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Abstract
This paper presents a wp–style calculus for obtaining expectations
on the outcomes of (mutually) recursive probabilistic programs. We
provide several proof rules to derive one– and two–sided bounds
for such expectations, and show the soundness of our wp–calculus
with respect to a probabilistic pushdown automaton semantics. We
also give a wp–style calculus for obtaining bounds on the expected
runtime of recursive programs that can be used to determine the
(possibly infinite) time until termination of such programs.

Categories and Subject Descriptors F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams.

Keywords recursion · probabilisitic programming · program veri-
fication · weakest pre–condition calculus · expected runtime.

1. Introduction
Uncertainty is nowadays more and more pervasive in computer sci-
ence. Applications have to process inexact data from, e.g., unreli-
able sources such as wireless sensors, machine learning methods,
or noisy biochemical reactors. Approximate computing saves re-
sources such as e.g. energy by sacrificing “strict” correctness for
applications like image processing that can tolerate some defects in
the output by running them on unreliable hardware, circuits that ev-
ery now and then (deliberately) produce incorrect results [4]. Prob-
abilistic programming [28] is a key technique for dealing with un-
certainty. Put in a nutshell, a probabilistic program takes a (prior)
probability distribution as input and obtains a (posterior) distribu-
tion. Probabilistic programs are not new at all; they have been in-
vestigated by Kozen [20] and others in the early eighties. In the last
years, the interest in these programs has rapidly grown. In partic-
ular, the incentive by the AI community to use probabilistic pro-
grams for describing complex Bayesian networks has boosted the
field of probabilistic programming [10]. Probabilistic programs are
used in, amongst others, machine learning, systems biology, se-
curity, planning and control, quantum computing, and software–
defined networks. Indeed almost all programming languages, ei-
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ther being functional, object–oriented, logical, or imperative, in the
meanwhile have a probabilistic variant.

This paper focuses on recursive probabilistic programs. Recur-
sion in Bayesian networks where a variable associated with a par-
ticular domain entity can depend probabilistically on the same vari-
able associated to a different entity, is “common and natural” [29].
Recursive probability models occur in gene regulatory networks
that describe (possibly recursive) rule–based dependencies between
genes. Finally, programs describing randomized algorithms are of-
ten recursive by nature. “Sherwood” algorithms exploit randomiza-
tion to increase efficiency by avoiding or reducing the probability
of worst–case behavior. Varying quicksort by selecting the pivot
randomly (rather than doing this deterministically) avoids very un-
even splits of the input array. Its worst–case runtime is the same as
the average–case runtime of Hoare’s deterministic quicksort since
the likelihood of obtaining a quadratic worst–case is significantly
lowered [24, Sec. 2.5]. A “Sherwood” variant of binary search
splits the input array at a random position, and yields a similar
effect—expected runtimes of worst–, average– and best–case are
aligned [21, Sec. 11.4.4]. “Sherwood” techniques are also useful in
selection, median finding, and hashing (such as Bloom filters).

The purpose of this paper is to provide a framework for enabling
formal reasoning about recursive probabilistic programs. This rig-
orous reasoning is important to prove the correctness of such pro-
grams. This includes statements about the expected outcomes of
recursive probabilistic programs, as well as assertions about their
termination probability. These are challenging problems. For in-
stance, consider the (at first sight simple) recursive program:

Prec3 B {skip} [1/2] {callPrec3 ; callPrec3 ; callPrec3}

which terminates immediately with probability 1/2 or invokes itself
three times otherwise. It turns out that this program terminates with
(irrational) probability

√
5−1
2

—the reciprocal of the golden ratio.
Correctness proofs of the “Sherwood” versions of quicksort and

binary search do exist but typically rely on mathematical ad–hoc
reasoning about expected values. The aim of this paper is to enable
such proofs by means of formal verification of the algorithm itself.

Besides correctness, our interest is in analyzing the expected
runtime of recursive probabilistic programs in a rigorous manner.
This enables obtaining insight in their efficiency and moreover pro-
vides a method to show whether the expected time until termina-
tion is finite or infinite—a crucial difference for probabilistic pro-
grams [9, 16]. Again, analyses of expected runtimes of recursive
randomized algorithms do exist using standard mathematics [24,
Sec. 2.5], probabilistic recurrence relations [19], or dedicated tech-
niques for divide–and–conquer algorithms [6], usually taking for
granted—far from trivial—relationships between the underlying
random variables. Here the aim is to do this from first principles
by formal verification techniques, directly on the program code.

To accomplish these goals, this paper presents two weakest pre–
condition–style calculi for reasoning about recursive probabilistic
programs. The first calculus is an extension of McIver and Mor-
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gan’s calculus [23] for non–recursive programs and enables obtain-
ing expectations on the outcomes of (mutually) recursive proba-
bilistic programs. Compared to an existing extension with recur-
sion [22], our approach provides a clear separation between syntax
and semantics. We prove the soundness of our wp–calculus with
respect to a probabilistic pushdown automaton semantics. This is
complemented by a set of proof rules to derive one– and two–sided
bounds for expected outcomes of recursive programs. We illustrate
the usage of these proof rules by analyzing the termination proba-
bility of the example program above. Subsequently, we provide a
variant of our wp–style calculus for obtaining bounds on the ex-
pected runtime of probabilistic programs. This extends our recent
approach [17] towards treating recursive programs. The applica-
tion of this calculus includes proving positive almost–sure termi-
nation, i.e., does a program terminate with probability one in finite
expected time? Our framework enables (in a very succinct way) es-
tablishing a (well–known) relationship between the expected run-
time of a probabilistic program with its termination behavior: If
an (abort–free) program has finite expected runtime, then it termi-
nates almost–surely. We provide a set of proof rules for expected
runtimes and show the applicability of our approach by proving
several correctness properties as well as the expected runtime of
the ‘Sherwood’ variant of binary search.

Organization of the paper. Section 2 presents our probabilistic
programming language with recursion. Section 3 presents the wp–
style semantics for reasoning about program correctness. Section 4
introduces several proof rules for reasoning about the correctness of
recursive programs. Section 5 presents the expected runtime trans-
former together with proof rules for recursive programs. Section 6
describes an operational probabilistic pushdown automata seman-
tics and relates it to the wp–style semantics. Section 7 discusses
some extensions of the results presented in the previous sections.
Section 8 presents a detailed analysis of the ‘Sherwood’ variant of
binary search. Finally, Section 9 discusses related work and Sec-
tion 10 concludes. Detailed proofs are provided in the appendix,
which is added for the convenience of the reviewer, and will not be
part of the final version (if accepted).

2. Programming Model
To model our probabilistic recursive programs we consider a simple
imperative language à la Dijkstra’s Guarded Command Language
(GCL) [7] with two additional features: First, a (binary) probabil-
isitic choice operator to endow our programs with a probabilistic
behavior. For instance, the program

{x := x+1} [1/3] {x := x−1}

either increases x with probability 1/3 or decreases it with prob-
ability 2/3 = 1 − 1/3. Second, we allow for procedure calls. For
simplicity, our development assumes the presence of only a single
procedure, say P . We defer the treatment of multiple (possibly mu-
tually recursive) procedures to Section 7.

Formally, a command of our language, coined pRGCL, is de-
fined by the following grammar:

C ::= skip no–op
| V := E assignment
| abort abortion
| if (E) {C} else {C} conditional branching
| {C} [p] {C} probabilistic choice
| callP procedure call
| C; C sequential composition

We assume a set V of program variables and a set E of expressions
over program variables. As usual, we assume that program states
are variable valuations, i.e. mappings from variables to values; let

S be the set of program states. Finally, we also assume an inter-
pretation function JEK for expressions that maps program states to
values.

No–op, assignments, conditionals and sequential composition
are standard. {c1} [p] {c2} represents a probabilistic choice: it
behaves as c1 with probability p and as c2 with probability 1−p.
Finally callP makes a (possibly recursive) call to procedure P .

For our development we assume that procedure P manipulates
the global program state and we thus dispense with parameters and
return statements for passing information across procedure calls.
The declaration of P consists then of its body and we use P . c
to denote that c ∈ C is the body of P . We say that a command is
closed if it contains no procedure calls.

A pRGCL program is then given by a pair 〈c,D〉, where c ∈ C is
the “main” command and D : {P} → C is the declaration of P .1 In
order not to clutter the notation, when c is closed we simply write
c for program 〈c,D〉, for any declaration D.
Example 1. To illustrate the use of our language consider the fol-
lowing declaration of a (faulty) recursive procedure for computing
the factorial of a natural number stored in x:

PfactB if (x ≤ 0) {y := 1} else{
{x := x−1; callPfact; x := x+1} [5/6]

{x := x−2; callPfact; x := x+2}; y := y · x
}

In each recursive call x is decreased either by one or two, with
probability 5/6 and 1/6, respectively. Therefore some factors might
be missing in the computation of the factorial of x. 4

As a final remark, observe that the language does not support
guarded loops in a native way because they can be simulated. Con-
cretely, the usual guarded loop while (E) do {c} is simulated by the
recursive procedure Pwhile B if (E) {c; callPwhile} else {skip}.

3. Weakest Pre–Expectation Semantics
Inspired by Kozen [20], McIver and Morgan [22] generalized Dijk-
stra’s weakest pre–condition semantics to (a variant of) pRGCL.
In particular, they defined the semantics of recursive programs
using fixed point techniques. In this section we present a different
approach where the behavior of a recursive program is defined as
the limit of its finite approximations (or truncations) and prove it
equivalent to their definition based on fixed points.

3.1 Definition
The wp-semantics over pRGCL generalizes Dijkstra’s weakest pre-
condition semantics over GCL twofold: First, instead of being pred-
icates over program states, pre– and post–conditions are now (non–
negative) real–valued functions over program states. Secondly, in-
stead of merely evaluating a (boolean–valued) post–condition in the
final state(s) of a program, we now measure the expected value of
a (real–valued) post–condition w.r.t. the distribution of final states.
Formally, if f : S → R≥0 we let

wp[c,D](f) , λs • EJc,DK(s) (f) ,

where Jc,DK(s) denotes the distribution of final states from execut-
ing 〈c,D〉 in initial state s and EJc,DK(s) (f) denotes the expected
value of f w.r.t. the distribution of final states Jc,DK(s). Consider
for instance program

ccoins : {x := 0} [1/2] {x := 1}; {y := 0} [1/3] {y := 1}
that flips a pair of fair and biased coins. We have

wp[ccoins](f) = λs • 1
6
f(s[x,y/0,0]) + 1

3
f(s[x, y/0, 1])

1 We chose the declaration of P to be a mapping from a singleton and not
the mere body of P because this minimizes the changes to accommodate
the subsequent treatment to multiple procedures.
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+ 1
6
f(s[x,y/1,0]) + 1

3
f(s[x, y/1, 1]) ,

where s[x1, . . . , xn/v1, . . . , vn] represents the state obtained by
updating in s the value of variables x1, . . . , xn to v1, . . . , vn,
respectively. As above, when c is closed, we usually write wp[c]
instead of wp[c,D], as a declaration D plays no role.

Observe that, in particular, if [A] denotes the indicator func-
tion of a predicate A over program states, wp[c,D]([A])(s) gives
the probability of (terminating and) establishing A after executing
〈c,D〉 from state s. For instance we can determine the probability
that the above program ccoins establishes x = y from state s through

wp[ccoins]([x=y])(s) = 1
6
· 1 + 1

3
· 0 + 1

6
· 0 + 1

3
· 1 = 1

2
.

Moreover, for a deterministic program c that from state s termi-
nates in state s′, Jc,DK(s) is the Dirac distribution that concentrates
all its mass in s′ and wp[c,D]

(
[A]
)
(s) reduces to 1 · [A] (s′), which

gives 1 if s′ |= A and 0 otherwise. This yields the classical weakest
pre–condition semantics of ordinary sequential programs.

To reason about partial program correctness, pRGCL also ad-
mits a liberal version of the transformer wp[ · ], namely wlp[ · ]. In
the same vein as for ordinary sequential programs, wp[c,D]([A])(s)
gives the probability that program 〈c,D〉 terminates and establishes
event A from state s, while wlp[c,D]([A])(s) gives the probability
that 〈c,D〉 terminates and establishes A, or diverges.

Formally, the transformer wp operates on unbounded, so–called
expectations in E , {f | f : S → [0, ∞]}, while the transformer
wlp operates on bounded expectations in E≤1 , {f | f : S →
[0, 1]}. Our expectation transformers have thus type wp[ · ] : E →
E and wlp[ · ] : E≤1 → E≤1.2 In the probabilistic setting pre– and
post–conditions are thus referred to as pre– and post–expectations.

Notation. We use boldface for constant expectations, e.g. 1 de-
notes the constant expectation λs • 1. Given an arithmetical expres-
sion E over program variables we write E for the expectation that
in states s returns JEK(s). Given a Boolean expression G over pro-
gram variables let [G] denote the {0, 1}–valued expectation that on
state s returns 1 if JGK(s) = true and 0 if JGK(s) = false. Finally,
given variable x, expression E and expectation f we use f [x/E]
to denote the expectation that on state s returns f(s[x/JEK(s)]).
Moreover, “�” denotes the pointwise order between expectations,
i.e. f1 � f2 iff f1(s) ≤ f2(s) for all states s ∈ S.

3.2 Inductive Characterization
McIver and Morgan [22] showed that the expectation transformers
wp and wlp can be defined by induction on the program’s structure.
We now recall their result, taking an alternative approach to handle
recursion: While McIver and Morgan use fixed point techniques,
we follow e.g. Hehner [12] and define the semantics of a recursive
procedure as the limit of an approximation sequence. We believe
that this approach is sometimes more intuitive and closer to the
operational view of programs.

In the same way as the semantics of loops is defined as the
limit of their finite unrollings, we define the semantics of recursive
procedures as the limit of their finite inlinings. Formally, the n-
th inlining callDn P of procedure P w.r.t. declaration D is defined
inductively by

callD0 P = abort

callDn+1 P = D(P )
[
callP/callDn P

]
,

where c[callP/c′] denotes the syntactic replacement of every oc-
currence of callP in c by c′.3 The family of commands callDn P

2 The transformer wlp is well–typed because wlp[c,D](f)(s) ≤
sups′ f(s

′) for every state s.
3 The formal definition of this syntactic replacement proceeds by a routine
induction on the structure of c; see Figure 7 in Section A.4 for details.

c wp[c,D](f)

skip f

x := E f[x/E]

abort 0

if (G) {c1} else {c2} [G] · wp[c1,D](f) + [¬G] · wp[c2,D](f)

{c1} [p] {c2} p · wp[c1,D](f) + (1−p) · wp[c2,D](f)

callP supn wp[callDn P ](f)

c1; c2 wp[c1,D]
(
wp[c2,D](f)

)
c wlp[c,D](f)

abort 1

callP infn wlp[callDn P ](f)

Figure 1. Expectation transformer semantics of pRGCL programs.
The wlp[ · ] transformer follows the same rules as wp[ · ], expect for
abort and procedure calls. Sum, product, supremum and infimum
over expectations are all defined pointwise.

define a sequence of approximations to callP where callD0 P is the
“poorest” approximation, while the larger the n, the more precise
the approximation becomes. Observe that, in general, callDn+1 P
mimics the exact behavior of callP for all executions that finish
after at most n recursive calls.

