconds sampling
duration in the traditional CAF [4] or short-time Fourier
transform (STFT) based approaches. Furthermore, we lever-
age a DTN architecture that is pre-trained on ImageNet
dataset for µ-DS data classification. To facilitate the model
training, we proposed a novel µ-D data processing and an
augmentation pipeline to fine-tune the DTN (described in in
Section III-C).

A. CROSS AMBIGUITY FUNCTION
In this paper, a CAF is first applied to raw I/Q samples from
the direct and reflection channels (equivalient to reference
and surveillance signals in passive radar). The CAF carri-
ies out the preliminary Difference analysis of reference and
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FIGURE 1. Signal and data processing framework.

surveillance signals in the time and frequency domains. This
enables further phase extraction for respiration detection or
feature fine-graining for activity recognition. The reference
signal xref (t), can be described as a linear combination of
the ‘‘clean’’ transmittedWi-Fi signal xsource(t) and reflections
from static objects which present as copies of xsource(t) asso-
ciated with delay τp and the corresponding complex magni-
tude Arefp of pth static objects:

xref (t) =
∑
p

Arefp · xsource(t − τp)+ nref (1)

where nref is the noise on reference receiver. Similarly,
the measured signal in the surveillance channel xsur (t),
is composed of echoes from all moving targets in the area
of interest (defined by the signal coverage area of the Wi-Fi
AP) which can be characterized as the qth path delay τq, its
Doppler shift fd,q and relevant complex magnitude Asurq :

xsur (t) =
∑
q

Asurq · xsource(t − τq)e
j2π fd,qt + nsur (2)

where nsur is the noise on surveillance receiver. It is assumed
that the reference and surveillance channel are separated
via the spatially distributed directional antennas. In general,
a target can be identified by taking Fourier transform of
cross correlation of the reference and surveillance signals.
The processing can be represented by the CAF X (τ, f ) (3)
in [37], [38]. The X (τ, f ) spans a surface. The corresponding
delays τ and frequency shifts f of the peaks on X (τ, f )
surface indicates the distance and moving velocity of the
detected targets.

X (τ, f ) =
∫ t

0
e−j2π ft · x∗ref (t − τ ) · xsur (t) dt (3)

In practice, the signals xref (t) and xsur (t) will present as the
time domain discrete I/Q samples captured via reference and
surveillance channels. Thus, the equations (1) to (3) can be
written in time discrete form.

B. RESPIRATION DETECTION
From the equation (3), we can see that the integration time
determines the achievable Doppler resolution. To capture the
small body motions like chest wall movements caused by res-
piration, longer integration time will be required. However,
the expected effect may not be observed since the longer inte-
gration time may also mix multiple body movements into one
CAF calculation. This may results in an incomprehensible
Doppler observation in practice. Thus, this paper targets on

taking instantaneous Doppler measurements, with which we
can obtain the phase information which is sensitive enough
to discern tiny movements smaller than one wavelength.
In the following sections, we first discuss the limitations of
the conventional in the CAF for respiration detection, and
subsequently propose a phase-sensitive processing technique
that is embedded on the CAF. Secondly, we use the Hampel
filter to guarantee the phase stability.

1) PHASE-SENSITIVE PROCESSING
In normal human breathing, the chest moves slowly with
relatively low amplitudes. Detecting this motion is therefore
limited by three factors. The first factor is the bandwidth
of the Wi-Fi burst which dictates that the achievable range
resolution is 17 meters [39], [40] which is too coarse for
respiration detection applications. The second factor is the
extended integration time which is required to resolve the
Doppler shift. Finally, the direct signal interference (DSI)
leakage from the Wi-Fi transmitter to surveillance channel
maymask small Doppler values which are close to zero. Here,
we analyze breathing detection in detail and denote the range
of chest movements as d(t). Accordingly, the phase caused
by the chest movement that is contained in the received echo
signal can be represented by function of the time φ(t):

φ(t) =
2π × d(t)

λ
. (4)

