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ABSTRACT

Soft dropout, a generalization of standard “hard” dropout, is
introduced to regularize the parameters in neural network-
s and prevent overfitting. We replace the “hard” dropout
mask following a Bernoulli distribution with the “soft” mask
following a beta distribution to drop the hidden nodes in
different levels. The soft dropout method can introduce con-
tinuous mask coefficients in the interval of [0, 1], rather than
only zero and one. Meanwhile, in order to implement the
adaptive dropout rate via adaptive distribution parameters,
we respectively utilize the half-Gaussian distributed and the
half-Laplace distributed variables to approximate the beta
distributed masks and apply a variation of variational Bayes
optimization called stochastic gradient variational Bayes (S-
GVB) algorithm to optimize the distribution parameters.
In the experiments, compared with the standard soft dropout
with fixed dropout rate, the adaptive soft dropout method gen-
erally improves the performance. In addition, the proposed
soft dropout and its adaptive versions achieve performance
improvement compared with the referred methods on both
image classification and regression tasks.

Index Terms— Neural networks, soft dropout, beta dis-
tribution, Bayesian approximation

1. INTRODUCTION

Recently, neural networks have attracted great attention from
academic and industry for their excellent performance on var-
ious tasks including image classification [1, 2, 3, 4, 5], image
retrieval [6, 7, 8, 9], speech recognition [10, 11], and time se-
ries prediction [12, 13] with large-scale datasets. Neural net-
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works including fully connected (FC) neural networks, con-
volutional neural networks (CNNs), and recurrent neural net-
works (RNNs) are becoming deeper and deeper to extend the
capability to learn more discriminative nonlinear patterns in
the training process, which may lead to the major drawback
of overfitting the limited training data and tend to be difficult
in generalization [14].

To address this issue, different works focused on the so-
lutions about how to improve the generalization ability and
prevent overfitting of deep models, including early stopping
[15], data augmentation [16], and regularization [17, 18, 19].
Dropout [17], a fundamental regularization technique, regu-
larizes the model parameters by dropping them randomly in
the training steps, which plays an important role in prevent-
ing feature co-adaptation [20]. In addition, distinct work-
s [14, 21, 22, 23, 24, 25] created variations of dropout and
obtained significant improvement. Wang and Manning [21]
proposed a Gaussian approximation called Gaussian dropout
with virtually identical regularization performance but much
faster convergence than the standard dropout in [18]. Mae-
da [22] introduced a Bayesian interpretation to optimize the
dropout rate which is beneficial for model training and pre-
diction, but focused on the binary variant. Kingma et.al. [14]
proposed variational dropout with dropout rate optimized by
the stochastic gradient variational Bayes (SGVB) inference
[26] leading to much faster convergence than the Gaussian
dropout. Gal and Ghahramani [23] predicted the model uncer-
tainty in neural networks via dropout which can be interpreted
as a Bayesian approximation in regression, classification, and
reinforcement learning. Gal et al. [24] introduced the con-
crete dropout, an alternative method for automatically tuning
the dropout rate. In addition, a dropout variant has been pro-
posed for RNNs focusing on time dependence representation
and demonstrated outstanding effectiveness [25]. One thing
in common among all the aforementioned dropout techniques
is that they all interpret the dropout via Bernoulli or Gaussian
prior.

In this paper, integrating advantages of both, we propose
a dropout variant named soft dropout which can be consid-
ered as a generalization of the discrete dropout technique
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(a) Standard dropout (b) Soft dropout

Fig. 1: Examples of (a) standard dropout and (b) the proposed
soft dropout. Notation: different grey scales represent differ-
ent values between 0 (by white), i.e., fully “drop” and 1 (by
black), i.e., fully “hold”.

with Bernoulli dropout mask in [17]. Replacing the masks by
the beta distributed variables which are continuously valued
in the interval of [0, 1], the proposed soft dropout not only
guarantees the fundamental objective of dropout, i.e., ignor-
ing part of model parameters with normalized weights when
training, but also samples from a wider space for parameter
selection than the discrete dropout since each parameter has
more (in principle infinite) states, which can be considered
as model ensemble from a wider parameter space. Figure
1 illustrates the difference between the FC neural networks
of the discrete dropout and the proposed soft dropout. The
soft dropout masks perform various levels (by grey scale in
Figure 1) of dropout for the parameters, rather than only 1 (by
black) and 0 (by white). We expect the proposed soft dropout
can also improve model performance and show reduction of
overfitting.