The expectation transformer semantics over pRGCL is provided
in Figure 1. The action of transformers on procedure calls is defined
as the limit of their action over the n-th inlining of the procedures.
For the rest of the language constructs, we follow McIver and Mor-
gan [22]. Let us briefly explain each of the rules. wp[skip,D] be-
haves as the identity since skip has no effect. The pre–expectation
of an assignment is obtained by updating the program state and
then applying the post–expectation, i.e. wp[x := E,D] takes post–
expectation f to pre–expectation f [x/E] = λs • f(s[x/JEK(s)]).
wp[abort,D] maps any post–expectation to the constant pre–
expectation 0. Observe that expectation 0 is the probabilistic
counterpart of predicate false. wp[if (G) {c1} else {c2},D] behaves
either as wp[c1,D] or wp[c2,D] according to the evaluation of
G. wp[{c1} [p] {c2},D] is obtained as a convex combination of
wp[c1,D] and wp[c2,D], weighted according to p. wp[callP ,D]
behaves as the limit of wp on the sequence of finite truncations
(or inlinings) of P . We take the supremum because the sequence
is increasing. Observe that we advertently include no declaration
in wp[callDn P ](f) because callDn P is a closed command for every
n. Finally, wp[c1; c2,D] is obtained as the functional composi-
tion of wp[c1,D] and wp[c2,D]. The wlp transformer follows the
same rules as wp, except for the abort statement and procedure
calls. wlp[abort,D] takes any post–expectation to pre–expectation
1. (Expectation 1 is the probabilistic counterpart of predicate true.)
wlp[callP ,D] also behaves as the limit of wlp on the sequence of
finite truncations of P . This time we take the infimum because the
sequence is decreasing.
Example 2. Reconsider ccoins = c1; c2 from Section 3.1 with

c1 : {x := 0} [1/2] {x := 1} and c2 : {y := 0} [1/3] {y := 1} .

We use our weakest pre–expectation calculus to formally determine
the probability that the outcome of the two coins coincide:

wp[ccoins]([x=y])

= wp[c1]
(
wp[c2]([x=y])

)
= wp[c1]

(
1
3
· wp[y := 0]([x=y]) + 2

3
· wp[y := 1]([x=y])

)
= wp[c1]

(
1
3
· [x=0] + 2

3
· [x=1]

)
= 1

2
· wp[x := 0]

(
1
3
· [x=0] + 2

3
· [x=1]

)
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+ 1
2
· wp[x := 1]

(
1
3
· [x=0] + 2

3
· [x=1]

)
= 1

2
·
(

1
3
· [0=0] + 2

3
· [0=1]

)
+ 1

2
·
(

1
3
· [1=0] + 2

3
· [1=1]

)
= 1

2
· 1
3

+ 1
2
· 2
3

= 1
2

4
The transformers wp and wlp enjoy several appealing algebraic

properties, which we summarize below.

Lemma 3.1 (Basic properties of w(l)p). For every program 〈c,D〉,
every f1, f2, and increasing ω–chain f0 � f1 � · · · in E, g1, g2,
and every decreasing ω–chain g0 � g1 � · · · in E≤1, and scalars
α1, α2 ∈ R≥0 it holds:

Continuity: supn wp[c,D](fn) = wp[c,D](supn fn)

infn wlp[c,D](gn) = wlp[c,D](infn gn)

Monotonicity: f1 � f2 =⇒ wp[c,D](f1) � wp[c,D](f2)

g1 � g2 =⇒ wlp[c,D](g1) � wlp[c,D](g2)

Linearity: wp[c,D](α1 · f1 + α2 · f2)

= α1 · wp[c,D](f1) + α2 · wp[c,D](f2)

Preserv. of 0,1: wp[c,D](0) = 0 and wlp[c,D](1) = 1

Proof. See Appendix A.1.

Program termination. Since the termination behavior of a pro-
gram is given by the probability that it establishes true, we can
readily use the transformer wp to reason about program termi-
nation. It suffices to consider the weakest pre–expectation of
the program w.r.t. post–expectation [true] = 1. Said otherwise,
wp[c,D](1)(s) gives the termination probability of program 〈c,D〉
from state s. In particular, if the program terminates with probabil-
ity 1, we say that it terminates almost–surely.

3.3 Characterization based on Fixed Points
Next we use a continuity argument on the transformer w(l)p to
prove that its action on recursive procedures can also be defined
using fixed point techniques. This alternative characterization rests
on a subsidiary transformer w(l)p[ · ]]θ , which is a slight variant
of w(l)p[ · ]. The main difference between these transformers is
the mechanism that they use to give semantics to procedure calls:
w(l)p[ · ] relies on a declaration D, while w(l)p[ · ]]θ relies on a so–
called (liberal) semantic environment θ : E→ E (θ : E≤1 → E≤1)
which is meant to directly encode the semantics of procedure calls.
Then w(l)p[callP ]]θ(f) gives θ(f), while for all other program
constructs c, w(l)p[c]]θ(f) agrees with w(l)p[c](f); see Figure 8
in Section A.2 for details. For technical reasons, in the remainder
of our development we will consider only continuous semantic
environments in SEnv , {f | f : E → E is upper continuous}
and LSEnv , {f | f : E≤1 → E≤1 is lower continuous}.4 This
is a natural assumption since we are interested only in semantic
environments that are obtained as the w(l)p–semantics of a pRGCL
program, which are continuous by Lemma 3.1.

The semantics of recursive procedures can now be readily given
as the fixed point of a semantic environment transformer.

Theorem 3.1 (Fixed point characterization for procedure calls).
Given a declaration D : {P} → C for procedure P ,

wp[callP ,D] = lfpv

(
λθ :SEnv • wp[D(P)]]θ

)
wlp[callP ,D] = gfpv

(
λθ :LSEnv • wlp[D(P)]]θ

)
.

Proof. See Appendix A.2.

4 A (liberal) semantic environment θ is upper (lower) continuous iff for
every increasing ω-chain f0 � f1 � · · · (decreasing ω-chain f0 � f1 �
· · · ), supn θ(fn) = θ(supn fn) (infn θ(fn) = θ(infn fn)).

The fixed points above are taken w.r.t. the pointwise order “v”
over semantic environments: given θ1, θ2 ∈ SEnv (resp. θ1, θ2 ∈
LSEnv), θ1 v θ2 iff θ1(f) � θ2(f) for all f ∈ E (resp. f ∈ E≤1).

Theorem 3.1 reveals an inherent difference between the com-
plexities of reasoning about loops and general recursion: The se-
mantics of loops can be given as the fixed point of an expectation
transformer (see e.g. [25]), while the semantics of recursion re-
quires the fixed point of a (higher order) environment transformer.
This fact was already noticed by Dijkstra [7, p. xvii] and later on
confirmed by Nelson [26, p. 517] for non–probabilisitic programs.

4. Correctness of Recursive Programs
In this section we introduce some proof rules for effectively reason-
ing about the behavior of recursive programs. For that we require
the notion of constructive derivability. Given logical formulae A
and B, we use A 
 B to denote that B can be derived assuming
A. In particular, we will consider claims of the form

w(l)p[callP ](f1) ./ g1 
 w(l)p[c](f2) ./ g2 ,

where ./∈{�,�}, f1, g1 give the specification of callP and f2, g2

the specification of c. Notice that in such a claim we omit any
procedure declaration as the derivation is independent of P ’s body.

Our first two rules are extensions of well–known rules for ordi-
nary recursive programs (see e.g. [14]) to a probabilistic setting:

wp[callP ](f) � g 
 wp[D(P)](f) � g
wp[callP ,D](f) � g

[wp-rec]

g � wlp[callP ](f) 
 g � wlp[D(P)](f)

g � wlp[callP ,D](f)
[wlp-rec]

So for proving that a procedure call satisfies a specification (given
by f, g), it suffices to show that the procedure’s body satisfies the
specification, assuming that the recursive calls in the body do, too.
Example 3. Reconsider the procedure Prec3 with declaration

D(Prec3) : {skip} [1/2] {callPrec3 ; callPrec3 ; callPrec3}

presented in the introduction. We prove that it terminates with
probability at most ϕ =

√
5−1
2

from any initial state. Formally,
this is captured by wp[callP ,D](1) � ϕ. To prove this, we apply
rule [wp-rec]. We must then establish the derivability claim

wp[callP ](1) � ϕ 
 wp[D(Prec3)](1) � ϕ .

The derivation goes as follows:

wp[D(Prec3)](1)

= {def. of wp}
1
2
· wp[skip](1) + 1

2
· wp[callPrec3 ; callPrec3 ; callPrec3 ](1)

= {def. of wp}
1
2

+ 1
2
· wp[callPrec3 ; callPrec3 ]

(
wp[callPrec3 ](1)

)
� {assumption, monot. of wp}

1
2

+ 1
2
· wp[callPrec3 ; callPrec3 ](ϕ)

= {def. of wp, scalab. of wp twice}
1
2

+ 1
2
ϕ · wp[callPrec3 ]

(
wp[callPrec3 ](1)

)
� {assumption, monot. of wp}

1
2

+ 1
2
ϕ · wp[callPrec3 ](ϕ)

= {scalab. of wp}
1
2

+ 1
2
ϕ2 · wp[callPrec3 ](1)

� {assumption, monot. of wp}
1
2

+ 1
2
ϕ3

= {algebra}
ϕ 4
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An appealing feature of our approximation semantics is that to
prove the following soundness result we do not need to resort to a
continuity argument on the expectation transformers.

Theorem 4.1 (Soundness of rules [w(l)p-rec]). Rules [wp-rec] and
[wlp-rec] are sound w.r.t. the w(l)p semantics in Figure 1.

Proof. See Appendix A.3.

Rules [w(l)p-rec] allow deriving only one–sided bounds for the
weakest (liberal) pre–expectation of a procedure call. It is also
possible to derive two–sided bounds by means of the following
rules:

l0 = 0, u0 = 0,

ln � wp[callP ](f) � un 
 ln+1 � wp[D(P)](f) � un+1

supn ln � wp[callP ,D](f) � supn un
[wp-recω]

l0 = 1, u0 = 1,

ln � wlp[callP ](f) � un 
 ln+1 � wlp[D(P)](f) � un+1

infn ln � wlp[callP ,D](f) � infn un
[wlp-recω]

In constrast to rules [w(l)p-rec], these rules require exhibiting
two sequences of expectations 〈ln〉 and 〈un〉 rather than a single
expectation g to bound the weakest (liberal) pre–expectation of
a procedure call. Intuitively ln (un) represents a lower (upper)
bound for the weakest pre–expectation of the n-inlining of the
procedure, i.e. from the premises of the rules we will have ln �
w(l)p[callDn P ](f) � un for all n ∈ N.

Observe that both rules can be specialized to reason about one–
sided bounds. For instance, by setting un+1 = ∞ in [wp-recω]
we can reason about lower bounds of wp[callP ,D](f), which is
not supported by rule [wp-rec]. Similarly, by taking ln = 0 in rule
[wlp-recω] we can reason about upper bounds of wlp[callP ,D](f).
Example 4. Reconsider the procedure Prec3 from Example 3. Now
we prove that the procedure terminates with probability at least
ϕ =

√
5−1
2

from any initial state. To this end, we rely on the
fact that ϕ can be characterized by the asymptotic behavior of the
sequence 〈ϕn〉, where ϕ0 = 0 and ϕn+1 = 1

2
+ 1

2
ϕ3
n. In symbols,

ϕ = supn ϕn. We wish then to prove that

supn ϕn � wp[callPrec3 ,D](1) .

To establish this formula we apply the one side variant of rule [wp-
recω] to reason about lower bounds of wp[callPrec3 ,D](1), that is,
we implicitly take un+1 =∞. We must then establish

ϕn � wp[callPrec3 ](1) 
 ϕn+1 � wp[D(Prec3)](1) .

The derivation follows the same steps as those taken in Example 3
to give upper bounds on wp[callPrec3 ,D](1). Combining the result
proved with that in Example 3, we conclude that ϕ =

√
5−1
2

is the
exact termination probability of 〈callPrec3 ,D〉. 4

Lastly, we can establish the correctness our rules.

Theorem 4.2 (Soundness of rules [w(l)p-recω]). Rules [w(l)p-recω]
are sound w.r.t. the w(l)p semantics in Figure 1.

Proof. See Appendix A.3.

To conclude the section we would like to point out that the
rule [wp-recω] is related to previous work on proof rules. It can
be viewed as a generalization of Jones’s loop rule [15] to the case
of recursion (even though Jones originally presented a one–sided
version) and as an adaptation of Audebaud and Paulin-Mohring’s
rule [1] to our weakest pre–expectation semantics. The counterpart
of the rule for partial correctness, on the other hand, is, to the best
of our knowledge, novel.

c ert[c,D](t)

skip 1 + t

x := E 1 + t[x/E]

abort 0

if (G) {c1} else {c2} 1 + [G] · ert [c1,D](t) + [¬G] · ert [c2,D](t)
{c1} [p] {c2} p · ert [c1,D](t) + (1−p) · ert [c2,D](t)

callP lfpv

(
λη :RtEnv • 1⊕ ert [D(P)]]η

)
(t)

c1; c2 ert [c1,D]
(
ert [c2,D](t)

)
Figure 2. Rules for the expected runtime transformer ert. lfpv (F )
denotes the least fixed point of transformer F : RtEnv → RtEnv
w.r.t. the pointwise order “v” between runtime environments.

5. The Expected Runtime of Programs
To further our study of recursive probabilistic programs we now
develop a calculus for reasoning about the expected or average run-
time of pRGCL programs. This calculus builds upon our previous
work in [17] and is able to handle recursive procedures.

5.1 The Expected Runtime Transformer ert

We assume a runtime model where executing a skip statement, an
assignment, evaluating the guard in a conditional branching and in-
voking a procedure5 consumes one unit of time. On the other hand,
combining two programs by means of a sequential composition or
a probabilistic choice consumes no additional time other than that
consumed by the original programs. Likewise, halting a program
execution with an abort statement consumes no unit of time.

