
 

 

Abstract—Modelling urban systems has interested planners and 

modellers for decades.  Different models have been achieved relying 

on mathematics, cellular automation, complexity, and scaling. While 

most of these models tend to be a simplification of reality, today 

within the paradigm shifts of artificial intelligence across the 

different fields of science, the applications of computer vision show 

promising potential in understanding the realistic dynamics of cities. 

While cities are complex by nature, computer vision shows progress 

in tackling a variety of complex physical and non-physical visual 

tasks. In this article, we review the tasks and algorithms of computer 

vision and their applications in understanding cities. We attempt to 

subdivide computer vision algorithms into tasks, and cities into layers 

to show evidence of where computer vision is intensively applied and 

where further research is needed. We focus on highlighting the 

potential role of computer vision in understanding urban systems 

related to the built environment, natural environment, human 

interaction, transportation, and infrastructure. After showing the 

diversity of computer vision algorithms and applications, the 

challenges that remain in understanding the integration between these 

different layers of cities and their interactions with one another 

relying on deep learning and computer vision. We also show 

recommendations for practice and policy-making towards reaching 

AI-generated urban policies. 

 

Keywords—Cities, computer vision, deep learning, 

Convolutional Neural Networks (CNN), urban studies 

1. INTRODUCTION 

Cities are complex entities by nature and modelling urban 

systems has interested planners for decades (Batty, 2008; 

Bettencourt, 2013; Isalgue, Coch, & Serra, 2007). A range of 

approaches have been used to model urban processes, 

examples of which include cellular automata (Batty, 1997; 

Batty, Couclelis, & Eichen, 1997; de Almeida et al., 2003), 

fractals (Batty and Longley, 1994; Batty and Xie, 1996; 

Frankhauser, 1998; Murcio et al., 2015) and multi-agent 

models (Batty, 2005; Heppenstall, Crooks, See, & Batty, 

2012). These models aim to understand cities by modelling 

their underlying components and exploring their systems, 

ultimately intending to inform decision making and policy 

(Batty, 2009; Calder et al., 2018). Due to the complexity and 

nonlinearity of cities, these models tend to explore or predict 

urban systems in a sectoral fashion. For example, transport 

models are used to simulate the potential impact of policy and 

infrastructure investment. Such models may fail to represent 

complex events in cities, in which multiple systems interact.  

The success of deep learning and computer vision in pattern 

recognition over the past decade (LeCun, Bengio, & Hinton, 

2015) has created opportunities to understand cities through 

images (Reichstein et al., 2019). So far, the diversity of the 

algorithms of computer vision has enabled researchers to 

tackle and predict a wide spectrum of issues in more accurate 

and precise fashion (Goodfellow, Bengio, & Courville, 2017; 

LeCun et al., 2015; Reichstein et al., 2019). 

In this paper, we review the algorithms and applications of 

computer vision related to urban analytics. Urban analytics 

can be defined as urban research that exploits new data 

resources that are captured, for example, from sensors (e.g. 

imagery, the internet of things), crowdsources and social 

media (Batty, 2019). Deep learning and computer vision 

technologies have tremendous potential in this area for dealing 

with heterogeneous data types, many of which are image-

based. In the review, we identify the areas that have been 

intensively modelled using computer vision while also 

revealing the areas in which further research is needed. This is 

achieved by categorising the application areas of urban 

analytics into five layers of the city (the built environment, 

human interaction, transportation and traffic, the natural 

environment, and infrastructure). In doing so, we demonstrate 

that, while many urban processes are a result of interactions 

across these layers, the current approach is to tackle these 

layers differently and separately. Here, we note the potential 

of extracting data of different disciplines using a unified input 

(images/videos) that relies on computer vision methods to 

cover a wide spectrum of urban and transport research. 

This review aims to provide a resource for urban planners 

and practitioners by: 1) reviewing the main methodologies of 

computer vision, and their applicability to various tasks of 

urban analytics, 2) illustrating the variation and nuances of 

deep learning and computer vision algorithms and their 

limitations in understanding cities, 3) giving a descriptive 

understanding of the algorithms of computer vision for policy-

makers and planners, and how they are used in cities, 4) 

paving the way for developing AI-generated urban policies by 

highlighting the key enabling technologies and research 

directions. The remainder of this review is structured as 

follows: In section 2, the methodology of the review is 

described. In section 3, the key tasks of computer vision are 

described, along with the main algorithms. The applications of 

computer vision in urban analytics are reviewed in section 4. 

Section 5 summarises what remains missing in current 

research, before section 6 shows how we can move from 

prediction to decision making and policy recommendation. 

Finally, some conclusions are given in section 6. 

2. REVIEW METHODOLOGY 

The methodology of this review is divided into two parts: 1) 

manuscripts are collected that summarise the progress in deep 

learning methods and algorithms that are applicable to 

computer vision tasks, 2) manuscripts are collected that reflect 

the application of deep learning and computer vision in 

understanding cities in the last decade (since 2010).  For the 

first part, we present only the major methodological 

approaches. Papers that vary or improve on these main 

approaches are excluded. Most of these studies are presented 

in premier computer science conferences, including, but not 

limited to CVPR, ICCV, ECCV and NeurIPS, or in ArXiv. 

For the second part, we extend the search to peer-reviewed 

journals and conference proceedings listed in Scopus, Web of 

Science, Google Scholar and Science Direct, that can be 
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accessed via a combination of keywords such as: deep 

learning, cities, computer vision, land-use modelling, urban 

perception, prediction, detection, street-level images, aerial or 

satellite images. This is because the applied computer vision 

literature is often found in domain specific journals, rather 

than computer science conferences. 

In total, 641 manuscripts were collected to cover the two 

parts of the methodology. For the second part, the collected 

manuscripts were filtered to include only those related to 

computer vision of street-level or aerial images, which use 

deep learning or hybrid models that include a convolutional 

structure. Studies that involve deep learning of other data 

types such as 2D/3D LIDAR data are excluded. Studies that 

use classical machine learning or computer vision algorithms 

without involving deep learning are also excluded, except 

where they are required to draw a baseline to emphasise 

advancement or contrast. The algorithms are presented at a 

descriptive level and readers are referred to the relevant 

literature for further details. 