Furthermore, a Bayesian approximation of the proposed
soft dropout is introduced for adaptive dropout rate learning
by optimizing the prior parameters. It is known that adapta-
tion of the dropout rate affects the performance of the model
to some extent [14]. Adaptive dropout rate is beneficial to
the optimization of the soft dropout technique. Given the fac-
t that the beta distribution cannot be directly handled by the
SGVB algorithm, we utilize the half-Gaussian and the half-
Laplace distributions to approximate the beta prior of the soft
dropout. The adaptive soft dropout techniques, called Gaus-
sian and Laplace soft dropout respectively, can learn the pri-
or parameters by using the SGVB algorithm and demonstrate
better performance than the soft dropout with fixed dropout
rate.

2. METHODOLOGY

2.1. Soft Dropout

For a neural network with L layers, we define Θ = {θl}Ll=1

where θl ∈ RKl−1×Kl is the model parameter matrix for the
lth layer and Kl, l = 1, · · · , L is the hidden node number
of the lth layer. Note that the inputs are the 0th layer and
the outputs are the Lth layer. In the standard dropout, a set
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Fig. 2: Probability density functions (PDFs) of beta distribu-
tion with different parameters. We only illustrate the cases
that α, β < 1 as examples.

of independent random variables M =
{
m(l)

}L

l=1
,m(l) =

[m
(l)
1 , · · · ,m(l)

Kl
]T are sampled from the Bernoulli distribution

and considered as the masks multiplied element-wise with the
hidden nodes [17].

In the view of Bayesian optimization, the standard dropout
can be considered as a regularization with the discrete
Bernoulli prior. In this case, the soft dropout is a general-
ized dropout by replacing the discrete prior with a continuous
prior. Specifically, we apply the beta distribution as the prior
distribution.

Due to the independent identically distributed elements of
the Kl-dimensional mask m(l), their joint probability distri-
bution can be considered as a product of the beta distributions
and defined as

Beta(m(l);αl, βl) =
∏
i

Beta(m(l)
i ;αl, βl)

=
∏
i

(m
(l)
i )αl−1(1−m

(l)
i )βl−1∫ 1

0
uαl−1(1− u)βl−1 du

, (1)

where the shape parameters αl and βl are greater than 0, l =
1, · · · , L.

The probability density functions (PDFs) of beta distri-
bution are exemplified in Figure 2. The beta distribution al-
lows the random variable falling in the bounded interval [0, 1],
which allows the neural network to drop each node in var-
ious levels. The soft dropout can approximate the standard
dropout [17] when α, β → 0. In addition, the soft dropout
with α, β = 1 can be considered as a dropout with uniform
noise.

2.2. Stochastic Gradient Variational Bayes (SGVB) for
Adaptive Soft Dropout
In this section, we introduce the adaptive soft dropout trained
by the stochastic gradient variational Bayes (SGVB) [26] al-
gorithm.

We define a dataset D = {X,Y } and a dropout-masked
model parameter set W = {wl}Ll=1 and obtain the joint dis-
tribution of D and W as



p(D,W ) = p(D|W )p(W ). (2)

Following [26], we introduce qΦ(W ) as the approximat-
ed distribution of W with parameter Φ = {Θ,Λ} where
Λ = {λ1, · · · ,λL} is a set of distribution parameters for
each layer and consider the expectation of the joint distribu-
tion in (2) w.r.t. qΦ(W ) as

∫
qΦ(W ) log

p(D,W )

qΦ(W )
dW︸ ︷︷ ︸

L(Φ)

=

∫
qΦ(W ) log p(D|W ) dW︸ ︷︷ ︸

LD(Φ)

−
∫

qΦ(W ) log
qΦ(W )

p(W )
dW︸ ︷︷ ︸

DKL(qΦ(W )||p(W ))

, (3)

where L(Φ) is the lower bound of EΦ [p(W |D)] in variation-
al inference, LD(Φ) is the expected log-likelihood, and DKL
means the Kullback-Leibler (KL) divergence.