Due to the coarse range resolution of the Wi-Fi signal,
we can assume that the respiration motion remains in the
same range bin which contains maximum power and can
identified by cross correlation option in the equation (1). The
correlation result of the mth slow-time sample x[m],m ∈
[0, 1, . . . ,M − 1] with respect to the maximum power range
bin lmax is then given by:

x[m] =
Nm−1∑
n=0

x∗ref [im + n− lmax]× xsur [im + n] (5)

where M is the number of batches the signal is divided into
and ∗ is the Hermitan operator. Nm is the number of data
samples in mth batch and im is the starting sample index of
each batch. Batch processing [4] is computationally efficient
and enables real-time time-frequency analysis. In an indoor
environment, given that there are echoes from various other
reflectors, the phase of x[m] can be represented as:

φ[m] =
2π × d[m]

λ
+ φstatic[m] (6)

where φstatic[m] is the sum of echo phases from static
reflectors. The time varying trend of The phase of x[m] will
present high consistency with time varying of φ[m] because
both varying caused by the the quasi-periodical chest surface
displacement of respiration. Thus, we use the phase of x[m] to
indicate the respiration. Since the motion caused by breath-
ing is relatively slow and small, φstatic[m] cannot be larger
than half the wavelength φstatic is time-invariant between two
consecutive CAF operations in equation (3), we are able to
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instantly monitor the phase variation corresponding to the
chest movement, without having to consider the distortion
from DSI and the long integration times involved in the
Fourier transform (FFT if discrete form is used) operation.

2) PHASE STABILITY
Extracting stable and continuous phase outputs from the
cross-correlation processing is a challenging task because of
the modulation characteristics of Wi-Fi signals. The perfor-
mance may further degrades when the Wi-Fi AP is working
in the beacon mode because of the low duty cycles of the
beacon signals. When xsource(t) is sparse in the time domain,
discontinuous phase samples are frequently observed and the
output is subject to significant distortions. In this situation,
phase noise in the receiver and the clutter will dominate
the result. Thus, in this paper a Hampel filter is used as
a post-processing step to eliminate outliers caused by the
discontinuous phase output [41]. Suppose we have obtained
a series of phase samples, denoted as φk :

φk = [φk−ω, φk−ω+1, . . . , φk , . . . , φk+ω−1, φk+ω], (7)

The task is to check if φk is an outlier. First, the median abso-
lute deviation (MAD) scale estimation φ̃k within a window
size ω is calculated by following equation (8):

φ̃k = median{|φk − median{φk}|}. (8)

Then, with the assumption that the phase data within the
window are sampled according to the following normal
distribution:

φk ∼ N (µk , σk ) (9)

the estimated deviation of the distribution, σk can be approx-
imately given by the criterion from [41]:

σk = 1.4826 ∗ φ̃k , (10)

where 1.4826 is the calculated in the Gaussian distribu-
tions [42]. Given a threshold T , we can classify the phase as
an outlier if ‖φk‖ ≥ T × σk . In this case, the outlier will be
set as the median of the series of phase samples. Although
outliers can be eliminated by the methods outlined above,
phase shifts caused by the background static reflections still
remain. Due to the time invariant naure during consecutive
CAF processing, we can subtract the mean of phase out-
puts as background elimination, represented by the following
equation:

φtrue,k = φk −
1
L

k∑
k−L+1

φk , (11)

where φk is the kth slow-time sequence of phase information,
L is the window length and φtrue,k is the phase sequence after
background elimination (mean subtractions).

After applying our phase sensitive processing and Hampel
filtering after the CAF processing, we notice that the rate of
the phase varies and this correlates directly with the respi-
ration rate of the human subject (type_i information). The

FIGURE 2. Pre-processing steps for activity recognition using passive
radio sensing.

detailed results are presented in Section IV-B and includes a
discussion the impact of the bi-static detection geometry.

C. DTN ENABLED ACTIVITY RECOGNITION
The type_ii information often refers to body gestures or daily
activities, it is non-trivial to determine a direct correlation
between the processed wireless signals and various activi-
ties being examined. Taking the micro Doppler (µ-D) traces
in Fig 3 for example, we can observe that different activities
correspond to different µ-D patterns but it is beyond the
scope of human intuition to relate these µ-D patterns and
activities. Our approach therefore is employ a deep transfer
network (DTN) to enable activity recognition using oppor-
tunistic wireless signals.