3. THE BASICS AND TASKS OF COMPUTER VISION 

Before exploring the domains where computer vision is 

applied in cities, it is worth identifying first what computer 

vision is and what its algorithms are capable of achieving 

from a generic perspective.  Computer vision can be narrowed 

to the task of learning the qualitative representation of visual 

elements in their raw form in order to quantify them (LeCun 

et al., 2015). Similar to human eyes, the computer sees visual 

objects and creates a cognitive understanding of a scene based 

on a sequential sample of the presented images or frames of 

images in a task-specific manner. While computer vision is 

not new (i.e. Viola & Jones, 2001), deep learning, most 

specifically Convolutional Neural Networks (CNN), has made 

it possible for computer vision to tackle various issues and 

process images more precisely and efficiently (K. He, Zhang, 

Ren, & Sun, 2015; LeCun et al., 2015). These deep models, 

computation capabilities, and the availability of large datasets 

have made it possible for computer vision to permeate a wide 

range of applications in realistic settings (Cordts et al., 2016; 

T.-Y. Lin et al., 2014; Russakovsky et al., 2015).  Generally, 

the logic of computer vision, relying on these deep models, 

can be summarized as the construction of multiple hidden 

layers that are capable of accomplishing a range of vision 

tasks by extracting digital features that may or may not be 

recognisable to human eyes (Y. Guo et al., 2016; Kuo, 2016; 

LeCun et al., 2015). The most commonly used are 

convolutional, pooling, flatten, and fully-connected layers. 

The general functions of these layers can be summarised as 

follows: 

• Convolutional layers are responsible for extracting 

features coupled with activation functions, such as 

Rectified linear units (ReLU), to add nonlinearity to the 

model, 

• Pooling layers are responsible for reducing the 

dimensionality of the data,  

• Flatten layers are responsible for converting the features 

of the model into neurons to be fed forward to the 

fully-connected layers 

• Fully-connected layers aim to adjust the weights and 

predict the output for a given task.  

The types, numbers, and orders of these layers are responsible 

for determining functionality and the optimisation of both 

accuracy and time needed for the training and the inference of 

the model. The structure of the model and the fine-tuning of 

the various hyperparameters represents the innovation and the 

advancements of the state-of-the-art for pattern recognition for 

a given task (LeCun et al., 2015). 

Depending on the type of visual task, deep models can be 

trained differently with different layers and different sets of 

algorithms (Y. Guo et al., 2016). As shown in Fig. 1, these 

algorithms of computer vision can be subdivided based on 

eight fundamental tasks, upon which other tasks can be framed 

and built. These are; image classification, segmentation and 

localisation, tracking, action-recognition, perception, 

generative models, clustering, and decision-making. Table 1 

shows the literature related to different computer vision tasks. 

It expands on the methods related to each task and their 

subcategories.  

TABLE 1: METHODS RELATED TO THE TASKS OF COMPUTER VISION 
VISION TASK SUB-CATEGORY METHOD  

CLASSIFICATION  ALEXNET (krizhevsky, sutskever, & hinton, 2012) 

VGGNET (simonyan & zisserman, 2014) 

GOOGLENET (szegedy, liu, jia, sermanet, & reed, 2015) 

RESNET (he et al., 2015) 

DENSNET (huang, liu, weinberger, & van der maaten, 2017) 

SEGMENTATION 

AND LOCALISATION 
OBJECT-BASED 

DETECTION 
R-CNN (Girshick, Donahue, Darrell, & Malik, 2014) 

FAST R-CNN (Ren, He, Girshick, & Sun, 2016) 
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 YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016)  

SSD (Liu et al., 2016) 

YOLOV2 (Redmon & Farhadi, 2017) 

YOLOV3 (Redmon & Farhadi, 2018) 

RETINANET (Lin, Goyal, Girshick, He, & Dollár, 2018) 

SEMANTIC 

SEGMENTATION 

DEEPLAB (Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2016) 

U-NET (Ronneberger, Fischer, & Brox, 2015) 

SEGNET (Badrinarayanan, Kendall, & Cipolla, 2016) 

- (Long, Shelhamer, & Darrell, 2015) 

- (Peng, Zhang, Yu, Luo, & Sun, 2017) 

- (Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2016) 

- (Zhao, Shi, Qi, Wang, & Jia, 2017) 

- (Yu & Koltun, 2015) 

REFINENET (Lin, Milan, Shen, & Reid, 2017) 

- (Chen, Papandreou, Schroff, & Adam, 2017) 

- (Jégou, Drozdzal, Vazquez, Romero, & Bengio, 2016) 

FOVEANET (Li, Wang, et al., 2017) 

LINKNET (Chaurasia & Culurciello, 2017) 

- (Yang, Yu, Zhang, Li, & Yang, 2018) 

TRACKING OBJECTS  MOTS (Voigtlaender, Krause, Sekar, Geiger, & Leibe, 2019) 

- (Jiang, Xiao, Xie, Tillo, & Huang, 2018) 

- (Kang, Ouyang, Li, & Wang, 2016) 

- (Girdhar et al., 2017) 

- (Danelljan, Hager, Khan, & Felsberg, 2015) 

- (Held, Thrun, & Savarese, 2016) 

ECO (Danelljan, Bhat, Khan, & Felsberg, 2016) 

CNNTRACKER (Y. Chen et al., 2016) 

ARTTRACK (Insafutdinov, Andriluka, et al., 2016) 

- (Wu, Lu, Gao, Zhao, & Liu, 2016) 

- (Chu et al., 2017) 

PATHTRACK (Manen, Gygli, Dai, & Gool, 2017) 

 

ACTION 

RECOGNITION 

HUMAN POSE 

ESTIMATION 

 

DENSEPOSE (Guler, Neverova, & Kokkinos, 2018) 

MULTIPOSENET (Kocabas, Karagoz, & Akbas, 2018) 

- (Papandreou et al., 2017) 

RMPE (Fang, Xie, Tai, & Lu, 2016) 

DEEPERCUT (Insafutdinov, Pishchulin, Andres, Andriluka, & Schiele, 2016) 

- (Cao, Simon, Wei, & Sheikh, 2016) 

- (Pfister, Charles, & Zisserman, 2015) 

ACTION CLASSIFICATION - (Girdhar & Ramanan, 2017) 