Instead of maximizing the lower bound L(Φ), we can
maximize the right hand side (RHS) of (3), which is the ex-
pected log-likelihood LD(Φ) subtracting the KL divergence
between the approximated distribution qΦ(W ) and the prior
distribution p(W ).

Here, LD(Φ) can be approximated by the expected log-
likelihood LSGVB

D (Φ) in SGVB when applying mini-batch s-
tochastic gradient descent (SGD) algorithm in the training
steps as

LD(Φ) =
∑

x∈X,y∈Y

EqΦ(W )[log p(y|x,W )]

≈ LSGVB
D (Φ) =

N

M

M∑
i=1

log p(yi|xi,W = f(ϵ;Φ)), (4)

where N and M are the data point number in D and the batch
size in the training steps, respectively. yi and xi are the target
and the input of the ith samples in the minibatches. W can be
calculated by random samples ϵ and a differentiable function
f(·;Φ)).

For the lth layer of a neural network, we define xl−1 ∈
RKl−1 and zl ∈ RKl as the input and the output of the layer
and can obtain the layer function with standard dropout mask
ml as

zl = a
(
ml ⊙ (θT

l xl)
)
, (5)

where a(·) is the activation function and ⊙ is the element-
wise multiplication.

The basic principle in SGVB [26] is to parameterize the
dropout-masked parameter matrix wl ∼ qθl

(wl) by wl =
f(ϵl;θl,λl) where f(·) is the differentiable function intro-
duced in (4) and ϵli ∼ p(ϵli), i = 1, · · · ,Kl in ϵl is a random
noise variable following a prior distribution with fixed param-
eter(s). The layer function with the SGVB-based wl can be
defined as
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Fig. 3: Illustration of beta approximation via (a) Gaussian dis-
tribution and (b) Laplace distribution. The black solid line are
the beta PDFs p with α = β = 0.5, the blue solid lines are the
Gaussian PDF in (a) and the Laplace PDF in (b) respective-
ly, the blue dashed lines are shifted from the corresponding
negative zones of the PDFs, and the red solid lines are the
approximated PDFs q.

zl = a(wT
l xl) = a(f(ϵl;θl,λl)

Txl). (6)

Although the beta PDF is differentiable in the interval of
(0, 1), the beta distribution is unfeasible to be directly extend-
ed in SGVB. In other words, it is difficult to find an easy and
practicable representation for a beta variable by the differ-
entiable function f(·) and the random variables ϵ discussed
above. However, we can approximate the beta distribution vi-
a two half-Gaussian or two half-Laplace distributions which
can be obtained from a single Gaussian or a single Laplace
distribution respectively as shown in Figure 3. When ap-
plying the former, we can obtain the differentiable function
f(ϵl;θl, σ

(l)
1 , σ

(l)
2 ) of the lth layer as

f(ϵl;θl, σ
(l)
1 , σ

(l)
2 ) = θl · diag(max(0,min(1, ζl))),

ζl = τ l ⊙ (ϵlσ
(l)
1 ) + (1− τ l)⊙ (1 + ϵlσ

(l)
2 ), (7)

where ϵli ∼ N (0, 1), i = 1, · · · ,Kl, σ
(l)
1 and σ

(l)
2 are s-

cale parameters of two half-Gaussian distributions respective-
ly, (i.e., λl = {σ(l)

1 , σ
(l)
2 },) diag(·) is the matrix operation

that transforms a vector into a square diagonal matrix with
the vector as the main diagonal, and

τli =

{
1, ϵli ≥ 0

0, ϵli < 0
. (8)

Similarly, when adopting the latter, the intermediate vector ζl

can be presented as

ζl = τ l ⊙ (ϵlb
(l)
1 ) + (1− τ l)⊙ (1 + ϵlb

(l)
2 ), (9)

where ϵli ∼ Laplace(0, 1), and b
(l)
1 and b

(l)
2 are the scale pa-

rameters of two half-Laplace distributions respectively, i.e.,
λl = {b(l)1 , b

(l)
2 }.