1) PROBLEM FORMULATION
The previous description of Section III outlines the passive
radio sensing signal model and the CAF processing to obtain
the range-Doppler surface. A more detailed description of the
processing can be found in [4]. The µ-D provides a tem-
poral trace of frequency vectors at a specific delay induced
by a moving target. These vectors are concatenated along
the time axis to generate the Doppler history (trace), which
are considered to be the basis of the µ-D dataset. More
specifically, suppose that the original µ-D dataset DPWS =

{(Xi, yi)}
NPWS
i=1 is obtained with NPWS samples, Xi ∈ RNf×Nt

indicates the ith time-frequency representation and yi ∈ R
indicates its ncls-class label. Xi is the 2-D time-frequency
representations of dynamic size Nt in the time domain.
Different motions may induce different time periods. Thus,
we normalize it to the range of [0, 1] using well-defined
techniques for each recording Xi. The aim of PWS based
activity recognition is to classifiy activities using the µ-DS
dataset DPWS.

In this section we describe preparatory processing for
enabling our µ-D based activity recognition methodology.
It includes two main steps: (i) alignment of the µ-DS trace,
and (ii) pre-processing methods as illustrated in Figure 2.

2) PRE-PROCESSING i: µ-D ALIGNMENT
It is essential that the data samples have the same length when
preparing the µ-D dataset for the deep transfer network. It is
straightforward to ensure the same number of frequency bins
in Xi within our CAF processing. However, due to the large
temporal variations in the duration of different human activ-
ities, it is not possible to ensure a constant number of time
bins for each µ-D sample. To tackle this, and simultaneously
minimize the impact of the DSI, we adopt the following two
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FIGURE 3. (a) Start and end point detection; (b)The useful part of the µ-D
is adjusted into the same size, with the DSI and the ambiguity peak
examples.

procedures which are implemented in time domain [34] as
step 1 and 2 in FIGURE 2:

• Automatic start and end point detection;
• Bi-cubic interpolation to adjust the data sample
size [43].

To illustrate the steps, we show an example in Figure 3 (a) and
(b). The technique starts from selecting the smallest and
largest time bin as the start and end point respectively in the
µ-D. After the interpolation, we obtain the transformed data
denoted as Xi,Fix ∈ RNfreq×Ntime , where Nfreq is the number of
maximum selected Doppler bins and Ntime is the interpolated
number of time bins. In fact, we prefer to represent the
well-aligned dataset using the following Set-format, fitting
the DTN classification method:
Set-Format: the original set DPWS = {(Xi, yi)}

NPWS
i=1 is

transformed to another set: DFix,PWS = {(Xi,Fix , yi)}
NPWS
i=1 ,

where Xi,Fix ∈ RNfreq×Ntime .

3) PRE-PROCESSING ii: RESCALING, RESIZING AND
CROPPING
Our DTN adopts an end-to-end training pipeline which
is composed of feature extraction and classifier design.
We represent the interpolated µ-D dataset using Set-format
DFix,PWS. The three-step pre-processing method consists
of data rescaling, resizing and cropping, as illustrated in
FIGURE 2:
Step_1-Data Re-Scaling: since the original DTN is

designed for RGB images, this step linearly re-scales original
values of Xi,Fix in the range [0, 255].
Step_2-Data Re-Sizing: Suppose that DTN requires the

input size of Nheight × Nwid × 3, we first interpolate the µ-
DS data Xi,Fix to the size of Nheight × Nwid,ext × 3, where
Nwid,ext > Nwid . Both Nwid and Nwid,ext indicate the num-
ber of time bins and Nheight indicates the number of fre-
quency (Doppler) bins. Taking AlexNet as an example,
the input size is 227× 227× 3 so we interpolate Xi,Fix using
the bi-linear method to 227× 256× 3 and assign the other
two channels using the same µ-D.

FIGURE 4. DTN for passive radio sensing based µ-D classification using
AlexNet.

Step_3-Data Cropping: In the training, we randomly
crop the time domain input from Nheight × Nwid,ext × 3
(the dimension in AlexNet is 227× 256× 3) to
Nheight × Nwid × 3 (227× 227× 3 in AlexNet). For the test
data, we centrally crop them to the size Nheight × Nwid × 3
(227× 227× 3 in AlexNet). The reason for not directly
interpolating to 227× 227× 3 in the AlexNet case is that
randomly cropping from the 256 to 227 time bins increases
the training data diversity and the generalization capability of
the model. This augmentation technique is useful to extract
features that are invariant to time-domain shifts and perturba-
tions.

Finally, we denote the output of the pre-processing method
as the training and test sets: DT

PWS = {X
T
i , y

T
i }

NT
i=1 and

DS
PWS = {X

S
i , y

S
i }
NS
i=1 respectively.