Since the runtime of a program varies according to the initial
state from which it is executed, our aim is to associate to each
program 〈c,D〉 a mapping that takes each state s to the expected
time until 〈c,D〉 terminates on s. Such mappings will range over
the set of runtimes T ,

{
t
∣∣ t : S → [0, ∞]

}
.6

To associate each program to its runtime we use a continuation
passing style formalized by the transformer

ert [ · ] : T→ T .
If t ∈ T represents the runtime of the computation that follows
program 〈c,D〉, then ert [c,D](t) represents the overall runtime of
〈c,D〉, plus the computation following 〈c,D〉. Runtime t is usually
referred to as the continuation of 〈c,D〉. In particular, by setting
the continuation of a program to zero we recover the runtime of the
plain program. That is, for every initial state s,

ert [c,D](0)(s)

gives the expected runtime of program 〈c,D〉 from state s.
The transformer ert [c,D] is defined by induction on the struc-

ture of c, following the rules in Figure 2. The rules are defined
so as to correspond to the aforementioned runtime model. That is,
ert [c,D](0) captures the expected number of assignments, guard
evaluations, procedure calls and skip statements in the execution
of 〈c,D〉. Most rules are self–explanatory. ert [skip,D] adds one
unit of time to the continuation since skip does not modify the pro-
gram state and its execution takes one unit of time. ert [x := E,D]
also adds one unit of time, but to the continuation evaluated in the
state resulting from the assignment. ert [abort,D] yields always the

5 Loosely speaking, the overall runtime of a procedure call is then one plus
the runtime of executing the procedure’s body.
6 Strictly speaking, the set of runtimes T coincides with the set of un-
bounded expectations E but we prefer to distinguish the two sets since they
are to represent different objects. We will, however, keep the same notations
for runtimes as for expectations, for example t[x/E], t1 � t2, etc.
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constant runtime 0 since abort aborts any subsequent program ex-
ecution (making their runtime irrelevant) and consumes no time.
ert [if (G) {c1} else {c2},D] adds one unit of time to the runtime
of either of its branches, depending on the value of the guard.
ert [{c1} [p] {c2},D] gives the weighted average between the run-
time of its branches, each of them weighted according to its proba-
bility. ert [c1; c2,D] first applies ert [c2,D] to the continuation and
then ert [c1,D] to the resulting runtime of this application. Finally,
ert [callP ,D] is defined using fixed point techniques.

To understand the intuition behind the definition of ert [callP ,D]
recall that callP consumes one unit of time more than the body of
P . To capture this fact we make use of the auxiliary runtime trans-
former ert [ · ]]η : T→ T (cf. expectation transformer wp[ · ]]θ).
This transformer behaves as ert except that for defining its action
on a procedure call, it relies on a so–called runtime environment η
in RtEnv , {η | η : T → T is upper continuous} instead of on a
procedure declaration. Concretely, ert [callP ,D]]η takes continua-
tion t to η(t) and for all other program constructs, ert [ · ]]η follows
the same rule as ert [ · ]. Using this transformer we can (implicitly)
define ert [callP ,D] by the equation

ert [callP ,D] = 1⊕ ert [D]]ert[callP,D] ,

where 1 = λt : T • 1 represents the constantly 1 runtime trans-
former and “⊕” the point–wise sum between runtime transformers,
i.e. for γ1, γ2 : T → T, we let (γ1 ⊕ γ2)(t) , γ1(t) + γ2(t).
The above equation leads to the fixed point characterization of
ert [callP ,D] in Figure 2.

We remark that, as opposed to w(l)p, it is not posible to define
the action ert [callP ,D] of ert on a procedure call in terms of its
action ert [callDn P ] on the finite inlinings. This is because when
computing ert [callDn P ](t), to be correct the transformer should add
one unit of time each time a procedure call was inlined, and this is
not recoverable from callDn P .7

This concludes our definition of the transformer ert. We devote
the remainder of the section to study several of its properties. We
begin with Theorem 5.1 summarizing some algebraic properties.

Theorem 5.1 (Basic properties of ert). For any program 〈c,D〉,
any constant runtime k = λs • k for k ∈ R≥0, any t, u ∈ T, and
any increasing ω–chain t0 � t1 � · · · of runtimes, it holds:

Continuity: supn ert [c,D](tn) = ert [c,D](supn tn);

Monotonicity: t � u =⇒ ert [c,D](t) � ert [c,D](u);

Propagation ert [c,D](k + t) = k + ert [c,D](t)
of constants: provided 〈c,D〉 is abort–free;

Preservation ert [c,D](∞) = ∞
of infinity: provided 〈c,D〉 is abort–free.

Proof. Monotonicity follows from continuity. Other properties are
prooven by induction on c; see Appendix A.6.

The next result establishes a connection between ert and wp.

Theorem 5.2. For every program 〈c,D〉 and runtime t,

ert [c,D](t) = ert [c,D](0) + wp[c,D](t) .

Proof. By induction on the program structure, considering the
stronger version of the statement

ert [c,D](t1 + t2) = ert [c,D](t1) + wp[c,D](t2) .

See Appendix A.7 for details.

7 If we adopt a model where the runtime of a procedure call coincides
with the runtime of its body, we could just take ert [callP ,D](t) =
supn ert [callDn P ](t).

Theorem 5.2 allows giving a very short proof of a well–known
result relating expected runtimes and termination probabilities: If a
program has finite expected runtime, it terminates almost surely.

Theorem 5.3. For every abort–free program 〈c,D〉 and initial
state s of the program,

ert [c,D](0)(s) <∞ =⇒ wp[c,D](1)(s) = 1 .

Proof. By instantiating Theorem 5.2 with t = 1 and using the prop-
agation of constants property of ert (Theorem 5.1) to decompose
ert [c,D](1) as 1 + ert [c,D](0).

Observe that in Theorem 5.3 we cannot drop the abort–free
requirement on the program. To see this, consider the program c =
{skip}[1/2]{abort}. The program has a finite runtime (ert [c](0) =
1/2 <∞) and terminates, however, with probability less than one
(wp[c](1) = 1/2 < 1). Moreover, observe that Theorem 5.3 is only
valid on the stated direction: A probabilistic program can terminate
almost–surely and require, still, an expected infinite time to reach
termination. This phenomenon is illustrated, for instance, by the
one dimensional random walk; see e.g. [17, §7].

Even though Theorem 5.3 constitutes a well–known and natural
result on probabilistic programs, our contribution here is to give the
first fully formal proof of such a result.

5.2 Proof Rules for Recursive Programs
The runtime of procedure calls, which includes, in particular, re-
cursive programs, is defined using fixed points. To avoid reasoning
about fixed points we propose some proof rules based on invariants.

We show that an adaptation of the proof rules for procedure calls
from our wp–calculus is sound for the ert–calculus. The rules are:

ert [callP ](t) � 1+u 
 ert [D(P)](t) � u
ert [callP ,D](t) � 1+u

[eet-rec]

l0 = 0, u0 = 0,
1+ln � ert [callP ](t) � 1+un

 ln+1 � ert [D(P)](t) � un+1

1+ supn ln � ert [callP ,D](t) � 1+ supn un
[eet-recω]

Compared to the proof rules from the wp–calculus, these proof
rules require incrementing by one unit some of the bounds. Loosely
speaking, this is because the runtime of a procedure call is one plus
the runtime of its body, whereas the semantics of a procedure call
fully agrees with the semantics of its body.
Example 5. To illustrate the use of the rules, consider the faulty
factorial procedure with declaration

D(Pfact) : if (x ≤ 0) {{y := 1} else {{c1} [5/6] {c2}; y := y ·x} ,
where c1 = x := x−1; callPfact; x := x+1 and c2 = x := x−2;
callPfact; x := x+2. We prove that on input x = k ≥ 0, the
expected runtime of the procedure is 2 + αk, where

αk =
1

49

(
121 + 210k + 432

(
− 1

6

)k+1
)
.

Since the term 432(−1/6)k+1 is negligible, we can approximate the
procedure’s runtime by 4.5 + 4.3k. We can formally capture our
exact runtime assertion by

ert [callPfact,D](0) = 1 + supn tn ,

where tn = 1+[x < 0]·1+[0 ≤ x ≤ n]·αx +[x > n]·αn+1. To
see this, observe that the sequence 〈αk〉 is increasing and therefore,
supn tn = 1 + [x < 0] · 1 + [0 ≤ x] · αx. We prove the runtime
assertion using rule [eet-recω] with instantiations t = 0 and ln =
un = tn for n ≥ 1. We have to discharge the premise

ert [callPfact](0) = 1 + tn 
 ert [D(Pfact)](0) = tn+1 .
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Since some simple calculations yield

ert [D(Pfact)](0) = 1 + [x ≤ 0] · 1
+ [x > 0] ·

(
5
6
· ert [c1](1) + 1

6
· ert [c2](1)

)
,

our next step is to compute ert [c1](1) (the calculations are identical
for ert [c2](1)). To do so, we rely on assumption ert [callP ](0) =
1 + tn and the propagation of constants property of ert.

ert [c1](1) = ert [x := x−1; callPfact]
(
ert [x := x+1](1)

)
= 2 + ert [x := x−1; callPfact](0)

= 2 + ert [x := x−1](1 + tn)

= 4 + tn[x/x+ 1]

The derivation then concludes by showing that

tn+1 = 1 + [x ≤ 0] · 1

+ [x > 0] ·
(

5
6

(
4 + tn[x/x+1]

)
+ 1

6

(
4 + tn[x/x+2]

))
,

which after some term reordering reduces to proving that α0 = 1,
α1 = 7 and αk+2 = 5 + 5

6
αk+1 + 1

6
αk. 4

We conclude the section establishing the soundness of the rules.

Theorem 5.4 (Soundness of rules [eet-rec], [eet-recω]). Rules [eet-
rec] and [eet-recω] are sound w.r.t. the ert–calculus in Figure 2.

Proof. See Appendix A.8.

6. Operational Semantics
We provide an operational semantics for pRGCL programs in terms
of pushdown Markov chains with rewards (PRMC) [3] and prove
the transformer wp to be sound with respect to this semantics. Due
to space limitations, this section contains an informal introduction
only. Corresponding formal definitions are found in Appendix A.9.

For simplicity, we assume a canonical labeling for each com-
mand c ∈ C together with auxiliary functions init, succ1, succ2 and
stmt determining the initial location, the first and second successor
of a location and the program statement corresponding to a label.
As an example, the labels attached to each statement of program c
from Example 3 are as follows:

c : {skip1} [1/2]2 {callP3; callP4; callP5 } .

The definition of the auxiliary functions is straightforward. For
instance, we have init(c) = 2, succ1(1) = ↓, succ2(2) = 3, and
stmt (2) = c, where ↓ is a special symbol indicating termination
of a procedure. Moreover, label Term stands for termination of the
whole program.

Our operational semantics of pRGCL programs is given as an
execution relation, where each step is of the form

〈`, s〉 γ, p, γ′−−−−→
〈
`′, s′

〉
.

Here, `, `′ are program labels, s, s′ ∈ S are program states, γ is
a program label being popped from and γ′ a finite sequence of
labels being pushed on the stack, respectively. p ∈ [0, 1] denotes
the probability of executing this step.

This execution relation corresponds to the transition relation of
a PRMC, where each pair 〈`, s〉 is a state and the stack alphabet is
given by the set of all labels of a given pRGCL program. Moreover,
given f ∈ E, a reward of f(s) is assigned to each state of the form
〈Term, s〉. Otherwise, the reward of a state is 0. Figure 3 shows the
rules defining the operational semantics of pRGCL programs. The
rules in Figure 3 are self–explanatory. In case of a procedure call,
the calls successor label is pushed on the stack and execution con-
tinues with the called procedure. Whenever a procedure terminates,

i.e. reaches a state 〈↓, s〉, and the stack is non–empty, a return ad-
dress is popped from and execution continues at this address.

Figure 4 shows the PRMC of example program c. The initial
state is 2 (the probabilistic choice). Say the right branch is chosen;
we move to 3. The statement at 3 is a call, and the address after the
call is 4; so 4 is pushed and the procedure body is reentered. Say
now the left branch is chosen; we move to 1 (the skip) and then
terminate, i.e. we move to ↓. Recall that return address 4 is on top
of the stack; 4 is popped, we move to 4 to continue execution.

The expected reward that PRMC P associated to program 〈c,D〉
reaches a set of target states T from initial state 〈`, s〉 is defined as

ExpRewPfs Jc,DK (T ) =
∑

π∈Π(〈`, s〉,T )

ProbP (π) · rew (π) ,

where π is a path from 〈`, s〉 to some target state, ProbP (π) is the
probability of π and rew (π) is the reward collected along π.

We are now in a position to state the relationship between the
operational model and the denotational semantics:

Theorem 6.1 (Correspondence Theorem). Let c ∈ C, f ∈ E, and
T = {〈Term, s〉 | s ∈ S} 8. Then for each s ∈ S, we have

ExpRewPfs Jc,DK (T ) = wp[c,D](f)(s) .

Proof. See Appendix A.10.

In the spirit of [11] a similar result can be obtained for wlp.
For that one needs a liberal expected reward being defined as the
expected reward plus the probability of not reaching the target
states at all. One can then show a similar correspondence to wlp.

7. Extensions
Mutual recursion. Both our wp– and ert–calculus can be ex-
tended to handle multiple procedures. Say we want to handle m
(possibly mutually recursive) procedures P1, . . . ,Pm with decla-
ration D ∈ Cm. The definition of wp[callPi,D] remains the same,
we only need to adapt the definition of the n-inlining callDn Pi of
procedure Pi as to inline the calls of all procedures:

callDn+1 Pi = D(P )[callP1/call
D
n P1, . . . , callPm/call

D
n Pm] .

As for the ert–calculus, a runtime environment is now a tuple
η = (η1, . . . , ηm), where ηi is meant to provide the behavior of
procedure Pi in ert [·]]η , i.e. ert [callPi]

]
η = ηi. The action of ert

on procedure calls is then defined simultaneously as9(
ert [callP1,D] , . . . , ert [callPm,D]

)
=

lfp
(
λη •

(
1⊕ ert [D(P1)]]η , . . . , 1⊕ ert [D(Pm)]]η

))
.