Table 1: Test accuracies (%) on the MNIST dataset. 1-hidden-layer FC neural networks are constructed with different hidden
node numbers. Our soft dropout techniques (with various parameter settings and with Gaussian and Laplace approximations)
are compared with the referred methods. Note that the best results of each FC neural network structure are marked in bold
fonts, respectively.

Hidden node number 100 500 1000

No dropout 96.98± 0.09 97.27± 0.06 97.25± 0.11

Fixed dropout rate

Dropout, Bernoulli (p = 0.5) 96.65± 0.17 98.09± 0.03 98.23± 0.08
Dropout, Gaussian (p = 0.5) 95.02± 0.37 98.11± 0.10 98.13± 0.09
MC dropout (p = 0.5) 87.24± 0.84 96.76± 0.17 97.35± 0.07

Soft dropout (α = 0.1, β = 0.1) 97.15± 0.12 98.20± 0.06 98.35± 0.11
Soft dropout (α = 0.5, β = 0.5) 97.71± 0.09 98.35± 0.07 98.41± 0.04
Soft dropout (α = 0.9, β = 0.9) 98.06 ± 0.19 98.51 ± 0.05 98.51 ± 0.05
Soft dropout (α = 1.0, β = 1.0) 97.60± 0.14 98.18± 0.10 98.23± 0.12

Adaptive dropout rate

Concrete dropout 97.85± 0.08 98.26± 0.10 98.29± 0.07
Variational dropout 98.09± 0.06 98.34± 0.07 98.42± 0.07

Gaussian soft dropout 98.15± 0.06 98.49 ± 0.18 98.56 ± 0.16
Laplace soft dropout 98.28 ± 0.06 98.45± 0.06 98.44± 0.03

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we conduct experiments on both the classifi-
cation and the regression tasks to demonstrate the effective-
ness of the proposed soft dropout method in preventing over-
fitting. We show the experimental results of the proposed soft
dropout with different settings and its adaptive dropout rate
versions compared with the standard dropout with Bernoulli
noise [17] and Gaussian noise [18], the MC dropout [23], the
concrete dropout [24], and the variational dropout [14]. As
for the classification task, we evaluate the methods on both
the MNIST [27] and the CIFAR-10 [28] datasets in Section
3.1. In addition, we evaluate them on the UCI datasets [29]
for the regression task in Section 3.2.

3.1. Classification on MNIST and CIFAR-10 datasets

Experimental results on the standard classification bench-
mark, i.e., MNIST dataset using 1-hidden-layer FC neural
networks are shown in Table 1. To evaluate behaviour of the
methods in relation to different model sizes, i.e., hidden node
number, we conducted several FC neural networks with 100,
500, and 1000 hidden nodes, respectively. Except for the con-
crete dropout and the variational dropout which have adaptive
dropout rates, other referred methods have their dropout rate
1 − p = 0.5 in the training steps. Meanwhile, we set α = β,
as discussed in Section 2.1, with different values at 0.1, 0.5,
0.9, and 1.0 for soft dropout with a fixed dropout rate and
two adaptive soft dropout methods are named as the Gaus-
sian soft dropout and the Laplace soft dropout, respectively.
Adopting the SGD algorithm, we trained each method over
100 epochs to guarantee its convergence. All the methods
were experimented 5 runs with random initialization to com-
pare the means and standard deviations of the classification
accuracies.

From Table 1, for the fixed rate part, the proposed soft
dropout method with α = β = 0.9 achieves the best accura-
cies of 98.06% on a 1-hidden-layer FC neural network with
100 hidden nodes compared with different referred method-
s, although those with α = β = 0.1, α = β = 0.5, and
α = β = 1.0 also obtain competitive results. Moreover, we
achieve 98.51%, which is the best accuracy on the proposed
soft dropout at α = β = 0.9, using both 500- and 1000-
hidden-node FC neural networks. Meanwhile, compared with
two adaptive-rate dropout versions, the Laplace soft dropout
performs the best at 98.28% on the 100-hidden-node FC neu-
ral network, while the Gaussian soft dropout achieves the best
accuracies on the 500- and 1000-hidden-node FC neural net-
works at 98.49% and 98.56%, respectively.

