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This paper investigates the semantic intricacies of conditioning, a main feature in probabilistic programming.

Our study is based on an extension of the imperative probabilistic guarded command language pGCL with

conditioning. We provide a weakest pre–condition (wp) semantics and an operational semantics. To deal with

possibly diverging program behaviour we consider liberal pre–conditions. We show that diverging program

behaviour plays a key role when defining conditioning. We establish that weakest pre–conditions coincide

with conditional expected rewards in Markov chains—the operational semantics—and that the wp–semantics

conservatively extends the existing semantics of pGCL (without conditioning). An extension of these results

with non–determinism turns out to be problematic: although an operational semantics using Markov decision

processes is rather straightforward, we show that providing an inductive wp–semantics in this setting is

impossible. Finally, we present two program transformations which eliminate conditioning from any program.

The first transformation hoists conditioning while updating the probabilistic choices in the program, while

the second transformation replaces conditioning—in the same vein as rejection sampling—by a program

with loops. In addition, we present a last program transformation that replaces an independent identically

distributed loop with conditioning.
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1 INTRODUCTION
Probabilistic programs support random choices like “execute program c1 with probability 1/3 and

program c2 with probability 2/3". Probabilistic programs are ordinary sequential programs describ-

ing posterior probability distributions. Describing randomised algorithms has been the classical
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application of these programs. Applications in biology, machine learning, quantum computing,

security, and so on, have led to a rapidly growing interest in probabilistic programs in the last

decade [24]. Several probabilistic programming languages have been recently developed such as

Probabilistic C [44], Rely [11], Figaro [45], ProbLog [20], Tabular [23], webPPL [22] and R2 [42].

Most of these languages feature, in addition to sampling from probability distributions, the ability

to condition values of variables in a program. Conditioning allows for adding information about

observed events into the program that may influence the posterior distribution. It is one of the key

features in Bayesian networks which rely on Bayes’ rule as the basis for updating information. It

is this feature that distinguishes modern probabilistic programming languages from those in the

early days describing randomised algorithms.

The semantics of probabilistic programs without conditioning is rather well–understood. The

seminal work by Kozen [37] provides a denotational semantics of a simple imperative probabilistic

programming language. A probabilistic extension of propositional dynamic logic for fully prob-

abilistic programs was provided in [38]. This was extended in McIver and Morgan [40] with a

weakest pre–condition (wp) semantics covering demonic non–determinism and proof rules for

loops. Proof rules for handling mixed–sign random variables are presented in [33]. In those ap-

proaches, one takes into account that due to its random nature, the final state of a program on

termination is not unique. Thus, rather than a mapping from inputs to outputs—as in Dijkstra’s

approach—probabilistic programs map initial states to a distribution on their possible final states.

More precisely, one obtains sub–distributions where the “missing” probability mass represents

the likelihood of divergence. Given a random variable f and an initial state s , a central issue is
to determine f ’s expected value upon the probabilistic program’s termination. The wp–approach
has been automated in the theorem provers HOL and Isabelle [16, 29]. [27] has pursued a similar

approach, while [25] showed the relation between an operational semantics using Markov decision

processes and the wp–semantics of [40]. Other related directions include Hoare logics [18] and

semantics of constraint probabilistic programming languages [26]. These existing works do not

consider the notion of conditioning. A primary goal of this paper is to study the wp–approach for a
probabilistic programming language with conditioning, and if possible, demonic non–determinism.
The treatment of conditioning as present in modern probabilistic programming languages

does impose several challenging problems. We discuss these intricacies in the setting of a simple

imperative language, a probabilistic variant of Dijkstra’s guarded command language, referred to

as pGCL [40]. Admittedly, this is not a language used nowadays in probabilistic programming, but

due to its simplicity it can be considered as a “core” language in which the semantic intricacies of

conditioning can be properly illustrated. Its main restriction is that it does not support continuous

distributions whereas the aforementioned languages such as R2 [42] and webPPL [22] do. The

problems discussed here do, however, also occur when considering such distributions. On the

other hand, we also consider an extension with a non–deterministic choice. This is essential for

considering probabilistic programs at different abstraction levels—abstraction of a program variable

naturally gives rise to non–determinism [36]—and for including multi–threading. We focus on

conditioning as expressed by means of so–called observe statements [9, 15, 28, 42].

The Semantic Intricacies of Conditioning
We discuss the main semantic intricacies of conditioning by means of small examples.

When to observe? Consider the program snippet

c : {x B 0} [1/2] {x B 1}; observe (x = 1) ,
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which assigns zero to the variable x with probability 1/2 (modelled by a probabilistic choice) while x
is assigned one with the same likelihood, after which we condition to the outcome of x to being one.

The observe statement blocks all runs violating its condition and renormalises the probabilities

of the remaining (called: valid) runs. The interpretation of the program is the expected outcome

conditioned on the valid runs. For c , this yields for the value of the variable x (the outcome) one

after conditioning.

Consider now:

{x B 0; observe (x = 1)} [1/2] {x B 1; observe (x = 1)}

The left branch of the probabilistic choice is infeasible as it has no valid runs. Is this program

equivalent to c? In our approach they are. Setting an infeasible program into context thus can

render it feasible.

The interference with non–termination. Consider

x B 2 and {x B 2} [1/2] {abort} .

Both programs assign two to x , but the right one aborts with probability 1/2. Should these two

programs be considered equivalent or not? Some semantics such as [42] do not distinguish them,

as they assume programs to almost–surely terminate, i.e. terminate with probability one. This may

make sense for programs in certain application domains. But can we really require a “probabilistic

programmer" to only write almost–surely terminating programs? Sure, one can (syntactically)

prevent a programmer from writing programs containing abort statements, but one cannot avoid

divergence—programs with loops may easily not terminate. We advocate a semantics that can

distinguish almost–surely terminating programs from those having a positive probability to diverge.

The above two programs are thus distinguished. Such semantics is also needed to analyse termi-

nation, a key question in program termination. This is a non-trivial analysis aspect as checking

almost–sure termination of probabilistic programs is “more undecidable” than termination for

ordinary programs [32].

Observations inside loops. Consider the two programs:

repeat { repeat {

x B 1 {x B 1} [1/2] {x B 0};

} until (x = 0) observe (x = 1)

} until (x = 0)

The left program certainly diverges. For the program on the right, things are not so clear any more:

On the one hand, the only non–terminating run is the one in which in every iteration x is set

to 1. This event of setting x infinitely often to 1, however, has probability 0. So the probability

of non–termination would be 0. On the other hand, the global effect of the observe statement

within the loop is to condition on exactly this event, which occurs with probability 0. The principle

for deciding on a semantics that makes sense is that the results should be consistent with the

usual definition of conditional probabilities. For the program on the right the semantics should be

equivalent to conditioning on the event “observe x = 1 infinitely often”, an event with probability 0,

and it is for this reason that the semantics for this program should be undefined. Note that programs

with (probabilistic) assertions must be loop–free to avoid similar problems [48]; other approaches

insist on the absence of diverging loops [13]. While in this sample program it is immediate to see

that the event to which we condition has probability zero, in general it might be highly non–trivial

to identify this. Demanding from a “probabilistic programmer" to condition only to events with

non–zero probability would thus be just as (if not even more) far–fetched as requiring an “ordinary
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programmer" to write only terminating programs. Therefore, a semantics for conditioning has to

take the possibility of conditioning to zero–probability events into account. We propose such a

semantics and it distinguishes the two programs with loops above.

The interference with non–determinism. The following example blurs the situation even further.

Consider the program:

repeat {

{x B 1} [1/2] {x B 0};

{x B 1} □ {observe (x = 1)}

} until (x = 0)

This program first randomly sets x to 1 or 0. Then it either sets x to 1 or conditions to the event that x
was set to 1 in the previous probabilistic choice. The latter choice is made non–deterministically and

therefore the semantics of the entire program is not clear: If in line 3, the oracle to resolve the non–

determinism always chooses x B 1, then this results in certain non–termination. If, on the other

hand, the oracle always chooses observe (x = 1), then the global effect of the observe statement is

a conditioning to this zero–probability event. Which behaviour of the oracle is more demonic? We

take the point of view that certain non–termination is a more well–behaved phenomenon than

conditioning to a zero–probability event. Therefore a demonic oracle should prefer the latter.

Contributions of This Paper
This paper provides a semantics of pGCL with conditioning. This includes probabilistic choice,

abortion and conditioning by means of observe statements. Given that this language is rather

basic, our semantics can act as a backbone for full–fledged imperative probabilistic programming

languages with conditioning. We provide a wp–semantics in the style of [40, 41] and present an

operational model based on Markov decision processes [46]. In the absence of non–determinism,

this reduces to Markov chains. The crux of our semantics is to distinguish the violation of observe
statements and possible divergence. The probability that a given outcome is obtained is normalised

with respect to the probability that all observe statements are fulfilled, even when they pertain to

infinitary events. The latter probability includes possibly diverging runs.

The proposed solution is to define the semantics of a program c with respect to random variable

f by a pair, consisting of the wp–semantics of c with respect to f and its liberal wp–semantics

with respect to 1, the constant function yielding one for each program state. The latter component

stands for the probability of all valid runs. This includes valid diverging runs, too. We consider this

as a key issue in our semantics. The incorporation of diverging program runs is the main difference

to the semantics in languages such as R2 [42] or [15].

The soundness of the semantics is investigated in two directions. The wp–semantics is shown to

be semantically equivalent to the operational model in the sense that (roughly speaking)weakest pre–
expectations correspond to conditional expected rewards in Markov chains. Moreover, this semantics is

a conservative extension of McIver, Seidel and Morgan’s semantics [41] in the sense that our semantics

of programs without conditioning coincides
1
. To be more precise, this latter soundness result only

holds for programs without non–determinism. In fact, it turns out that combining non–determinism
and conditioning cannot be treated using the inductive style of the wp–semantics. The problem is

that the resolution of non–deterministic choices needs to depend on the context of these choices,

rendering a definition by structural induction on programs—as is the standard approach for defining

1
Given that their semantics conservatively extends Dijkstra’s guarded command language, we consider this as a desirable

property.
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wp–semantics—impossible. We treat this problem in detail in the paper, and provide an operational

semantics for non–deterministic programs using Markov decision processes.

As an application of our semantics, we treat three program transformations. The first transfor-

mation removes observe statements from a program by hoisting them through the probabilistic

choices in the program. This technique thus modifies the likelihood of probabilistic choices in

the program based on the Boolean conditions in its observe statements. The result is a program

without conditioning. This transformation is similar in nature to the one in [42], where all programs

are assumed to be terminating. Due to the treatment of possible divergence, in our setting the

transformation to eliminate conditioning is different and more involved. This transformation is

complemented by an alternative transformation for removing conditioning. Let c be a program
with observations. We transform this program by repeatedly sampling executions from c until
the sampled execution satisfies all its observations. If during a program execution we encounter

that an observe is violated, we restart the program as being fresh. This comes at the expense of

introducing a loop. This program transformation has similarities to the application of rejection

sampling to conditional probabilities as described in, e.g., [49]. These two program transformations

thus show that conditioning is syntactic sugar as it can be either resolved in the wp–calculations
or be replaced by a loop. Our third and last program transformation goes in the reverse direction:

in case the successive loop iterations are statistically independent, a loop can be replaced by an

observe statement, which has the same effect.

Besides being of interest on their own right, a particularly appealing application of these trans-

formations is to ease the reasoning about probabilistic program termination, problem that is

known to be strictly harder than in the non–probabilistic case [32]. Since the presented transfor-

mations are valid irrespective of the termination probability of the original programs, we can use

the transformed—possibly simpler—programs to reason about the termination probability of the

original programs.

Organisation of the paper. Section 2 provides an informal introduction to our approach and

introduces our running example for this paper. Section 3 introduces the imperative probabilistic

programming language pGCL extended with conditions. Section 4 presents our wp–semantics,

while Section 5 presents the operational semantics and the correspondence between both semantics.

Section 6 extends the operational semantics for a language incorporating a non–deterministic

choice and presents our impossibility result for combining conditioning and non–determinism

in an inductive wp–semantics. Section 7 covers the three program transformations that remove

conditioning, and that replace a loop by an observe. Section 8 discusses related work, whereas

Section 9 concludes the paper. Omitted proofs from the main part of the paper are included in the

Appendix.

This work builds on a previous work from the authors [31] and extends it with the following

contributions: a proof rule for reasoning about the conditional pre–expectation of loops, a more

thorough study of the properties of the conditional wp–transformer, a program transformation

that replaces loops with no information flow across iterations by a simple observation and proofs

of all the results. A high-level overview can be found in [34].

2 OVERVIEW
We provide an informal and high–level overview of our two semantic models for conditioned

probabilistic programs. Further details are elaborated in Sections 4 and 5. As running example we

use the “goldfish–piranha” problem from [51]:

One fish is contained within the confines of an opaque fishbowl. The fish is equally

likely to be a piranha or a goldfish. A sushi lover throws a piranha into the fish
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bowl alongside the other fish. Then, immediately, before either fish can devour the

other, one of the fish is blindly removed from the fishbowl. The fish that has been

removed from the bowl turns out to be a piranha. What is the probability that the

fish that was originally in the bowl by itself was a piranha?

We can formalise this problem in terms of the program in Figure 1. The translation is straightforward:

1 f1 B gold [1/2] pir;

2 f2 B pir;

3 rem B f1 [1/2] f2;

4 observe (rem= pir)

Fig. 1. Probabilistic program cfish encoding the goldfish–piranha problem.

Variable f1 represents the fish that was already in the fishbowl at the beginning, variable f2 the
(piranha) fish that was introduced afterwards, and variable rem the fish that was removed from the

bowl at the end. The fact that this fish turned out to be a piranha is encoded using the observe
statement in Line 4. To solve the problem, we must determine the probability that f1 = pir upon the

program termination.

Despite being modelled by a four–line program, the goldfish–piranha problem is sophisticated

enough to illustrate all the essential aspects of both our semantic models.

2.1 Operational Semantics
We present our operational model for cfish first, as we believe it is the most intuitive and easiest to

grasp. We model the program as a probabilistic transition system that reflects all possible program

runs along with their probabilities. The transition system is depicted in Figure 2. States of the

transition system represent states of the program execution; they are tagged with the program line

after which they occur. For example, state 3 gold pir pir of the transition system reflects that the

program state ⟨f1 7→ gold, f2 7→ pir, rem 7→ pir⟩ is reached after Line 3 of the program execution.

In particular, symbol “*” in a variable slot indicates that the program has not set its value, yet. To

reflect the random nature of the program, some transitions are probabilistic. In this case, a state

includes multiple outgoing edges, each of them labelled with the respective probability.

The construction of the transition system is as follows: Before starting the program execution, the

program state is unknown; in the transition system this is denoted by the initial state 0 * * * .

In Line 1, the program sets f1 to gold or to pir with the same likelihood, 1/2; in the transition system

we move, correspondingly, to states 1 gold * * and 1 pir * * , with respective probabilities 1/2.

In Line 2, the program sets f2 to pir; in the transition system we then move from the two previous

states to states 2 gold pir * and 2 pir pir * , respectively. The program then goes through Line 3

and the construction of the transition system proceeds as for Line 1. Finally, Line 4 of the program

contains an observation. From state 3 gold pir gold , the observation is violated; we signal this by

transitioning to “undesired” state 4  . The other two states reachable after Line 4, namely

4 gold pir pir and 4 pir pir pir , represent, on the contrary, valid final program states as they passed

the observation.

The transition system in Figure 2 describes the behaviour of program cfish. From the system we

can see that the program admits four runs. One of them is blocked because it violates the observation.

The other three are valid program runs; two of them yield final state ⟨f1 7→pir, f2 7→pir, rem 7→pir⟩
and the remaining run yields state ⟨f1 7→gold, f2 7→pir, rem 7→pir⟩.
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0 * * *

1 gold * *

2 gold pir *

3 gold pir gold

4  

1/2

3 gold pir pir

4 gold pir pir

1/2

1/2

1 pir * *

2 pir pir *

3 pir pir pir

4 pir pir pir

1/2

1/2 1/2

Fig. 2. Operational model for the program cfish depicted in Figure 1. States are represented as rounded
rectangles containing four elements: the program line, and the value of the program variables f1, f2 and rem,
respectively

We can easily determine the probability Pr
[
cfish : f1 = pir

]
that the program establishes f1 = pir

by examining the transition system. Due to the observation in Line 4, only the program runs that

avoid the undesired state 4  remain. Their probabilities are normalised so that they sum up to

one. We can thus compute Pr
[
cfish : f1 = pir

]
as the quotient between

(1) the accumulated probabilities of all runs that elude “ ” and establish f1 = pir, and
(2) the accumulated probabilities of all runs that elude “ ”.

This readily yields

Pr
[
cfish : f1 = pir

]
=

1/2 · (1/2 + 1/2)

1/2 · 1/2 + 1/2 · (1/2 + 1/2)
=

1/2

3/4
=

2

3

, (1)

and turning to our motivating problem, it says that the fish originally in the bowl happened to be a

piranha with probability 2/3.

In Section 5 we will see that the transition system in Figure 2 slightly deviates from the actual

transition system that we propose for program cfish (cf. Figure 6). We deliberately did this to reduce

technicalities and make the overview as accesible as possible. Despite these deviations, the model

herein presented captures the essence of our operational semantics in a faithful and comprehensive

manner.

2.2 Weakest Pre–Expectation Semantics
The other semantic model that we propose for conditioned programs is a quantitative extension of

Dijkstra’s weakest pre–condition semantics. There, the meaning of a classic sequential program c
with state space S is given by the predicate transformer

wp[c] : (S→ {0, 1}) → (S→ {0, 1}) .

Given post–condition Q , the weakest pre–condition wp[c](Q) returns, for each initial state, 1 if the

program establishes the post–condition and 0 if the program does not. For a probabilistic program,

however, this binary outcome is not sufficient. Take for instance program cfish. We can neither

say that it establishes post–condition f1 = pir nor that it fails to do so. Instead, it establishes the
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post–condition with a certain probability, 2/3. To handle probabilistic programs, it is thus necessary

to consider quantitative pre– and post–conditions and extend the signature of transformer wp to

wp[c] : (S→ [0, 1]) → (S→ [0, 1]) .