- (Bilen, Fernando, Gavves, Vedaldi, & Gould, 2016) 

- (Zhu, Lan, Newsam, & Hauptmann, 2017) 

- (Guo et al., 2018) 

- (Zhang, Wang, Wang, Qiao, & Wang, 2016) 

TEMPORAL ACTION 

DETECTION 

 

DAPS (Escorcia, Caba Heilbron, Niebles, & Ghanem, 2016) 

- (Diba et al., 2017) 

- (Gemert, Jain, Gati, & Snoek, 2015) 

- (Shou, Chan, Zareian, Miyazawa, & Chang, 2017) 

- (Escorcia et al., 2016) 

- (Li et al., 2016) 

- (Xu, Das, & Saenko, 2017) 

- (Chao et al., 2018) 

- (Buch, Escorcia, Shen, Ghanem, & Niebles, 2017) 

- (Zhao et al., 2017) 

SPATIO-TEMPORAL 

ACTION DETECTION 
 

- (Chen & Corso, 2015) 

- (Becattini, Uricchio, Seidenari, Del Bimbo, & Ballan, 2017) 

- (Saha, Singh, & Cuzzolin, 2017) 

- (Gemert et al., 2015) 

- (Zhu, Vial, & Lu, 2017) 

- (El-Nouby & Taylor, 2018) 

- (Saha, Singh, Sapienza, Torr, & Cuzzolin, 2016) 

- (Singh, Saha, Sapienza, Torr, & Cuzzolin, 2016) 

- (Mettes, van Gemert, & Snoek, 2016) 



 

 

- (Weinzaepfel, Harchaoui, & Schmid, 2015) 

PERCEPTION UNDERSTANDING SCENES 

 

 (Eslami et al., 2018) 

ESTIMATING DEPTH 
 

- (Cao, Wu, & Shen, 2017) 

- (He, Wang, & Hu, 2018) 

GENERATIVE 

MODELS  
GANS - (Goodfellow et al., 2014) 

- (Radford, Metz, & Chintala, 2015) 

- (Reed et al., 2016) 

STACKGAN (Zhang et al., 2016) 

- (Isola, Zhu, Zhou, & Efros, 2016) 

BIGGAN (Brock, Donahue, & Simonyan, 2018) 

CLUSTERING  
 

- (Caron, Bojanowski, Joulin, & Douze, 2018) 

- (Xie, Girshick, & Farhadi, 2016) 

DEEPCLUSTER (Tian, Zhou, & Guan, 2017) 

MAKING DECISIONS DEEP Q-LEARNING - (Mnih et al., 2013) 

- (Hester et al., 2017) 

DOUBLE DEEP Q-

LEARNING 

- (van Hasselt, Guez, & Silver, 2015) 

DUEL DEEP Q-LEARNING  - (Wang et al., 2015) 

A3C - (Mnih et al., 2016) 

3.1 Classification 

Deep learning models, most specifically Convolutional 

Neural Networks (CNN), have shown substantial progress in 

classifying images of a wide spectrum of classes (LeCun et al., 

2015). Various deep CNN models with different architectures 

and hyper-parameters have been computed to recognize visual 

objects in large repositories of images, such as the ImageNET 

dataset that contains 15 million images that belong to 22,000 

different classes (Russakovsky et al., 2015, 2015). Starting 

with AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan 

& Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), 

ResNet (K. He et al., 2015)  and most recently, DenseNet 

(Huang et al., 2017), these CNN models are able to accurately 

recognize and classify a wide range of images. For instance, 

ResNet-152 achieved 4.49% top-5 error score on the 

validation set of ImageNET (K. He et al., 2015). 

32.2 Segmentation and localisation 

Segmentation and localisation are the processes of 

identifying multiple objects in a single image. These models 

use a single deep model in an end-to-end fashion, in which the 

first part of the model is an image classifier followed by 

different types of layers to localise different objects with a 

given confidence. Notable examples include the Region-based 

CNN model (R-CNN) (Girshick et al., 2014), Fast R-CNN 

(Ren et al., 2016), You Only Look Once (YOLO) (Redmon & 

Farhadi, 2017, 2018) and the MultiBox Detectors for fast 

image segmentation, or so-called; Single Shot Multi-Box 

Detector (SSD) technique (W. Liu et al., 2016). CNN models 

have shown significant progress in recognising and detecting 

objects in images with a minimal inference time and high 

overall validation accuracy.  YOLOv3 achieves 93.8% top-5 

score on the COCO dataset (Redmon & Farhadi, 2018).   

For further explanation related to localisation and object 

detection, see (Zou, Shi, Guo, & Ye, 2019). 

3.3 Tracking objects 

After building a system of object detection, computer vision 

can be used for tracking multiple objects in a complex scene 

by adding features that correlate a pair of consecutive frames. 

This tracker system is capable of identifying a candidate box 

at each frame-level jointly with their time deformations 

(Girdhar, Gkioxari, Torresani, Paluri, & Tran, 2017). While 

different tracker systems can be built based on correlation 

filtering and online learning techniques between consecutive 

frames (X. Zhang, Xia, Lu, Shen, & Zhang, 2018), the state-

of-the-art research in object tracking uses an end-to-end CNN 

model to tackle both detection and tracking, which can add 

more advanced features (i.e. dealing with occlusion issues) for 

tracking various elements (Girdhar et al., 2017; Hou, Chen, & 

Shah, 2017; K. Kang, Ouyang, Li, & Wang, 2016).  For 

further explanation related to deep visual tracking, see P. Li, 

Wang, Wang, & Lu (2018). 

3.4 Action recognition 

Computer vision coupled with deep CNN models is not 

only capable of tracking the motion of an object in a complex 

scene, but also classifying its multiple actions while tracking 

(Bilen et al., 2016; Limin Wang, Qiao, & Tang, 2015; B. 

Zhang et al., 2016). Various computer vision algorithms have 

been developed to tackle humans poses and their interaction 

with an external object in a complex scene (El-Nouby & 

Taylor, 2018; Saha et al., 2016; Soomro & Shah, 2017; 

Weinzaepfel, Martin, & Schmid, 2016). 2D or 3D convolution 

layers (with or without the spatiotemporal dimensions) can 

identify the action of the object from its pose in relation to 

another target object. For instance, from the pose of a person 

sitting on a bike, the algorithms of computer vision can 

identify cycling as an action. This concept of the triplet inputs 

(object, verb, target) has been seminal for tackling real-world 

events and behaviours, from a simple still image to multi-

frame images (Girdhar et al., 2017). 