4) TRANSFERRING VISION KNOWLEDGE TO µ-D
CLASSIFICATION
The aim to use DTN for passive radio sensing µ-D clas-
sification is two-folds: firstly, low-level features and kernel
filters used in computer vision tasks are transferable to µ-
D data given that they are both 2D representations and the
complexity of µ-D is less than the RGB image (there are
no fine-grained texture features in RGB images); secondly,
making use of pre-trained weights and fine-tuning from the
ImageNet allows us to extract the hierarchical and high-level
features using a very small number of training samples.
To improve the results of non-deep methods, we apply the
most conventional and light-weight version Alexnet for µ-D
classification using pre-trained weights from ImageNet. This
section focuses on applying and fine-tuning AlexNet for µ-D
classification.

The simplified AlexNet architecture is shown in
Figure 4, assuming the AlexNet takes µ-D XSi and the
label yi as inputs. The convolutional and pooling lay-
ers in AlexNet aim to extract convolutional features
of the µ-D data, denoted as TConv(XSi ). Next, to pre-
dict the class categories explicitly, these spatial sensi-
tive convolutional features are transformed to Logits(XSi )
where Logits(XSi ) = CLS ◦ TFC7 ◦ TFC6 ◦ TConv(XSi ) by two
Fully-Connected (FC) layers TFC6, TFC7 and the classifier
CLS.

Applying a soft-max function (shown in equation (12)) on
Logits(XSi ), the ith element of the output Logitssoft indicates
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the probability that the input XSi belongs to the ith class. Since
the ground-truth label yi is available, the cross-entropy (CE)
loss LCE in equation (13) is used to train the networks with
the L2 regularization terms on network weights, where [j] is
operation to select the jth element of the vector.

Logitssoft =
exp(Logits)∑nclass

j=1 exp(Logits[j])
(12)

LCE = −
nclass∑
j=1

yi[j]× log(Logitsoft [j]) (13)

min
TConv,TFC ,CLS

LTotal = LCE + LReg (14)

iclass = argmax
j

Logitssoft [j] (15)

5) FINE-TUNING TECHNIQUES IN THE DTN
Finally, we describe the fine-tuning technique adopted in
our pipeline which includes three key stages: first, we ini-
tialize the network using the weights trained on ImageNet,
except the CLS network (the weight of CLS is initialized
based on the technique described in [5]); second, we update
the networks TFC7 and CLS through back-propagation but
close-off the paths to the TConv layers and stop updating
them until convergence; third, we update the whole network
using a reduced learning rate. With our fine-tuned DTN,
the complex signatures can be interpreted in terms of human
activity recognition. In Section IV we design and implement
a series of experiments to prove how the type_i and type_ii
human activity information is captured without demodulating
and decoding the wireless signals in a typical smart home
environment.

IV. EXPERIMENTS AND RESULTS
In this section we first describe the hardware architec-
ture of a passive radio sensing system and the signal pro-
cessing approach that permits a real-time detection output
(Section IV-A). Then, we summarize our experimental testing
which makes use of four bistatic geometries in line-of-sight
(LoS) and through-wall scenarios, and under experimental
conditions that involve using both Wi-Fi data and Wi-Fi
beacon transmissions in Section IV-B. Finally, we evaluated
the performance of DTN based activity recognition result
in Section IV-C using a µ-DS datset of recorded activities
containing six classes. The result is compared with the SRC
features.

A. SYSTEM DESIGN AND IMPLEMENTATION
1) HARDWARE SYSTEM
The passive radio sensing system is built based on a software
defined radio (SDR). Two synchronized EttusTMuniversal
software radio peripherals (USRP) (model N210) are used
as reference and surveillance channels to down-convert
the Wi-Fi signals centered at 2.462GHz, as illustrated
in Figure 5 (a) and (b). In the USRP, a 14-bit ADC is
used for digitizing the intermediate frequency analog sig-
nal and followed by a XilinxTM(mode: Spartan 3A-DSP
3400) field-programmable gate array (FPGA) for digital

FIGURE 5. The SDR system for passive radio sensing.