A function of type S→ [0, 1] is called expectation and, accordingly, we call wp[c](f ) the weakest
pre–expectation of (probabilistic) program c with respect to post–expectation f . For the current
exposition, it suffices to consider only qualitative post–expectations of the form [Q], where Q is a

predicate over program states and [Q] denotes its characteristic function. The treatment of arbitrary

post–expectations is postponed to Section 4.

For an unconditioned program c , the transformerwp[c] can in fact be defined by induction on the

structure of c [38]. For conditioned programs we observe, however, that this compositionality breaks

down. To overcome this problem recall Equation (1). In a conditioned program, the probability

of any post–expectation [Q] can be computed as the quotient of two other probabilities. Our key

observation here is that this pair of probabilities—in contrast to their quotient—do admit an inductive

definition, following the program structure. To extend the notion of weakest pre–expectation to

conditioned programs, we therefore propose the use of an inductive transformer cwp that operates

over pairs of expectations. The transformer works as follows: As input, we provide a pair whose first

component is the post–expectation [Q] of interest, and whose second component is the constant

post–expectation 1. The transformer then outputs a pair of pre–expectations, whose quotient

yields the probability of establishing Q . The first component of the pair represents the probability

that c passes all observations and establishes Q , whereas the second component represents the

probability that c passes all observations (cf. the enumeration above Equation (1)). For instance, for

our goldfish–piranha example we obtain

cwp[cfish]
(
[f1 = pir], 1

)
=

(
1

2
, 3
4

)
. (2)

Transformer cwp is defined by induction on the program structure. Following the rules presented

in Section 4, we can easily establish the above equation; detailed calculations are provided in

Example 4.2.

3 THE PROGRAMMING LANGUAGE
For describing probabilistic programs, we employ the conditional probabilistic guarded command
language (cpGCL for short), a simple—but powerful—imperative language extended with proba-

bilistic choices and observe statements to endow it with a probabilistic behaviour. Formally, it is

given by the grammar:

C ::= skip no–op

| abort abortion

| x B E assignment

| observe (G) observation

| C; C sequential composition

| ite (G) {C} {C} conditional branching

| {C} [p] {C} probabilistic choice

| while (G) {C} repetition

Here, x belongs to V , the set of program variables; E is an expression over V and G denotes,

in particular, an expression of Boolean type; p is a probability parameter in [0, 1]. Except for
probabilistic choices and observations, all other language constructs are standard and require

no further explanation. {c1} [p] {c2} represents a probabilistic choice between programs c1 and
c2, where c1 is executed with probability p and c2 with probability 1−p. observe G represents a
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conditioning (in the sense of conditional probability) to the distribution of program runs. The effect

of such an instruction is to block all program runs violating G and rescale the probability of the

remaining runs so that they sum up to one.

Remark (Dynamical probabilities). In the probabilistic choices, instead of parameters p ∈ [0, 1]we
could have used arbitrary functionsp : S→ [0, 1]mapping the current program state to a probability

as discussed e.g. in [54]. This would not change our semantics fundamentally. However, this would

clutter the presentation and we will only need such constructs in the program transformation given

in Section 7.1.

Example 3.1. To clarify this, consider the following two programs differing only in the presence

of an observation and let us examine the probability that each of them establishes x = 0.

c1 : {x B 0} [1/3] {x B 1}; {y B 0} [1/4] {y B −1}

c2 : {x B 0} [1/3] {x B 1}; {y B 0} [1/4] {y B −1}; observe (x+y = 0)

Program c1 admits all (four) runs, two of which satisfy x = 0; for this program the probability that

x = 0 is 1/3. Program c2—due to the observation requiring x+y = 0—admits only two runs, only

one of them satisfying x = 0; for this program the probability that x = 0 is

1/3·1/4
1/3·1/4+ 2/3·3/4

= 1/7. The

normalisation factor in the denominator corresponds to the probability of a run that passes the

observe–statement. △

A cpGCL program without observations such as c1 will be called unconditioned. In the remain-

der we use syntactic sugar for describing programs like c1 or c2. Concretely, we abbreviate a

probabilistic choice {x B E1} [p] {x B E2} as x B E1 [p]E2 and, when possible, we collapse se-

quences of consecutive assignments like x1 B E1; . . . ;xn B En into a single compound assignment

x1, . . . ,xn B E1, . . . ,En . This abbreviation was used before e.g. for describing program cfish.
As for cpGCL semantics, program states correspond to variable valuations. That is, a (program)

state s is a mapping from variables (in V) to values and we call S the set of all program states. We

assume that the set V of variables is finite, and that each variable can take countably many values,

e.g., the rational numbers. By abuse of notation, we also write s(E) for the value of expression E in

state s .
Given the discrete nature of (binary) probabilistic choices, cpGCL induces only discrete distribu-

tions. In other words, the distribution of final states obtained by executing a cpGCL program from

a given initial state is always discrete. The treatment of continuous distributions is out of the scope

of this presentation.

4 WEAKEST PRE–EXPECTATION SEMANTICS
We now recall the weakest pre–expectation semantics of probabilistic programs and extend it to

cpGCL to incorporate conditioning. We study some general properties of this semantic extension

and present a proof rule to reason about loops.

4.1 Expectation Transformers for Unconditioned Programs
The weakest pre–expectation semantics generalises Dijkstra’s original weakest pre–condition

semantics to the setting of probabilistic programs. It was first introduced by [38] for fully proba-

bilistic programs
2
with assertions (therein called tests) and then extended by [40] to incorporate

non–determinism.

To accommodate probabilities, the weakest pre–expectation semantics extends the classic weakest

pre–condition semantics twofold. First, instead of being predicates over program states, pre– and

2
A probabilistic program is said to be fully probabilistic if it contains no non–deterministic choice.
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post–conditions are now (non–negative) real–valued functions over program states. Second, instead

of merely evaluating a (Boolean–valued) post–condition in the final state of a program, we now

measure the expected value of a (real–valued) post–condition w.r.t. the distribution of final states.

Formally, if f : S→ R≥0
we let

wp[c](f ) ≜ λs . EJcK(s)(f ) ,

where JcK(s) denotes the distribution of final states from executing c in initial state s and EJcK(s)(f )
denotes the expected value of f w.r.t. the distribution of final states JcK(s).3 Consider, for instance,
the program c1 of Example 3.1 in Section 3. We have

wp[c1](f )(s) = 1

12
f (s[x ,y/0,0]) + 1

4
f (s[x ,y/0,−1])

+ 1

6
f (s[x ,y/1,0]) + 1

2
f (s[x ,y/1,−1]) ,

where s[x1, . . . ,xn/v1, . . . ,vn] represents the state obtained by updating in s the value of variables
x1, . . . ,xn to v1, . . . ,vn , respectively.

Observe that, in particular, if [A] denotes the characteristic function of a predicateA over program

states, wp[c]([A])(s) gives the probability of (terminating and) establishingA after executing c from
state s . For instance we can determine the probability that c1 establishes x + y = 0 from state s
through

wp[c1]([x+y = 0])(s) = 1

12
1 + 1

4
0 + 1

6
0 + 1

2
1 = 7

12
.

Moreover, for a deterministic, i.e. non–probabilistic, program c that from state s terminates in state

s ′, JcK(s) is the Dirac distribution that concentrates all its mass in s ′ and wp[c]([A])(s) reduces to
1 · [A](s ′), which gives 1 if s ′ |= A and 0 otherwise. In this way we recover Dijkstra’s classic weakest

pre–condition semantics of deterministic programs.

Transformerwp[·] allows reasoning about total program correctness. To reason about partial pro-

gram correctness, we define a liberal version of transformer wp[·], namely wlp[·]. In the same vein

as for ordinary sequential programs, wp[c]([A])(s) gives the probability that program c terminates

and establishes event A from state s , while wlp[c]([A])(s) gives the probability that c terminates

and establishes A, or diverges.
Formally, the transformer wp operates on unbounded, so–called expectations in E ≜ S→ [0,∞],

while transformer wlp operates on bounded expectations in E≤1 ≜ S → [0, 1]. The reason wlp
operates on bounded expectations is that wlp is only meaningful for reasoning about probabilities

of events [38] and probabilities are always in range [0, 1]. Our expectation transformers have thus

type

wp[·] : E→ E and wlp[·] : E≤1 → E≤1

and can be defined by induction on the program structure. To present the definition we require

some notation related to expectations.

Notations. In the remainder we use bold fonts for constant expectations, e.g. 1 denotes the

constant expectation λs .1. Given an expression E over program variables, we simply write E for

the expectation that in state s returns s(E). Given a Boolean expression G over program variables,

we use [G] to denote the {0, 1}–valued expectation that returns 1 if s |= G and 0 otherwise. Finally,

given expression E, program variable x and expectation f , we write f [x/E] for the expectation
that maps state s to f (s[x/s(E)]).
Having fixed the required notation, we present in Figure 3 (second column) the rules defining

transformers wp and wlp. Transformer wlp differs from wp only in abort and while–loops. The

3
Formally, JcK(s) denotes a sub–distribution of total mass possibly less than one, where the missing mass represents the

probability of c to diverge on input s .
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c wp[c](f ) cwp[c](f ,д)

skip f (f ,д)

abort 0 (0, 1)

x B E f [x/E] (f ,д)[x/E]

observe (G) —not defined— [G] · (f ,д)

c1; c2 (wp[c1] ◦ wp[c2])(f ) (cwp[c1] ◦ cwp[c2])(f ,д)

ite (G) {c1} {c2} [G] ·wp[c1](f ) + [¬G] ·wp[c2](f ) [G] · cwp[c1](f ,д) + [¬G] · cwp[c2](f ,д)

{c1} [p] {c2} p ·wp[c1](f ) + (1−p) ·wp[c2](f ) p · cwp[c1](f ,д) + (1−p) · cwp[c2](f ,д)

while (G) {c ′} lfp
⪯
(F ) , where lfp

⪯,⪰(G) , where

F ( ˆf ) = [¬G] · f + [G] ·wp[c ′]( ˆf ) G( ˆf , д̂) = [¬G] · (f ,д) + [G] · cwp[c ′]( ˆf , д̂)

c wlp[c](f ) cwlp[c](f ,д)

abort 1 (1, 1)

while (G) {c ′} gfp
⪯
(F ℓ) , where F ℓ is defined gfp

⪯,⪯(Gℓ) , where Gℓ is defined

as F , but using wlp instead as G, but using cwlp instead

Fig. 3. Inductive definition of transformers w(l)p and cw(l)p. Transformer wlp (cwlp) differs from wp (cwp)
in abort and while–loops. Substitution (f ,д)[x/E], multiplication h · (f ,д) and addition (f ,д) + (f ′,д′) are
meant to be componentwise. lfp

⪯,⪰ represents the least fixed point over E × E≤1–transformers, where the first
component of expectation pairs adopt the order ⪯ and the second component the reverse order ⪰; gfp

⪯,⪯

represents the greatest fixed point over E≤1 × E≤1–transformers, where both components of expectation pairs
adopt the order ⪯. See Footnote 5 (p. 13) for a discussion about the origin of the order reversal in the definition
of cwp[while (G) {c ′}].

action of the transformers on loops is given as the fixed point of an expectation transformer. To

guarantee that such fixed points exist, we exploit the fact that the set of expectations E and E≤1

form an ω–complete partial order (ω–cpo): Expectations are ordered pointwise, i.e. f ⪯ д iff

f (s) ≤ д(s) for every state s ∈ S. The least upper bound of ω–chains is also defined pointwise, i.e.

(supn fn)(s) ≜ supn fn(s) for any ω–chain f1 ⪯ f2 ⪯ . . ..
Throughout our presentation we follow McIver and Morgan’s notation and terminology for the

(weakest pre–condition) semantics of probabilistic programs, e.g. we use symbols w(l)p for the

transformers and refer to pre– and post–conditions as pre– and post–expectations. In Kozen’s

original work, transformers wp[·] and wlp[·] are respectively denoted by ⟨·⟩ and [·], and represent

(dual) modalities of a propositional dynamic logic [38].

Program termination. Since the termination behavior of a program is given by the probability that

it establishes true, we can readily use transformer wp[·] to reason about program termination. It

suffices to consider the weakest pre–expectation of the program w.r.t. post–expectation [true] = 1.
Said otherwise,wp[c](1)(s) gives the termination probability of program c from state s . In particular,

if the program terminates with probability 1, we say that it terminates almost–surely.
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4.2 Conditional Expectation Transformers
The pre–expectation of an unconditioned program c in initial state s is given by the the expected

value

EJcK(s)(f )

of the post–expectation with respect to the distribution of final states JcK(s). If program c includes
observations, we consider, instead, the conditional expected value to account for their effect. (Recall
that the effect of an observation is to condition the distribution of program runs: runs violating the

observation are blocked, while the probability of the unblocked runs is normalised.) This conditional

expected value can be written as
4

EJcK✓(s)(f )

EJcK✓(s)(1)
,

where JcK✓(s) is the sub–distribution of final states reached by unblocked runs, only. This quotient

must be interpreted in the same way as the quotient
Pr(A∩B)
Pr(B) encoding the conditional probability

Pr(A|B), the only difference being that here we consider conditional expectations instead of mere

conditional probabilities.

To extend the expectation transformer semantics to cpGCL we proceed in two steps. First, we

introduce the subsidiary transformer

cwp[·] : E × E≤1 → E × E≤1 ,

which will capture the numerator and denominator of the above quotient. Then we define the con-
ditional weakest pre–expectation cwp[c](f ) of a cpGCL program c with respect to post–expectation

f simply by

cwp[c](f ) ≜
cwp

1
[c](f , 1)

cwp
2
[c](f , 1)

,

where cwp
1
[c](f ,д) (resp. cwp

2
[c](f ,д)) denotes the first (resp. second) component of cwp[c](f ,д).

To reason about partial program correctness, transformer cwp[·] admits a liberal version cwlp[·],
defined analogously, in terms of subsidiary transformer cwlp[·] : E≤1 × E≤1 → E≤1 × E≤1. We follow

this two–step–process because transformer cw(l)p[c] does not admit an inductive definition over

the structure of c , while transformer cw(l)p[c] does.

Definition 4.1 (Conditional expectation transformers). Given program c ∈ cpGCL and expectations
f ∈ E and д ∈ E≤1 we let the conditional weakest pre–expectation cwp[c](f ) of c with respect to f
and the conditional weakest liberal pre–expectation cwlp[c](д) of c with respect to д be, respectively,

defined as

cwp[c](f ) ≜
cwp

1
[c](f , 1)

cwp
2
[c](f , 1)

and cwlp[c](д) ≜
cwlp

1
[c](д, 1)

cwlp
2
[c](д, 1)

,

where transformers

cwp[c] : E × E≤1 → E × E≤1 and cwlp[c] : E≤1 × E≤1 → E≤1 × E≤1

are defined by induction on the structure of c , following the rules in Figure 3 (third column),

thoroughly discussed below. △

4
In genereal, the conditional expected value Eµ (f |B) of random variable f with respect to distribution µ is given by

Eµ |B (f )

Eµ |B (1) ,

where µ |B represents the restriction of µ to B .
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As so defined, transformer cwp[·] constitutes a simple extension of transformer wp[·] to con-

ditioned programs: cwp[c](f )(s) gives the expected value of f with respect to the distribution of

final states obtained by executing c in state s , given that all observations occurring along the runs of
c were satisfied.

In the definition of cwp[c](f ), the scaling factor cwp
2
[c](f , 1) gives the probability that program

c establishes all its observations, or, in other words, the overall probability of the set of unblocked

runs, plus the probability of divergence. If for some initial state s , cwp
2
[c](f , 1)(s) = 0, program c

is said to be infeasible from state s , meaning that all its runs are blocked by observations. In this

case, cwp[c](f )(s) is not well–defined. A similar phenomenon occurs for the liberal counterpart

cwlp[c](д)(s).
Both subsidiary transformers cwp[·] and cwlp[·] are defined by induction on the program struc-

ture, following the rules in Figure 3 (third column). Let us briefly explain these rules. cwp[skip]
behaves as the identity since skip has no effect. cwp[abort] maps any pair of post–expectations

to the pair of constant pre–expectations (0, 1). Assignments induce a substitution on expecta-

tions, i.e. cwp[x B E] maps (f ,д) to pre–expectation (f [x/E], д[x/E]). cwp[c1; c2] is obtained as

the functional composition (denoted ◦) of cwp[c1] and cwp[c2]. cwp[observe (G)] restricts post–
expectations to those states that satisfyG; states that do not satisfyG are mapped to 0. cwp[ite (G)
{c1} {c2}] behaves either as cwp[c1] or cwp[c2] according to the evaluation ofG . cwp[{c1} [p] {c2}]
is obtained as a convex combination of cwp[c1] and cwp[c2], weighted according to p. cwp[while
(G) {c ′}] is defined using standard fixed point techniques. The cwlp transformer follows the same

rules as cwp, except for the abort and while statements. cwlp[abort] takes any post–expectation

to pre–expectation (1, 1); cwlp[while (G) {c}] is defined in terms of a greatest rather than a least

fixed point.
5

Example 4.2. Consider again the goldfish–piranha problem from Section 2 and let us do the

detailed calculations to establish Equation (2). Throughout the calculations we use ci−jfish to denote

the fragment of program cfish from line i to line j.

cwp[cfish]
(
[f1 = pir], 1

)
= cwp

[
c1−3fish

] (
cwp[observe (rem= pir)]

(
[f1 = pir], 1

) )
= cwp

[
c1−2fish

] (
cwp[rem B f1 [1/2] f2]

(
[rem= pir] ·

(
[f1 = pir], 1

) ) )
= cwp

[
c1−2fish

] (
1

2
· cwp[rem B f1]

(
[rem= pir] ·

(
[f1 = pir], 1

) )
+ 1

2
· cwp[rem B f2]

(
[rem= pir] ·

(
[f1 = pir], 1

) ) )
= cwp

[
c1−1fish

] (
cwp[f2 B pir]

(
1

2
·
(
[f1 = pir] ·

(
[f1 = pir], 1

) )
+ 1

2
·
(
[f2 = pir] ·

(
[f1 = pir], 1

) ) ))
= cwp

[
c1−1fish

] (
1

2
·
(
[f1 = pir] ·

(
[f1 = pir], 1

) )︸                            ︷︷                            ︸
= ([f1 = pir],[f1 = pir])

+ 1

2
·
(
[pir= pir]︸     ︷︷     ︸
= 1

·
(
[f1 = pir], 1

) ) )
5
When defining cwp[while (G) {c′ }](f , д) as the least fixed point lfp⪯,⪰(G), we reverse the order in the second component

of the expectation pairs. This is because, informally, on the first component we require a least fixed point while on the

second component we require a greatest fixed point, which we simulate by taking the least fixed point lfp⪯,⪰(G) w.r.t. the

“crossed” order ⪯, ⪰. The definition of cwlp[while (G) {c′ }](f , д) is more straightforward since in this case we require

greatest fixed points on both components of the expectation pairs.
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= cwp
[
f1 B gold [1/2] pir

] (
[f1 = pir], 1

2
· [f1 = pir] + 1

2

)
= 1

2
· cwp

[
f1 B gold

] (
[f1 = pir], 1

2
· [f1 = pir] + 1

2

)
+ 1

2
· cwp

[
f1 B pir

] (
[f1 = pir], 1

2
· [f1 = pir] + 1

2

)
= 1

2
·

(
[gold= pir]︸       ︷︷       ︸

= 0

, 1

2
· [gold= pir]︸       ︷︷       ︸

= 0

+ 1
2

)
+ 1

2
·

(
[pir= pir]︸     ︷︷     ︸
= 1

, 1

2
· [pir= pir]︸     ︷︷     ︸

= 1

+ 1
2

)
= 1

2
·
(
0, 12

)
+ 1

2
·
(
1, 1

)
=

( 1
2 ,

3
4
)
.