The proof rules for reasoning about procedure calls in both calculi
are easily adapted. We show only the case of [wp-rec]; the others
admit a similar adaptation.

wp[callP1](f1) � g1, ... ,wp[callPm](fm) � gm 
 wp[D(P1)](f1) � g1...
wp[callP1](f1) � g1, ... ,wp[callPm](fm) � gm 
 wp[D(Pm)](fm) � gm

wp[callPi,D](fi) � gi for all i = 1 . . .m

The rule reasons about all the procedures simultaneously. Roughly
speaking, the rule premise requires deriving the specification gi

8 T denotes the set of states representing successful termination of the
pushdown automaton.
9 For determining the least fixed point, environments are compared
component-wise, i.e. (η1, . . . , ηm) v (ν1, . . . , νm) iff ηi v νi for all
i = 1 . . .m.
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stmt (`) = skip succ1 (`) = `′

〈`, s〉 γ, 1, γ−−−−→ 〈`′, s〉
[skip]

stmt (`) = x := E succ1 (`) = `′

〈`, s〉 γ, 1, γ−−−−→
〈
`′, s

[
x 7→ s(E)

]〉 [assign]
stmt (`) = abort

〈`, s〉 γ, 1, γ−−−−→ 〈`, s〉
[abort]

stmt (`) = if (G) {c1} else {c2} s |= G succ1 (`) = `′

〈`, s〉 γ, 1, γ−−−−→ 〈`′, s〉
[if1]

stmt (`) = if (G) {c1} else {c2} s 6|= G succ2 (`) = `′

〈`, s〉 γ, 1, γ−−−−→ 〈`′, s〉
[if2]

stmt (`) = {c1} [p] {c2} succ1 (`) = `′

〈`, s〉 γ, p, γ−−−−→ 〈`′, s〉
[prob1]

stmt (`) = {c1} [p] {c2} succ2 (`) = `′

〈`, s〉 γ, 1−p, γ−−−−−−→ 〈`′, s〉
[prob2]

stmt (`) = callP succ1 (`) = `′

〈`, s〉 γ, 1, γ·`
′

−−−−−−→
〈
init
(
D(P )

)
, s
〉 [call]

〈↓, s〉 `
′, 1, ε−−−−→ 〈`′, s〉

[return]
〈↓, s〉 γ0, 1, γ0−−−−−−→ 〈Term, s〉

[terminate]

Figure 3. Rules for defining an operational semantics for pRGCL programs. For sequential composition there is no dedicated rule as the
control flow is encoded via the succ1 and the succ2 functions.

23 1 ↓

4

5

Term
γ, 1/2, γ γ, 1/2, γ γ, 1, γ

γ, 1, γ · 4
4, 1, ε

↓, 1, ε

γ0, 1, γ0

5, 1, ε

γ, 1, γ · 5

γ, 1, γ · ↓

Figure 4. PRMC of program c from Example 3. Since c affects no
variables, the second component of states is omitted.

for the body of each procedure Pi, assuming the corresponding
specification for each procedure call in it. The rule conclusion
establishes the specification of the set of procedures altogether.

Random samplings. All our results remain valid if the pRGCL
language allows for random samplings (from distributions with dis-
crete support). In a random sampling x := µ, µ represents a prob-
ability distribution which is sampled and its outcome is assigned to
program variable x. In Section 8 we exploit this extension to model
a probabilistic variant of the binary search.

Alternative runtime models. The ert–calculus can be easily
adapted to capture alternative runtime models. For instance we
can capture the model where we are interested in counting only
the number of procedure calls and also more fine–grained models
such as that where the time consumed by an assignment (or guard
evaluation) depends on some notion of size of the expression being
assigned (guard being evaluated). Likewise, the ert–calculus can
be easily adapted so as to take into account the costs of flipping the
(possibly biased) coin from probabilistic choices.

Soundness of the ert–calculus. We can also establish the sound-
ness of the ert–calculus w.r.t. the operational semantics based on
PRMC. This only requires changes in the reward function.

8. Case Study
In this section we show the applicability of our approach analyzing
a probabilistic, so–called Sherwood [21], variant of the binary
search. The main difference w.r.t. the classical version is that in
each recursive call the pivot element is picked uniformly at random
from the remaining array, aligning this way worst–, best– and
average–case of the algorithm runtime.

The algorithm we analyze searches for value val in array
a[left .. right ]. It is encoded by procedure B with declaration
D presented in Figure 5. We use random assignment mid :=

uniform(left , right) to model the random election of the pivot. For
simplicity, we assume that the random assignment is performed in
constant time 1 if left ≤ right and that it diverges if left > right .

Partial correctness. We verify the following partial correctness
property: When B is invoked in a state where left ≤ right ,
a[left .. right ] is sorted, and val occurs in a[left .. right ], then the
invocation of B stores in mid the index where val lies. Formally,

g � wlp[callB,D](f), with

g = [left ≤ right ] ·
[
sorted(left , right)

]
·
[
∃x ∈ [left , right ] : a[x] = val

]
f =

[
a[mid ] = val

]
,

where
[
sorted(y, z)

]
is the indicator function of a[y .. z] being

sorted. In order to prove g � wlp[callB](f) we apply rule [wlp-
rec]. We are then left to prove

g � wlp[callB](f) 
 g � wlp[D(B)](f) .

The way in which we propagate post–expectation f from the exit
point of the procedure till its entry point, obtaining pre–expectation
g, is fully detailed in Figure 5. To do so we use assumption g �
wlp[callB](f) and monotonicity of wlp.

Dually, we can verify that when val is not in the array, the value
of a[mid ] after termination of B is different from val . A detailed
derivation of this property is provided in Appendix A.11, Figure 9.

Expected runtime. We perform a runtime analysis of the algo-
rithm for those inputs where val does not occur in the array. Under
this assumption we can distinguish two cases: either val is smaller
than every element in the array or larger than all of them.

For the first case we show that the expected runtime of the
algorithm is upper bounded by 1 + u, with

u = [left > right ] ·∞+ 3

+ [left < right ] · (5 ·Hright−left+1 − 5/2) ,

and Hk bing the k-th harmonic number. Formally, we show that

ert [callB](0) � 1 + u

applying rule [eet-rec]. We must then establish

ert [callB](0) � 1 + u 
 ert [D](0) � u .
The details of this derivation are provided in Figure 6.

Similarly, when val is greater than every element in the array,
the expected runtime is upper bounded by 1 + u, with

u = [left > right ] ·∞+ 3

+ [left < right ] · (6 ·Hright−left+1 − 3) .
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g�
[left<right ]

right−left+1

right∑
i=left

[a[i ]<val
]
·g[left/min(i+ 1, right)]

+
[
a[i ]>val

]
·g[right/max(i− 1, left)]

+
[
a[i ]=val

]


+ [left = right ] ·
[
a[left ] = val

]
1 : mid := uniform(left, right);

[left < right ] ·
([
a[mid ] < val

]
· g[left/ · · · ]

+
[
a[mid ] > val

]
· g[right/ · · · ]

+
[
a[mid ] = val

])
+ [left ≥ right ] · f

2 : if (left < right){[
a[mid ]<val

]
·g[left/ · · · ] +

[
a[mid ]>val

]
·g[right/ · · · ]

+
[
a[mid ]=val

]
· f

3 : if (a[mid ] < val){
g[left/min(mid + 1, right)]

4 : left := min(mid + 1, right);
g

5 : callB
f

6 : } else {[
a[mid ] > val

]
· g[right/ · · · ] +

[
a[mid ] ≤ val

]
· f

7 : if (a[mid ] > val){
g[right/max(mid − 1, left)]

8 : right := max(mid − 1, left);
g

9 : callB
f

10 : } else { f skip f } f
11 : } f
12 : } else { f skip f } f

Figure 5. Declaration D (boldface) of the probabilistic binary
search procedure B together with the proof (lightface) that callB
finds the index of val when started in a sorted array a[left .. right ]
which contains value val . We write j C h for j � wp[C] (h).

The verification for this case is analogous therefore omitted.
Combining the two cases we conclude that when the sought–

after value does not occur in the array, the algorithm terminates in
expected time in Θ

(
logn

)
, where n = right − left + 1 is the size

of the array, since Hk ∈ Θ(log k).

9. Related Work
wp–style reasoning for recursive programs. Recursion has been
treated for non–probabilistic programs. Hesselink [14] provided
several proof rules for recursive procedures, both for total and par-
tial correctness. Our first two proof rules are extensions of his rules
to the probabilistic setting. Predicate transformer semantics for re-
cursive non–deterministic procedures has been provided by Bon-
sangue and Kok [2] and Hesselink [13]. Nipkow [27] provides an
operational semantics and a Hoare logic for recursive (parameter-
less) non–deterministic procedures. Zhang et al. [33] establishes
the equivalence between an operational semantics and a weakest
pre–condition semantics for recursive programs in Coq. To some
extent our transfer theorem between probabilistic pushdown au-
tomata and the wp–semantics can be considered as a probabilistic
extension of this work.

Deductive reasoning for recursive probabilistic programs. Jones
provided several proof rules for recursive probabilistic programs
in her Ph.D. dissertation [15]. One of our proof rules is a gen-
eralisation of Jones’ proof rule to general recursion. McIver and
Morgan [22] also provide a wp–semantics of probabilistic recur-
sive programs. While [22] use fixed point techniques, we fol-

u= [left > right ] ·∞+ 3 + [left < right ]

·

5 +

right∑
i=left


[min(i+ 1, right) < right ]

right − left + 1
·
(
5 ·Hright−min(i+1, right)<right+1

− 5/2)




1 : mid := uniform(left, right);

2 + [left < right ] ·
(
2 +

[
a[mid ] < val

]
· (3

+ [min(mid + 1, right) < right ]

·
(
5 ·Hright−min(mid+1, right)+1 − 5/2

)
+
[
a[mid ] > val

]
· (· · · )

)
2 : if (left < right){

3 +
[
a[mid ] < val

]
· u[left/min(mid + 1, right)]

+
[
a[mid ] > val

]
· (· · · )

3 : if (a[mid ] < val){
2 + u[left/min(mid + 1, right)]

4 : left := min(mid + 1, right);
1 + u

5 : callB
0

6 : } else {
2 +

[
a[mid ] > val

]
· (· · · )

7 : if (a[mid ] > val){
2 + u[right/max(mid − 1, left)]

8 : right := max(mid − 1, left);
1 + u

9 : callB
0

10 : } else { 1 skip 0 } 0

11 : } 0

12 : } else { 1 skip 0 } 0

Figure 6. Runtime analysis of the probabilistic binary search pro-
cedure for the case that every value occurring in a[left .. right ] is
smaller than val . We write j C h for j � ert [C] (h).

low e.g. Hehner [12] and define the semantics of a recursive proce-
dure as the limit of an approximation sequence. In contrast to our
approach based on procedures, [22] introduced recursion through
the language constructor rec B, where B is a program–semantics
transformer. (Intuitively B encodes how the recursive procedure
defined (and invoked) by rec B transforms the outcome of its re-
cursive calls). Our approach provides a strict separation between
program syntax and semantics. Moreover our approach based on
procedure calls can model mutual recursion in a natural way (see
Section 7), while the approach in [22] approach does not accommo-
date so naturally to such cases. Audebaud and Paulin-Mohring [1]
present a mechanized method for proving properties of randomized
algorithms in the Coq proof assistant. Their approach is based on
higher–order logic, in particular using a monadic interpretation of
programs as probabilistic distributions. Our proof rule for obtain-
ing two–sided bounds on recursive programs is directly adapted
from their work. They however do neither relate their work to an
operational model nor support the analysis of expected runtimes.

Semantics of recursive probabilistic programs. Gupta et al. con-
sider the interplay between constraints, probabilistic choice, and re-
cursion in the context of a (concurrent) constraint–based probabilis-
tic programming language. They provide an operational semantics
using labeled transition systems and (weak) bisimulation as well
as a denotational semantics. Recursion is treated operationally by
considering the limit of syntactic finite approximations. In the de-
notational semantics, the mixture of probabilities and constraints
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violates basic monotonicity properties for a standard treatment of
recursion. Their main result is that the transition system seman-
tics modulo weak bisimulation is fully abstract with respect to the
input–output relation of processes. They do neither consider non–
determinism nor reasoning about recursive probabilistic programs.
Pfeffer and Koller [29] provide a measure–theoretic semantics of
recursive Bayesian networks and show that every recursive proba-
bilistic relational database has a probability measure as model. This
is complemented by an inference algorithm that obtains approxima-
tions by basically unfolding the recursive Bayesian network. Re-
cently, Toronto et al. [30] provided a measure–theoretic semantics
for a probabilistic programming language with recursion. Their in-
terpretation of recursive programs is however restricted to (almost
surely) terminating programs.

Probabilistic pushdown automata. The analysis of probabilis-
tic pushdown automata, which correspond to the model of recur-
sive Markov chains, has been well–investigated. Key computational
problems for analyzing classes of these models can be reduced to
computing the least fixed point solution of corresponding classes
of monotone polynomial systems of non–linear equations. For sub-
classes of these models termination probabilities, ω–regular prop-
erties, and expected runtimes can be algorithmically obtained. Re-
cent surveys are provided by Etessami [8] and Brazdil et al. [3].
Our transfer theorem indicates that (some of) these results are trans-
ferable to obtaining weakest pre–expectations for recursive proba-
bilistic programs having a finite–control probabilistic push–down
automata. A detailed study is outside the scope of this paper and
left for future work.

10. Conclusion
We have presented two wp-calculi: one for reasoning about correct-
ness, and one for analysing expected rum-times of recursive proba-
bilistic programs. The wp-calculi have been related, equipped with
proof rules, and exemplified by analysing a Sherwood version of bi-
nary search. A relation with a straightforward operational interpre-
tation using pushdown Markov chains has been established. We be-
lieve that this work provides a good basis for the automation of the
analysis of recursive probabilistic programs. Future work consists
of applying our calculi to other recursive randomized algorithms
(such as quick sort with random pivot selection). Other future work
includes investigating a generalisation of Colussi’s technique [5] to
transform a recursive program and its correctness proof into a non-
recursive program with its accompanying correctness proof. This
would allow to transfer—typically simpler—correctness proofs of
the recursive probabilistic programs to non-recursive ones.
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A. Appendix
For our proofs about transformer wp, we observe that “�” endows
the set of unbounded expectations E with the structure of an upper
ω–cpo10, where the supremum of an increasing ω–chain f0 � f1 �
· · · is given pointwise, i.e. (supn fn)(s) , supn fn(s). Likewise,
“�” endows the set of bounded expectations E≤1 with the structure
of a lower ω–cpo, where the infimum of a decreasing ω–chain
f0 � f1 � · · · is given pointwise, i.e. (infn fn)(s) , infn fn(s).
Upper ω–cpo (E,�) has as botom element the constant expectation
0, while lower ω–cpo (E≤1,�) has as top element the constant
expectation 1.

In what follows, we usually refer to the set of upper continuous
expectation transformers11 over (E,�) and the set of lower contin-
uous expectation transformers over (E≤1,�). We use E upp-cont→ E
and E≤1

low-cont→ E≤1 to denote such sets.