FIGURE 6. Multi-thread parallel data processing.

down-converting (DDC) (Figure 5 (c)). The output of DDC
is the I/Q samples is transferred into a laptop via gigabit
Ethernet port for real time processing which includes CAF
processing. The reference and surveillance receiver channels
used in the indoor LoS experiments employ log-periodic PCB
antennas with a 5 dBi gain and 60 degree beam-width [44].
In the through-wall experiments, we use two Yagi antennas
with 15 dBi gain a beamwidth of 32 degree [45]. An Edimax
EW-7416APn commodity Wi-Fi AP with two omni-
directional antennas of 3 dBi gain was used to act as the
opportunistic transmitter.

2) SOFTWARE FLOW
The software is mainly to handle the data flow and
implemented in NI LabVIEWTM. For both beacon and
data-transmitting AP working modes, we sample the Wi-Fi
signal at 2 MHz (which would prohibit demodulation) on
both reference and surveillance channels and use a 0.5 second
integration time (means each I/Q samples segment in Figure 6
has 0.5 second duration) with a 0.4 second overlap to facili-
tate CAF processing. These parameters are chosen based on
empirical value and trade-off between the integration time
(Doppler resolution) and the output frame rate. The batch
processing methodology described in [4] is used to optimize
the data throughput for real-time operation. The technique
includes pipeline and multi-thread processing. While in Lab-
VIEW, a parallel processing framework can be set up as
shown in Figure 6. To increase the throughput of the system,
the whole data flow is divided into three sub-flows which
are allocated to three threads respectively. Inside of the CAF
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FIGURE 7. (a) Line-of-sight (LoS) experiment scenario; (b) Through-wall
experiment scenario.

FIGURE 8. Bi-static triangles and the bi-static aspect angles (θaspect in
degree) in the four test positions in the LoS scenario Figure 7 (a).

thread of Figure 6, the batch processing is (the details can
be found in [4]) applied to accelerate the processing speed.
When theAPworks in beaconmode, we use 10 batches, while
50 batches are chosen if AP is working in data transmission
mode.

B. RESPIRATION DETECTION
1) LINE OF SIGHT MEASUREMENTS
The indoor line-of-sight (LoS) experimental set up is shown
in Figure 7 (a). There are four test positions (from P1 to P4)
each of which define a different bistatic detection geometries,
and are sketched-out in Figure 8. During the experiments,
the same subject sat on a chair and breathed normally for all
testing positions.

Figure 9 shows the phase extraction results for breathing
detection when the Wi-Fi AP transmits beacon signals only.
The phase variations caused by the chest-wall movements can
be clearly observed in Figure 9. Examination of the output
trace shows that inhaling causes a decrease of the relative
phase, while increasing phase is observed during exhaling.
It can also be seen that approximately 8 to 9 respiration
cycles are detected within around 40 seconds for all test-
ing positions. These correspond to normal human respira-
tion rates and have been validated through video recordings.
The subjects were required to breath at normal pace and
magnitude in order to achieve consistent observation results.
However, some of the phase variation magnitudes shows a
high correlation with positions. Results from P2&3 show
explicit phase variation magnitudes that are matched

FIGURE 9. Time domain respiration capturing using beacon signals at
four positions; (a), (b), (c) and (d) correspond to results obtained from
P1 to P4 in Figure 7 (a) respectively.

FIGURE 10. Respiration rate estimation by using beacon signals at four
positions; (a), (b), (c) and (d) correspond to results obtained from P1 to
P4 in Figure. 7 (a) respectively in frequency domain.

with respiration. The results conducted from P1 is in the
middle, while P4 appears unfavorable for respiration detec-
tion. A number of potential reasons for this phenomenon are
described in the following. First, the wavelength of Wi-Fi
signal is around 12 cm so small geometrical changes due
to body movements will change the phase variation. In Fig-
ure 9 (a) and (b) for example, the difference between phase
deviations is approximately 1 radian, which equates to 1 cm
difference in chest movement. Second, different parts of the
chest may be detected which may alter the phase pertur-
bation. Finally, although the targets are breathing normally,
the chest movement is unlikely to be absolutely regular from
one cycle to the next and bulk body movements will cause
larger immediate phase changes, such as the red curves in Fig-
ure 9 (a) and 11 (c). By taking the Fourier transformation
of the time-domain phase detection in Figure 9, we can
see that observations from all four positions show peak
about 0.3 Hz which is matched with the normal respiration
tempo.
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FIGURE 11. Time domain respiration capturing when AP working in data
transmission mode; (a), (b), (c) and (d) correspond to results obtained
from P1 to P4 in Figure. 7 (a) respectively; red curve in (c) indicates the
phase variations caused by irregular chest-wall movements.