From these calculations we conclude that cwp[cfish]([f1 = pir]) =
1/2
3/4 =

2
3 . In words, the probability

that f1 = pir after running program cfish (from any initial state) is 2/3. △

4.3 Conditional Expectation of Loops
As demonstrated in the example above, reasoning about the outcome of loop–free programs consists

mostly of syntactic reasoning. Reasoning about the outcome of loops involves, in constrast, fixed

points. To circumvent this, we now study a proof rule based on invariants. As a first step to state the

proof rule, we need to introduce the characteristic functional of a loop, which intuitively captures

the effect of cwp on one iteration.

Definition 4.3. Given program c , guard G and expectations (f ,д) ∈ E × E≤1, let

G
⟨G,c ⟩
f ,д : E × E≤1 → E × E≤1

( ˆf , д̂) 7→ [¬G] · (f ,д) + [G] · cwp[c]( ˆf , д̂)

be the characteristic functional of loop while (G) {c} with respect to post–expectations (f ,д). For

expectations (f ,д) ∈ E≤1 × E≤1, we define the characteristic liberal functional Gℓ
⟨G,c ⟩
f ,д : E≤1 × E≤1 →

E≤1 × E≤1 analogously, in terms of cwlp. △

Observe that under this definition, the action of transformers cw(l)p on loops can be recast as

cwp[while (G) {c}](f ,д) = lfp
⪯,⪰

(
G

⟨G,c ⟩
f ,д

)
cwlp[while (G) {c}](f ,д) = gfp

⪯,⪯

(
Gℓ

⟨G,c ⟩
f ,д

)
.

Now we can present our proof rule to determine cwp[while (G) {c}](f ,д). The rule rests on
the presence of an invariant in E × E≤1, parametrised by the set of natural numbers. That is, let

In ∈ E × E≤1 for all n ≥ 0 and let G be the characteristic functional of while (G) {c} with respect

to post–expectations (f ,д) ∈ E × E≤1. The rule then reads:

G(0, 1) = I0 G(In) = In+1

cwp[while (G) {c}](f ,д) = lim

n→∞
In

[ω–cwp–while]

If In satisfies the rule premise, we say that it is an ω–invariant of the loop with respect to post–

expectations (f ,д). Intuitively, anω–invariantIn can be interpreted as a sequence of approximations

to cwp[while (G) {c}](f ,д); the larger the n, the more accurate the approximation becomes. In

particular, for each n, In coincides with the exact semantics cwp[while (G) {c}](f ,д) of the loop in

all initial states for which the loop terminates after at most n iterations.
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In general, the first component of anω–invariant is increasing with respect to n, while the second
component is decreasing (see the proof of Theorem 4.5). By the Monotone Sequence Theorem

6
,

their limits always exist which guarantees that term limn→∞ In in the conclusion of the rule is

well–defined.

Example 4.4. To illustrate the use of our proof rule consider the following problem: Assume Alice

repeatedly flips three fair coins until all three turn tails (symbolised T ). What is the probability

that she finishes after exactly N trials if in all unsuccessful trials she observed at least one tails?

The problem can be modelled by the program where

∨
3

i=1 bi stands for b1 ∨ b2 ∨ b3.

ctails : m B 0; b1,b2,b3 B H ;

while
(∨

3

i=1 bi = H
)
{

b1,b2,b3 B H [1/2] T ;

observe
(∨

3

i=1 bi = T
)
;

m B m + 1

}

The pre–expectation cwp[ctails]([m=N ]) readily gives the desired probability. The crux for deter-

mining this pre–expectation is showing that

In =
(
[¬G] · [m=N ] + [G] ·

∑n

i=1
1

6
·
(
3

4

) i
· [m+i=N ], [¬G] + [G] ·

(
1

2
+ 3

8
·
(
3

4

)n ))
is an ω–invariant of the loop with respect to post–expectation ([m=N ], 1), G being the loop guard.

Applying rule [ω–cwp–while], we obtain that for N ≥ 1,

cwp[ctails]([m=N ], 1)

= cwp[m B 0; b1,b2,b3 B H ]
(
cwp[while (. . .) {. . .}]([m=N ], 1)

)
= cwp[m B 0; b1,b2,b3 B H ]

(
limn→∞ In

)
=

(
limn→∞ In

)
[m,b1,b2,b3/0, H , H , H ]

=
(
0 · [0=N ] + 1 ·

∑∞

i=1
1

6
·
(
3

4

) i
· [0+i=N ], 0 + 1 ·

(
1

2
+ 3

8
· limn→∞

(
3

4

)n ))
=

(
1
6 ·

(
3

4

)N
, 12

)
,

and we conclude that Alice observes three tails after (exactly) N trials with probability

cwp[ctails]([m=N ]) =
1/6 · (3/4)N

1/2 =
1
3
·

(
3

4

)N
, ∀N ≥ 1 .

As a sanity check, we can use the geometric series to verify that

∑
N ≥1

1

3

(
3

4

)N
sums up to 1. To

complete our analysis, we are left to show that In is, indeed, an ω–invariant. To this end, we begin

calculating the characteristic functional G of the loop with respect to post–expectation ([m=N ], 1).
Throughout the calculations we write body for the loop body and G ′

for the observation condition.

We then have

G( ˆf , д̂) = [G] · cwp[body]( ˆf , д̂) + [¬G] · ([m=N ], 1) ,

6
If ⟨an ⟩n∈N is an increasing (resp. decreasing) sequence in [0, ∞], then limn→∞ an exists (possibly being∞), and coincides

with supn an (resp. infn an ).
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where

cwp[body]( ˆf , д̂) = cwp[b1,b2,b3 B H [1/2] T ]
(
cwp[observe (G ′)](cwp[m B m+1]( ˆf , д̂))

)
= cwp[b1,b2,b3 B H [1/2] T ]

(
cwp[observe (G ′)](( ˆf , д̂)[m/m+1])

)
= cwp[b1,b2,b3 B H [1/2] T ]

(
[G ′] · ( ˆf , д̂)[m/m+1]

)
=

∑
(r1,r2,r3),( H , H , H )

1

8
· ( ˆf , д̂)[m,b1,b2,b3/m+1, r1, r2, r3] .

Intuitively, we can justify the last equality above because the only outcome of the coin flips that

violates the observation is when the three coins turn heads, and each (non–violating) outcome

occurs with probability 1/8. Formally, this step requires a repeated unfolding of cwp and some

straightforward simplifications.

The two requirements G(0, 1) = I0 and G(In) = In+1 on ω–invariant In are discharged by the

following calculations:

G(0, 1) = [¬G] · ([m=N ], 1) + [G] ·
∑

(r1,r2,r3),( H , H , H )

1

8
· (0, 1)[m,b1,b2,b3/m+1, r1, r2, r3]

= [¬G] · ([m=N ], 1) + [G] · 1

8
· (0, 7)

=
(
[¬G] · [m=N ] + [G] · 0, [¬G] · 1 + [G] · 7

8
)

= I0

G(In) = [¬G] · ([m=N ], 1) + [G] ·
∑

(r1,r2,r3),( H , H , H )

1

8
· In[m,b1,b2,b3/m+1, r1, r2, r3]

= [¬G] · ([m=N ], 1) +

[G] · 1

8
·

(
1 · [m+1=N ] + 6 ·

∑n

i=1
1

6
·
(
3

4

) i
· [m+1+i=N ], 1 + 6 ·

(
1

2
+ 3

8
·
(
3

4

)n ))
=

(
[¬G] · [m=N ] + [G] ·

(
1

8︸︷︷︸
= 1/6·(3/4)1

·[m+1=N ] +
∑n

i=1
1

6
· 6

8
·
(
3

4

) i︸      ︷︷      ︸
= 1/6·(3/4)i+1

·[m+(i+1)=N ]

)
,

[¬G] · 1 + [G] ·
(
1

8
·
(
1+ 6

2

)︸     ︷︷     ︸
= 1/2

+ 1

8
· 6 · 3

8
·
(
3

4

)n︸           ︷︷           ︸
= 3/8·(3/4)n+1

))
=

(
[¬G] · [m=N ] + [G] ·

∑n+1

i=1
1

6
·
(
3

4

) i
·[m+i=N ], [¬G] + [G] ·

(
1

2
+ 3

8
·
(
3

4

)n+1))
= In+1

In the derivation of G(In) = In+1, the second equality holds because out of the seven outcomes of

the coin flips different from ( H , H , H ), one satisfies ¬G and the remaining six satisfy G. △

Rule [ω–cwp–while] can be modified to provide an approximation—rather than an exact char-

acterisation—of the behaviour of loops. The new rule relies on the presence of a single—not

parametrized—invariant I ∈ E×E≤1 and is stated using the order relation over pairs of expectations

“⪯ ×⪰”, which compels an increasing order on the first component of pairs and a decreasing order

on the second component, i.e. (f ,д) ⪯ ×⪰ (f ′,д′) iff f ⪯ f ′ and д ⪰ д′. The rule reads

G(I) ⪯ ×⪰ I

cwp[while (G) {c}](f ,д) ⪯ ×⪰ I
[cwp–while] ,
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where G is the characteristic functional of while (G) {c} with respect to post–expectations (f ,д) ∈
E × E≤1. The rule is particularly useful because it allows bounding from above the conditional

pre–expectation of programs with loops; in particular, by taking д = 1 it allows bounding from

above the conditional pre–expectation cwp[while (G) {c}](f ).
We now establish the formal validity of the introduced rules. Besides being sound, both proof

rules [ω–cwp–while] and [cwp–while] are complete, in the sense that there always exists an invariant

that allows providing the exact semantics of the loop at hand by means of the rules.

Theorem 4.5. Rules [ω–cwp–while] and [cwp–while] are sound and complete with respect to the
cwp semantics of programs in Figure 3.

Proof. Recall that cwp[while (G) {c}](f ,д) = lfp
⪯,⪰
(G) and let us start with rule [ω–cwp–while].

To establish the soundness of the rule, we exploit first the continuity of G (which follows from the

continuity of cwp established in Lemma A.2) to conclude that lfp
⪯,⪰
(G) can be obtained by fixed

point iteration from (0, 1). That is, lfp
⪯,⪰
(G) = supn G

n(0, 1), where Gn
denotes the composition

of G with itself n times. By a standard result on ω–cpos, Gn(0, 1) is monotonic
7
with respect to

n and hence supn G
n(0, 1) = limn→∞ Gn(0, 1) by the Monotone Sequence Theorem

6
. To conclude

the soundness proof, it is only left to show that Gn+1(0, 1) = In , which can be established from

the rule premise, by induction on n. The completeness of the rule readily follows from taking

In = Gn+1(0, 1).
Consider now rule [cwp–while]. The soundness of the rule follows from a straightforward

application of Park’s Lemma
8
, which says that if G(I) ⪯ × ⪰ I then lfp

⪯,⪰
(G) ⪯ × ⪰ I. The

completeness of the rule follows by taking I = lfp
⪯,⪰
(G). □

To conclude our study of the proof rules for loops, we highlight that rule [ω–cwp–while] can be

readily adapted to reason about partial program correctness. It suffices to adjust the initial condition

for the iteration of the characteristic functional and consider, instead, its liberal version, i.e.

Gℓ(1, 1) = I0 Gℓ(In) = In+1

cwlp[while (G) {c}](f ,д) = lim

n→∞
In

[ω–cwlp–while]

The argument for ensuring the existence of limn→∞ In is analogous to that in rule [ω–cwp–while],
the only difference being that an ω–invariant In satisfying the premises of rule [ω–cwlp–while] is
decreasing in both its components, instead of increasing in the first and decreasing in the second.

The liberal version of rule [cwp–while] also remains valid, i.e.

I ⪯ ×⪯ Gℓ(I)

I ⪯ ×⪯ cwlp[while (G) {c}](f ,д)
,

but it turns out to be useless as it does not enable bounding the conditional liberal pre–expectations

of programs with loops. (Lower–bounds on both the numerator and denominator of a fraction yield

no possible bound for the fraction.)

4.4 Basic Properties of Conditional Expectation Transformers
We next investigate some fundamental properties of the expectation transformer semantics of

cpGCL. We begin presenting a decomposition result about cw(l)p. Concretely, we show that the two

components of transformer cwp (resp. cwlp) are independent. The transformer cwp can, indeed, be

7
As underlying ω–cpo we take E × E≤1 with order (⪯, ⪰). Therefore, Gn (0, 1) is increasing in its first component and

decreasing in its second component.

8
If H : D → D is a continuous function over an ω–cpo (D, ⊑) with bottom element, then H (d ) ⊑ d implies lfpH ⊑ d for

every d ∈ D [53].
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decoupled as the product wp × wlp (resp. wlp × wlp). To make this claim precise, we need first to

extend transformer w(l)p to cpGCL; we define

wp[observe (G)](f ) ≜ [G] · f and wlp[observe (G)](f ) ≜ [G] · f .

The decomposition result of cw(l)p is then formalised as follows:

Lemma 4.6 (Decoupling of cw(l)p). For c ∈ cpGCL, f ∈ E, and д,д′ ∈ E≤1,

cwp[c](f ,д) =
(
wp[c](f ), wlp[c](д)

)
and cwlp[c](д,д′) =

(
wlp[c](д), wlp[c](д′)

)
.

Proof. By induction on the structure of c . See Appendix A.1 for details. □

This decomposition result readily gives an alternative characterisation of transformers cw(l)p,
namely

cwp[c](f ) =
wp[c](f )
wlp[c](1)

and cwlp[c](д) =
wlp[c](д)
wlp[c](1)

, (3)

and supports the argument that we employed to extend the expectation transformer semantics

to conditioned programs: As an immediate corollary, one can prove that the cwp–semantics is a

conservative extension of the wp–semantics (to conditioned programs). The same result applies to

the liberal version of the semantics.

Theorem 4.7 (Compatibility with the w(l)p–semantics). For an unconditioned program
c ∈ cpGCL, f ∈ E, and д ∈ E≤1,

cwp[c](f ) = wp[c](f ) and cwlp[c](д) = wlp[c](д) .

Proof. From the alternative characterisation of transformers cw(l)p (Equation (3)) and the fact

that for an unconditioned program c , wlp[c](1) = 1 [38]. □

This means that when applying the cwp–semantics to a probabilistic program without observe
statements, the first component of the semantics equals the wp–semantics of McIver and Morgan.

This holds for all programs, including the possibly diverging ones. In the same vein, the semantics

of R2 [42] can be shown to be a conservative extension for certainly terminating probabilistic

programs.

Transformer w(l)p enjoys appealing algebraic properties such as monotonicity and (sub-)linear-

ity [38]. These properties remain valid for transformer cw(l)p.

Lemma 4.8 (Basic properties of cw(l)p). For every c ∈ cpGCL with at least one feasible execution
(from every initial state), post–expectations f , f ′ ∈ E, д,д′ ∈ E≤1 and non–negative real constants
α ,α ′,
Monotonicity: f ⪯ f ′ =⇒ cwp[c](f ) ⪯ cwp[c](f ′)

д ⪯ д′ =⇒ cwlp[c](д) ⪯ cwlp[c](д′)

(Sub–)Linearity: cwp[c](α · f + α ′ · f ′) = α · cwp[c](f ) + α ′ · cwp[c](f ′)
cwlp[c](α ·д + α ′ · д′) ⪰ α · cwlp[c](д) + α ′ · cwp[c](д′) for α+α ′ ≤ 1

Duality: cwlp[c](д) = 1 − cwp[c](1−д)

Preserv. of 0, 1: cwp[c](0) = 0 and cwlp[c](1) = 1 .

Proof. In view of Equation (3), monotonicity and (sub–)linearity are inherited from transformer

w(l)p, duality follows from the more general property wlp[c](д) + wp[c](д′) = wlp[c](д + д′) (see
Appendix A.3), by taking д′ = 1−д, preservation of 0 is also inherited from wp and preservation of

1 is immediate. □
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Let us briefly discuss these properties. Monotonicity is an inherent property of the transformers;

it guarantees e.g. that the probability that a program establishes some property Q is at most

the probability that it establishes property, say, Q ′
whenever Q implies Q ′

. Linearity is relevant

because it allows for modular reasoning about the specification of programs. Duality says that we

can reason about partial program correctness using transformer cwp. It also simplifies our proof

effort since most properties about cwlp can be established by a direct dualisation argument; for

instance the preservation of 1 (by cwlp) can be derived by dualisation from the preservation of 0
(by cwp). Preservation of 0 says that the probability that a program establishes false is zero; it is
the probabilistic counterpart of the so–called law of excluded miracle [19]. Finally, preservation of 1
says that almost–surely a program either terminates (i.e. establishes true) or diverges.