3.5 Perception 

Perception tasks can be seen as classification or regression 

tasks that predict information that is not necessarily embedded 

directly in the image but can be inferred from the overall 

structure of the image. Perceiving a neighbourhood as safe or 

unsafe for example can be seen as a perception task, in which 

the machine extracts features from the structure of an image to 

classify the safety of the image. Even though understanding 



 

 

the overall gist of a scene is seminal for understanding more 

than an object in an image (Oliva & Torralba, 2006), few 

works have been done in this domain. The complexity of 

tackling this subject lies in sensing the class of an image by 

sensing the overall profound features of the image, rather than 

identifying an object in the image. For instance, identifying 

and sensing the planning status of a region from the image 

(Ibrahim, Haworth, & Cheng, 2019).  

Moreover, seeing what is far and what is close just by 

looking at a still image is another advantage of computer 

vision relying on deep CNN models. Cao, Wu, & Shen (2017) 

trained deep CNN models to estimate the depth in a single 

image by labelling the different depths on the image and 

dealing with training the model as a classification task.  In  

contrast, He, Wang, & Hu (2018) trained a deep CNN model 

to estimate the depth of a monocular image relying on the 

information of focal length that has proven to outperform the 

other state-of-the-art depth estimation algorithms based on 

deep learning models.  

3.6 Generative models 

Generative models refer to the ones that tend to output 

synthesized data by learning the representation of their input 

data in an unsupervised fashion, conditionally or 

unconditionally.  

There is a range of algorithms that are classified as 

generative models, such as Restricted Boltzmann Machine 

(RBM), deep belief networks, Autoencoders, and Generative 

adversarial Networks (GANs) (Goodfellow et al., 2017). This 

section refers only to GANs, which generate synthetic 

graphical data in an unsupervised training fashion relying on 

images as input. Unlike other tasks related to computer vision, 

the deep models of GANs, introduced in 2014, enable 

machines to generate new information that is similar to what 

the model has been trained to identify (Goodfellow et al., 

2014). In other words, if the model is trained on images of 

trees, by using GANs the model can generate a new image of a 

tree that preserves the fundamental features of a tree, but with 

a new visual identity. This progress of deep learning enables 

the creation of unique objects or scenes by understanding the 

underlying features of the trained images or videos.  

GANs are trained differently from the abovementioned deep 

models, not only in term of layers but rather, instead of the 

single end-to-end model, two parallel deep models are trained 

that compete with one another (Goodfellow, 2016; 

Goodfellow et al., 2014; Radford et al., 2015). The first one, 

the Generator model, generates new images to deceive the 

second model that holds the ground truth data, while the 

second model, the Discriminator model, blocks this new 

image until the generator model becomes advanced enough to 

generate new images that are similar enough to the ground 

truth that the discriminator model can no longer refuse them. 

This computationally intensive training, in an unsupervised 

manner, opens the door for computer-based creativity without 

the prior supervision of humans.  

GANs have been utilised in various applications. Isola, Zhu, 

Zhou, & Efros (2016) used conditional GANs to translate 

from one form of an image to another. For instance, by giving 

the model a satellite image of a location, the model can give 

the semantic segmentation of the location or vice versa. Zhang 

et al. (2016) created stackGAN model to transform a text 

description of an image into a photo-realistic synthesis.  

Moreover, Reed et al. (2016) have pushed the algorithms of 

GANs further. The machines can learn to draw not only from 

text distributions but also by telling the machine what and 

where to draw on the canvas. Apart from the daily-life 

applications, GANs have been used in the simulation of 3D 

energy particle showers and physics-related applications 

(Paganini, de Oliveira, & Nachman, 2018). 

3.7 Clustering 

Clustering is a form of unsupervised learning, in which the 

machines are able to cluster different still images or multi-

frame images based on their content or embedded objects 

without prior human supervision (Caron et al., 2018; Tian et 

al., 2017; Xie et al., 2016). So far, different computer vision 

algorithms have been developed to tackle this task and 

eliminate the need for a long process of manual labelling from 

still images. Recently, Eslami et al. (2018) introduced the 

Generative Query Network (GQN) for scene representation 

without human supervision. The GQN takes images from a 

different perspective as an input and generates a visual 

representation of the scene from an unobserved perspective. 

This process of coupling generative models with clustering 

introduces a new form of machine intelligence to understand 

scene representation without human supervision. 

3.8 Decision-making  

By looking at the edge of computer vision and coupling its 

deep models with reinforcement learning, or so-called Deep 

Reinforcement Learning (DRL), machines can be trained to 

explore and compute the outcomes of different scenarios in 

order to make an real-time decisions based on visual aspects 

of the environment (Hester et al., 2017; Mnih et al., 2016). 

This level of cognitive ability of machines by applying one or 

more of the abovementioned tasks can enable an agent to 

grasp information and interact with an environment to 

optimize target resources without human supervision.  

Due to the complexity of the algorithms related to this 

subject, most examples are in virtual or gaming environments 

(Mnih et al., 2013). However, most significantly, Mirowski et 

al. (2018) utilised DRL to enable a machine to navigate 

through the unstructured environment of the street network 

relying on street-level images. In this work, the machine learns 

to navigate by understanding landmarks from images and to 

determine its location and its target destination.  

4. RECOGNISING THE URBAN WORLD 

Understanding the dynamics of cities remains a complex 

issue. Data collection, for instance, is one of the crucial 

domains where automation is highly desirable, in which 

computer vision has been successfully applied in capturing 

and analysing various objects depicted in urban scenes.  