A.1 Basic Properties of the w(l)p–Transformer
Proof of Continuity. We prove continuity by induction on the pro-
gram structure. Let f0 � f1 � f2 � · · · and g0 � g1 � g2 � · · ·
For the base cases we have:

skip:

wp[skip,D]

(
sup
n
fn

)
= sup

n
fn = sup

n
wp[skip,D] (fn)

and

wlp[skip,D]
(

inf
n
gn
)

= inf
n
gn = inf

n
wlp[skip,D] (gn)

x := E:

wp[x := E,D]

(
sup
n
fn

)
=

(
sup
n
fn

)
[x/E]

= sup
n
fn[x/E]

= sup
n

wp[x := E,D] (fn)

and

wlp[x := E,D]
(

inf
n
gn
)

=
(

inf
n
gn
)

[x/E]

= inf
n
gn[x/E]

= inf
n

wlp[x := E,D] (gn)

abort:

wp[abort,D]

(
sup
n
fn

)
= 0 = sup

n
0

= sup
n

wp[abort,D] (fn)

and

wlp[abort,D]
(

inf
n
gn
)

= 1 = inf
n

1

= inf
n

wp[abort,D] (gn)

For the induction hypothesis we assume that for any two programs
c1 and c2 continuity holds. Then we can perform the induction step:

10 Given a binary relation ≤ over a set A, we say that (A,≤) is an upper
(resp. lower) ω-cpo if ≤ is reflexive, transitive and antisymmetric, and
every increasing ω-chain a0 ≤ a1 ≤ · · · (resp. decreasing ω-chain
a0 ≥ a1 ≥ · · · ) in A has a supremum supn an (resp. an infimum
infn an) in A.
11 A function f : A→ B between two upper (resp. lower) ω-cpos (A,≤A)
and (B,≤B) is upper (resp. lower) continuous iff for every increasing ω-
chain a0 ≤A a1 ≤A · · · (resp. decreasing ω-chain a0 ≥A a1 ≥A · · · ),
supn f(an) = f(supn an) (resp. infn f(an) = f(infn an)).

if (G) {c1} else {c2}:

wp[if (G) {c1} else {c2},D]

(
sup
n
fn

)
= [G] · wp[c1,D]

(
sup
n
fn

)
+ [¬G] · wp[c2,D]

(
sup
n
fn

)
= [G] · sup

n
wp[c1,D] (fn) + [¬G] · sup

n
wp[c2,D] (fn)

= sup
n

[G] · wp[c1,D] (fn) + [¬G] · wp[c2,D] (fn)

= sup
n

wp[if (G) {c1} else {c2},D] (fn)

and

wlp[if (G) {c1} else {c2},D]
(

inf
n
gn
)

= [G] · wlp[c1,D]
(

inf
n
gn
)

+ [¬G] · wp[c2,D]
(

inf
n
gn
)

= [G] · inf
n

wlp[c1,D] (gn) + [¬G] · inf
n

wlp[c2,D] (gn)

= inf
n

[G] · wlp[c1,D] (gn) + [¬G] · wlp[c2,D] (gn)

= inf
n

wlp[if (G) {c1} else {c2},D] (gn)

{c1} [p] {c2}:

wp[{c1} [p] {c2},D]

(
sup
n
fn

)
= p · wp[c1,D]

(
sup
n
fn

)
+ (1− p) · wp[c2,D]

(
sup
n
fn

)
= p · sup

n
wp[c1,D] (fn) + (1− p) · sup

n
wp[c2,D] (fn)

= sup
n
p · wp[c1,D] (fn) + (1− p) · wp[c2,D] (fn)

= sup
n

wp[{c1} [p] {c2},D] (fn)

and

wlp[{c1} [p] {c2},D]
(

inf
n
gn
)

= p · wlp[c1,D]
(

inf
n
gn
)

+ (1− p) · wp[c2,D]
(

inf
n
gn
)

= p · inf
n

wlp[c1,D] (gn) + (1− p) · inf
n

wlp[c2,D] (gn)

= inf
n
p · wlp[c1,D] (gn) + (1− p) · wlp[c2,D] (gn)

= inf
n

wlp[{c1} [p] {c2},D] (gn)

c1; c2:

wp[c1; c2,D]

(
sup
n
fn

)
= wp[c1,D]

(
wp[c2,D]

(
sup
n
fn

))
= wp[c1,D]

(
sup
n

wp[c2,D] (fn)

)
= sup

n
wp[c1,D] (wp[c2,D] (fn))

= sup
n

wp[c1; c2,D] (fn)

and

wlp[c1; c2,D]
(

inf
n
gn
)

= wlp[c1,D]
(
wlp[c2,D]

(
inf
n
gn
))

= wlp[c1,D]
(

inf
n

wlp[c2,D] (gn)
)

= inf
n

wlp[c1,D] (wp[c2,D] (gn))

= inf
n

wlp[c1; c2,D] (gn)
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callP :

wp[callP,D]

(
sup
n
fn

)
= sup

k
wp
[
callDk P

](
sup
n
fn

)
and

wlp[callP,D]
(

inf
n
gn
)

= inf
k

wlp
[
callDk P

] (
inf
n
gn
)

Since callDk P is call–free for every n and we have already proven
continuity for all call–free programs, we have

wp
[
callDk P

](
sup
n
fn

)
= sup

n
wp
[
callDk P

]
(fn)

and

wlp
[
callDk P

] (
inf
n
gn
)

= inf
n

wlp
[
callDk P

]
(gn)

for every n and hence

wp[callP,D]

(
sup
n
fn

)
= sup

k
sup
n

wp
[
callDk P

]
(fn)

= sup
n

sup
k

wp
[
callDk P

]
(fn)

= sup
n

wp[callP ]D(fn)

and

wlp[callP,D]
(

inf
n
gn
)

= inf
k

inf
n

wlp
[
callDk P

]
(gn)

= inf
n

inf
k

wlp
[
callDk P

]
(gn)

= inf
n

wlp[callP ]D(gn) .

Proof of Monotonicity. Assume f1 � f2. Then

wp[c,D] (f2) = wp[c,D] (sup{f1, f2})
= sup{wp[c,D] (f1), wp[c,D] (f2)}

(continuity of wp)

which implies wp[c,D] (f1) � wp[c,D] (f2), and

wlp[c,D] (f1) = wp[c,D] (inf{f1, f2})
= inf{wlp[c,D] (f1), wlp[c,D] (f2)} ,

(continuity of wlp)

which implies wlp[c,D] (f1) � wlp[c,D] (f2).

Proof of Linearity. We prove linearity by induction on the program
structure. For the base cases we have:

skip: wp[skip,D] (α1 · f1 + α2 · f2)

= α1 · f1 + α2 · f2

= α1 · wp[skip,D] (f1) + α2 · wp[skip,D] (f2)

x := E:
wp[x := E,D] (α1 · f1 + α2 · f2)

= (α1 · f1 + α2 · f2)[x/E]

= α1 · f1[x/E] + α2 · f2[x/E]

= α1 · wp[x := E,D] (f1) + α2 · wp[x := E,D] (f2)

abort: wp[abort,D] (α1 · f1 + α2 · f2)

= 0

= α1 · 0 + α2 · 0
= α1 · wp[abort,D] (f1) + α2 · wp[abort,D] (f2)

For the induction hypothesis we assume that for any two programs
c1 and c2 linearity holds. Then we can perform the induction step:

if (G) {c1} else {c2}:
wp[if (G) {c1} else {c2},D] (α1 · f1 + α2 · f2)

= [G] · wp[c1,D] (α1 · f1 + α2 · f2)

+ [¬G] · wp[c2,D] (α1 · f1 + α2 · f2)

= [G] · (α1 · wp[c1,D] (f1) + α2 · wp[c1,D] (f2))

+ [¬G] · (α1 · wp[c2,D] (f1) + α2 · wp[c2,D] (f2))

= α1 · ([G] · wp[c1,D] (f1) + [¬G] · wp[c2,D] (f1))

+ α2 · ([G] · wp[c1,D] (f2) + [¬G] · wp[c2,D] (f2))

= α1 · wp[if (G) {c1} else {c2},D] (f1)

+ α2 · wp[if (G) {c1} else {c2},D] (f2)

{c1} [p] {c2}:
wp[{c1} [p] {c2},D] (α1 · f1 + α2 · f2)

= p · wp[c1,D] (α1 · f1 + α2 · f2)

+ (1− p) · wp[c2,D] (α1 · f1 + α2 · f2)

= p · (α1 · wp[c1,D] (f1) + α2 · wp[c1,D] (f2))

+ (1− p) · (α1 · wp[c2,D] (f1) + α2 · wp[c2,D] (f2))

= α1 · (p · wp[c1,D] (f1) + (1− p) · wp[c2,D] (f1))

+ α2 · (p · wp[c1,D] (f2) + (1− p) · wp[c2,D] (f2))

= α1 · wp[{c1} [p] {c2},D] (f1)

+ α2 · wp[{c1} [p] {c2},D] (f2)

c1; c2:

wp[c1; c2,D] (α1 · f1 + α2 · f2)

= wp[c1,D] (wp[c2,D] (α1 · f1 + α2 · f2))

= wp[c1,D] (α1 · wp[c2,D] (f1) + α2 · wp[c2,D] (f2))

= α1 · wp[c1,D] (wp[c2,D] (f1))

+ α2 · wp[c1,D] (wp[c2,D] (f2))

= α1 · wp[c1; c2,D] (f1) + α2 · wp[c1; c2,D] (f2)

callP : wp[callP,D] (α1 · f1 + α2 · f2)

= sup
n

wp
[
callDn P

]
(α1 · f1 + α2 · f2)

Since callDn P is call–free for every n and we have already proven
linearity for all call–free programs, we have

wp
[
callDn P

]
(α1 · f1 + α2 · f2)

= α1 · wp
[
callDn P

]
(f1) + α2 · wp

[
callDn P

]
(f2)

for every n and hence

sup
n

wp
[
callDn P

]
(α1 · f1 + α2 · f2)

= sup
n
α1 · wp

[
callDn P

]
(f1) + α2 · wp

[
callDn P

]
(f2)

= α1 · sup
n

wp
[
callDn P

]
(f1) + α2 · sup

n
wp
[
callDn P

]
(f2)

= α1 · wp[callP,D] (f1) + α2 · wp[callP,D] (f2)

Proof of Preservation of 0 and 1. We prove preservation of 0 and
1 by induction on the program structure. For the base cases we
have:

skip:

wp[skip,D] (0) = 0

and

wlp[skip,D] (1) = 1
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x := E:

wp[x := E,D] (0) = 0[x/E] = 0

and

wlp[x := E,D] (1) = 1[x/E] = 1

abort:

wp[abort,D] (0) = 0

and

wlp[abort,D] (1) = 1

For the induction hypothesis we assume that for any two programs
c1 and c2 preservation of 0 and 1 holds. Then we can perform the
induction step:

if (G) {c1} else {c2}:
wp[if (G) {c1} else {c2},D] (0)

= [G] · wp[c1,D] (0) + [¬G] · wp[c2,D] (0)

= [G] · 0 + [¬G] · 0
= 0

and

wlp[if (G) {c1} else {c2},D] (1)

= [G] · wlp[c1,D] (1) + [¬G] · wlp[c2,D] (1)

= [G] · 1 + [¬G] · 1
= 1

{c1} [p] {c2}:
wp[{c1} [p] {c2},D] (0)

= p · wp[c1,D] (0) + (1− p) · wp[c2,D] (0)

= p · 0 + (1− p) · 0
= 0

and

wlp[if (G) {c1} else {c2},D] (1)

= p · wlp[c1,D] (1) + (1− p) · wlp[c2,D] (1)

= p · 1 + (1− p) · 1
= 1

c1; c2:

wp[c1; c2,D] (0) = wp[c1,D] (wp[c2,D] (0))

= wp[c1,D] (0)

= 0

and

wlp[c1; c2,D] (1) = wlp[c1,D] (wlp[c2,D] (1))

= wlp[c1,D] (1)

= 1

callP :

wp[callP,D] (0) = sup
n

wp
[
callDn P

]
(0)

and

wlp[callP,D] (1) = inf
n

wlp
[
callDn P

]
(1)

Since callDn P is call–free for every n and we have already proven
preservation of 0 and 1 for all call–free programs, we have

wp
[
callDn P

]
(0) = 0

and

wlp
[
callDn P

]
(1) = 1

for every n and hence

wp[callP,D] (0) = sup
n

wp
[
callDn P

]
(0) = 0

and

wlp[callP,D] (1) = inf
n

wlp
[
callDn P

]
(1) = 1 .

A.2 Fixed Point Characterization of Recursive Procedures
Establishing the results from Theorem 3.1 requires a subsidiary
result connecting w(l)p[·] with w(l)p[·]] in the presence of non–
recursive procedure calls.

Lemma A.1. For every command c and closed command c′,

wp[c]]wp[c′] = wp
[
c,P . c′

]
.

Proof. By induction on the structure of c. Except for procedure
calls, the proof for all other program constructs follows immedi-
ately from de definition of wp[·], wp[·]](·) and the inductive hy-
potheses in the case of compound instructions. For the case of pro-
cedure calls, the proof relies on the fact that as c′ is a closed com-
mand, callP . c

′
n P = c′ for all n ≥ 1. Concretely, we reason as

follows:
wp[c]]wp[c′](f)

= {def. wp[·]]
(·)}

wp[c′](f)

= {sup. of a constant sequence}
supn wp[c′](f)

= {observation above}

supn wp
[
callP . c

′
n+1 P

]
(f)

= {wp
[
callP . c

′
0 P

]
(f) = 0}

supn wp
[
callP . c

′
n P

]
(f)

= {def. wp[·]}
wp[callP ,P . c′]

Now we are in a position to prove Theorem 3.1. Consider first
the case of fixed point characterization

wp[callP ,D] = lfpv

(
λθ :SEnv • wp[D(P)]]θ︸ ︷︷ ︸

F

)
.

Its proof comprises two major steps:

1. Use the continuity of F : (SEnv,v) → (SEnv,v) established
by Lemma A.6 to conclude that

lfpv (F ) = supn F
n(⊥SEnv) ,

where Fn denotes the composition of F with itself n times
(i.e. F 0 = id and Fn+1 = F ◦ Fn) and ⊥SEnv = λf :E • 0 is
the constantly 0 environment.

2. Show that

∀f :E • F
n(⊥SEnv)(f) = wp

[
callDn P

]
(f)

for all n ≥ 0.

Then the proof follows immediately since by definition of wp,
we have
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wp[callP ,D](f) = supn wp
[
callDn P

]
(f)

= supn F
n(⊥SEnv)(f) = lfpv (F ) (f) .

We now consider each of these two steps in details. Step 1
follows immediately from an application of Kleene’s Fixed Point
Theorem. Step 2 proceeds by induction on n. The base case is
straightforward:

F 0(⊥SEnv)(f) = ⊥SEnv(f) = 0

= wp[abort] (f) = wp
[
callD0 P

]
(f) .

For the inductive case we have
Fn+1(⊥SEnv)(f)

= {def. of Fn+1}
F
(
Fn(⊥SEnv)

)
(f)

= {def. of F}
wp[D(P)]]Fn(⊥SEnv)

(f)

= {I.H.}
wp[D(P)]]

wp[callDn P]
(f)

= {Lemma A.1}
wp[D(P),P . callDn P ](f)

= {Lemma A.4}
wp[D(P)[callP/callDn P ]](f)

= {def. n-inl.}
wp[callDn+1 P ](f)

Now we turn to the fixed point characterization

wlp[callP ,D] = gfpv

(
λθ :LSEnv • wlp[D(P)]]θ︸ ︷︷ ︸

G

)
.