These properties are shared by transformers w(l)p and cw(l)p. There are, however, two properties
that do not carry over fromw(l)p to cw(l)p, namely continuity and the ability to establish a contextual

equivalence. Continuity is an important semantic feature because, loosely speaking, it guarantees

that the behaviour of a loop coincides with the limit behaviour of its finite approximations. Formally,

we define the n-unrolling whilen (G) {c} of a loop by

while0 (G) {c} ≜ abort

whilen+1 (G) {c} ≜ ite (G) {c; whilen (G) {c}} {skip}

and continuity of e.g. cwp would ensure that

cwp[while (G) {c}](f ) = supn cwp[whilen (G) {c}](f ) .

For an infeasible loop, however, this equality breaks down. To illustrate this phenomenon, consider

the loop

while (x=1) {x B 1 [1/2] 0; observe (x=1)}

and let body denote its body. After some calculations we obtain

cwp[while (x=1) {body}](f , 1) = ([x,1] · f , [x,1])

cwp[whilen (x=1) {body}](f , 1) =
(
[x,1] · f , 1

2
n · [x=1] + [x,1]

)
for n ≥ 1 .

For any initial state s where x = 1, cwp[while (x=1) {body}](f )(s) is not well-defined because the

loop is infeasible from s , while supn cwp[whilen (x=1) {body}](f )(s) is well-defined and gives 0.

The second property that does not carry over from w(l)p to cw(l)p is the ability to establish a

contextual equivalence. For unconditioned programs, the notion of semantic equivalence induced by

wp allows for a safe interchangeability of equivalent programs. Formally, if wp[c1](f ) = wp[c2](f )
for every post–expectation f , thenwp[C[c1]](f ) = wp[C[c2]](f ) for every (unconditioned) program
context C[·]. Intuitively, this holds because the action of wp on a compound program is completely

determined by its action on the sub–programs. In the general case, this compositionality breaks

down for transformer cwp, though. As a consequence, the transformer does not induce a contextual

equivalence for conditioned programs. To see this, consider the programs

c1 : x B 1

c2 : x B 1 [1/2] 0; observe (x=1)

Both programs are cwp–equivalent since cwp[c1](f ) = cwp[c2](f ) = f [x/1]. However, if we
put them into context C[c] = {c} [1/2] {x B 2}, both programs are easily distinguished e.g. by

post–condition x = 1, since cwp[C[c1]]([x=1]) = 1/2, while cwp[C[c2]]([x=1]) = 1/3. Despite this

limitation, we believe that cwp–equivalence remains a useful notion as it guarantees that cwp–
equivalent programs cannot be distinguished by events: Two cwp–equivalent programs assign the

exact same probability to any event (or Boolean post–condition).
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A better behaved transformer is cwp. Its definition is completely compositional—the first princi-

ple of the denotational semantics—and it induces a contextual equivalence between conditioned

programs. It is able to distinguish, for instance, the two programs above since cwp[c1](f , 1) =
(f [x/1], 1), while cwp[c2](f , 1) = (1/2 · f [x/1], 1/2).
We conclude this section discussing some alternative approaches for providing an expectation

transformer semantics to conditioned programs. As mentioned before, a notable consequence of

Lemma 4.6 is that we can rewrite our transformers cw(l)p as in Equation (3). There, both cwp[c](f )
and cwlp[c](д) are normalised with respect to wlp[c](1), the probability that c either diverges or
passes all observations. An alternative approach is to normalise using wp instead of wlp, yielding
the pair of transformers

f 7→
wp[c](f )
wp[c](1)

and д 7→
wlp[c](д)
wp[c](1)

.

For the transformer on the right, the denominator wp[c](1)(s) may be smaller than the numerator

wlp[c](д)(s) for some state s ∈ S. This leads to probabilities exceeding one. The transformer on the

left normalises with respect to the terminating executions (that pass all observations). This is a fully

reasonable choice for certainly terminating programs, i.e., programs that have no diverging runs,

or almost-surely terminating programs, i.e., programs whose divergent behaviours have probability

mass zero. This is the approach taken in the formal semantics of the probabilistic programming

language R2 [28, 42] which aims at applications like image computations that typically are certainly

terminating programs
9
A noteworthy consequence of adopting this transformer is that observe (G)

is equivalent to while (¬G) {skip} [28]. This is not the case when normalizing w.r.t. all (including

the possibly diverging) program behaviours as is discussed in detail in Section 7.

Example 4.9. The pair of transformers discussed above together with cwp and cwlp yield, over-

all, four different semantic approaches for conditioned programs. Let us briefly compare these

alternatives by means of a concrete program

c :
{
abort

}
[1/2]

{
x ,y B H [1/2] T ; observe (x = H ∨ y = H )

}
.

Program c tosses a fair coin and according to the outcome either diverges or tosses a fair coin twice,

and observes at least once heads. If we measure the probability that the outcome of the last coin

toss was heads according to each of the four transformers, we obtain:

wp[c]([y = H ])

wlp[c](1)
=

2

7

wlp[c]([y = H ])

wlp[c](1)
=

6

7

wp[c]([y = H ])

wp[c](1)
=

2

3

wlp[c]([y = H ])

wp[c](1)
= 2 .

As mentioned before, the last transformer is not meaningful as it results in a value—in this case: a

“probability"—exceeding one. Our cwp transformer (the leftmost above) yields that the probability

that y = H after executing c while passing statement observe (x = H ∨ y = H ) is 2/7. Intuitively,

this can be seen as follows. The right (non–diverging) branch admits four runs, three of which are

valid. For the sake of argument, assume the left branch has four runs as well, all diverging. Their

total probability mass is 1/2, the probability to abort. Seven out of the total eight runs are valid. As in

total two runs establish the condition [y = H ], we obtain 2

7
. As shown before, this is a conservative

and simple extension of the wp–semantics to conditioned programs. For the R2–semantics (the

third transformer above), this desired result does not hold. Intuitively, the R2-approach ignores the

diverging branch. Then there are three (out of four) feasible runs, two of which establish [y = H ].

This yields
2

3
. Note that for almost–surely terminating programs, the R2 approach and our semantics

coincide. △

9
For instance, written as a double–nested for-loop iterating over both dimensions of the image.
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5 OPERATIONAL SEMANTICS
As a next step, we investigate the relationship between the expectation transformer semantics of

Section 4 and an operational interpretation of cpGCL programs. Inspired by [25], a small–step

operational semantics for cpGCL is defined where programs are interpreted as Markov chains. We

then prove that conditional weakest pre–expectations correspond to conditional expected rewards

in these Markov chains. We first present the intuition in an informal manner and then define the

necessary notion (such as paths and expected rewards) on Markov chains. This is followed by the

detailed operational semantics and the correspondence result.

5.1 Informal Account
To each program and initial state we associate a Markov chain whose evolution fully characterises

the possible program executions. Intuitively, a Markov chain is a transition system where the

successor of a state is chosen according to a probability distribution, and this distribution depends

only on the current state (memoryless property). In our case, the states of the Markov chain

⟨c, s⟩ ⟨↓, s ′⟩

⟨ ⟩

⟨sink ⟩

diverge

Fig. 4. Schema of the operational Markov chain of a
cpGCL program.

represent different points of the program execu-

tion; they are of the form ⟨c, s⟩, where c repre-
sents the program fragment left to execute and

s the program state at that point. The Markov

chain contains, additionally, two distinguished

states ⟨ ⟩ and ⟨sink ⟩. The state ⟨ ⟩ models the

violation of an observation and ⟨sink ⟩ models

the program termination, either successful or

due to a violated observation. Each success-

ful (i.e. unblocked) terminating run of the pro-

gram corresponds to a path (along states) of the

Markov chain, and the probability of the run

corresponds to the probability of the path in the Markov chain.

For a program c ∈ cpGCL and an initial state s ∈ S, the general structure of the Markov chain is

depicted in Figure 4. A program run either

a) terminates successfully in a terminal state of the form ⟨↓, s ′⟩ for some s ′ ∈ S (symbol “↓”

indicates that there is nothing left to execute, and s ′ is the final state of the run), or
b) terminates due to a false observation, transitioning to state ⟨ ⟩, or
c) diverges while passing all observations; modelled by an infinite path never reaching ⟨sink ⟩.

In Figure 4, squiggly arrows indicate reaching certain states via possibly multiple paths and

intermediate states; clouds indicate sets of states. Note that the sets of paths that eventually reach

⟨ ⟩, eventually reach a terminal state ⟨↓, ·⟩, or diverge, are pairwise disjoint.
To be able to relate this operational program model to our expectation transformer semantics,

we must incorporate post–expectations in the model. We do so by adding (real–valued) rewards to
the states of the Markov chain. All states will have reward zero, except for the (terminal) states

of the form ⟨↓, s ′⟩, whose reward will be the value of the post–expectation in s ′. The program
outcome (with respect to a given post–expectation or reward over final states) then corresponds to

the so–called conditional expected reward to reach state ⟨sink ⟩, conditioned on the fact that ⟨ ⟩ is
avoided. Our correspondence result will state that this agrees with the semantics as defined by the

expectation transformer cwp.
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5.2 Preliminaries on Markov Chains
We next recall some preliminaries about Markov chains necessary to formalize the outlined opera-

tional model. Let D(A) denote the set of probability distributions µ : A → [0, 1] over a countable
set A, where

∑
a∈A µ(a) = 1.

Definition 5.1 (Markov chain). A Markov chain is a tupleM = (Σ, σI , P) with a countable set of

states Σ, an initial state σI ∈ Σ, and a transition probability function P : Σ → D(Σ). △

A path of the Markov chain M is an infinite sequence of states π = σ0σ1σ2 . . . where σi ∈ Σ,
σ0 = σI and P(σi )(σi+1) > 0. The transition probability function P induces a probability measure

PrM over the set of paths of M, denoted by PathsM . The formal definition of PrM rests on the

σ–algebra induced by the cylinder sets spanned by finite prefix paths [5, Ch. 10.1]. If the Markov

chainM is clear from the context we write Pr for PrM .
In our setting, we are interested in reachability properties: Given a set of target states T ⊆ Σ, let

♢T ≜
{
π =σ0σ1 . . . ∈ PathsM | ∃n.σn ∈ T and σi < T for all 0 ≤ i <n

}
be the set of all paths that visit a target state in T . It follows by simple arguments that ♢T is

measurable. Let PrM(♢T ) denote the probability of eventually reaching a state in T from the initial

state σI in Markov chainM. Analogously, for the set of undesired statesU ⊆ Σ, let

¬♢U ≜
{
π =σ0σ1 . . . ∈ PathsM

�� σi < U for all i ≥ 0

}
= PathsM \ ♢U

be the set of paths that never visit a state inU ; PrM(¬♢U ) is the probability of never visiting a state

in U . In our operational program interpretation, ⟨sink ⟩ plays the role of the (single) target state,
while ⟨ ⟩ represents the (single) undesired state. For the sake of succinctness, we write ♢ sink and

¬♢ for ♢ {⟨sink ⟩} and ¬♢ {⟨ ⟩}, respectively.
In order to be able to reason about expectations in states—after all, we are interested in capturing

weakest pre-expectations—we equip Markov chains with a reward function r : Σ → R≥0 that

associates non–negative rewards to the Markov chain states. Note that a Markov chain together

with a reward function is also referred to as Markov reward chain. For a finite prefix π̂ = s0 . . . sn of

a path, let r (π̂ ) ≜
∑n−1

i=0 r (si ) be the cumulative reward of π̂ . Here, it is assumed that a reward is

“earned” upon leaving a state. The reward of the last state sn of π̂ thus is not taken into account.

Let rv(♢T ) be the random variable that assigns to each path π inM the reward r (π̂ ) of the shortest
prefix π̂ of π such that the last state in π̂ belongs to T . We have rv(♢T )(π ) = ∞ whenever π < ♢T .
Let ERM (♢T ) be the expectation of the random variable rv(♢T ) for the Markov chainM when

starting in its initial state. If Pr(♢T ) < 1, then this expectation is zero. ERM (♢T ) ∈ R∞≥0 thus
represents the expected reward upon reaching (a target state in)T inM from its starting state. From

the proof of measurability of the set ♢T [5, Ch. 10.1], we have

ERM (♢T ) =
∑
π ∈♢T

PrM(π̂ ) · r (π̂ )

where π̂ = σ0 . . . σn is the shortest prefix of π such that σn ∈ T and PrM(π̂ ) is the probability of

the finite path π̂ defined as P(σ0)(σ1) · . . . · P(σn−1)(σn). In a similar way, let rv(♢T ∩ ¬♢U ) be

the random variable that is defined as rv(♢T ) with the additional constraint that on the shortest

prefix until reaching T no state in U is visited. Then, ERM (♢T ∩ ¬♢U ) is the expected value of

this random variable.

To understand the role of rewards in the operational semantics, consider an unconditioned

program. Let us discuss the expected reward ER (♢ sink ) upon reaching ⟨sink ⟩. Assume that the

program almost–surely terminates, that is, Pr(♢ sink ) equals one. All terminating runs of the

program are represented by paths reaching ⟨sink ⟩ (see Figure 4). The cumulative reward of such
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paths is the value of the post–expectation in the final state of the runs (recall that terminal states

are the only ones to collect positive reward, conveyed—precisely—by the post–expectation). Then,

ER (♢ sink ) gives the average of the post–expectation over the set of final states, weighted according
to the probability of reaching each of these final states. As shown in [25], this is exactly the effect

of transformer wp on unconditioned programs.

To extend this result to programs with observe statements we consider conditional expected
rewards. Let CERM (♢T | ¬♢U ) be the expectation of random variable rv(♢T ) with respect to the

conditional probability measure

PrM(♢T | ¬♢U ) =
PrM(♢T ∩ ¬♢U )

PrM(¬♢U )
.

Intuitively speaking, CERM (♢T | ¬♢U ) is the conditional expected reward to reach T while

avoidingU .

Definition 5.2 (Conditional expected reward). Given a Markov chain M = (Σ,σI ,P), a reward

function r : Σ → R≥0, and sets of states T ,U ⊆ Σ, the conditional expected reward to reach T while

avoidingU is defined as

CERM (♢T | ¬♢U ) ≜
ERM (♢T ∩ ¬♢U )

PrM(¬♢U )
. △

Both ordinary and conditional expected rewards admit a liberal version to account for the

cases where the set of target states are not reached with probability one. For a reward function

r : S→ [0, 1], they are defined as

LERM (♢T ) ≜ ERM (♢T ) + PrM(¬♢T ) ,

CLERM (♢T | ¬♢U ) ≜
LERR (♢T ∩ ¬♢U )

PrM(¬♢U )
.

These liberal variants will be useful for reasoning about programs that do not terminate with

probability one.

5.3 Operational Markov Reward Chain of Programs
We have all the necessary ingredients to introduce our operational model of programs in detail.

Formally, this operational model is given in terms of what we call operational Markov reward chains
(OMRC), as sketched in Figure 4.

Definition 5.3 (Operational Markov reward chain). The operational Markov reward chain Rfs JcK
of program c ∈ cpGCL in state s ∈ S with respect to post–expectation f ∈ E is defined as follows:

• the set of states of R
f
s JcK contains distinguished states ⟨ ⟩ (violation of observation) and

⟨sink ⟩ (program termination), intermediate computation states of the form ⟨c ′, s ′⟩ where
c ′ is a subprogram of c and s ′ ∈ S, and terminal states of the form ⟨↓, s ′⟩ for s ′ ∈ S;

• the initial state of R
f
s JcK is ⟨c, s⟩;

• the transition probability function of R
f
s JcK is defined by the rules in Figure 5, and

• the reward function r of of R
f
s JcK is defined as r (σ ) ≜ f (s ′) if σ = ⟨↓, s ′⟩ for some s ′ ∈ S

and r (σ ) ≜ 0 otherwise.

The conditional (liberal) expected outcome of program c with respect to post–expectation f ∈ E is
given by the conditional (liberal) expected reward

C(L)ERR
f
s JcK (♢ sink | ¬♢ )
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[skip]
⟨skip, s ⟩ −→ ⟨↓, s ⟩

[assign]
⟨x B E, s ⟩ −→ ⟨↓, s[x/s(E)]⟩

[abort]
⟨abort, s ⟩ −→ ⟨abort, s ⟩

[observe-t]
s |= G

⟨observe (G), s ⟩ −→ ⟨↓, s ⟩
[observe-f]

s ̸ |= G
⟨observe (G), s ⟩ −→ ⟨ ⟩

[terminal]
⟨↓, s ⟩ −→ ⟨sink ⟩

[undesired]
⟨ ⟩ −→ ⟨sink ⟩

[sink]
⟨sink ⟩ −→ ⟨sink ⟩

[if-t]
s |= G

⟨ite (G) {c1 } {c2 }, s ⟩ −→ ⟨c1, s ⟩
[if-f]

s ̸ |= G
⟨ite (G) {c1 } {c2 }, s ⟩ −→ ⟨c2, s ⟩

[prob]
⟨{c1 } [p] {c2 }, s ⟩ −→ p ⟨c1, s ⟩ + (1−p) ⟨c2, s ⟩

[while-t]
s |= G

⟨while (G) {c }, s ⟩ −→ ⟨c ; while (G) {c }, s ⟩
[while-f]

s ̸ |= G
⟨while (G) {c }, s ⟩ −→ ⟨↓, s ⟩

[seq-↓] ⟨c1, s ⟩ −→ ⟨↓, s ′⟩
⟨c1; c2, s ⟩ −→ ⟨c2, s ′⟩

[seq- ]
⟨c1, s ⟩ −→ ⟨ ⟩

⟨c1; c2, s ⟩ −→ ⟨ ⟩
[seq]

⟨c1, s ⟩ −→
∑
i pi ⟨c i1, si ⟩

⟨c1; c2, s ⟩ −→
∑
i pi ⟨c i1 ; c2, si ⟩

Fig. 5. Rules for constructing the OMRC of programs. σ −→ µ denotes that the OMRC evolves from state
σ to a distribution µ over states.

∑
i pi σi denotes the distribution that assigns probability pi to state σi . In

particular, σ is a shorthand for the Dirac distribution 1σ .

of reaching ⟨sink ⟩ from initial state ⟨c, s⟩, conditioned on not visiting ⟨ ⟩. For the liberal version,
we assume that f ∈ E≤1. △

Except for the transition function, all elements of the OMRCs were already sketched in Section 5.1.