Figure 11 shows the similar LoS reparation detection when
Wi-Fi AP working in data transmitting mode. In general,
the results are similar to those found using the beacon signals.
However, by comparing Figure 9 (a) and 11 (a) we observe
that the phase variations are smoother when using data trans-
missions. Based on these experimental results, we estimate
the average maximum phase variation within a breathing
cycle for the four positions in Table.1 and match it with its
corresponding aspect angle in Figure 8. These values are cal-
culated manually based on estimating the difference between
every two consecutive maxima and minima phase values.
In general, it seems that increasing the bi-static aspect angle
decreases the phase variations, which is in agreement with
bi-static Doppler theory. More specifically, phase variation at
position P1 is the largest and corresponding to the smallest
aspect angle which is 7 degrees.

2) THROUGH-WALL MEASUREMENTS
The through-wall respiration detection experiments were
setup in a house with a standard bricked cavity wall of 33cm
thickness (Figure 7(b)). Both the reference and surveillance
antennas were placed outside the house 10 and 40 cm away
from the wall respectively. The Wi-Fi AP was set to data
transmission mode and was located inside the room at a
height of 1.15m. Two test positions (P1 and P2) were 61 cm
and 101 cm respectively from the wall in the bore sight of
the surveillance and reference antennas. During experiments,
the subject was instructed to remain stationary and breath
normally. The detection results are shown in Figure 13. The
periodical phase variation patterns are similar to those seen
in Figure 9 and 11 and the breathing pattern can clearly
be seen. However, when target is at P2 the phase variation
pattern is not as stable as that of P1, which is likely to be
because of the weaker signal strength caused by the increased
range of P2. We also plot the Fourier transformation of the
through-wall respiration detection. More frequency scattered

FIGURE 12. Respiration rate estimation when AP working in data
transmission mode; (a), (b), (c) and (d) correspond to results obtained
from P1 to P4 in Figure. 7 (a) respectively in frequency domain.

TABLE 1. Phase variations of the four test positions from P1 to P4 based
on Figure 11 with the corresponding aspect angle and cosine value of the
aspect angles.

FIGURE 13. Time domain respiration capturing and rate estimation
results in the through-wall scenario (a), (c) at P1 (b), (d) at P2 in
Figure. 7 (b), both in time and frequency domains.

components can be observed from results because of the low
signal to noise ratio (SNR) fact.

C. ACTIVITY RECOGNITION
In this section, we first introduce and illustrate the µ-DS
generated by our passive radio sensing system, then show
the results of ‘‘start-end’’ point detection method. Three
experimental settings are implemented, which use 20%, 40%
and 60% of the dataset are used for training respectively.
Finally, to ensure fair comparisons, we compare the DTN
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TABLE 2. Methods under evaluation for µ-D classification and their
descriptions.

TABLE 3. Dataset description of the six activities in PWS experiments.
M1(20) indicates the first motion including 20 µ-DS samples.

FIGURE 14. Overview of PWS µ-Ds in dB scale. (a) to (f) are the µ-Ds of
motion 1 (M1) to 6 (M6) in Table 3.

based performance with PCA feature based SVM and SRC
classifications, which are listed in Table 2.

1) PASSIVE RADIO SENSING µ-D ANALYSIS
In this section, a µ-D dataset is collected for 6 classes of
typical everyday human activities as described in Table 3.
We also show the corresponding µ-DS in Figure 14.
The sixµ-Ds exhibit different patterns and their visual dis-

criminative characteristics are outlined as: i), The maximum
Doppler shift; ii), Time duration of the µ-D; iii), Switches
between negative to positive or vice-versa, if any; iv), The
magnitude of the zero Doppler line caused by the DSI or
multipath.