The proof follows a dual argument. We first apply Kleene’s Fixed
Point Theorem to show that

gfpv (G) = infnG
n(>LSEnv) ,

where >LSEnv = λf :E≤1 • 1 is the constantly 1 environment. Next
we show by induction on n that

∀f :E≤1 • G
n(>LSEnv)(f) = wlp

[
callDn P

]
(f)

The proof concludes combining these two results since

wlp[callP ,D](f) = infn wlp
[
callDn P

]
(f)

= infnG
n(>LSEnv)(f) = gfpv (G) (f) .

Lemma A.2. [32, p. 127] Suppose an,m are elements of upper ω-
cpo (A,≤) with the property that an,m ≤ an′,m′ whenever n ≤ n′
and m ≤ m′. Then,

supn (supm an,m) = supm (supn an,m) = supi ai,i .

Lemma A.3 (Monotone Sequence Theorem). If 〈an〉 is a mono-
tonic increasing sequence in a closed interval [L, U ] ⊆ [−∞,
+∞], then the supremum supn an coincides with limn→∞ an. Du-
ally, if 〈an〉 is a monotonic decreasing sequence in a closed in-
terval [L, U ] ⊆ [−∞,+∞], the infimum infn an coincides with
limn→∞ an.

A.3 Soundness of w(l)p Rules
Fact A.1. To carry on the proofs we use the fact that from

w(l)p[callP ](f1) ./ g1 
 w(l)p[c](f2) ./ g2 ,

it follows that for all environment D?,

w(l)p[callP ,D?](f1) ./ g1 =⇒ w(l)p[c,D?](f2) ./ g2 .

We provide detailed proofs for rules [wp-rec] and [wp-recω]; the
proof of rules [wlp-rec] and [wlp-recω] follows a dual argument.

Soundness of rule [wp-rec]. Since by definition, wp[callP ,D](f)
= supn wp[callDn P ,D](f), to establish the conclusion of the rule
it suffices to show that

∀n • wp
[
callDn P

]
(f) � g ,

which we do by induction on n. The base case is immediate since
callD0 P = abort and wp[abort] (f) = 0. For the inductive case,
we reason as follows:

wp[callDn+1 P ](f) � g {def. n-inl.}
⇔ wp[D(P)[callP/callDn P ]](f) � g {Lemma A.4 }
⇔ wp[D(P),P . callDn P ](f) � g {rule prem, Fact A.1}
⇐ wp[callP ,P . callDn P ](f) � g {Lemma A.4}
⇔ wp[callP [callP/callDn P ]](f) � g {def. subst.}
⇔ wp[callDn P ](f) � g {I.H.}

Soundness of rule [wp-recω]. We prove that the rule’s premises
entail ln � wp[callDn P ] (f) � un for all n ∈ N. The conclusion
of the rule then follows immediately by taking the supremum over
n on the three sides of the equation. We proceed by induction on
n. The base case is trivial since by definition, wp[callD0 P ] (f) =
wp[abort] (f) = 0 and by the rule’s premise, l0 = u0 = 0. For
the inductive case we reason as follows:

ln+1 � wp[callDn+1 P ](f) � un+1

⇔ {def. n-inl.}
ln+1 � wp[D(P)[callP/callDn P ]](f) � un+1

⇔ {Lemma A.4}
ln+1 � wp[D(P),P . callDn P ](f) � un+1

⇔ {rule prem, Fact A.1}
ln � wp[callP ,P . callDn P ](f) � un

⇐ {Lemma A.4}
ln � wp[callP [callP/callDn P ]](f) � un

⇔ {def. subst.}
ln � wp[callDn P ](f) � un

⇔ {I.H.}
true

A.4 Substitution of Procedure Calls

c c[callP/c′]

skip skip

x := E x := E

abort abort

callP c′

if (G) {c1} else {c2} if (G) {c1[callP/c′]} else {c2[callP/c′]}
{c1} [p] {c2} {c1[callP/c′]} [p] {c2[callP/c′]}
c1; c2 c1[callP/c′] ; c2[callP/c′]

Figure 7. Syntactic replacement of procedure calls.

Lemma A.4. For every command c and closed command c′,

wp
[
c
[
callP/c′

]]
= wp

[
c,P . c′

]
.

Proof. By induction on the structure of c. Except for procedure
calls, the proof for all other program constructs follows from de
definition of wp and some simple calculations (and the inductive
hypotheses in the case of compound instructions). For the case of
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procedure calls, the proof relies on the fact that as c′ is a closed
command, callP . c

′
n P = c′ for all n ≥ 1. Concretely, we reason as

follows:
wp[callP [callP/c′]](f)

= {def. subst.}
wp[c′](f)

= {sup. of a constant sequence}
supn wp[c′](f)

= {observation above}

supn wp
[
callP . c

′
n+1 P

]
(f)

= {wp
[
callP . c

′
0 P

]
(f) = 0}

supn wp
[
callP . c

′
n P

]
(f)

= {def. wp[·]}
wp[callP ,P . c′]

A.5 Continuity of Transformer w(l)p[·]]θ

c wp[c]]θ (f)

skip f

x := E f[x/E]

abort 0

if (G) {c1} else {c2} [G] · wp[c1]]θ (f) + [¬G] · wp[c2]]θ (f)

{c1} [p] {c2} p · wp[c1]]θ (f) + (1−p) · wp[c2]]θ (f)

callP θ(f)

c1; c2 wp[c1]]θ
(
wp[c2]]θ (f)

)
c wlp[c]]θ (f)

abort 1

Figure 8. Expectation transformer w(l)p[·]]θ . Transformer wlp[·]]θ
differs from wp[·]]θ only in abort instructions.

As a preliminary step to discuss the continuity of w(l)p[·]](·) we
observe that order relation “v” (see paragraph below Theorem 3.1)
endows the set of environments SEnv with the structure of an
upper ω–cpo with botom element ⊥SEnv = λf : E • 0, where the
supremum of an increasing ω–chain θ0 v θ1 v · · · is given
pointwise, i.e. (supn θi)(f) = supn θi(f). Likewise, “v’ endows
the set of liberal environments LSEnv with the structure of a lower
ω–cpo with top element>LSEnv = λf : E≤1 • 1, where the infimum
of a decreasing ω–chain θ0 w θ1 w · · · is given pointwise, i.e.
(infn θi)(f) = infn θi(f).

We will discuss two kind of continuity results for w(l)p[·]](·).
First, we show that for every environment θ, expectation trans-
former w(l)p[·]]θ is continuous, or equivalently, that

wp[c]](·) : (SEnv,v)→ (SEnv,v)

wlp[c]](·) : (LSEnv,v)→ (LSEnv,v)
This result will be established in Lemma A.5. Second, we show that
the above environment transformers are themselves continuous, i.e.
that

wp[c]](·) : (SEnv,v)
upp-cont→ (SEnv,v)

wlp[c]](·) : (LSEnv,v)
low-cont→ (LSEnv,v)

This result will be established in Lemma A.6.

Lemma A.5. Let θ ∈ SEnv and f0 � f1 � · · · be an ascending
ω–chain of expectations in E. Then for every command c,

wp[c]]θ (supn fn) = supn wp[c]]θ(fn) .
Analogously, if f0 � f1 � · · · is a descending ω–chain of
expectations in E≤1,

wlp[c]]θ (infn fn) = infn wlp[c]]θ(fn) .

Proof. By induction on the structure of c. Except for procedure
calls, all program constructs use the same proof argument as for
the continuity of plain transformer w(l)p[·], which has already been
dealt with in e.g. [11]. For procedure calls we reason as follows.

wp[callP ]]θ (supn fn)

= {def. wp[·]]θ}
θ (supn fn)

= {θ is continuous by hypothesis}
supn θ(fn)

= {def. wp[·]]θ}
supn wp[callP ]]θ(fn) .

The reasoning to show that

wlp[callP ]]θ (infn fn) = infn wlp[callP ]]θ (fn)
is analogous.

Lemma A.6. Let θ0 v θ1 v · · · be an ascending ω–chain in
SEnv. Then for every command c,

wp[c]]supn θn
= supn wp[c]]θn .

Analogously, if θ0 w θ1 w · · · is a descending ω–chain in LSEnv,

wlp[c]]infn θn
= infn wlp[c]]θn .

Proof. By induction on the structure of c. We consider only the
case of wp[c]]θ; the case of wlp[c]]θ is analogous. For the three basic
instructions c = skip, c = x := E and c = abort the proof
is straightforward since the action of transformer wp[·]](·) on these
instructions is independent of the semantic environment at stake
(i.e. constant functions are always continuous). For the remaining
program constructs we reason as follows:

Procedure Call:

wp[callP ]]supn θn
(f)

= {def. wp[·]]θ}
(supn θn)(f)

= {def. supn θn}
supn θn(f)

= {def. wp[·]]θ}
supn wp[callP ]]θn(f) .

Reasoning about Recursive Probabilistic Programs 15 2016/3/14



Sequential Composition:

wp[c1; c2]]supn θn
(f)

= {def. wp[·]]θ}
wp[c1]]supm θm

(
wp[c2]]supn θn

(f)
)

= {I.H. on c2}
wp[c1]]supm θm

(
supn wp[c2]]θn(f)

)
= {Lemma A.5}

supn wp[c1]]supm θm

(
wp[c2]]θn(f)

)
= {I.H. on c1}

supn supm wp[c1]]θm
(
wp[c2]]θn(f)

)
?
= {Lemma A.2}

supi wp[c1]]θi

(
wp[c2]]θi(f)

)
= {def. wp[·]]θ}

supi wp[c1; c2]]θi(f)
For applying Lemma A.2 in step (*) we have to show that

wp[c1]]θm
(
wp[c2]]θn(f)

)
� wp[c1]]θm′

(
wp[c2]]θn′

(f)
)

whenever n ≤ n′ and m ≤ m′. To this end, we use a transitivity
argument and show that

wp[c1]]θm
(
wp[c2]]θn(f)

)
� wp[c1]]θm

(
wp[c2]]θn′

(f)
)

(1)

wp[c1]]θm
(
wp[c2]]θn′

(f)
)
� wp[c1]]θm′

(
wp[c2]]θn′

(f)
)

(2)
To prove Equation (1) we first apply the I.H. on c2. Since continuity
entails monotonicity, we obtain wp[c2]]θn v wp[c2]]θn′

, which

itself gives wp[c2]]θn(f) � wp[c2]]θn′
(f). We are left to show

that wp[c1]]θm (·) is monotonic, which follows by its continuity
guaranteed by Lemma A.5. To prove Equation (2), we apply the
I.H. on c1. Again, since the continuity of wp[c1]](·) implies its
monotonicity, we obtain wp[c1]]θm v wp[c1]]θm′

, which establishes
Equation (2).

Conditional Branching:

wp[call if (G) {c1} else {c2}]]supn θn
(f)

= {def. wp[·]]θ}
[G] · wp[c1]]supn θn

(f) + [¬G] · wp[c2]]supn θn
(f)

= {I.H. on c1,c2}
[G] · supn wp[c1]]θn (f) + [¬G] · supn wp[c2]]θn (f)

(∗)
= {Lemma A.3}

[G] · lim
n→∞

wp[c1]]θn (f) + [¬G] · lim
n→∞

wp[c2]]θn (f)

= {algebra of limits}
lim
n→∞

(
[G] · wp[c1]]θn (f) + [¬G] · wp[c2]]θn (f)

)
(∗∗)
= {Lemma A.3}

supn
(
[G] · wp[c1]]θn (f) + [¬G] · wp[c2]]θn (f)

)
= {def. wp[·]]θ}

supn wp[call if (G) {c1} else {c2}]]θn
To apply Lemma A.3 in steps (*) and (**) we have to show that
sequences 〈wp[c1]]θn (f)〉 and 〈wp[c2]]θn (f)〉 are increasing. This
follows by I.H. on c1 and c2 since continuity entails monotonicity.

Probabilistic Choice: follows the same argument as conditional
branching.

A.6 Basic Properties of Transformer ert

We begin by presenting some preliminary results that will be nec-
essary for establishing the main results about the ert transformer.

Fact A.2 ((RtEnv,v) is anω–cpo). Let “v” denotes the pointwise
order between runtime environments, i.e. for η1, η2 ∈ RtEnv,
η1 v η2 iff η1(t) � η2(t) for every t ∈ T. Relation “v” endows
the set of runtime environments RtEnv with the structure of an
upper ω–cpo with botom element ⊥RtEnv = λt : T • 0, where the
supremum of an increasing ω–chain η0 v η1 v · · · is given
pointwise, i.e. (supn ηi)(t) = supn ηi(t).

Lemma A.7 (Continuity of ert [·]]η w.r.t. η). Let η0 v η1 v · · · be
an ascending ω–chain in RtEnv. Then for every command c,

ert [c]]supn ηn
= supn ert [c]]ηn .

Proof. The proof follows the same argument as that for establishing
the continuity of transformer wp (see Lemma A.6).

Lemma A.8 (ert [c]](·) preserves continuity). For every command
c and every (upper continuous) runtime environment η ∈ RtEnv,
ert [c]]η is a continuous runtime transformer in T upp-cont→ T.

Proof. By induction on the program structure. For every program
constructs different from a procedure call, the reasoning is similar
to that used in Lemma A.5 to prove the same property for trans-
former wp[·]]. For a procedure call the statement follows immedi-
ately since η is continuous by hypothesis.

Lemma A.9 (Alternative characterization of ert [callP ,D]). Let
F (η) = 1⊕ ert [D(P)]]η . Then

ert [callP ,D] = supn F
n(⊥RtEnv) ,

where ⊥RtEnv = λt : T • 0 and Fn(⊥RtEnv) denotes the repeated
application of F from ⊥RtEnv n times (i.e. F 0(⊥RtEnv) = id and
Fn+1(⊥RtEnv) = F (Fn(⊥RtEnv))).

Proof. Using Lemma A.7 one can show that F is an (upper) con-
tinuous runtime transformer. The result then follows from a direct
application of Kleene’s Fixed Point Theorem and Fact A.2.

To present the following lemma we use the notion of expanding
runtime environments. Given η0, η1 ∈ RtEnv, θ ∈ SEnv and
k,∆ ∈ R≥0 we say that 〈η1, η0, θ〉 are 〈k,∆〉–expanding iff

t1 − t0 � k · (1−f) + ∆
implies

η1(t1)− η0(t0) � k ·
(
1− θ(f)

)
+ ∆

for all t0, t1 ∈ T and f ∈ E≤1.

Lemma A.10. Let 〈η1, η0, θ〉 be 〈k,∆〉–expanding environments12

and c be an abort–free command. Then

t1 − t0 � k · (1−f) + ∆
implies

ert [c]]η1(t1)− ert [c]]η0(t0) � k ·
(
1− wp[c]]θ(f)

)
+ ∆

for all t0, t1 ∈ T and f ∈ E≤1.