Specifically, scene parsing and semantic segmentation 

represent crucial tasks of computer vision for a better 

understanding of the elements of an urban scene. From 

images, computer vision can localize multiple objects in cities, 

or simply segment the entire scene based on a group of 

themes, such as sky, ground, road, building, vegetation, etc  



 

 

(Chaurasia & Culurciello, 2017; Zhou et al., 2017). Putting all 

the above-mentioned tasks together, computer vision shows 

good potential in urban analytics for analysing the multi-layers 

of cities. For the purposes of this review, we define these 

layers as; the built environment, the natural environment, 

humans and their physical interactions, transport modes and 

traffic-related issues, and infrastructure. The main reason for 

breaking-down cities in these layers is to be able to tackle the 

applications of computer vision in each individual field of 

science related to urban analytics, in which the methods, 

scope, language used, and the nature of work may vary 

depending on the discipline. For instance, research that has 

been done in understanding the built environment may vary in 

nature from that done to understand transportation, even 

though the methods of deep learning and computer vision may 

be similar.  

Fig. 2 shows examples of computer vision applications in 

cities to detect multidisciplinary tasks that belong to the five 

layers of cities, whereas table 2 shows the applications of 

computer vision to these layers.  Each layer is broken down 

into further subcategories as appropriate.  

4.1 The built environment 

This section addresses cities from an architectural and urban 

design perspective, for example, understanding cities from a 

land-use perspective, the level of the physical appearance of 

the street-level that may indicate or measure housing prices, or 

even the level of safety with a certain neighbourhood.  

When it comes to understanding the built environment, there 

are different challenges that face urban planners and policy-

makers. For example, modelling the physical appearance of 

complex urban areas is a multi-faceted issue that is vital for 

planners and policy-makers for making decisions for 

improving living conditions in cities. The collection of data 

that reflects the current status of the built environment is a 

critical issue for urban analytics. So far, the applications of 

computer vision have merged not only to detect various urban 

components but also to understand the appearance and the 

safety factors of an urban scene.   While there is a wide range 

of applications of computer vision in cities, these applications 

 
FIG. 2 

THE LAYERS OF THE CITIES WHERE COMPUTER VISION HAS BEEN APPLIED 

CREATED  BY THE AUTHORS 
 

 



 

 

can be divided into two approaches that either analyse cities 

from street-level images or remote sensing data such as 

satellite images.   

 

4.1.1 Seeing cities from above 

Analysing cities from above relying on remote sensing and 

geographical information systems (GIS), perhaps, is the most 

common approach for planners (J. Chen et al., 2016). 

Applications of computer vision jointly with these systems are 

TABLE 2: COMPUTER VISION ALGORITHMS THAT TACKLE URBAN-RELATED ISSUES 

CITY LAYER CATEGORY METHOD 

THE BUILT ENVIRONMENT URBAN COMPONENTS SEMANTIC SEGMENTATION (Zhou et al., 2017) 

(Chaurasia & Culurciello, 2017) 

(Chen et al., 2016) 

(H. He, Yang, Wang, Wang, & Li, 2019) 

(Helbich et al., 2019) 

(Amirkolaee & Arefi, 2019) 

(Wurm, Stark, Zhu, Weigand, & Taubenböck, 2019) 

(Cordts et al., 2016) 

OBJECT-BASED DETECTION (D. Yang, Liu, He, & Li, 2019) 

(R. Chew et al., 2018) 

LAND USE CLASSIFICATION  CLASSIFICATION AND 

SEMANTIC SEGMENTATION 
(Demir et al., 2018) 

(Sharma, Liu, Yang, & Shi, 2017) 

(Audebert, Le Saux, & Lefèvre, 2018) 

CLASSIFICATION (Wang, Xu, Dong, Gui, & Pu, 2018) 

(Srivastava, Vargas-Muñoz, & Tuia, 2019) 

(R. F. Chew et al., 2018) 

URBAN PERCEPTION CLASSIFICATION AND 

PERCEPTION 
(Ibrahim et al., 2019) 

(J. Zhao, Liu, Kuang, Chen, & Yang, 2018) 

(Law, Seresinhe, Shen, & Gutierrez-Roig, 2018) 

(F. Zhang, Wu, Zhu, & Liu, 2019) 

(Seresinhe, Preis, & Moat, 2017) 

(Oliva & Torralba, 2006) 

(W. Wang et al., 2018) 

(Salesses, Schechtner, & Hidalgo, 2013) 

(Dubey, Naik, Parikh, Raskar, & Hidalgo, 2016) 

(Naik, Raskar, & Hidalgo, 2016) 

(Quercia, O’Hare, & Cramer, 2014) 

URBAN SAFETY (De Nadai et al., 2016) 

(Naik, Philipoom, Raskar, & Hidalgo, 2014) 

HUMAN INTERACTION  OBJECT-BASED DETECTION (Priya, Paul, & Singh, 2015) 

TRANSPORTATION AND TRAFFIC TRAFFIC SURVEILLANCE  CLASSIFICATION AND  

OBJECT-BASED DETECTION 
(Bottino, Garbo, Loiacono, & Quer, 2016) 

ACTION RECOGNITION (H. Yu, Wu, Wang, Wang, & Ma, 2017) 

OBJECT-BASED DETECTION (Z. Yang & Pun-Cheng, 2018) 

SAFETY/ ACCIDENTS CLASSIFICATION AND OBJECT-
BASED DETECTION 

(Sayed, Zaki, & Autey, 2013) 

(Zaki, Sayed, Tageldin, & Hussein, 2013) 

THE NATURAL ENVIRONMENT FLORA AND FAUNA OBJECT-BASED DETECTION (Cai, Li, Seiferling, & Ratti, 2018) 

(Hong, Han, Kim, Lee, & Kim, 2019) 

SEMANTIC SEGMENTATION (Krause, Sugita, Baek, & Lim, 2018) 

(Williams et al., 2017) 

CLASSIFICATION (Mohanty, Hughes, & Salathé, 2016) 

(Sun, Liu, Wang, & Zhang, 2017) 

ENVIRONMENTAL AND WEATHER 

CONDITIONS  
CLASSIFICATION AND 

PERCEPTION 
(C. Liu, Tsow, Zou, & Tao, 2016) 

(W. Liu, Yang, Wei, & School of Automation, China 
University of Geosciences, 2017) 

(Guerra, Khanam, Ehsan, Stolkin, & McDonald-Maier, 2018) 

(Elhoseiny, Huang, & Elgammal, 2015) 

(Sirirattanapol, Nagai, Witayangkurn, Pravinvongvuth, & 
Ekpanyapong, 2019) 

INFRASTRUCTURE CONCRETE CONDITION OBJECT-BASED DETECTION (Cha, Choi, & Büyüköztürk, 2017) 

(B. Wang, Zhao, Gao, Zhang, & Wang, 2018) 

PAVEMENT/ ROAD CONDITION OBJECT-BASED DETECTION (Maeda, Sekimoto, Seto, Kashiyama, & Omata, 2018) 

BRIDGE COMPONENT RECOGNITION  SEMANTIC SEGMENTATION (Narazaki, Hoskere, Hoang, & Jr, 2017) 
 



 

 

capable of automating urban tasks such as mapping and 

zoning. Most recently, the notion of DeepGlobe (Demir et al., 

2018) aimed to describe the earth from satellite images. 