The set of rules defining the transition function are rather straightforward. Let us briefly discuss

them. skip terminates successfully (recall that “↓” indicates a terminating state). x B E updates

the program state and terminates successfully. abort self–loops, i.e. diverges. observe (G) either
terminates successfully or evolves into ⟨ ⟩, depending on the valuation of the guard. Terminal

states and ⟨ ⟩ evolve into ⟨sink ⟩, which once reached, is never left. ite (G) {c1} {c2} transitions
to a state containing either of its branches, according to the valuation of the guard. {c1} [p] {c2}
transitions with probability p to a state executing c1 and with probability 1−p to a state executing

c2. while (G) {c} either terminates successfully or unfold its body once, depending on the valuation

of the guard. Finally, for the sequential composition c1; c2 we (recursively) apply one transition

step in c1 and “append” the reachable states with c2. If c1 terminates successfully in one step, we

continue the execution with c2 and if c1 transitions to ⟨ ⟩ in one step (i.e. c1 is an observation that

is violated in the state at hand), we remain in state ⟨ ⟩.

Example 5.4. To illustrate the application of these rules, we now sketch the full-fledged OMRC

of program cfish from Section 2 (see Figure 1). The Markov chain is depicted in Figure 6. Observe

that in constrast to the simplified model given in Section 2 (Figure 2), this OMRC

(1) tags states with the program fragment left to execute instead of with the current program

line. This is consistent with standard small–step semantics of imperative programs and

arises because it is convenient that states contain all the necessary information to determine

their immediate successors (memoryless property of Markov chains);

(2) collects the undesired state ⟨ ⟩ and all terminal states ⟨↓, ·⟩ into the absorbing state ⟨sink ⟩.
This is just for convenience so that when defining the program outcome, our set of target

states is just the singleton {⟨sink ⟩};
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f1 B gold [1/2] pir; . . .

* * *

f1 B gold; . . .

* * *

f2 B pir; . . .

gold * *

rem B f1 [1/2] f2; . . .

gold pir *

rem B f1; . . .

gold pir *

observe (rem= pir)

gold pir gold

⟨ ⟩

1/2

rem B f2; . . .

gold pir *

observe (rem= pir)

gold pir pir

↓

gold pir pir

1/2

1/2

f1 B pir; . . .

* * *

f2 B pir; . . .

pir * *

rem B f1 [1/2] f2; . . .

pir pir *

rem B f1; . . .

pir pir *

1/2

rem B f2; . . .

pir pir *

1/2

1/2

observe (rem= pir)

pir pir pir

↓

pir pir pir

⟨sink ⟩

1

Fig. 6. Operational Markov reward chain R[f1=pir]s JcfishK associated to program cfish, initial state s and post–
expectation [f1 = pir]. Intermediate computation states are represented by boxes, whose top most row
contains the program fragment left to execute (we display only its initial instruction) and the bottom most
row contains the program state at that point (from left to right, the value of variables f1, f2 and rem). When
a transition occurs with probability one, we omit the probability in the respective edge. Only one state of the
Markov chain has positive reward (of one), which is depicted on one side of the state, using a gray box.

(3) contains more “intermediate” states where only the program fragment left to execute is

updated (the program state remains untouched), e.g. upon probabilistic choices. This is basi-

cally a design decision related to the granularity that we have chosen for our computational

steps.

The OMRC R
[f1=pir]
s JcfishK depicted in Figure 6 is associated to post–expectation [f1 = pir].

Terminal state ⟨↓, s ′⟩ with s ′ = ⟨f1 7→pir, f2 7→pir, rem 7→pir⟩ is the only one that establishes the

post–expectation and has thus reward 1 (signaled alongside within a gray box); all the remaining
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states of the Markov chain have reward 0. The conditional expected reward

CERM (♢ sink | ¬♢ ) =
∑
π̂ ∈♢sink ∩¬♢ Pr

M(π̂ ) · r (π̂ )

PrM(¬♢ )
over this Markov chain, abbreviatedM, yields then the probability that program cfish establishes
f1 = pir from state s . Let us determine concrete values for the numerator and denominator above.

As for the numerator, the set ♢sink ∩ ¬♢ contains three paths, but only two of them—the ones

traversing ⟨↓, s ′⟩—have positive cumulated reward, of 1; these two paths have each probability 1/4.

As for the denominator, set ¬♢ contains exactly the same three paths as ♢sink ∩ ¬♢ , since the
program has no diverging run. Their overall probability is 1/2 · 1/2 + 1/2 · (1/2 + 1/2). This yields

CERM (♢ sink | ¬♢ ) =
1/4 · 1 + 1/4 · 1

1/2 · 1/2 + 1/2 · (1/2 + 1/2)
=

2

3

,

and puts on formal basis the informal calculations in Section 2.1 to determine the probability that

program cfish establishes f1 = pir. △

In the above example the obtained OMRC is finite. In general, this is not necessarily the case.

Consider, for instance, the program

b B true; n B 0;

while (b) {b B true [p] false; n B n + 1}

that simulates a geometric distribution. One can show that the program terminates with probability

1. However, its associated OMRC is countably infinite since n can take arbitrarily large values.

A simple observation on the structure of the OMRCs allows simplifying the definition of program

outcomes. By definition, the conditional (liberal) expected outcome C(L)ERR
f
s JcK (♢ sink | ¬♢ ) of

program c is the expected reward

(L)ERR
f
s JcK (♢ sink ∩ ¬♢ )

normalized by PrR
f
s JcK(¬♢ ). But ♢ sink ∩ ¬♢ gives the subset of ♢ sink with paths representing

unblocked (terminating) runs, which are, in effect, the only ones with positive cumulated reward.

Therefore we can safely replace ♢ sink ∩ ¬♢ with ♢ sink in the reward above. This yields the

alternative characterization for the conditional outcome of programs

C(L)ERR
f
s JcK (♢ sink | ¬♢ ) =

(L)ERR
f
s JcK (♢ sink )

PrR
f
s JcK(¬♢ )

, (4)

which we will shortly use to establish a correspondence theorem between our two semantic models.

5.4 Correspondence Theorem
We now investigate the connection between the operational semantics of conditioned probabilistic

programs with the expectation transformer semantics of Section 4. We start with some auxiliary

results. The first result establishes a relation between (liberal) expected rewards upon reaching

⟨sink ⟩ and weakest (liberal) pre–expectations.

Lemma 5.5. For program c ∈ cpGCL, state s ∈ S and expectations f ∈ E, д ∈ E≤1,

ERR
f
s JcK (♢ sink ) = wp[c](f )(s) , and

LERR
д
s JcK (♢ sink ) = wlp[c](д)(s) .

Proof. By induction on the structure of c; see Appendix A.4 for details. □
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The next result states that the probability of never visiting ⟨ ⟩ coincides with the weakest liberal

pre–expectation of post–expectation 1.

Lemma 5.6. For program c ∈ cpGCL, state s ∈ S and expectation f ∈ E,

PrR
f
s JcK(¬♢ ) = wlp[c](1)(s) .

Proof. A direct inspection of Figure 4 reveals that paths in ¬♢ avoiding state ⟨ ⟩ can be

classified into two (disjoint) categories. Either (a) they represent a successful program run and visit

a terminal state ⟨↓, s ′⟩ for some s ′ ∈ S, or (b) they represent a diverging run. The set of “(a)–paths"
is just ♢T for T = {⟨↓, s ′⟩ | s ′ ∈ S}, while the set of “(b)–paths" is ¬♢sink , since paths reaching
⟨sink ⟩ are exactly those that represent terminating runs. Thus,

PrR
f
s JcK(¬♢ ) = PrR

f
s JcK(♢T ) + PrR

f
s JcK(¬♢sink ) .

Observe now that every terminal state (in T ) evolves with probability one into ⟨sink ⟩ and the

remaining paths reaching ⟨sink ⟩ have cumulated reward zero (because they reach ⟨sink ⟩ via ⟨ ⟩).
Then by assigning reward one to terminal states and reward zero to all other states, we can recast

the probability of reaching a terminal state as an expected reward, i.e.

PrR
f
s JcK(♢T ) = ERR

1
s JcK (♢sink ) .

Overall, this yields PrR
f
s JcK(¬♢ ) = LERR

1
s JcK (♢sink ) and a direct application of Lemma 5.5 con-

cludes the proof. □

We now have all prerequisites to present the main result of this section, namely the correspon-

dence between the operational and expectation transformer semantics of cpGCL programs. It

turns out that the conditional weakest pre–expectation cwp[c](f )(s) coincides with the conditional

expected reward in the OMRC R
f
s JcK of terminating (i.e. reaching ⟨sink ⟩) while never violating an

observation (i.e. avoiding ⟨ ⟩).

Theorem 5.7 (Correspondence theorem). For program c ∈ cpGCL, state s ∈ S and expectations
f ∈ E, д ∈ E≤1,

CERR
f
s JcK (♢ sink | ¬♢ ) = cwp[c](f )(s) , and

CLERR
д
s JcK (♢ sink | ¬♢ ) = cwlp[c](д)(s) .

Proof. Consider the first equation. As shown below, we can readily transform the left–hand

side into the right–hand side by applying first Equation (4), then Lemmas 5.5 and 5.6, and finally

Equation (3).

CERR
f
s JcK (♢ sink | ¬♢ ) =

ERR
f
s JcK (♢ sink )

PrR
f
s JcK(¬♢ )

=
wp[c](f )(s)
wlp[c](1)(s)

= cwp[c](f )(s) .

The proof of the second equation is similar. □

Theorem 5.7 extends a result by [25], who established a connection between an operational and

expectation transformer semantics for unconditioned probabilistic programs. In contrast to our

programming model, theirs also includes non–determinism. We thoroughly treat the interaction

between non–determinism and conditioning in the next section.
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6 NON–DETERMINISM
In this section, we investigate the extension of the programming language and its previously

described semantics with (bounded) non–determinism. One of the primary goals of this paper is to

extend the wp–semantics by McIver et al. [40, 41] with conditioning. Demonic non–determinism

plays a key role in their work, and we therefore are interested in studying the interplay between

conditioning and this form of non–determinism. Another motivation is that abstraction of program

variables in probabilistic programs typically gives rise to (demonic) non–determinism. Resulting

abstract programs in our setting thus exhibit conditioning as well as non-determinism, and the

question is at stake how to treat this from a semantic point of view. Along the lines of McIver

et al. and Dijkstra, this paper considers demonic non–determinism. We will show that Markov
decision processes [46], a generalisation of Markov chains featuring non–determinism, provide a

natural interpretation for conditioned non–deterministic programs. Expected rewards and the like,

are defined subject to a given resolution of the non–determinism in the MDP, and the demonic

nature gives naturally rise to taking the infimum over all possible resolutions. As a second result,

we show that the expectation transformer semantics, on the contrary, is problematic in presence of

both conditioning and non–determinism: our impossibility result asserts that there is no possible
(inductive) extension of our conditional expectation transformer semantics that accounts also for

non–deterministic programs.

6.1 Non–Deterministic Programs
To model non–deterministic programs we extend the cpGCL language with a binary non–deter-
ministic choice construct, i.e.

C ::= . . . | {C} □ {C} ,

leading to the so–called non–deterministic cpGCL language, abbreviated cpGCL□. Given programs

c1 and c2, statement {c1} □ {c2} represents a non–deterministic choice between c1 and c2. For the
interpretation of a non–deterministic program, we follow [40] and assume a demonic model: for

each individual post–expectation (and initial program state), the non–deterministic choices along

the program execution are resolved by an adversary trying to minimise the resulting conditional
weakest pre–expectation or conditional expected reward. To clarify this, consider, for instance, the

program below that first sets variable x to either 0 or 1, with probability 1/2 in each case, and then,

non–deterministically, either keeps this value for x or resets it to 1.

{x B 0} [1/2] {x B 1}; {skip} □ {x B 1}

If we now want to determine the probability that x = 0 after the program execution, the demonic

interpretation of non–determinism yields that this probability is zero, as the adversary will always

prefer to reset the value of x to 1 because the other option would result in a greater probability, i.e.

1/2.

As we have just illustrated, the demonic model of non–determinism provides the tightest lower

bound that one can guarantee for a program’s pre–expectation. The decision of adopting this model

is not arbitrary: It constitutes the probabilistic counterpart of Dijkstra’s original interpretation

wp[{c1} □ {c2}](Q) = wp[c1](Q) ∧ wp[c2](Q)

of non–determinism for ordinary sequential programs [19].

6.2 Operational Semantics
Non–deterministic programs in cpGCL□ are interpreted as Markov decision processes. Markov

decision processes can be seen as a generalisation of Markov chains, where to evolve from a given
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state σ , we first make a non–deterministic choice among the so–called actions enabled in σ , and
then, given σ and the selected action, we proceed with a probabilistic choice of the successor state.

Formally, we define a function Act that maps a state σ to a set Act(σ ) of enabled actions in state

σ . The transition function is then a function mapping pairs (σ ,α) to distributions over states, for

α ∈ Act(σ ).

Definition 6.1 (Markov decision process). A Markov decision process (MDP for short) is a tuple

R = (Σ, σI , Act,P), where Σ is a countable set of states, σI ∈ Σ is the initial state, Act is a function
mapping each state σ ∈ Σ to the set of enabled actions in σ 10

, and P : dom(P) → D(Σ) is the
transition function with dom(P) = {(σ ,α) | σ ∈ Σ ∧ α ∈ Act(σ )}. △

To clarify the role of actions in MDPs, consider our operational interpretation of cpGCL□

programs. It will contain three possible actions:

• left and right, which are the ones enabled in states representing a non–deterministic choice

(i.e. states of the form ⟨{c1} □ {c2}, s⟩). left represents taking the left branch of the non–

deterministic choice, i.e. executing c1, whereas right represents taking the right branch, i.e.

executing c2; and
• default, which is the default action enabled for all other states.

In general, the evolution of an MDP is dictated by a so–called adversary (aka: scheduler) that
resolves the non–deterministic choices. The decision of adversaries may depend on the sequence

of states visited so far (i.e. on the history); they are thus partial functionsS mapping finite state

sequences onto actions such that S(σ0 . . . σn) ∈ Act(σn) for every finite path σ0 . . . σn in the

domain ofS. In our operational model of cpGCL□ programs, adversaries will basically decide upon

every occurrence of a non–deterministic choice, whether to take the left or right branch (possibly

depending on the sequence of program states visited thus far).

Given an adversary, the evolution of anMDP is completely probabilistic. In effect, every adversary

induces a Markov chain. This allows readily extending the notion of expected rewards from Markov

chains to MDPs: One basically defines the expected reward of an MDP as the infimum over the

expected reward of all possible induced Markov chains. Taking the infimum corresponds to demonic

non–determinism as this amounts to minimising the expected reward. In the case of conditional

rewards, this gives:

C(L)ERR (♢T | ¬♢U ) ≜ inf

S∈Adv(R)
C(L)ERR∥S (♢T | ¬♢U ) ,

where Adv(R) is the set of all adversaries of MDP R and R∥S the Markov chain induced by

adversaryS inR. This corresponds to the conditional reward that the MDP can certainly guarantee,

regardless of which choices are made by the adversary to resolve the non–determinism. This

corresponds to demonic non–determinism.

We now have all the prerequisites to define the operational semantics of non–deterministic

programs. The operational semantics of non–deterministic programs in cpGCL□ follows in a

similar manner to that of purely probabilistic programs in cpGCL (see Definition 5.3), the only

difference being that now the model for programs is MDPs rather than MCs. The set of actions of

the operational MDP of programs is as previously described (see paragraph below Definition 6.1).

The transition function is defined by the set of rules in Figure 5, plus the following pair of rules to

handle non–deterministic choices:

[non-det-l]

⟨{c1} □ {c2}, s⟩
left
−−−→ ⟨c1, s⟩

[non-det-r]

⟨{c1} □ {c2}, s⟩
right
−−−−→ ⟨c2, s⟩

10
For technical reasons, we require that Act(σ ) , ∅ for every state σ ∈ Σ.
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{x B 5 □ x B 2} [p] {x B 2}; . . .

*

x B 5 □ x B 2; . . .

*

x B 2; . . .

*

x B 5; . . .

*

observe (x > 3)

2

observe (x > 3)

5

↓

5

⟨ ⟩⟨sink ⟩

p 1 − p

rightleft

5

Fig. 7. Operational MDP Rxs JcnondetK associated to program cnondet , initial state s and post–expectation x .
Intermediate tates are represented by boxes, whose top most row contains the program fragment left to
execute (we display only its initial instruction) and the bottom most row contains the program state at that
point (value of variable x ). Non–deterministic transitions are represented by arrows with a bold circle, labelled
with the corresponding action (e.g. left); transitions from states that have only one enabled action (i.e. default)
are omitted. Probabilistic transitions are labelled with the corresponding probabilities and the label is omitted
if the probability is one. Only one (terminating) state of the MDP has positive reward (of 5), which is depicted
on one side of the state, using a gray box.

Rule e.g. [non-det-l] should be read as follows: Being in state ⟨{c1} □ {c2}, s⟩ and upon the (non–

deterministic) election of action left, evolve into state ⟨c1, s⟩ with probability one. The conditional

(liberal) expected outcome of a non–deterministic program c ∈ cpGCL□ with respect to post–

expectation f ∈ E and initial state s ∈ S is given by the conditional (liberal) expected reward

C(L)ERR
f
s JcK (♢ sink | ¬♢ ) = inf

S∈Adv(Rfs JcK)

(L)ERR
f
s JcK∥S (♢ sink )

PrR
f
s JcK∥S(¬♢ )

,

of reaching ⟨sink ⟩ from initial state ⟨c, s⟩, conditioned on not visiting ⟨ ⟩. This equation can be

seen as the generalisation of Equation (4) to the case of non–deterministic programs. Accordingly,

we call a non–deterministic program infeasible if the denominator PrR
f
s JcK∥S(¬♢ ) becomes zero

for some adversaryS∗ ∈ Adv(Rfs JcK). In this case, the conditional expected reward is undefined,

denoted ⊥ in the sequel.