Proof. By induction on the structure of c.

12 See paragraph above.
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No–op:

ert [skip]]η1(t1)− ert [skip]]η0(t0)

� k ·
(
1− wp[skip]]θ(f)

)
+ ∆

⇔ {def. of ert [·]]η , wp[·]]θ}
(1 + t1)− (1 + t0) � k · (1−f) + ∆

⇐ {hypothesis}
true

Assignment:

ert [x := E]]η1(t1)− ert [x := E]]η0(t0)

� k ·
(
1− wp[x := E]]θ(f)

)
+ ∆

⇔ {def. of ert [·]]η , wp[·]]θ}
(1 + t1)[x/E]− (1 + t0)[x/E] � k ·

(
1− f [x/E]

)
+ ∆

⇔ {algebra}
(t1 − t0)[x/E] �

(
k · (1−f) + ∆

)
[x/E]

⇐ {hypothesis}
true

Procedure Call:

ert [callP ]]η1(t1)− ert [callP ]]η0(t0)

� k ·
(
1− wp[callP ]]θ(f)

)
+ ∆

⇔ {def. of ert [·]]η , wp[·]]θ}
η1(t1)− η0(t0) � k ·

(
1− θ(f)

)
+ ∆

⇐ {〈η1, η0, θ〉 is 〈k,∆〉–expanding}
t1 − t0 � k · (1−f) + ∆

⇐ {hypothesis}
true

Probabilistic Choice:

ert [{c1} [p] {c2}]]η1(t1)− ert [{c1} [p] {c2}]]η0(t0)

� k ·
(
1− wp[{c1} [p] {c2}]]θ(f)

)
+ ∆

⇔ {def. of ert [·]]η , wp[·]]θ}
p ·
(
ert [c1]]η1(t1)− ert [c1]]η0(t0)

)
+ (1−p) ·

(
ert [c2]]η1(t1)− ert [c2]]η0(t0)

)
� k ·

(
1−

(
p · wp[c1]]θ(f) + (1−p) · wp[c2]]θ(f)

))
+ ∆

⇐ {IH on c1, c2}
p ·
(
k ·
(
1− wp[c1]]θ(f)

)
+ ∆

)
+ (1−p) ·

(
k ·
(
1− wp[c2]]θ(f)

)
+ ∆

)
� k ·

(
1−

(
p · wp[c1]]θ(f) + (1−p) · wp[c1]]θ(f)

))
+ ∆

⇐ {algebra (equality holds)}
true

Conditional Branching: analogous to the case of probabilistic
choice.

Sequential Composition:

ert [c1; c2]]η1(t1)− ert [c1; c2]]η0(t0)

� k ·
(
1− wp[c1; c2]]θ(f)

)
+ ∆

⇔ {def. of ert [·]]η , wp[·]]θ}
ert [c1]]η1

(
ert [c2]]η1(t1)− ert [c1]]η1

(
ert [c2]]η0(t0)

� k ·
(
1− wp[c1]]θ

(
wp[c2]]θ(f)

))
+ ∆

⇐ {IH on c1}
ert [c2]]η1(t1)− ert [c2]]η0(t0) � k ·

(
1− wp[c2]]θ(f)

)
+ ∆

⇐ {IH on c2}
t1 − t0 � k · (1−f) + ∆

⇐ {hypothesis}
true

Lemma A.11. Let P be an abort–free procedure with declaration
D. Then for every runtime t,

ert [callP ](t) � supn n ·
(
1− wp[callP ,D](1)

)
.

Proof. Let F (η) = 1 ⊕ ert [D(P)]]η . Since by Lemma A.9,
ert [callP ,D] = supn F

n(⊥), the result follows from showing
that for all n ≥ 0,

Fn+1(⊥)(t) � (n+ 1) ·
(
1− wp[callP ,D](1)

)
.

To establish this, we first prove by induction on i that whenever
t1 − t0 � 0,

F i+1(⊥)(t1)− F i(⊥)(t0) � 1− wp[callP ,D](1) ,
and then conclude using a telescopic sum argument as follows:

Fn+1(⊥)(t) = F 0(⊥)(t) +
∑n

i=0
F i+1(⊥)(t)− F i(⊥)(t)

�
∑n

i=0
F i+1(⊥)(t)− F i(⊥)(t)

� (n+ 1) ·
(
1− wp[callP ,D](1)

)
.

For the inductive proof we reason as follows. For the base case we
have

F 1(⊥)(t1)− F 0(⊥)(t0) � 1− wp[callP ,D](1)

⇔ {def. of Fn, ⊥}
1 + ert [D(P)]]⊥(t1)−⊥(t0) � 1− wp[callP ,D](1)

⇔ {def. of ⊥}
1 + ert [D(P)]]⊥(t1) � 1− wp[callP ,D](1)

⇐ {wp[callP ,D](1) � 0}
true
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while for the inductive case we have,

F i+2(⊥)(t1)− F i+1(⊥)(t0) � 1− wp[callP ,D](1)

⇔ {def. of Fn}(
1 + ert [D(P)]]

F i+1(⊥)
(t1)

)
−
(
1 + ert [D(P)]]

F i(⊥)
(t0)

)
� 1− wp[callP ,D](1)

⇔ {algebra}
ert [D(P)]]

F i+1(⊥)
(t1)− ert [D(P)]]

F i(⊥)
(t0)

� 1 ·
(
1− wp[callP ,D](1)

)
+ 0

⇔ {wp[callP ,D] = wp[D(P)]]
wp[callP,D]

by Theorem 3.1}
ert [D(P)]]

F i+1(⊥)
(t1)− ert [D(P)]]

F i(⊥)
(t0)

� 1 ·
(
1− wp[D(P)]]wp[callP,D](1)

)
+ 0

⇐ {Lemma A.10}
t1 − t0 � 1 · (1− 1) + 0 and〈
F i+1(⊥), F i(⊥),wp[callP ,D]

〉
are 〈1, 0〉–expanding

⇐ {hypothesis}〈
F i+1(⊥), F i(⊥),wp[callP ,D]

〉
are 〈1, 0〉–expanding

⇐ {IH}
true

Lemma A.12. For every constant k ∈ R≥0 and abort–free pro-
gram 〈c,D〉,

ert [c,D](k) � k .

Proof. By induction on the structure of c. Except for the case of
procedure calls, all other program constructs pose no difficulty.
For the case of a procedure call, we make a case distinction on
the termination behaviour of the procedure. If from state s the
procedure terminates almost surely, i.e. wp[callP ,D] (1)(s) = 1,
the result follows from Theorem 5.2 and the linearity of wp[·] (see
Lemma 3.1) since

ert [callP ,D](k)(s)

= ert [callP ,D](0)(s) + wp[callP ,D](k)(s)

≥ wp[callP ,D](k)(s)

= k · wp[callP ,D](1)(s) = k
If, on the contrary, the procedure terminates with probability
strictly less than 1 from state s, we conclude applying Lemma A.11
since

ert [callP ,D](k)(s)

≥ supn n ·
(
1− wp[callP ,D](1)(s)︸ ︷︷ ︸

>0

)
= ∞ ≥ k .

For stating the following lemma we use the notion of “constant
separable” runtime environment. We say that η ∈ RtEnv is con-
stant separable into υ ∈ RtEnv iff for all k ∈ R≥0 and t ∈ T,
η(k + t) = k + υ(t).

Lemma A.13. Let η be a runtime environment constant separa-
ble13 into υ. Then for all command c,

ert [c]]η(k + t) = k + ert [c]]υ(t) .

Proof. By induction on the structure of c.

13 See paragraph above.

No–op:
ert [skip]]η(k + t)

= {def. of ert [·]]η}
1 + k + t

= {def. of ert [·]]υ}
k + ert [skip]]υ(t)

Assignment:
ert [x := E]]η(k + t)

= {def. of ert [·]]η}
(k + t)[x/E]

= {k[x/E] = k}
k + t[x/E]

= {def. of ert [·]]υ}
k + ert [x := E]]υ(t)

Procedure Call:

ert [callP ]]η1(k + t)

= {def. of ert [·]]η}
η(k + t)

= {η constant separable into υ}
k + υ(t)

= {def. of ert [·]]υ}
k + ert [callP ]]υ(t)

Probabilistic Choice:

ert [{c1} [p] {c2}]]η(k + t)

= {def. of ert [·]]η}
p · ert [c1]]η(k + t) + (1−p) · ert [c2]]η(k + t)

= {I.H. on c1, c2}
p ·
(
k + ert [c1]]υ(t)

)
+ (1−p) ·

(
k + ert [c2]]υ(t)

)
= {algebra}

k + p · ert [c1]]υ(t) + (1−p) · ert [c2]]υ(t)

= {def. of ert [·]]υ}
k + ert [{c1} [p] {c2}]]υ(t)

Conditional Branching: analogous to the case of probabilistic
choice.

Sequential Composition:

ert [c1; c2]]η1(k + t)

= {def. of ert [·]]η}
ert [c1]]η

(
ert [c2]]η(k + t)

)
= {I.H. on c2}

ert [c1]]η
(
k + ert [c2]]υ(t)

)
= {I.H. on c1}

k + ert [c1]]υ
(
ert [c2]]υ(t)

)
= {def. of ert [·]]υ}

k + ert [c1; c2]]υ(t)

Lemma A.14. Let (D1,≤1), (D2,≤2) and (D,≤) be upper ω–
cpos with botom elements ⊥1, ⊥2 and ⊥, respectively. Moreover
let F1 : D1 → D1, F2 : D2 → D2, f1 : D1 → D, f2 : D2 → D be
upper continuous and h1, h2 : D → D. If

1. ∀d1 • f1(F1(d1)) ≤ h1(f1(d1)) and ∀d2 • f2(F2(d2)) ≤
h2(f2(d2)),
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2. f1(⊥1) ≤ f2(lfp (F2)) and f2(⊥2) ≤ f1(lfp (F1)), and
3. h1(f2(lfp (F2))) ≤ f2(lfp (F2)) and h2(f1(lfp (F1))) ≤
f1(lfp (F1)),

then
f1(lfp (F1)) = f2(lfp (F2)) .

Proof.

f1(lfp (F1)) = f2(lfp (F2))

⇔ {”≤” is a partial order over D}
f1(lfp (F1)) ≤ f2(lfp (F2)) ∧ f2(lfp (F2)) ≤ f1(lfp (F1))

⇔ {Kleene’s Fixed Point Theorem, F1, F2 continuous}
f1

(
supn F

n
1 (⊥1)

)
≤ f2(lfp (F2))

∧ f2

(
supn F

n
2 (⊥2)

)
≤ f1(lfp (F1))

⇔ {f1, f2 continuous}
supn f1

(
Fn1 (⊥1)

)
≤ f2(lfp (F2))

∧ supn f2

(
Fn2 (⊥2)

)
≤ f1(lfp (F1))

⇐ {∀n • an ≤ S =⇒ supn an ≤ S}
∀n • f1

(
Fn1 (⊥1)

)
≤ f2(lfp (F2))

∧ ∀n • f2

(
Fn2 (⊥2)

)
≤ f1(lfp (F1))

We prove the above pair of inequalities by induction on n. We ex-
hibit the details only for the first one; the second one follows a
similar argument. The base case f1

(
F 0

1 (⊥1)
)
≤ f2(lfp (F2)) fol-

lows from hypothesis 2. For the inductive case f1

(
Fn+1

1 (⊥1)
)
≤

f2(lfp (F2)) we reason as follows:

f1

(
Fn+1

1 (⊥1)
)

= {def. of Fn+1}
f1

(
F
(
Fn1 (⊥1)

))
≤ {hyp. 1}
h1

(
f1

(
Fn1 (⊥1)

))
≤ {IH, monot. of h1}
h1(f2(lfp (F2)))

≤ {hyp. 3}
f2(lfp (F2))

Proof of Theorem 5.1. The proof of all properties proceeds by
induction on the program structure. Except for the case of prob-
abilistic choice and procedure call, all other programs constructs
have already been dealt with in [17, 18]. For probabilistic choice
we follow the same reasoning as for conditional branches. We are
left to analyze then only the case of procedure calls. For each of the
properties we reason as follows:

Continuity. Let F (η) = 1⊕ ert [D(P)]]η .

ert [callP ,D](supn tn)

= {Lemma A.9}
supm F

m(⊥RtEnv)(supn tn)

= {Fm(⊥RtEnv) continuous; see below}
supm supn F

m(⊥RtEnv)(tn)

= {Lemma A.2}
supn supm F

m(⊥RtEnv)(tn)

= {Lemma A.9}
supn ert [callP ,D](tn)

We are only left to prove that Fm(⊥RtEnv) is continuous for all
m ∈ N. We prove this by induction on m. The base case is
immediate since F 0(⊥RtEnv) = ⊥RtEnv and ⊥RtEnv is continuous.
For the inductive case we have Fm+1(⊥RtEnv) = F (Fm(⊥RtEnv)).
The continuity of Fm+1(⊥RtEnv) follows from the I.H. and the

fact that F preserves continuity, i.e. η continuous implies F (η)
continuous (see Lemma A.8).

Propagation of constants. By letting F (η) = 1 ⊕ ert [D(P)]]η we
can recast the property as lfp (F ) (k + t) = k + lfp (F ) (t), or
equivalently, as

(
λη?• λt

?
• η
?(k+t?)

)
(lfp (F )) =

(
λη?• λt

?
• k+η?(t?)

)
(lfp (F )) .

To prove this equation, we apply Lemma A.14 with instantiations

F1 = F2 = F

f1 = λη?• λt
?
• η
?(k + t?)

f2 = λη?• λt
?
• k + η?(t?)

h1 = λη?• λt
?
• 1 + ert [D(P)]]λt′ • η?(t′−k) (k + t?)

h2 = λη?• λt
?
• k + 1 + ert [D(P)]]λt′ • η?(t′)−k (t?)

and underlying ω-cpos (D1,≤1) = (D2,≤2) = (D,≤) =
(RtEnv,v) and botom elements ⊥1 = ⊥2 = ⊥ = ⊥RtEnv. The
application of Lemma A.14 requires the continuity of F which fol-
lows from Lemma A.7, the continuity of f1 and f2, which holds
because runtime environments are continuous by definition, and fi-
nally the monotonicity of h1 and h2. This latter fact, together with
the fact that h1 and h2 are effectively well–defined (i.e. have type
RtEnv → RtEnv) can be proved with an inductive argument (on
the structure of D(P)).