DeepGlobe can extract streets, buildings and the different 

types of land-cover. Similarly, (Wang, Xu, Dong, Gui, & Pu, 

2018) used a CNN model to segment satellite images into 

multi-classes at the pixel level. Marcos, Volpi, Kellenberger, 

& Tuia (2018) used the CNN model for land cover mapping, 

solving the issue of rotation of objects. Vanhoey et al. (2017) 

introduced VarCity as an approach of automating the 

construction of a city-scale 3D model based on semantic 

segmentation and machine processing of urban components 

(buildings, built environment, vegetation, roads, etc).  

Furthermore, relying on deep learning, Amirkolaee & Arefi 

(2019) estimated heights from single aerial images, Wang et 

al. (2018) used deep CNN models for remote sensing image 

registration. Wurm, Stark, Zhu, Weigand, & Taubenböck 

(2019) relied on semantic segmentation to classify slum areas 

from aerial images. 

These presented methods may differ from one another in 

terms of accuracies or purposes. However, the main limitation 

remains in how these models can be generalised to fit for 

multiple locations beyond the context where the models are 

trained and tested.   

4.1.2 Seeing cities from a street-level 

While it is vital to understand the overall urban systems of 

cities from an aerial view, seeing cities from the street-level 

adds more layers of information. These images can capture 

rapid urban changes in day-to-day life and offer more 

opportunities to model urban dynamics. However, capturing 

these rapid urban changes is a more complex task.  Street-level 

images, taken by individuals or represented in Google’s Street 

View API, have been used to identify a wide range of urban 

components from buildings to small objects such as street 

signs. For instance, Nguyen et al. (2018) used a CNN model to 

detect building types, crosswalks, and street greenness as a 

way to automatically quantify neighbourhood qualities.  

Similarly, a range of applications based on classifying, 

segmenting and localising pixels from street-level images was 

a common approach for understanding the components of an 

urban scene (Chaurasia & Culurciello, 2017; Li, Jie, et al., 

2017; Yang, Yu, Zhang, Li, & Yang, 2018; Zhou et al., 2017). 

Scene parsing relying on semantic segmentation is a continual 

success of CNN models for understanding and classifying the 

different components of the built environment at a pixel-level 

(Badrinarayanan et al., 2016; L.-C. Chen et al., 2016a, 2017; 

G. Lin et al., 2017; Long et al., 2015; Peng et al., 2017; F. Yu 

& Koltun, 2015; H. Zhao et al., 2017).  Relying on both street-

level images and satellite images,  Kang, Körner, Wang, 

Taubenböck, & Zhu (2018) used a deep CNN model to 

classify land use in satellite images by learning from building 

blocks of similar functions.  

Quantifying the physical and non-physical appearance of 

cities is another area that has been intensively researched. 

Naik et al. (2016) quantified the physical appearance of 

neighbourhoods based on individuals’ ranking perceptions of 

the urban spaces using a framework of two CNN models that 

are concatenated and fused to predict a score for paired street-

level images, known as Streetscore-CNN. Similarly, Zhang et 

al. (2018) quantified urban spaces of street-level images 

labelled into six categories (Depressing, Boring, Beautiful, 

Safe, Lively, Wealthy)  based on a crowdsourced dataset (MIT 

places pulse). By applying a supervised deep CNN model, 

they are able to predict the class for a given street view image.  

Liu, Silva, Wu, & Wang (2017) evaluated the urban visual 

appearance based on two indicators of the quality of street 

façade and the continuity of the street walls relying on the 

expert ranking that is evaluated with a public survey. 

Moreover, Naik, Kominers, Raskar, Glaeser, & Hidalgo 

(2017) have used computer vision to measure the dynamics of 

neighbourhood characteristics from time series street view 

images adjoined with socioeconomic data in five US cities.  

As a different approach, Law, Paige, & Russell (2018) used 

street view images to identify housing prices from urban 

perception relying on computer vision.  

While seeing cities at street-level adds more information 

and gives an opportunity to understand the rapid changes that 

occur in an everyday urban scene in cities, the images used 

from Google street-view images only represent urban areas at 

a single weather condition, commonly clear weather, 

neglecting other visual and weather conditions that impact the 

appearance of cities. Furthermore, more research is needed on 

how to make best use of street level images coming from 

various sources, such as CCTV, dashcams or crowd sources, 

within and across domains. 

4.2 Human interaction 

Deep learning and computer vision have shown substantial 

progress in understanding a wide range of applications not 

only related to human detection but also understanding their 

activities and interaction with other objects  (Kale & Patil, 

2016; Mohamed & Ali, 2013; Zhang et al., 2017). Such 

approaches can assist planners and policy-makers to better 

understand tasks related to wellbeing and human behaviour in 

cities. For instance, Priya, Paul, & Singh (2015) used deep 

learning and computer vision to classify human actions, such 

as walking, running, sitting or dancing for multi-frame images. 

Guler, Neverova, & Kokkinos (2018) used a region-based 

CNN model (RCCN) to estimate the various human poses 

from a single image to better understand human interactions. 

Gkioxari, Girshick, Dollar, & He (2017) used computer vision 

to predict human actions over a specific target object from 

every day still images. This novel approach provides 

substantial progress in understanding human interaction with 

different objects. Furthermore, adjoining human pose 

detection with tracking, (Girdhar et al., 2017) used computer 

vision to detect and track key human body points from videos. 

This could enable, for example, tackling various issues related 

to human safety and wellbeing in cities such as detecting when 

a person falls, or detecting abnormal behaviour such as crime-

related actions. Indeed, a knowledge gap appears in this field 

of study in scaling-up deep computer vision algorithms for 

monitoring and detecting irregular behaviours at a city level in 

real-time.  