Example 6.2. Consider the program

cnondet : {x B 5 □ x B 2} [p] {x B 2}; observe (x > 3)

where with probability p either 5 or 2 is assigned non–deterministically to x , and with probability

1−p, exactly 2 is assigned; after that we observe that x > 3. The operational model of the program

is depicted in Figure 7. We are interested in computing the expected value of x and we consider

thus the MDP Rxs JcnondetK. The MDP admits two adversaries; in state

σ =
〈
{x B 5} □ {x B 2}; observe (x > 3), s

〉
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⟨cα ⟩

⟨c1⟩

1

⟨c5⟩

⟨c2⟩

2

⟨c4⟩

 ⟨c2.2⟩

2.2

α 1 − α

1

2

1

2

Fig. 8. Schematic depiction of the operational MDP Rxs Jcα K.

one adversary selects action left and the other, action right. Consider the former adversary. In the

induced MC the only path accumulating positive reward is the path π going from the initial state to

the sink state through σ , and there taking action left. For this path we have r (π ) = 5 and Pr(π ) = p;
this gives an expected reward of 5 · p. The overall probability of not reaching ⟨ ⟩ is also p. The
conditional expected reward of eventually reaching ⟨sink ⟩ given that ⟨ ⟩ is not reached is hence

5·p/p = 5. Consider now the latter adversary selecting action right in state σ . In this case, there is

no path having positive cumulated reward in the induced MC, yielding an expected reward of 0.

The probability of not reaching ⟨ ⟩ is also 0. The program is therefore infeasible and its outcome is

not well–defined. △

6.3 Expectation Transformer Semantics
We now investigate the problems that occur when trying to provide an expectation transformer

semantics for non–deterministic programs with conditioning. First, we show that we cannot simply

extend the table in Figure 3 for non–deterministic programs. Thereafter, we provide a more general

impossibility result.

6.3.1 Impossibility of an Inductive Extension of cwp to Non–Deterministic Programs. We argue

that it is not possible to extend the rules for cwp given in Figure 3 such that the correspondence

result Theorem 5.7 remains valid. The argument goes by contraposition. Consider the parametric

program cα = {c1} [α] {c5}, with

c1 = x B 1

c5 = {c2} □ {c4}

c2 = x B 2

c4 = {observe (false)} [1/2] {c2.2}

c2.2 = x B 2.2 ,

and 0 ≤ α ≤ 1; a schematic depiction of its operational MDP Rxs Jcα K is given in Figure 8. Assume

now (for the purpose of a contraposition) that we can extend the rules in Figure 3, such that we

have a rule for non–deterministic programs for which Theorem 5.7 remains valid. Then there exists
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some (f , д), such that

cwp[c5](x , 1) = (f , д) ,

and since Theorem 5.7 is supposed to remain valid, for any state s ,

cwp[c5](x)(s) =
f (s)

д(s)
= 2 = CERR

f
s Jc5K (♢ sink | ¬♢ ) .

This can be seen from the operational MDP as follows. In c5, the minimal expected reward (of

two) is obtained by selecting the transition to c2. Selecting c4 instead results in a reward of
1

2
· 2.2

normalised by
1

2
, which equals 2.2. From the above it follows д = f/2, which in turn yields

cwp[c5](x , 1) =
(
f ,

f

2

)
. (5)

Notice that in the non–deterministic choice of c5 the left branch was preferred in order to minimise

the conditional expected reward of x after execution of c5.
Let α = 1/2. We can now compute cwp for the entire program cα :

cwp[cα ](x , 1) =
1

2

· cwp[x B 1](x , 1) +
1

2

· cwp[c5](x , 1)

=
1

2

· (1, 1) +
1

2

·

(
f ,

f

2

)
=

(
1
2
+

f

2

,
1
2
+

f

4

)
By Theorem 5.7, we obtain

cwp[cα ](x) =
1
2 +

f
2

1
2 +

f
4

=
7
5
= CERR

f
s Jcα K (♢ sink | ¬♢ ) =⇒ f =

4
3
.

Using f = 4/3 and by recalling Equation (5), we establish

cwp[c5](x , 1) =
(
4
3
,
2
3

)
.

Observe that cwp[c5](x , 1) is (as it should be) independent of α and that in the non–deterministic

choice at c5 the right branch was preferred so as to minimise the conditional expected reward of x
after execution of cα .
Now let α = 3/4. Again, we derive the cwp of the entire program cα by

cwp[cα ](x , 1) =
3

4

· cwp[x B 1](x , 1) +
1

4

· cwp[c5](x , 1)

=
3

4

· (1, 1) +
1

4

·

(
4
3
,
2
3

)
=

(
13
12
,
11
12

)
But we have

cwp[cα ](x) =
13
12
11
12
=

13
11
<

5
4
= CERR

f
s Jcα K (♢ sink | ¬♢ ) .
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This contradicts the assumption that Theorem 5.7 holds. Thus, the assumption that we can assign a

unique pair (f , д) to cwp[c5](x , 1), independent of the context that the program c5 is put into, was
wrong and thus we cannot extend the rules for cwp to non–deterministic programs.

6.3.2 Non–Existence of Inductive Conditional Weakest Pre–Expectation Transformers. We now

argue why (under mild assumptions) it is not possible at all to come up with a denotational

semantics in the style of conditional pre–expectation transformers (CPETs for short) for full cpGCL.
To show this, it suffices to consider a simple fragment of cpGCL containing only assignments,

observations, probabilistic and non–deterministic choices. Let x be the only program variable that

can be written or read in this fragment. We denote this fragment by cpGCL−. Assume D is some

appropriate domain for representing conditional expectations of the program variable x and let

J · K : D → R ∪ {⊥} be an interpretation function such that for any d ∈ D we have that JdK is equal
to the (possibly undefined) conditional expected value of x with respect to some fixed initial state

s0 .

Definition 6.3 (Inductive CPETs). A CPET is a function cwp∗ : cpGCL− → D such that for any

c ∈ cpGCL−, Jcwp∗[c]K = CERR
x
s
0

JcK
(♢ sink | ¬♢ ). cwp∗ is called inductive, if there exists some

function K : D × [0, 1] × D → D such that for any c1, c2 ∈ cpGCL−,

cwp∗[{c1} [p] {c2}] = K(cwp∗[c1], p, cwp∗[c2]) ,

and some function N : D × D → D with

cwp∗[{c1} □ {c2}] = N(cwp∗[c1], cwp∗[c2]) ,

where ∀d1,d2 ∈ D : N(d1, d2) ∈ {d1, d2}. △

This definition requires that the conditional pre–expectation of {c1} [p] {c2} is determined only by

the conditional pre–expectation of c1, the conditional pre–expectation of c2, and the probability

p. Furthermore, the above definition requires that the conditional pre–expectation of {c1} □ {c2}
is determined by the conditional pre–expectation of c1 and the conditional pre–expectation of c2
only. Consequently, the non–deterministic choice can be resolved by replacing it either by c1 or
c2, which is the traditional assumption in the field of program refinement [4]. Notice that these

assumptions are crucial to our impossibility result.

As we assume a fixed initial state and a fixed post–expectation, the non–deterministic choice

turns out to be deterministic once the pre–expectations of c1 and c2 are known. Under the above
assumptions (which do apply to the wp and wlp transformers) we claim:

Theorem 6.4. There exists no inductive CPET.

Proof. The proof goes by contraposition and basically shows that non–deterministic choices

cannot be resolved without taking the context of a program into account. In particular we show that

the non–deterministic choice in subprogram c5 of program cα from Section 6.3.1 has to be resolved

in different ways depending on whether c5 stands alone or is put into context {c1} [α] {c5}.
For the proof, reconsider therefore the program cα from Section 6.3.1 and choose α = 1/2. Assume

there exists an inductive CPET cwp∗ over some appropriate domain D. Then,

cwp∗[c1] = d1, with Jd1K = 1

cwp∗[c2] = d2, with Jd2K = 2

cwp∗[c2.2] = d2.2, with Jd2.2K = 2.2

cwp∗[observe false] = of, with JofK = ⊥
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for some appropriate d1, d2, d2.2, of ∈ D. By Definition 6.3, cwp∗ being inductive requires the

existence of a function K , such that

cwp∗[c4] = K
(
cwp∗[observe false], 1/2, cwp∗[c2.2]

)
= K(of, 1/2, d2.2) .

In addition, there must be an N with:

cwp∗[c5] = N
(
cwp∗[c2], cwp∗[c4]

)
= N(d2, K(of, 1/2, d2.2)) .

Since c4 is a probabilistic choice between an infeasible branch and c2.2, the expected value for x has

to be rescaled to the feasible branch. Hence Jcwp∗[c4]K = 2.2, whereas Jcwp∗[c2]K = 2. Thus:

J d2︸︷︷︸
cwp∗[c2]

K ⪇ JK(of, 1/2, d2.2)︸            ︷︷            ︸
cwp∗[c4]

K (6)

As non–deterministic choice is demonic, we have

cwp∗[c5] = N(d2, K(of, 1/2, d2.2)) = d2 , (7)

since by Definition 6.3,N can only select eitherd2 orK(of, 1/2, d2.2) and it has to select theminimum

of the two options. As N
(
cwp∗[c2], cwp∗[c4]

)
∈ {cwp∗[c2], cwp∗[c4]} (again by Definition 6.3) we

can resolve non–determinism in cα by either rewriting cα to {c1} [1/2] {c2} which gives

Jcwp∗{c1} [1/2] {c2}K =
3

2

= 1.5 ,

or we rewrite cα to {c1} [1/2] {c4}, which gives

Jcwp∗{c1} [1/2] {c4}K =
7

5

= 1.4 .

Since 1.4 < 1.5, the second option should be preferred by a demonic adversary. This, however,

requires that:

cwp∗[c5] = N(d2, K(of, 1/2, d2+ε ))

= K(of, 1/2, d2+ε )

Together with Equality (7) we get d2 = K(of, 1/2, d2+ε ), which implies Jd2K = JK(of, 1/2, d2+ε )K.
This contradicts the inequality (6). □

This result is related to the fact that for minimising conditional (reachability) probabilities in

RMDPs positional, i.e. history–independent, adversaries are insufficient [2]. Intuitively speaking, if

a history–dependent adversary is required, this necessitates the inductive definition of cwp∗ to take
the context of a statement (if any) into account. This conflicts with the principle of an inductive

definition.

7 APPLICATIONS
In this section we study some applications that make use of our semantics to analyse conditioned

probabilistic programs. First, we present a program transformation that hoists observe statements

all the way up of programs delivering an observe–free program equivalent to the original. Second,

we present a technique based on rejection sampling that simulates the observe statements of a

program by enclosing (a slightly modified version of) the program in a global loop. These two

transformations show that observe statements are, to some degree, syntactic sugar. Lastly, we
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show that loops with no information flow across iterations can be substituted by their mere body,

followed by a conditioning on the loop guard.

7.1 Hoisting Observations
We introduce a semantics–preserving transformation for removing observations from conditioned

probabilistic programs and establish its correctness using the expectation transformer semantics

from Section 4. Intuitively, the program transformation “hoists” the observe statements and along

the way updates the probabilities of the probabilistic choices. Given program c , the transformation

delivers a semantically equivalent observe–free program ĉ and—as a side product—an expectation

ˆh ∈ E≤1 that captures the probability of the original program c to establish all observations.

f1 B gold [1/3] pir;

f2 B pir;

rem B f1 [p] f2

To illustrate this, reconsider program cfish modeling our “goldfish–

piranha” problem (see Section 2). The transformation yields pro-

gram ĉfish on the right, where

p =
1

2
·[f1 = pir]

1

2
·[f1 = pir]+ 1

2
·[f2 = pir]

,

together with the expectation
ˆh = 3/4. The probability that f1 = pir

in ĉfish is 2/3, which agrees with the probability in the original program, see Example 4.2.

Notice that the programs yielded by this transformation belong to a slightly more general class

of probabilistic programs, namely those in which the probabilities in the probabilistic choices may

depend on the current program state (recall the remark from Page 9). These mappings from program

states to probabilities may in some cases even be noncomputable. This is due to the fact that the

rule for while loops involves a greatest fixed point construct, that may then enter the probability of

a probabilistic choice by the according rule.

To apply the transformation to a program c we need to determine T(c, 1), which gives the

semantically equivalent program ĉ and the expectation
ˆh. The transformation T is defined in

Figure 9 and works by inductively computing the weakest pre–expectation that guarantees the

establishment of all observe statements and updating the probability parameter of probabilistic

choices so that the pre–expectations of their branches are established in accordance with the original

probability parameter. The computation of these pre–expectations is performed following the same

rules as the wlp operator. The correctness of the transformation is established by the following

theorem, which states that a program and its transformed version share the same terminating and

non–terminating behavior.

Theorem 7.1 (Correctness of observation hoisting). Let c ∈ cpGCL admit at least one
feasible run for every initial state11 and T(c, 1) =

(
ĉ, ˆh

)
. Then for all f ∈ E and д ∈ E≤1,

wp[ĉ](f ) = cwp[c](f ) and wlp[ĉ](д) = cwlp[c](д) .

Proof. By the alternative characterisation of transformers cw(l)p (Equation (3)), the statement

follows from the equations

ˆh = wlp[c](1) , ˆh · wp[ĉ](f ) = wp[c](f ) and
ˆh · wlp[ĉ](f ) = wlp[c](f ) ,

which are established by Lemma A.4 in Appendix A.5, taking h = 1. □

A similar program transformation has been given for the programming language R2 in [42]. Let

us point out some differences. R2 uses random assignments rather than probabilistic choices.

Consequently, observe statements can only be hoisted until the occurrence of a random assignment.

In our setting, observe statements are hoisted through probabilistic choices. This enables completely

11
We require that c admits a feasible run from every initial state to ensure the well–definedness of cwp[c](f ) and cwlp[c](д).
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T(skip, f ) = (skip, f )

T (abort, f ) = (abort, 1)

T (x B E, f ) = (x B E, f [x/E])

T (observe (G), f ) = (skip, [G] · f )

T (c1; c2, f ) = (c ′
1
; c ′
2
, f ′′) where

(c ′
2
, f ′) = T(c2, f ), (c

′
1
, f ′′) = T(c1, f

′)

T (ite (G) {c1} {c2}, f ) = (ite (G) {c ′
1
} {c ′

2
}, [G] · f1 + [¬G] · f2) where

(c ′
1
, f1) = T(c1, f ), (c

′
2
, f2) = T(c2, f )

T ({c1} [p] {c2}, f ) = ({c ′
1
} [p′] {c ′

2
}, p · f1 + (1−p) · f2) where

(c ′
1
, f1) = T(c1, f ), (c

′
2
, f2) = T(c2, f ), p

′ =
p ·f1

p ·f1+(1−p)·f2

T(while (G) {c}, f ) = (while (G) {c ′}, f ′) where

f ′ = gfp(H), H(h) = [G] · (π2 ◦ T )(c,h) + [¬G] · f , (c ′, ) = T(c, f ′)

Fig. 9. Program transformation for eliminating observations from cpGCL programs.

removing observe statements from programs. Another difference is, as discussed in more depth at

the end of Section 4, the treatment of diverging programs. As R2 focuses on certainly terminating

programs, the hoisting program transformation in [42] is correct for such programs. Our semantics

treats possibly diverging programs, too. The presented hoisting program transformation is correct

for such programs as well. This of relevance in a setting where it is not clear upfront whether a

probabilistic program may diverge or not. Deciding whether a probabilistic program has a positive

probability to diverge or not is as hard as the universal halting problem [32]; it is thus beneficial

that program transformations are generally applicable.

7.2 Replacing Observations by Loops
We now study an alternative approach for removing observations from programs, while preserv-

ing their semantics. The approach can be seen as an instance of the rejection sampling method

(RSM) applied to a conditional distribution [10, 47]. To understand the intuition behind this

method, consider first this simpler problem: Assume Alice wants to simulate a six-sided die but
to this end she has only (fair) coins. Can she still do it? The answer to the problem is “Yes, she can!”

cdie : repeat

a0,a1,a2 B 0 [1/2] 1;

i B 4a0 + 2a1 + a2 + 1

until (1 ≤ i ≤ 6)

and the program on the right illustrates the solution. The

body of the loop simulates a uniform distribution over the

interval [1, 8], which is repeatedly sampled (in variable

i) until its outcome lies in the interval [1, 6]. The effect
of the repeated sampling is precisely to condition the

distribution of i to 1 ≤ i ≤ 6. As a result, Pr[i = N ] = 1/6

for all N = 1, . . . , 6 [49, Th 9.2].

To apply this method to our original problem of removing program observations, we follow a

similar idea: We repeatedly sample executions from the program until seeing an execution that

passes all the observations. To implement this, we take the following steps: First, we introduce a flag

unblocked that signals whether all observations along a program execution have been satisfied. We

let variable unblocked be initially true and replace every statement observe (G) from the original

program by the assignment unblocked B unblocked ∧G. In this way, variable unblocked remains
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B(skip) = skip

B(abort) = ite (unblocked) {abort} {skip}
B(x B E) = x B E

B(observe (G)) = unblocked B unblocked ∧G

B(c1; c2) = B(c1);B(c2)

B(ite (G) {c1} {c2}) = ite (G) {B(c1)} {B(c2)}

B({c1} [p] {c2}) = {B(c1)} [p] {B(c2)}

B(while (G) {c}) = while (G ∧ unblocked) {B(c)}

(a) Tranformation that removes observations from pro-
grams and, instead, signals (un)blocked execution in variable
unblocked. Moreover, it prevents the program divergence when
unblocked turns to false.

1: s1, . . . , sn B x1, . . . ,xn ;

2: repeat

3: unblocked B true;

4: x1, . . . ,xn B s1, . . . , sn ;

5: B(c)

6: until (unblocked)

(b) observe–free program rsm[c]
that simulates (conditioned) pro-
gram c by repeatedly sampling exe-
cutions from B(c).