We then evaluated the performance of the proposed soft
dropout with the CIFAR-10 dataset. We conducted a CNN
for image classification with a scale parameter k to adjust the
model size. The CNN has two convolutional layers with 32×
k and 64×k channels followed by two FC layers with 128×k
hidden nodes of each. In the experiment settings, we apply
the scale parameter k at 1, 2, and 3 respectively. We also
set p = 0.5 for the standard dropout with Bernoulli noise [17]
and Gaussian noise [18], and the MC dropout [23], while α of
the soft dropout is set as 0.1, 0.5, 0.9, and 1.0, respectively,
equal to β. All the models have been trained for over 100
epochs using the SGD algorithm, and each experiment is run
5 times with random initial settings.

Table 2 shows the comparisons of the classification ac-
curacies on test set of the CIFAR-10 dataset among distinct
referred methods and the proposed soft dropout method with
different parameter settings and both adaptive versions. Our
soft dropout with α = β = 0.1 achieves the best accuracy
of 78.92%, which is significantly higher than the MC dropout
and the concrete dropout, and slightly higher than the stan-



Table 2: Test accuracies (%) on the CIFAR-10 dataset. CNNs are constructed with different model sizes. Our soft dropout
techniques (with various parameter settings and with Gaussian and Laplace approximations) are compared with the referred
methods. Note that the best results of each CNN structure are marked in bold fonts, respectively.

k 1 2 3

No dropout 73.40± 0.42 75.24± 0.22 75.72± 0.13

Fixed dropout rate

Dropout, Bernoulli (p = 0.5) 78.55± 0.49 79.50± 0.21 79.68± 0.11
Dropout, Gaussian (p = 0.5) 78.78± 0.36 79.49± 0.26 79.62± 0.30
MC dropout (p = 0.5) 72.23± 0.96 77.47± 0.39 79.32± 0.17

Soft dropout (α = 0.1, β = 0.1) 78.92 ± 0.55 80.18 ± 0.24 80.18 ± 0.18
Soft dropout (α = 0.5, β = 0.5) 77.53± 0.39 78.99± 0.27 79.10± 0.27
Soft dropout (α = 0.9, β = 0.9) 76.34± 0.38 77.93± 0.23 78.30± 0.20
Soft dropout (α = 1.0, β = 1.0) 76.29± 0.16 77.82± 0.29 78.28± 0.43

Adaptive dropout rate

Concrete dropout 72.55± 0.97 75.10± 0.23 75.04± 1.09
Variational dropout 77.73 ± 0.26 78.61 ± 0.16 78.43± 0.32

Gaussian soft dropout 77.18± 0.14 78.41± 0.10 78.79 ± 0.09
Laplace soft dropout 77.31± 0.32 78.54± 0.24 78.75± 0.19

Table 3: Test RMSEs on the four UCI datasets and corresponding input feature sizes. Our soft dropout techniques (with various
parameter settings and with Gaussian and Laplace approximations) are compared with the referred methods. Note that the best
results of each dataset are marked in bold fonts, respectively.

Dataset Boston Housing Concrete Strength Wine Quality Red Yacht Hydrodynamics
Input size 13 8 11 6

No dropout 8.55± 0.01 15.82± 0.03 0.8154± 0.0014 13.17± 0.18

Fixed
dropout rate

Dropout, Bernoulli (p = 0.5) 8.51± 0.01 15.78± 0.01 0.8130± 0.0005 13.02± 0.07
Dropout, Gaussian (p = 0.5) 8.51± 0.01 15.78 ± 0.01 0.8128 ± 0.0003 12.97± 0.16
MC dropout (p = 0.5) 8.99± 0.30 15.82± 0.10 0.8404± 0.0056 12.50± 0.26