4.3 Transportation and traffic 

Transportation and traffic is a crucial and complex layer 

that merges and interacts with other layers of the city. There is 

a wide range of computer vision applications that aim to tackle 

transport modes and their common issues, such as road safety 



 

 

and optimisation of traffic (N. Buch, Velastin, & Orwell, 

2011; Priya et al., 2015). Subjectively, traffic surveillance and 

intelligent transportation systems hold the largest share of 

computer vision related applications in cities. Typical tasks 

include vehicle detection, counting, overtake detection, and 

traffic incident detection (Mahmud, Ferreira, Hoque, & 

Tavassoli, 2017; Yang & Pun-Cheng, 2018). A full review of 

the literature on vehicle detection is beyond the scope of this 

article, for a comprehensive review consult Yang and Pun-

Cheng (2018). 

Understanding the different traffic scenarios and 

interactions of the different transport modes by computer 

vision is crucial. Bottino, Garbo, Loiacono, & Quer (2016) 

introduced ‘Street Viewer’ as a system to tackle and analyse 

the different scenarios of traffic behaviour from street view 

images. Sayed, Zaki, & Autey (2013) used computer vision to 

evaluate the safety measures of vehicle-bicycle conflicts. Zaki, 

Sayed, Tageldin, & Hussein (2013) used computer vision to 

analyse the conflicts among pedestrians and vehicles at a 

signalized intersection. Zaki & Sayed (2013) introduced a 

framework relying on computer vision to classify the different 

types of road-users.  

Building on the aforementioned artificial intelligence 

approaches for traffic-related issues, computer vision is a core 

element when it comes to smart mobility and autonomous 

vehicles. Different applications relying on computer vision are 

being used to make transport modes aware of the surrounding 

environments either for safety indications or moving towards a 

self-navigation system. However, the technology of 

autonomous vehicles is not the focus of this research but 

rather the interactions of transport modes with the 

aforementioned layers in cities (Faisal, Yigitcanlar, 

Kamruzzaman, & Currie, 2019).  

4.4 The natural environment  

The natural environment (i.e. green space, landscape, 

climate conditions, etc.) is a crucial layer when it comes to 

understanding cities. It influences our perception of the visual 

appearance of the built environment and also affects mobility 

and human interaction in cities.  Different aspects related to 

this natural layer of cities have been tackled by computer 

vision. These applications vary from mapping vegetation and 

greenery in cities, or so-called ‘Treepedia’ (Cai et al., 2018), 

identifying plant types (Krause et al., 2018; Sun et al., 2017), 

to deeper understanding of the natural environment and 

wildlife such as detecting plant-related diseases (Mohanty et 

al., 2016) and understanding the patterns of social interaction 

among animals (Robie, Seagraves, Egnor, & Branson, 2017). 

 Deep learning and computer vision have also been used to 

infer the weather, climatic and air conditions in cities. Liu et 

al. (2016) used the CNN model to identify extreme weather 

conditions from aerial images of climate simulations and 

reanalysis products. Liu, Tsow, Zou, & Tao, (2016) used 

images to analyse particle pollution for Beijing, Shanghai and 

Phoenix relying on region of interest selection, feature 

extraction and regression models. Z. Li et al. (2019) developed 

a model to detect clouds from high-resolution aerial view 

images relying on CNNs, named multi-scale convolutional 

feature fusion.  

 While there is noticeable progress in term of methods 

development and accuracy enhancement among the presented 

papers, the common limitation remains in the lack of a single 

model or a framework that fuses various models to infer the 

different weather and environmental conditions.  

4.5 Infrastructure  

Cities comprise a range of infrastructure systems that 

represent a large portion of their economy. Inspecting these 

systems and detecting their deficiencies is a crucial aspect for 

engineers and planners in cities. The focus of this section 

differs from the built environment section by analysing 

materials and the civil engineering related issues that are not 

covered in the aforementioned sections.  

So far, the applications of computer vision have been seen 

in a wide range of domains related to infrastructure and civil 

engineering (Gopalakrishnan, 2018; Griffiths & Boehm, 

2018), most importantly in analysing defects (Feng, Liu, Kao, 

& Lee, 2017). For instance, B. Wang, Zhao, Gao, Zhang, & 

Wang (2018) used computer vision to detect concrete crack 

damage. Similarly,  Cha, Choi, & Büyüköztürk (2017) applied 

computer vision relying  on deep CNN model to detect crack 

damage of concrete. On the other hand, Maeda, Sekimoto, 

Seto, Kashiyama, & Omata (2018) used computer vision to 

detect road damage from images that are taken from mobile 

devices.  

5. WHAT REMAINS MISSING? 

Section 3 of this paper presented the different types of 

computer vision algorithms that are available to researchers, 

and the sectors in which they have been applied were 

presented in section 4. Typically, these models have been 

applied in a sectoral fashion to a specific problem. 

Comparatively little attention has been placed on how to 

understand the interconnections between the different layers of 

the city. These interconnections will eventually lead to 

increased capabilities of computer vision and AI to aid 

decision making and policy. In this section, we outline 2 

under-researched areas in which computer vision has 

enormous potential. 

5.1 Integrated models of the layers of the city 

A significant challenge remains in modelling the 

interconnectedness and dependencies of the different layers of 

the city that were introduced in figure 2. A first step in this 

regard is the integration of models that have been developed 

for each layer in isolation. For example, there is still a 

knowledge gap in how to use computer vision coupled with 

deep learning to understand the interaction between people in 

cities and transport modes, or the influence of one mode on 

the others in terms of accessibility and safety. While the 

technology is there, the challenge remains in combining 

different models in a framework that enables them to tackle 

complex, multi-layered issues using the same data source, 

rather than just combining or fusing outputs from different 

data sources. On the other hand, even if the knowledge of the 

models is transferable among the different layers of cities, the 

challenges remain in finding comprehensive image data 

sources that cover a wide scope of tasks and functions in 

cities.   