Fig. 10. Simulation of conditioned programs based on rejection sampling.

true until an observation is violated. Secondly, since program executions are no longer blocked

on violating an observation, we need to modify the program to avoid any possible subsequent

divergence. This is achieved by guarding abort statements and loops with variable unblocked.
These adaptations are captured in detail by program transformation B in Figure 10a. Finally, we

need to keep a permanent copy of the initial program state since every time we sample an execution,

the program must start from its original initial state. All in all, this gives the unconditioned program

rsm[c] depicted in Figure 10b, which simulates the behaviour of the original program c .12 There,
x1, . . . ,xn denote the set of variables that occur in the original program c and s1, . . . , sn are auxiliary
variables used to store the initial program state; note that if the original program is closed (i.e.

independent of its input), Lines 1 and 4 can be omitted. Line 5 includes the modified version B(c)
of the original program c , which accounts for the replacement of observations by flag updates and

guarding of abort statements and loops. For convenience, we use a repeat–until loop to describe

program rsm[c]. Even though this type of loops is not formally contained in cpGCL, this deviation
does no harm since repeat–until loops are syntactic sugar: repeat {c} (G) ≡ c; while (¬G) {c}.

rsm[cfish] : repeat

unblocked B true;

f1 B gold [1/2] pir;

f2 B pir;

rem B f1 [1/2] f2;

unblocked B unblocked ∧ (rem= pir)
until (unblocked)

To illustrate the application of this

method, reconsider the program cfish
from Section 2. The equivalent program

rsm[cfish] is given on the right. In the

general case, to prove that (the uncondi-

tioned program) rsm[c] correctly simu-

lates (the conditioned program) c we re-
sort to the operational semantics from

Section 6. However, we state the cor-

rectness of the simulation using the ex-

pectation transformer semantics so that we keep the presentation of all our results consistent.

12
An implicit assumption here is that all expressions over program variables in rsm[c] are well–defined. This hinders the

application of the method for programs such as c = observe (x > 0); ite (1/x ≤ 0.5) {. . . } {. . . } because executions with

x = 0 are no longer blocked in rsm[c]. We can get rid of this limitation by in transformation B, guarding all program
instructions like we do with abort statements.
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Theorem 7.2 (Correctness of simulation by RSM). Let c ∈ cpGCL be a feasible program from
initial state s ∈ S. Then for all f ∈ E,

cwp[c](f ) = wp[rsm[c]](f ) .

Proof. In Appendix A.6. □

The underlying idea behind our program transformation c ⇝ rsm[c] has also been exploited by

[6] to reason about conditional probabilities over system models: Given a Markov chainM and a

conditionψ , they show how to construct a Markov chainMψ such that the conditional probabilities

inM agree with the (unconditional) probabilities inMψ .

Taken together, Theorems 7.1 and 7.2 provide two different approaches to simulate observations

using the remaining cpGCL constructs, under mild conditions of program feasibility. They show

that observe statements are, to some degree, syntactic sugar.

7.3 Replacing Loops by Observations
In some circumstances it is possible to apply a dual program transformation that replaces loops

with observations. This is applicable when the set of states reached at the end of the different

loop iterations are independent and identically distributed (i.i.d., for short). This is the case e.g.,

a0,a1,a2 B 0 [1/2] 1;

i B 4a0 + 2a1 + a0 + 1;

observe (1 ≤ i ≤ 6)

for the earlier program cdie that simulates a six-sided die. One can

show that the program is semantically equivalent to the program on

the right, where the effect of the loop is simulated by an observation.

This kind of transformation is particularly useful because it reduces

the program verification effort: it is usually easier to analyse a

loop–free program with observations than a program with loops,

whose analysis relies on loop invariants. In the sequel, let repeat {c} (G) be a shorthand for

repeat c until (G).
The transformation allows replacing a loopwith its body, followed by an observation conditioning

to the loop guard, i.e. repeat {c} (G) with c; observe (G). To formally define the class of “i.i.d.”

loops to which the transformation applies, we require the notion of n-unrolling of a loop, given by

the following clauses:

repeat
0
{c} (G) ≜ abort

repeatn+1 {c} (G) ≜ c; ite (¬G) {repeatn {c} (G)} {skip} .

Applying transformer wp to both sides of the last equation yields

wp[repeatn+1 {c} (G)](f ) = wp[c]
(
[¬G] · wp[repeatn {c} (G)](f )

)
+ wp[c]([G] · f ) .

For our intended notion of “i.i.d.” loop, the left summand above can be replaced with

wp[c]([¬G]) · wp[repeatn {c} (G)](f ) ,

because when executing repeatn+1 {c} (G), if G is not established after the first iteration, we can

continue the execution from the initial state instead of the state reached after the (failed) iteration.

This observation leads to our definition of i.i.d. loops below.

Definition 7.3 (i.i.d. loop). Given program c ∈ cpGCL and guard G, we say that loop repeat {c}
(G) is i.i.d. if for all n ∈ N, f ∈ E and д ∈ E≤1,

wp[repeatn+1 {c} (G)](f ) = wp[c]([¬G]) · wp[repeatn {c} (G)](f ) + wp[c]([G] · f ) , and

wlp[repeatn+1 {c} (G)](д) = wp[c]([¬G]) · wlp[repeatn {c} (G)](д) + wlp[c]([G] · д) .13 △
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As so defined, proving a loop i.i.d. might seem somewhat involved. However, we can do this by

means of a simple data flow analysis. It is not hard to see that a loop is i.i.d. whenever there is no

data flow across its iterations. In program cdie , this is a requirement one can readily check: we see

that whenever a variable is set, its value is never read in a subsequent iteration.

The benefit of Definition 7.3 based on the finite approximations of a loop is that it immediately

yields the following characterisation of the semantics for the entire loop, which will lie at the heart

of the correctness proof of the proposed transformation.

Lemma 7.4 (w(l)p of i.i.d. loops). Let c ∈ cpGCL and let repeat {c} (G) be an i.i.d. loop with
wp[c]([¬G])(s) < 1 for every s ∈ S. Then for all f ∈ E and д ∈ E≤1,

wp[repeat {c} (G)](f ) =
wp[c]([G] · f )
1 − wp[c]([¬G])

, and

wlp[repeat {c} (G)](д) =
wlp[c]([G] · д)
1 − wp[c]([¬G])

.

Proof. We prove only the first equation, the second equation follows by a similar reasoning.

Using a standard (continuity) argument we can show that

wp[repeat {c} (G)](f ) = supn wp[repeatn {c} (G)](f ) ,

and a simple induction over n gives

wp[repeatn {c} (G)](f ) = wp[c]([G] · f ) ·
n−1∑
i=0

wp[c]([¬G])i .

To conclude we rely on the closed form
1

1−p of the geometric series

∑∞
i=0 p

i
for |p | < 1. □

Using this result, we can readily prove the proposed transformation correct.

Theorem 7.5 (Correctness of observations for i.i.d. loops). Let c ∈ cpGCL and let repeat
{c} (G) be an i.i.d. loop with wp[c]([¬G])(s) < 1 for every s ∈ S. Then for all f ∈ E and д ∈ E≤1,

cwp[repeat {c} (G)](f ) = cwp[c; observe (G)](f ) , and

cwlp[repeat {c} (G)](д) = cwlp[c; observe (G)](д) . △

Proof. Again, we consider only the first equation. By the alternative characterisation of trans-

formers cw(l)p (Equation (3)) and Lemma 7.4, we have

cwp[repeat {c} (G)](f ) =
wp[repeat {c} (G)](f )
wlp[repeat {c} (G)](1)

=

wp[c]([G]·f )
1−wp[c]([¬G])

wlp[c]([G])

1−wp[c]([¬G])

=
wp[c]([G] · f )
wlp[c]([G])

=
wp[c; observe (G)](f )

wlp[c; observe (G)](1)
= cwp[c; observe (G)](f ) . □

13
Observe that in the second equation we keepwp[c]([¬G]) instead of using the liberal versionwlp[c]([¬G]). This is because

wp[c](f1 + f2) = wp[c](f1)+wp[c](f2), while wlp[c](д1 + д2) = wp[c](д1) + wlp[c](д2) (see Lemma A.3 in Appendix A.3).
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8 RELATEDWORK
Weakest–precondition semantics of probabilistic programs. The foundations of semantics of prob-

abilistic programming languages goes back to the seminal work [37]. Kozen provided semantics for

probabilistic programs and developed the probabilistic propositional dynamic logic [38] to reason

about such programs. Whereas his work focused on fully probabilistic programs, [40] extended

this with (demonic) non–determinism. Their transformers wp[·] and wlp[·] are respectively de-

noted by ⟨·⟩ and [·] in Kozen’s work, and represent (dual) modalities of probabilistic propositional

dynamic logic. Probabilistic weakest pre–condition semantics has a corresponding backward ab-

straction in the setting of abstract interpretation [17]. These notions are backward compatible with

Dijkstra’s notions of weakest (liberal) pre–conditions; that is to say, for deterministic programs

Kozen’s/McIver and Morgan’s semantics coincide with that of Dijkstra. This paper can be seen

as an extension of these lines of work with the notion of conditioning. In particular, Theorem 4.7

shows that our conditional weakest pre–condition semantics conservatively extends [38, 40]. Mech-

anisations of weakest pre–condition semantics using theorem provers have been conducted in

HOL [29], Isabelle [16], and Coq [3]. Extensions of the wp–approach with conditioning have, to our

knowledge, not yet been reported. However, a semi–automation based on bounded model checking

of the operational semantics developed in this paper is presented in [30].

Relating different semantics. Relating several semantics of probabilistic programs is not new.

[37] provided an interpretation in terms of functions on measurable spaces and as operators on

a Banach space of measures and showed their correspondence. The correspondence between

the weakest–precondition semantics of [40] and an intuitive operational semantics in terms of

Markov decision processes has been reported by [25]. Similar work for Dijkstra’s guarded command

language was published in [39]. Theorem 5.7 can be considered as an extension of these latter

results to probabilistic programs with conditioning.

Non–termination and non–determinism. The main difference with existing semantics of modern

probabilistic programming languages such as R2 [28, 42] is the explicit treatment of possible

diverging programs in our setting. In fact, several recent works on probabilistic programming

[9, 11, 48] assume programs to be almost–surely or even always terminating. For certain applications,

the restriction to terminating programs is understandable; for a semantics of a general–purpose

language, we believe that possible divergence needs to be treated.

Our operational semantics deals with conditioning and non–determinism. It was shown that con-

ditioning and non–determinism cannot both be covered by an inductive wp–semantics. This result

is related to the fact that for conditional probabilities in Markov decision processes, memoryless

schedulers (schedulers that on every visit to a state always take the same decision) are insufficient.

Instead, history–dependent schedulers are needed, see [2, 6]. In fact, [52] already noticed the diffi-

culties that arise when trying to integrate non–determinism and probabilities, even in the absence

of conditioning. Non–determinism in probabilistic programs has been studied extensively by [40];

current practical programming languages such as R2, webPPL and so forth do not incorporate this.

We believe that non–determinism is an essential feature for probabilistic programs and is not just

of theoretical interest. For instance, abstraction of program variables typically gives rise to non–

determinism. Capturing non–determinism, conditioning, and probabilistic choice (or sampling) in a

single semantic framework enables the formal reasoning about such abstract probabilistic programs.

In addition, it provides a stepping–stone towards reasoning about concurrent programs where a

viable approach is to treat concurrency by interleaving (i.e., non–determinism). The paper [24]

mentions the treatment of non–determinism as a challenging problem in probabilistic programming.

This paper only considered demonic non–determinism. An operational semantics for a probabilistic
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programming language that contains both angelic and demonic non–determinism has been given

in [14]. They consider stochastic two–player games as operational model, one type of player per

form of non–determinism, but do not consider conditioning.

Conditioning. One of the main motivations behind modern probabilistic programming languages

is the ability to condition the program runs on certain events, a feature that is at the heart of Bayesian

networks. There are several syntactic ways in which this can be incorporated. [26] considered

conditioning in a probabilistic constraint programming language with recursion and showed how

conditional probabilities in their setting can be computed. (Computing conditional probabilities in

general is undecidable as shown in [1].) In this paper, we have adopted the observe statements

from [9] that nowadays have been adopted by various languages. The observe statement is related

to assertions. Both observe (G) and assert (G) block all program executions violatingG . However,
observe (G) normalises the probability of the unblocked executions, while assert (G) does not,
yielding a sub–distribution of total mass possibly less than one. assert statements correspond

to the tests in the probabilistic propositional dynamic logic [38]. An alternative—quantitative—

interpretation of assert statements is also studied in [48]. There, assertions are accompanied

by a confidence value c and a probability value p meaning that with confidence c , the assertion
holds with probability (at least) p. Assertions in probabilistic programs have also been treated

in [12] where the analysis takes places using martingale theory. [9] consider conditioning in the

setting of functional languages, and base their semantics on monads. Although their semantics

covers conditioning on zero–probability events, unbounded loops are not considered. [42] and [9]

consider observe statements for certainly terminating programs. Our wp–semantics coincides for

terminating programs; we have discussed in detail at the end of Section 4 that adopting the R2
semantics to possibly diverging programs leads somewhat counterintuitive results.

Program transformations. Most program transformations for probabilistic programs, such as

slicing [28] aim to accelerate the Markov Chain Monte Carlo analysis. The transformations in this

paper aim at treating conditioning. Our program transformation to “hoist” the observe statements

through the program while updating the probabilistic choices is similar in spirit to [42]. As we use

probabilistic choices and not random assignments we are able to completely remove conditioning

from a program. In addition, as our semantics covers diverging programs as well, our transformation

is applicable to non–terminating programs. The program transformation that replaces an observe
statement by a loop is in fact a direct application of the principle of the rejection sampling method

to conditional distributions. This has also been studied by, e.g., [49, §9] under the name of “generate

and test” paradigm. As rejection sampling is the de facto semantics for inference on most practical

probabilistic programming languages, this connection shows that ourwp–semantics is an alternative

to this. The idea to rerun a program until all observations are passed is used by [6] to automate the

verification of conditioned temporal logic formulas in Markov models. Our final transformation

to replace a loop by an observe statement has a strong resemblance with observations made in

some textbooks on randomised algorithms; e.g., Theorem 7.5 that states the correctness of our

transformation corresponds to [49, Theorem 9.3.(iii)].

9 CONCLUSION AND FUTUREWORK
This paper presented an in–depth study of the notion of conditioning in a simple imperative

probabilistic programming language. Both a weakest–precondition and an operational semantics

have been provided. Their relation has been established. The key is to consider the weakest–

precondition semantics as a pair in which the probability to diverge or to violate one (or more)

observations in the program is kept separately. This allows for treating possibly diverging programs,
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and conditioning on zero–probability events. It was shown that incorporating non–determinism

in the inductive weakest–preconditioning setting is impossible. This raises the question how to

deal with the combination of non–determinism and conditioning in a wp–style framework. The

semantics have been used to prove the correctness of three program transformations, two of which

remove conditioning, while one replaces a loop by an observe. An extension of both our semantics

to recursive probabilistic programs with conditioning can be readily obtained based on the recent

work [43]. Issue for future work include the treatment of continuous distributions, and the (semi–

)automated synthesis of loop invariants. In particular, it would be interesting to investigate to what

extent existing techniques for loop–invariant synthesis in probabilistic programs [7, 13, 35] can be

lifted to the setting with conditioning. For continuous distributions, the operational semantics is no

longer a Markov chain, but rather a stochastic relation. In addition, a wp–semantics for continuous

distributions requires measure theory; recent work in that direction has been reported in [50]. We

also plan to investigate the usage of our weakest–precondition framework to reason about entropy

and secrecy where conditioning plays a crucial role [21].

APPENDIX
A.1 Proof of Lemma 4.6: Decoupling of cw(l)p

Lemma 4.6. For c ∈ cpGCL, f ∈ E, and д,д′ ∈ E≤1,

cwp[c](f ,д) =
(
wp[c](f ), wlp[c](д)

)
and cwlp[c](д,д′) =

(
wlp[c](д), wlp[c](д′)

)
.

Proof. By induction on the structure of c . Except for while–loops, the proof for all other

program constructs is rather straightforward. For c = while (G) {c ′} we have

cwp[while (G) {c ′}](f , д)

= lfp⪯,⪰(X1,X2)• [G] · cwp[c ′](X1, X2) + [¬G] · (f ,д)

= lfp⪯,⪰(X1,X2)• [G] ·
(
wp[c ′](X1), wlp[c ′](X2)

)
+ [¬G] · (f ,д) (I.H. on c ′)

= lfp⪯,⪰(X1,X2)•
(
[G] · wp[c ′](X1) + [¬G] · f , [G] · wlp[c ′](X2) + [¬G] · д

)︸                                                                        ︷︷                                                                        ︸
H (X1,X2)

Now let H1 (resp. H2) be the first (resp. second) projection of H . Since the value of H1(X1, X2) (resp.

H2(X1, X2)) does not depend on X2 (resp. X1) and

H1(X1, ) = [G] · wp[c ′](X1) + [¬G] · f

H2( , X2) = [G] · wlp[c ′](X2) + [¬G] · д ,

we can derive the continuity of both projections from the continuity of wp and wlp (Lemma A.1).

Since H1 and H2 are continuous, Bekić’s Theorem [8] says that the least fixed point of H is given

by

(
X̂1, X̂2

)
, where

X̂1 = lfp⪯ X1• H1

(
X1, lfp⪰ X2• H2(X1, X2)

)
= lfp⪯ X1• H1

(
X1,

)
= lfp⪯ X1• [G] · wp[c ′](X1) + [¬G] · f

= wp[while (G) {c ′}](f )

and

X̂2 = lfp⪰ X2• H2

(
lfp⪯ X1• H1(X1, X2), X2

)
= lfp⪰ X2• H2

(
, X2

)
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= lfp⪰ X2• [G] · wlp[c ′](X2) + [¬G] · д

= gfp⪯ X2• [G] · wlp[c ′](X2) + [¬G] · д

= wlp[while (G) {c ′}](д) .

This concludes the proof since, overall, we obtain

cwp[while (G) {c ′}](f ,д) = lfp⪯,⪰(H ) =
(
wp[while (G) {c ′}](f ),wlp[while (G) {c ′}](д)

)
.

□

A.2 Continuity of w(l)p and cw(l)p

Lemma A.1 (Continuity of w(l)p). For every program c ∈ cpGCL, the expectation transformers
wp[c] : E → E and wlp[c] : E≤1 → E≤1 are continuous mappings over (E, ⪯) and (E≤1, ⪰), respec-
tively.

Proof. Let f1 ⪯ f2 ⪯ . . . and д1 ⪰ д2 ⪰ . . . be two ω-chains in E and E≤1, respectively. We have

to show that

supn wp[c](fn) = wp[c](supn fn) and infn wlp[c](дn) = wlp[c](infn дn) .