Soft dropout (α = 0.1, β = 0.1) 8.51 ± 0.01 15.79± 0.02 0.8131± 0.0003 12.45 ± 0.36
Soft dropout (α = 0.5, β = 0.5) 8.53± 0.02 15.78± 0.02 0.8134± 0.0003 12.50± 0.40
Soft dropout (α = 0.9, β = 0.9) 8.52± 0.01 15.79± 0.02 0.8136± 0.0003 12.83± 0.33
Soft dropout (α = 1.0, β = 1.0) 8.54± 0.01 15.81± 0.02 0.8134± 0.0004 13.04± 0.08

Adaptive
dropout rate

Concrete dropout 8.77± 0.09 16.03± 0.03 0.8273± 0.0049 13.25± 0.33
Variational dropout 8.51± 0.01 15.79± 0.02 0.8133± 0.0004 13.06± 0.06

Gaussian soft dropout 8.49± 0.01 15.76± 0.01 0.8128 ± 0.0003 12.32± 0.04
Laplace soft dropout 8.47 ± 0.01 15.75 ± 0.02 0.8133± 0.0005 12.28 ± 0.02

dard dropout when k = 1. For both of the other two mod-
el sizes (i.e., k = 2 and 3), the proposed soft dropout with
α = β = 0.1 obtains the best accuracies of 80.18% as well.
With larger α and β of the soft dropout, the classification ac-
curacy drops markedly. In addition, both the Gaussian soft
dropout and the Laplace soft dropout perform competitively
among the variational dropout with k = 1, 2, while the Gaus-
sian soft dropout obtains the best performance (78.79%) when
k = 3.

3.2. Regression on UCI datasets

We further conducted experiments in a regression setting us-
ing the well-known UCI datasets. All the methods above were
tested using a FC neural network with 2 hidden layers, 50
hidden nodes each. The root mean squared error (RMSE) is
considered as the metric for all the methods, which is defined

as

RMSE =

√
1

N
(y − ŷ)T(y − ŷ), (10)

where y is the target, ŷ is the output of the FC neural network,
and N is the number of test points. All the methods were
trained for 200 epochs using the SGD algorithm with 5 runs
under random initialization.

Regression results on the test sets are reported in Table 3.
The proposed soft dropout with α = β = 0.1 achieves best
performance among other dropout techniques with the fixed
dropout rate on the Boston Housing and the Yacht Hydrody-
namics datasets with mean RMSE at 8.51 and 12.45, respec-
tively. At the meantime, the standard dropout with Gaussian
noise has the lowest mean of RMSE at 15.78 and 0.8128 on
the Concrete Strength and the Wine Quality Red datasets, re-



spectively. The Laplace soft dropout outperforms all the oth-
er methods in terms of mean RMSE on the Boston Housing,
the Concrete Strength, and the Yacht Hydrodynamics dataset-
s, while the Gaussian soft dropout performs best on the Wine
Quality Red dataset.

4. CONCLUSIONS

In this paper, we proposed the soft dropout technique with
random “soft” masks following beta distribution to prevent
overfitting. Comparing with the “hard” dropout with Bernoul-
li masks, the soft masks have continuous values in the inter-
val of [0, 1] which can express the “drop” in various levels.
Meanwhile, in order to implement the adaptive dropout rate
via adaptive distribution parameters learned by the variational
Bayes optimization, we utilized the half-Gaussian distribu-
tion and the half-Laplace distribution to approximate the beta
prior of random masks, separately, and applied the stochastic
gradient variational Bayes (SGVB) algorithm for optimizing
the distribution parameters. Compared with the standard soft
dropout with fixed dropout rate, the adaptive soft dropout
methods called Gaussian and Laplace soft dropout obtain
performance improvement on most datasets. In addition,
the proposed soft dropout and its adaptive versions achieve
performance improvement, comparing with the five referred
methods on both the image classification and the regression
tasks. In practical application of neural network training, the
Laplace soft dropout is recommended due to its smaller KL
divergence between approximated and actual beta distribu-
tions than the Gaussian soft dropout as shown in Figure 3,
though they have no significant difference in performance.
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