In general, the maximum Doppler frequencies of these six
µ-DS range from 2Hz to 4.5Hz. The second discriminative
feature relates to the relative direction of motion, indicated by
the sign (positive or negative) of the Doppler shift frequency:
some motions induce Doppler frequencies that transverse
from positive to negative, (e.g. M1 and M2), while others

TABLE 4. Activity recognition results for different features and
classifiers, percentage in (%).

induce only positive or negative Doppler frequencies (M3,
M4, M5 and M6). Although M1 and M2 both have the
similar patterns (from positive to negative), the time dura-
tion of each signature segment increases the discriminative
characterictics of the feature, such as the shorter duration
of the positive Doppler frequency in M2 compared to the
positive Doppler frequency in M1. The final distinguishable
feature is the presence of the zero Doppler line during the
motion. A clear example is the comparison between the out-
put for M5 and M6, where the µ-Ds patterns are similar,
but the latter has a stronger zero Doppler line. The reason
why M5 exhibits no zero Doppler line can be attributed to a
shielding effect on the DSI when the subject gets up from
the floor. Although these selected empirical features agree
closely with the intuitive visual interpretation, obtaining them
accurately requires complex feature selection methods such
as detecting accurate Doppler patterns. In addition, these
methods are prone to errors which in turn can distort the
outcome of the classifier. For the classification scheme using
SRC, we utilize the reduced-dimensionl data vectors after the
PCA operation. For selecting features for DCNN, we simply
input the original µ-D according to methods introduced in
Section III-C4.

2) ACTIVITY RECOGNITION
The recognition results shown in Table 4 shows that the
PCA feature based SRC outperforms average by 28% on
SVM with same features. Compared with the PCA fea-
ture based SRC, the AlexNet+FC+FT approach achieves
an improved performance when using 40% and 60% of the
data for training. While, PCA feature based SRC outper-
forms AlexNet+FC+FT approach by around 1.7% if 20%
of the dataset for training. In addition, other DTN methods
e.g. AlexNet+WholeNet+FT fine-tuning the whole networks
achieve at least 11% improvement than SRC. This result sug-
gests that shallow methods, like SRC, is suitable for handling
small training datasets, while the DTN framework achieves
a superior performance compared to shallow methods only
if the whole network is fine-tuned. Furthermore, the result
indicates that adapting and changing local features in Conv
layers is essential for the DTN.

The example confusion matrix of AlexNet+WholeNet+FT
based methods in Table 5 shown that we can still achieve
comparable high recognition rate even with only 20% data
for training. As can be seen from the confusionmatrix that the
most misclassifications happen from M2−→M3 and between
M5 & 6. It is not difficult to interpreting this result by
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TABLE 5. Confusion matrix of AlexNet+WholeNet+FT based activities
classification performance using 20% data for training, percentage in (%).

observing theµ-Ds in Figure 14. Theµ-Ds ofM2 andM3 are
very similar in shape, just present in reversed order. Both
M5 and M6 contain the action of getting up from lying down
pose. This observation also indicates that introducing the time
sequential analysis in the models of the µ-Ds traces will
further improve the recognition rate in future works.

V. CONCLUSION AND FUTURE WORK
In this paper, we have examined two use-cases to demonstrate
that wireless signal bursts in ISM band can be exploited to
collect signs-of-life and human activity information with-
out actually performing any type of signal demodulation or
decoding. A summary of the key research achievements for
these two cases is given below:
Respiration Detection:A novel phase-sensitive processing

system that works in real-time to mitigate the requirement for
long coherent integration times in conventional passive radio
sensing technology is proposed and implemented.We utilized
the instantaneous Doppler which is the phase output of the
CAF processing. This method was evaluated and discussed
with respect to measured data from various geometrical lay-
outs and LoS conditions.
Activity Recognition: A DTN approach is proposed and

tested based on of the six daily activities µ-Ds dataset.
We observed that our fine tuning DTN approach outperforms
the PCA feature based shallow classifiers like SVM, SRC by
9% on average.

Our overall conclusions are that, using the methods we
have develped, human respiration can be observed directly
using phase measurements from wireless bursts. In addition,
an interpreting strategy like a DTN is required in order to
classify very small fine-tuned features and the irregular µ-Ds
patterns generated from daily activities. Passive radio sensing
is technology that is only now beginning to mature and this
work takes it a step further towards real-world applications
by proving its ability to identify signs-of-life and recog-
nize everyday human activities by using ambient wireless
communications signals without demodulation or decoding.
We expect future work in this area to be directed towards:
i). data processing with multiple wireless sources; ii). multi-
ple targets discrimination; iii). performance optimisation by
assessing the impact of burst frequency and waveform char-
acteristics; iv). cross disciplinary approaches for large scale
data collection to improve machine learning performance.
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