We proceed by induction on the structure of c . For c = observe (G), the statement is immediate

since

supn wp[observe (G)](fn) = supn[G] · fn = [G] · supn ·fn = wp[observe (G)](supn fn) ,

and likewise for infn wlp[observe (G)](дn) = wlp[observe (G)](infn дn). The remaining program

constructs are covered in [25]. □

Lemma A.2 (Continuity of cw(l)p). For every program c ∈ cpGCL, the expectation transformers
cwp[c] : E × E≤1 → E × E≤1 and cwlp[c] : E≤1 × E≤1 → E≤1 × E≤1 are continuous mappings over
(E × E≤1, ⪯ × ⪰) and (E≤1 × E≤1, ⪰ × ⪰), respectively.

Proof. Immediate from Lemmas A.1 and 4.6, since continuous functions are closed under

products. □

A.3 Duality between cwp and cwlp

Lemma A.3. For every program c ∈ cpGCL and expectations д,д′ ∈ E≤1 such that д + д′ ⪯ 1,

wlp[c](д) + wp[c](д′) = wlp[c](д + д′) .

Proof. By induction on the structure of c . We sketch the cases of sequential composition and

while–loops since the remaining cases are immediate from the definition of w(l)p. For c = c1; c2
we have

wlp[c1; c2](д) + wp[c1; c2](д′)

= wlp[c1]
(
wlp[c2](д)

)
+ wp[c1]

(
wp[c2](д′)

)
(def. wlp, wp)

= wlp[c1]
(
wlp[c2](д) + wp[c2](д′)

)
(I.H. on c1)

= wlp[c1]
(
wlp[c2](д+д′)

)
(I.H. on c2)

= wlp[c1; c2](д+д′) (def. wlp)

For c = while (G) {c ′}, the statement reduces to

gfp
⪯
(F ℓд) + lfp⪯

(Fд′) = gfp
⪯
(F ℓд+д′) ,
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where F ℓh(f ) = [G] ·wlp[c ′](f ) + [¬G] ·h and Fh(f ) = [G] ·wp[c ′](f ) + [¬G] ·h. Using the same

argument (and notation) as in the proof of Theorem 4.5, we can show that the above equation is

equivalent to limn→∞ F ℓnд (1) + limn→∞ F n
д′ (0) = limn→∞ F ℓnд+д′(1), which, in turn, follows from

the statement

∀n• F ℓnд (1) + F n
д′ (0) = F ℓnд+д′(1) .

We proceed by induction on n. The base case reduces to 1+ 0 = 1. For the inductive case we reason
as follows:

F ℓn+1д (1) + F n+1
д′ (0)

= [G] ·wlp[c ′]
(
F ℓnд (1)

)
+ [¬G] ·д + [G] ·wp[c ′]

(
F n
д′ (0)

)
+ [¬G] ·д′ (def. F ℓд , Fд′)

= [G] ·wlp[c ′]
(
F ℓnд (1) + F n

д′ (0)
)
+ [¬G] · (д+д′) (I.H. on c ′)

= [G] ·wlp[c ′]
(
F ℓnд+д′(1)

)
+ [¬G] · (д+д′) (I.H. on n)

= F ℓn+1д+д′(1) (def. F ℓд+д′)

□

A.4 Proof of Lemma 5.5
Lemma 4.6. For program c ∈ cpGCL, state s ∈ S and expectations f ∈ E, д ∈ E≤1,

ERR
f
s JcK (♢ sink ) = wp[c](f )(s) , and (8)

LERR
д
s JcK (♢ sink ) = wlp[c](д)(s) . (9)

Proof. We begin with Equation (8). The proof proceeds by induction on the structure of c .
Except for the case of observations, the proof argument for all other program constructs follows

the same idea as employed in [25, Theorem 23]. For c = observe (G), we distinguish two cases. In

Case 1 we have s |= G, the OMRC R
f
s Jobserve (G)K is14

⟨observe (G), s⟩

0

⟨↓, s⟩

f (s)

⟨sink ⟩

0

and ♢ sink = {π̂1} with π̂1 = ⟨observe (G), s⟩ → ⟨↓, s⟩ → ⟨sink ⟩. Then,

ERR
f
s Jobserve (G)K (♢ sink ) =

∑
π̂ ∈{π̂1 }

Pr(π̂ ) · r (π̂ )

= 1 · f (s) = [G](s) · f (s) = wp[observe (G)](f )(s) .

In Case 2 we have s ̸ |= G, the OMRC R
f
s Jobserve (G)K is

⟨observe (G), s⟩

0

⟨ ⟩

0

⟨sink ⟩

0

and ♢ sink = {π̂1} with π̂1 = ⟨observe (G), s⟩ → ⟨ ⟩ → ⟨sink ⟩. Then,

ERR
f
s Jobserve (G)K (♢ sink ) =

∑
π̂ ∈{π̂1 }

Pr(π̂ ) · r (π̂ )

= 1 · 0 = [G](s) · f (s) = wp[observe (G)](f )(s) .

14
If transitions have probability 1, we omit this in our figures. Moreover, all states—with the exception of ⟨sink ⟩—are left

out if they are not reachable from the initial state.
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The case of loops is not thoroughly treated in [25] as the authors do not argue why the fact that

Equation (8) holds for the finite unrollings of a loop implies that it also holds for the entire loop.

For the sake of completeness, we provide herein a full proof argument. Assume c = while (G) {c ′}.
Since transformer wp is continuous, its action on a loop coincides with the limit of its action on

the finite unrollings (see Section 4.4, Page 19), i.e.

wp[while (G) {c ′}](f ) = supn wp[whilen (G) {c ′}](f ) .

Using the inductive hypothesis on c ′, we can also establish by induction on n that

∀n• wp[whilen (G) {c ′}](f ) = ERR
f
s Jwhilen (G) {c ′ }K (♢ sink ) .

To conclude, we are only left to show that

supn ER
R
f
s Jwhilen (G) {c ′ }K (♢ sink ) = ERR

f
s Jwhile (G) {c ′ }K (♢ sink ) .

Observe that every path in the OMRC R
f
s Jwhilen (G) {c ′}K either terminates properly or is pre-

maturely aborted (yielding 0 reward) because it reaches the bound of n iterations. But the OMRC

R
f
s Jwhile (G) {c ′}K for the unbounded loop does not prematurely abort any execution. Therefore,

the left–hand side is upper bounded by the right–hand side. To prove the reverse inequality, observe

that paths from R
f
s Jwhile (G) {c ′}K that collect positive reward are necessarily finite. Therefore,

for each of them there must exist some n ∈ N such that R
f
s Jwhilen (G) {c ′}K includes this path. By

taking the supremum of these n’s, we include in the left-hand-side every path from R
f
s Jwhile (G)

{c ′}K that collects positive reward.
This concludes the proof of Equation (8). The proof of Equation (9) also goes by induction on

the structure of c and expect for the case of observations, whose proof argument is identical as for

Equation (8), all the remaining cases follow the same ideas as in [25, Theorem 23]. □

A.5 Correctness of Observation–Hoisting Transformation
Lemma A.4. Let c ∈ cpGCL. Then for all expectations f ∈ E and д,h ∈ E≤1,

ˆh · wp[ĉ](f ) = wp[c](h · f ) (10) ˆh · wlp[ĉ](д) = wlp[c](h · д) (11) ˆh = wlp[c](h) (12)

where
(
ĉ, ˆh

)
= T(c, h).

Proof. We prove only Equation (10) and (12) since Equation (11) follows a reasoning similar to

that of Equation (10). The proof proceeds by induction on the structure of c . We consider only the

cases of sequential composition, probabilistic choice and while–loops since the other cases follow
from the definition of w(l)p and elementary algebraic steps. We refer to the inductive hypothesis

about (10) (resp. (12)) as IH10 (resp. IH12).

■ The sequential composition c1; c2. Let
(
ĉ2, ˆh2

)
= T(c2,h) and

(
ĉ1, ˆh1

)
= T(c1, ˆh2). By definition

we have T(c1; c2,h) =
(
ĉ1; ĉ2, ˆh1

)
. Then

ˆh1 · wp[ĉ1; ĉ2](f ) = ˆh1 · wp[ĉ1] (wp[ĉ2](f )) (def. wp)

= wp[c1]
(
ˆh2 · wp[ĉ2](f )

)
(IH10 on c1)

= wp[c1](wp[c2](h · f )) (IH10 on c2)

= wp[c1; c2](h · f ) (def. wp)

ˆh1 = wlp[c1]
(
ˆh2

)
(IH12 on c1)

= wlp[c1](wlp[c2](h)) (IH12 on c2)
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= wlp[c1; c2](h). (def. wlp)

■ The probabilistic choice {c1} [p] {c2}. Let
(
ĉ1, ˆh1

)
= T(c1, h) and

(
ĉ2, ˆh2

)
= T(c2, h). By defini-

tion we have

T({c1} [ϕ] {c2},h) =
(
{ĉ1}

[
ϕ · ˆh1/ ˆh

]
{ĉ2}, ϕ · ˆh1 + (1−ϕ) · ˆh2

)
with

ˆh = ϕ · ˆh1 + (1−ϕ) · ˆh2. To prove Equation (10)

ˆh · wp[{ĉ1}
[
ϕ · ˆh1/ ˆh

]
{ĉ2}](f ) = wp[{c1} [ϕ] {c2}](h · f ) ,

we make a case distinction between those states that are mapped by
ˆh to a positive number and

those that are mapped to zero. In the first case, i.e. if
ˆh(s) > 0, we reason as follows:

ˆh(s) · wp[{ĉ1}
[
ϕ · ˆh1/ ˆh

]
{ĉ2}](f )(s)

= ˆh(s) ·
(
ϕ · ˆh1
ˆh
(s) · wp[ĉ1](f )(s) +

(1−ϕ)· ˆh2
ˆh

(s) · wp[ĉ2](f )(s)
)

(def. wp, algebra)

= ϕ(s) · ˆh1(s) · wp[ĉ1](f )(s) + (1−ϕ)(s) · ˆh2(s) · wp[ĉ2](f )(s) (algebra)

= ϕ(s) · wp[c1](h · f )(s) + (1−ϕ)(s) · wp[c2](h · f )(s) (IH10 on c1,c2)

= wp[{c1} [ϕ] {c2}](h · f )(s) (algebra)

In the second case, i.e. if
ˆh(s) = 0, the claim holds becausewewill havewp[{c1} [ϕ] {c2}](h·f )(s) = 0.

To see this, note that if
ˆh(s) = 0 then either ϕ(s) = 0∧ ˆh2(s) = 0 or ϕ(s) = 1∧ ˆh1(s) = 0. Now assume

we are in the first case (an analogous argument works for the other case); using the IH10 over c2 we
conclude that

wp[{c1} [0] {c2}](h · f )(s) = wp[c2](h · f )(s) = ˆh2(s) · wp[c2](f )(s) = 0 .

To prove Equation (12) we apply the IH12 on c1 and c2:

ϕ · ˆh1 + (1−ϕ) · ˆh2 = ϕ · wlp[c1](h) + (1−ϕ) · wlp[c2](h) = wlp[{c1} [ϕ] {c2}](h) .

■ The loop while (G) {c}. Let ˆh = gfp(H) where H(X ) = [G] · Tc (X ) + [¬G] · h and Tc (·) is a

short–hand for π2 ◦T (c, ·). If we let (ĉ,θ ) = T(c, ˆh), by definition of T we have

T(while (G) {c},h) = (while (G) {ĉ}, ˆh) .

Equation (10) says that

ˆh · wp[while (G) {ĉ}](f ) = wp[while (G) {c}](h · f ) .

Now if we letH (X ) = [G] ·wp[ĉ](X )+ [¬G] · f and I (X ) = [G] ·wp[c](X )+ [¬G] ·h · f , the equation

can be rewritten as
ˆh · lfp(H ) = lfp(I ) and a straightforward argument using the Kleene fixed

point theorem (and the continuity of wp established in Lemma A.1) shows that it is entailed by

∀n•
ˆh · Hn(0) = In(0). We prove this statement by induction on n. The case n = 0 is trivial. For the

inductive case we reason as follows:

ˆh · Hn+1(0) = H( ˆh) · Hn+1(0) (def.
ˆh)

= ([G] · Tc ( ˆh) + [¬G] · h) · H
n+1(0) (def.H )

= ([G] · Tc ( ˆh) + [¬G] · h) · ([G] · wp[ĉ](Hn(0)) + [¬G] · f ) (def. H )

= [G] · Tc ( ˆh) · wp[ĉ](Hn(0)) + [¬G] · h · f (algebra)

= [G] · θ · wp[ĉ](Hn(0)) + [¬G] · h · f (def. θ )

= [G] · wp[c]( ˆh · Hn(0)) + [¬G] · h · f (IH10 on c)
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= I ( ˆh · Hn(0)) (def. I )

= In+1(0) (IH on n)

We now turn to proving Equation (12)

ˆh = wlp[while (G) {c}](h) .

By letting J (X ) = [G] ·wlp[c](X ) + [¬G] · h, the claim reduces to gfp(H) = gfp(J ), which we prove

showing that
ˆh = gfp(H) is a fixed point of J and gfp(J ) is a fixed point of H . (These assertions

basically imply that gfp(H) ≥ gfp(J ) and gfp(J ) ≥ gfp(H), respectively.)

J ( ˆh) = [G] · wlp[c]( ˆh) + [¬G] · h (def. J )

= [G] · θ + [¬G] · h (IH12 on c)

= [G] · Tc ( ˆh) + [¬G] · h (def. θ )

= H( ˆh) (def.H )

= ˆh (def.
ˆh)

H(gfp(J )) = [G] · Tc (gfp(J )) + [¬G] · h (def.H )

= [G] · wlp[c](gfp(J )) + [¬G] · h (IH12 on c)

= J (gfp(J )) (def. J )

= gfp(J ) (def. gfp(J ))

□

A.6 Proof of Theorem 7.2
Theorem 7.2 (Correctness of simulation by RSM). Let c ∈ cpGCL be a feasible program from

initial state s ∈ S. Then for all f ∈ E,

cwp[c](f ) = wp[rsm[c]](f ) .

Proof. It relies on the following observations:

(1) every path π̂ ofR
f
s Jrsm[c]K reaching ⟨sink ⟩with r (π̂ ) > 0 is of the form π̂in◦π̂

 
1
◦· · ·◦π̂ m◦π̂✓

for somem ∈ N (possibly 0, meaning that π̂ = π̂in ◦ π̂
✓
), where π̂in is the path fragment that

accounts for the initialization of variables s1, . . . , sn (Line 1 in Figure 10b), π̂ i represents

an iteration of the loop in rsm[c] that fails to pass the (now gone) observations of c , and
π̂✓ an iteration that does pass the observations;

(2) every path of type π̂✓ in R
f
s Jrsm[c]K corresponds to a path π̂ ∗

of R
f
s JB(c)K in ♢ sink ∩

¬♢¬unblocked (they have equal probabilities and cumulated rewards);

(3) for every m, PrR
f
s Jrsm[c]K(π̂ 

1
◦ · · · ◦ π̂ m) = PrR

f
s JB(c)K(♢¬unblocked)m since all the loop

iterations of rsm[c] are independent (because the original program state s is restored at the

beginning of each iteration);

(4) each path of R
f
s JB(c)K in ♢ sink (resp. ¬♢¬unblocked) corresponds to a paths of R

f
s JcK in

♢ sink (resp. ¬♢ ) (they have equal probabilities and cumulated rewards).

Given this, we reason as follows:

wp[rsm[c]](f )

=
{
Lemma 5.5

}
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ERR
f
s Jrsm[c]K (♢sink )

=
{
Definition of expected rewards

}∑
π̂ of R

f
s Jrsm[c]K in ♢sink

PrR
f
s Jrsm[c]K(π̂ ) · rR

f
s Jrsm[c]K(π̂ )

=
{
Observation (1)

}
∞∑

m=0

∑
π̂=π̂in◦π̂

 
1
◦···◦π̂ m◦π̂✓

of R
f
s Jrsm[c]K in ♢sink

PrR
f
s Jrsm[c]K(π̂ ) · rR

f
s Jrsm[c]K(π̂ )

=
{
PrR

f
s Jrsm[c]K(π̂ ) = PrR

f
s Jrsm[c]K(π̂ 

1
◦ · · · ◦ π̂ m) · Pr

R
f
s Jrsm[c]K(π̂✓)

and rR
f
s Jrsm[c]K(π̂ ) = rR

f
s Jrsm[c]K(π̂✓)

}
∞∑

m=0

∑
π̂in◦π̂

 
1
◦···◦π̂ m◦π̂✓

of R
f
s Jrsm[c]K in ♢sink

PrR
f
s Jrsm[c]K(π̂ 

1
◦ · · · ◦ π̂ m) · Pr

R
f
s Jrsm[c]K(π̂✓) · rR

f
s Jrsm[c]K(π̂✓)

=
{
Observations (2) and (3)

}
∞∑

m=0

∑
π̂ ∗

of R
f
s JB(c)K in

♢sink ∩¬♢¬unblocked

PrR
f
s JB(c)K(♢¬unblocked)m · PrR

f
s JB(c)K(π̂ ∗) · rR

f
s JB(c)K(π̂ ∗)

=
{
Algebra

}(
∞∑

m=0

PrR
f
s JB(c)K(♢¬unblocked)m

)
·

∑
π̂ ∗

of R
f
s JB(c)K in

♢sink ∩¬♢¬unblocked

PrR
f
s JB(c)K(π̂ ∗) · rR

f
s JB(c)K(π̂ ∗)

=
{
Closed form

1

1−p of the geometric series

∑∞
i=0 p

i
for |p | < 1

}∑
π̂ ∗

of R
f
s JB(c)K in

♢sink ∩¬♢¬unblocked

PrR
f
s JB(c)K(π̂ ∗) · rR

f
s JB(c)K(π̂ ∗)

1 − PrR
f
s JB(c)K(♢¬unblocked)

=
{
Definition of expected rewards, PrM(¬♢A) = 1 − PrM(♢A)

}
ERR

f
s JB(c)K (♢sink ∩ ¬♢¬unblocked)

PrR
f
s JB(c)K(¬♢¬unblocked)

=
{
Definition of conditional expected rewards

}
CERR

f
s JB(c)K (♢sink | ¬♢¬unblocked)

=
{
Observation (4)

}
CERR

f
s JcK (♢sink | ¬♢ )

=
{
Theorem 5.7

}
cwp[c](f ) . □
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