 

 

5.2 The scale of applying computer vision in cities 

Understanding cities requires both local and global 

perspectives, in which scale plays a crucial role in tackling 

urban issues. There are different algorithms that have been 

used to understand, for example, individuals’ actions and 

activities. Challenges remain in applying and scaling up such 

algorithms to the city level. Although there are different 

models, as discussed in the literature, that extract information 

at the city scale, the nature of the developed algorithms is still 

limited towards the analysis of certain area or city. The reason 

for this is either because of a lack of computational resources 

or the inability of trained models to generalise to a larger 

dataset at a city-level. Models often require further training 

and optimisation to be deployed in real-life applications. It is 

well known that computer vision algorithms require large sets 

of labelled data, which must often be manually labelled. 

Labels can be crowd sourced but there is often a cost involved 

and accuracy is difficult to guarantee. Semi- or weakly 

supervised learning methods are promising approaches in this 

regard (S. Guo et al., 2018). 

6. MOVING FROM PREDICTION TO DECISION-MAKING TO POLICY  

After addressing the limitations of the stated models, the 

superior performance of modern computer vision algorithms is 

in little doubt. However, the extent to which model outputs 

can be used for automated and optimised policy and decision 

making remains an important research frontier. Big data, of 

which image data is a subset, is increasingly having an impact 

on decision and policy making, whether explicitly or not. 

Government authorities rely on algorithmic outputs to inform 

their decisions on a daily basis. The practical, ethical and 

societal implications of this are still unclear and (Duarte & 

Álvarez, 2019) note the lack of synchronicity between the 

potential societal impact of AI technologies and our cultural 

discussions around them. An option that shows promise in this 

direction is the concept of living labs and policy labs. These 

provide testbeds within which to test data driven policies,  

which use ICT to realise the benefits of new data sources and 

support collaboration with relevant stakeholders and citizens 

(van Veenstra & Kotterink, 2017).  

 Alongside other sources of big data, images and video play 

a particularly important role in this effort because they capture 

the action and interaction of humans within their environment. 

This provides the opportunity to understand a range of issues, 

such as how the structure of the built environment affects 

pedestrian safety, or how street lighting influences crime. 

These issues are inextricably linked, and urban planning and 

policy making must take a holistic view of them to avoid 

disadvantaging certain groups.  

6.1 Enabling Technologies 

There are two enabling technologies that will be important 

in this area. Firstly, multi-agent reinforcement learning 

(MARL) will enable more realistic human agents to be 

simulated in more realistic urban environments. The behaviour 

of these agents can be learned and validated using image and 

video data. Such models could support or supersede traditional 

land use and transport planning approaches, as well as 

optimise the performance of urban systems such as 

transportation. 

The second technology is GANs. It is not inconceivable that 

GANs, fed with images of a city, whether street view or aerial, 

could eventually be trained to design effective urban 

 
 

FIG. 3 

AI-RELATED URBAN POLICY 



 

 

environments. In the same way that GANs can generate 

synthetic human faces that are indistinguishable from real 

faces (Karras, Laine, & Aila, 2018), they could be used to plan 

new cities or neighbourhoods that perform like existing cities. 

This is certainly a long way off, but advancements in AI will 

enable predictions that are beyond what humans of social 

groups may achieve, or even conceive of  (Duarte & Álvarez, 

2019). 

6.2 AI-embedded cameras in cities for real-time insights 

The implementation of computer vision model pipelines in 

(near) real-time is a crucial issue for urban analytics and 

Internet of Things (IoT) systems. This deployment at the edge 

in urban contexts can show a direct impact of the current 

research for developing urban theories and policies. For 

example, AI-embedded cameras may alert police or transport 

control rooms of incidents, which they can verify and respond 

to. This type of system should be managed in a coordinated 

fashion so that the needs of various authorities can be met, 

which requires integration of the different layers of the city.  

However, while this approach will enable fast decision making 

and response, it falls short of being a fully intelligent and 

automated system able to implement or generate policy. 

6.3 Policy for AI and by AI 

After the deployment of AI in cities based on accepted 

norms and ethics, their deployment in cities will also lead to 

the generation of adaptive urban policies by AI. AI has the 

potential to generate dynamic and place-based policies. 

However, challenges remain in the innovation and fusion of 

different domains of knowledge to reach this critical step 

where the machine not only predicts and makes decisions but 

generates short- and long-term plans. Most importantly, it is a 

mixture of the tackled deep learning and computer vision 

research in urban settings with Natural Language Processing 

(NLP) research and reinforcement learning. By merging these 

different knowledge domains and integrating models that are 

capable of addressing multiple tasks in cities, theories and 

more flexible place-oriented policies can be generated for 

cities. Nevertheless, knowledge can be transferred from one 

city to another.  

6.4 Conceptual framework towards AI generated policy 

and decision making 

Fig. 3 shows a conceptual framework and a recommended 

process for achieving the two crucial steps outlined in sections 

6.2 and 6.3, and how they can be reached from the current 

perspective of the deep computer vision research that is 

highlighted in this review.  It shows the overall system for 

policy-makers and developers showing the important aspect of 

this process and the domains that are still under-developed and 

require further integration with urban analytics research.  

Currently we are at the stage where policy for AI is being 

developed to mitigate the risks of reliance on the technology 

to make decisions. However, we envisage a future where the 

integration of the layers of the city through AI enables 

understanding of urban processes that is not possible by 

viewing them in isolation, leading to AI generated policies, as 

stated in section 6.3. 

7. CONCLUSIONS 

Understanding cities has been a profound interest for many 

scholars across a wide range of disciplines. Modelling the 

different urban systems of cities is a longevity purpose for 

many urban and transport planners. While cities are complex 

by nature and classical urban modelling may not capture the 

actual complexities of urban systems, computer vision shows 

progress in tackling a variety of complex physical and non-

physical visual tasks. In this article, we provide a review of 

deep learning and computer vision and its application so far in 

understanding cities. The article highlights the different types 

of algorithms of computer vision and their application to cities 

and their multifaced issues. It aimed to show the nuances of 

the variations of these algorithms within the same task.  It also 

aimed to show what has been done so far to understand cities 

by machine vision and what remains missing for future 

research work within this domain. 

We attempt to highlight the potential role of computer 

vision in understanding the interactions between the built 

environment, people and transportation in order to tackle the 

complexity and nonlinearity of many urban and transport 

issues for better policy-making and planning safer cities. We 

also highlight the current limitations that require further work 

to reach an integrated computer vision-based urban models 

that capable of making automatic decisions.  
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