We are left to discharge hypotheses 1–3 of Lemma A.14. A
simple unfolding of the involved functions yields f1(F (η)) v
h1(f1(η)) and f2(F (η)) v h2(f2(η)) for all η ∈ RtEnv;
this establishes hypothesis 1. As for hypothesis 2, f1(⊥RtEnv) v
f2(lfp (F )) holds because f1(⊥RtEnv) = ⊥RtEnv and f2(⊥RtEnv) v
f1(lfp (F )) reduces to k � ert [callP ,D](k + t), which holds
in view of the monotonicity of transformer ert and Lemma A.12.
Finally, to discharge hypothesis 3 we reason as follows:

h1(f2(lfp (F )))(t) � f2(lfp (F ))(t)

⇔ {def. of h1, f2, F ; let η(t′) = k + ert [callP ,D](t′−k)}
1 + ert [D(P)]]η (k + t) � k + ert [callP ,D](t)

⇔ {η is constant separable into ert [callP ,D]; Lemma A.13 }
1 + k + ert [D(P)]]ert[callP,D] (t) � k + ert [callP ,D](t)

⇔ {def. of F}
k + F (ert [callP ,D])(t) � k + ert [callP ,D](t)

⇔ {def. of ert}
k + F (lfp (F ))(t) � k + lfp (F ) (t)

⇔ {def. of lfp}
k + lfp (F ) (t) � k + lfp (F ) (t)

⇐ {”�” is a partial order}
true
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h2(f1(lfp (F )))(t) � f1(lfp (F ))(t)

⇔ {def. of h2, f1, F ; let υ(t′) = ert [callP ,D](t′+k)− k}
k + 1 + ert [D(P)]]υ (t) � ert [callP ,D](k + t)

⇔ {ert [callP ,D] is constant separable into υ; Lemma A.13 }
k + 1 +

(
ert [D(P)]]ert[callP,D] (k+t)− k

)
� ert [callP ,D](k + t)

⇔ {algebra; def. of F}
F (ert [callP ,D])(k + t) � ert [callP ,D](k + t)

⇔ {def. of ert}
F (lfp (F ))(k + t) � lfp (F ) (k + t)

⇔ {def. of lfp}
lfp (F ) (k + t) � lfp (F ) (k + t)

⇐ {”�” is a partial order}
true

Preservation of infinity. By the monotonicity of ert [c,D] and
Lemma A.12, we have

ert [c,D](∞) � k ∀k ∈ R≥0 ,
which itself entails ert [c,D](∞) =∞.

A.7 Relation between Transformers ert and wp

To establish Theorem 5.2 we make use of a subsidiary result.
This result relies on the notion of separable runtime environment.
We say that a runtime environment η is separable into runtimes
environments η1 and η2 iff we have η(t1 + t2) = η1(t1) + η2(t2)
for every any two runtimes t1 and t2.

Lemma A.15. For every command c and runtime environment η
separable into η1 and η2,

ert [c]]η(t1 + t2) = ert [c]]η1(t1) + wp[c]]η2(t2) .

Proof. For the basic instructions (skip, abort and assignment), the
statement follows immediately from the definitions of ert and wp.
For the remaining program constructs we reason as follows:

Conditional Branching:

ert [if (G) {c1} else {c2}]]η(t1 + t2)

= {def. of ert [·]]η}
1 + [G] · ert [c1]]η(t1 + t2) + [¬G] · ert [c2]]η(t1 + t2)

= {I.H. on c1,c1}
1 + [G] ·

(
ert [c1]]η1(t1) + wp[c1]]η2(t2)

)
+ [¬G] ·

(
ert [c2]]η1(t1) + wp[c2]]η2(t2)

)
= {algebra}

1 + [G] · ert [c1]]η1(t1) + [¬G] · ert [c2]]η1(t1)

+ [G] · wp[c1]]η2(t2) + [¬G] · wp[c2]]η2(t2)

= {def. of ert [·]]η ,wp[·]
]
η}

ert [if (G) {c1} else {c2}]]η1(t1)

+wp[if (G) {c1} else {c2}]]η2(t2)

Probabilistic Choice: analogous to the conditional branching case.

Sequential Composition:

ert [c1; c2]]η(t1 + t2)

= {def. of ert [·]]η}
ert [c1]]η

(
ert [c2]]η (t1 + t2)

)
= {I.H. on c2}

ert [c1]]η
(
ert [c2]]η1(t1) + wp[c2]]η2(t2)

)
= {I.H. on c1}

ert [c1]]η1
(
ert [c2]]η1(t1)

)
+ wp[c1]]η2

(
wp[c2]]η2(t2)

)
= {def. of ert [·]]η ,wp[·]

]
η}

ert [c1; c2]]η(t1) + wp[c1; c2]]η(t2)

Procedure Call:

ert [callP ]]η(t1 + t2)

= {def. of ert [·]]η}
η(t1 + t2)

= {η sep. into η1, η2}
η1(t1) + η2(t2)

= {def. of ert [·]]η ,wp[·]
]
η}

ert [callP ]]η1(t1) + wp[callP ]]η2(t2)

Proof of Theorem 5.2. The proof proceeds by induction on the
program structure, but for the inductive reasoning to work we need
to consider a stronger statement, namely

ert [c,D](t1 + t2) = ert [c,D](t1) + wp[c,D](t2) . (3)
(We recover the original statement by taking t1 = 0). For all
program constructs c different from a procedure call, establishing
Equation 3 follows exactly the same argument as that used in
Lemma A.15 for establishing

ert [c]]η(t1 + t2) = ert [c]]η1(t1) + wp[c]]η2(t2)

since ert [·]]η and ert [·] obey the same definition rule for such
program constructs.

For the case of a procedure call we have to prove that

ert [callP ,D] (t1 + t2) = ert [callP ,D] (t1)+wp[callP ,D] (t2) .
Since

ert [callP ,D] = lfp (F ) where F (η) = 1⊕ ert [D(P)]]η

wp[callP ,D] = lfp (G) where G(θ) = wp[D(P)]]θ ,
and bothF andG are continuous (see Lemma A.6 and Lemma A.7),
by Kleene’s Fixed Point Theorem our statement can be recast as

supn F
n(⊥RtEnv)(t1 + t2) =

supn F
n(⊥RtEnv)(t1) + supnG

n(⊥SEnv)(t2) ,
where ⊥SEnv = λf : E • 0, ⊥RtEnv = λt : T • 0, Fn(⊥RtEnv) =
F (. . . F (F (⊥RtEnv)) . . .) denotes the repeated application of F
from ⊥RtEnv n times and likewise for Gn(⊥SEnv). Since a stan-
dard property of complete partial orders ensures that Fn(⊥RtEnv)
and Gn(⊥SEnv) are monotonic w.r.t. n, we can use the Monotone
Sequence Theorem (Lemma A.3) to replace supn with limn→∞ in
the above equation and this way “merge” the two limits in the RHS
into a single limit. The above equation is then entailed by formula

∀n • F
n(⊥RtEnv)(t1+t2) = Fn(⊥RtEnv)(t1) +Gn(⊥SEnv)(t2) ,

which we prove by induction on n. The base case is immediate
since for every runtime t, F 0(⊥RtEnv)(t) = G0(⊥SEnv)(t) = 0.
For the inductive case we reason as follows:
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Fn+1(⊥RtEnv)(t1 + t2) =

Fn+1(⊥RtEnv)(t1) +Gn+1(⊥SEnv)(t2)

⇔ {def. Fn+1, Gn+1}
1 + ert [D(P)]]Fn(⊥RtEnv)

(t1 + t2) =

1 + ert [D(P)]]Fn(⊥RtEnv)
(t1) + wp[D(P)]]Gn(⊥SEnv)

(t2)

⇔ {algebra}
ert [D(P)]]Fn(⊥RtEnv)

(t1 + t2) =

ert [D(P)]]Fn(⊥RtEnv)
(t1) + wp[D(P)]]Gn(⊥SEnv)

(t2)

⇐ {Lemma A.15, I.H.}
true

A.8 Soundness of Proof Rules for ert

To establish the soundness of rules [eet-rec] and [eet-recω] we make
use of the following result.

Fact A.3. The derivability assertion

ert [callP ](t1) � u1 
 ert [c](t2) � u2

implies that for every runtime environment η,

η(t1) � u1 =⇒ ert [c]]η(t2) � u2 .
The result remain valid if we reverse all inequalities.

We have already used a similar result for establishing the sound-
ness of rules [wp-rec] and [wp-recω] (even though in that case the
conclusion was stated using wp[·] instead of wp[·]]θ).

Soundness of rule [eet-rec]. Let runtime environment η? map t to
u and all other runtimes to (the constant runtime)∞. The validity
of the rule follows from the following reasoning:

ert [callP ,D](t) � 1 + u

⇔ {def. ert (Figure 2)}
lfpv

(
λη :RtEnv • 1⊕ ert [D(P)]]η

)
(t) � 1 + u

⇔ {def. η?,v}
lfpv

(
λη :RtEnv • 1⊕ ert [D(P)]]η

)
v 1⊕ η?

⇐ {Park’s Lemma14, Fact A.2, Lemma A.7}
1⊕ ert [D(P)]]1⊕η? v 1⊕ η?

⇔ {def. η?,v}
1 + ert [D(P)]]1⊕η?(t) � 1 + u

⇔ {algebra}
ert [D(P)]]1⊕η?(t) � u

⇐ {Fact A.3, rule premise}
(1⊕ η?)(t) � 1 + u

⇔ {def. η?}
true

Soundness of rule [eet-recω]. For simplicity, we consider the one–
side version of the rule for obtaining lower bound only:

l0 = 0
1 + ln � ert [callP ](t) 
 ln+1 � ert [D(P)](t)

1+ supn ln � ert [callP ,D](t)

14 If H : D → D is an upper continuous function over an upper ω–cpo
(D,v) with bottom element, then H(d) v d implies lfpv (H) v d for
every d ∈ D [31].

The reasoning for the orignal—two–side rule—is analogous. The
validity of the above rule follows from the following reasoning:

1 + supn ln � ert [callP ,D](t)

⇔ {def. ert (Figure 2), F (η) = 1⊕ ert [D(P)]]η}
1 + supn ln � lfpv (F ) (t)

⇔ {Kleene’s Fixed Point Thm, Lemma A.7}
1 + supn ln � supn F

n(⊥RtEnv)(t)

Since Fn(⊥RtEnv) is monotonic w.r.t. n, supn F
n(⊥RtEnv) =

supn F
n+1(⊥RtEnv) and the reasoning continues as follows:

⇔
1 + supn ln � supn F

n+1(⊥RtEnv)(t)

⇔ {k + supn an = supn k + an}
supn 1 + ln � supn F

n+1(⊥RtEnv)(t)

⇐
∀n • 1 + ln � Fn+1(⊥RtEnv)(t)

We prove the above statement by induction on n. For the base case
we have

1 + l0 � F 1(⊥RtEnv)(t)

⇔ {rule premise, def F 1(⊥RtEnv)}
1 � 1 + ert [D(P)]]⊥RtEnv

(t)

⇐ {ert [D(P)]]⊥RtEnv
(t) � 0}

true
For the inductive case we have

1 + ln+1 � Fn+2(⊥RtEnv)(t)

⇔ {def Fn+2(⊥RtEnv)}
1 + ln+1 � 1 + ert [D(P)]]

Fn+1(⊥RtEnv)
(t)

⇔ {algebra}
ln+1 � ert [D(P)]]

Fn+1(⊥RtEnv)
(t)

⇐ {Fact A.3, rule premise}
1 + ln � Fn+1(⊥RtEnv)(t)

⇔ {I.H.}
true

A.9 Operational Model of pGCL
Definition A.1 (Pushdown Markov Chains with Rewards). A
pushdown Markov chain with rewards (PRMC) is a tuple P =
(Q, qinit , Γ, γ0, ∆, rew), where

• Q is a countable set of control states,
• qinit ∈ Q is the initial control state,
• Γ is a finite stack alphabet,
• γ0 ∈ Γ is a special bottom–of–stack symbol,
• ∆: Q × Γ 99K D(Q) ×

(
Γ \ {γ0}

)∗ (where D(Q) denotes
the set of probability distributions over Q) is a probabilistic
transition relation,
• rew : Q→ R≥0 is a reward function.

A path of P is a finite sequence ρ = (q0, β0)
a1−→ · · · ak−→

(qk, βk), where q0 = qinit , β0 = γ0, and for all 1 ≤ i ≤ k
holds βi ∈ γ0 ·

(
Γ \ {γ0}

)∗ and ∃µ ∈ D(Q) and ∃ γ1 ∈ Γ
and ∃ γ2 ∈ Γ \ {γ0} ∪ {ε}, such that ∆(qi−1, γ1) = (µ, γ2)
and βi−1 = w · γ1 and βi = w · γ2 and µ(qi) = ai > 0.
The set of paths in P is denoted by PathsP. In the following
let ρ = (q0, β0)

a1−→ · · · ak−→ (qk, βk). The probability of ρ
is given by ProbP (ρ) =

∏k
i=1 ai be a path. The reward of a

path ρ is given by rew (ρ) = ProbP (ρ) ·
∑k
i=0 rew (qi). The

expected reward for reaching a set of target states T ⊆ Q is
given by ExpRewP (T ) =

∑
ρ′∈P rew (ρ′) where P = {ρ′ ∈
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PathsP | ρ′ = (q0, β0)
a1−→ · · ·

aj−→ (qj , βj), qj ∈ T, ∀ 0 ≤ ` <
j : q` 6∈ T}. We stick to the convention that an empty sum yields
value zero, i.e. in particular

∑
ρ′∈∅ rew (ρ′) = 0.

We assume a given labeling for each program c ∈ C that
specifies the control flow of c as illustrated in Section A.9. Let
Lab∗ denote the finite set of labels used in a given program C. We
assume a special symbol ↓ to denote successful termination of a
program. Furthermore, we make use of the following operations
between statements and labels.

• init : C → Lab∗ gives the label corresponding to the beginning
of a given program.
• stmt : Lab∗ → (C ∪ {↓}) gives the statement associated to a

label used in a program,
• succ1, succ2 : Lab∗ →

(
Lab∗ ∪ {↓}

)
give the first and second

successor label of a given program label. In case ` ∈ Lab∗ has
no such successor, we define succ1 (`) = ↓ and succ2 (`) = ↓,
respectively.

Definition A.2 (Operational PRMCs). Let σ0 ∈ S and f ∈ E.
The operational PRMC of program 〈c,D〉 starting in initial state
σ0 with respect to post–expectation f is given by Pf

σ0 Jc,DK =
(Q, qinit , Γ, γ0, ∆, rew) where

• Q =
{

(`, σ) | ` ∈ Lab∗ ∪ {↓, Term}, σ ∈ S
}

,
• qinit = 〈init(c), σ0〉,
• Γ = Lab∗ ∪ {γ0},
• ∆ is given by the least partial function satisfying the rules

provided in Figure 3,
• rew (〈Term, σ〉) = f(σ) for each σ ∈ S and rew (q) = 0, if q

is not of the form 〈Term, σ〉.

A.10 Soundness of Transformer wp

Proof of Theorem 6.1. For simplicity in the remainder we will
assume the program declaration D fixed and therefore, omit it.
Consider first an automaton

n〈
Pf
σ JcK

〉
that behaves exactly the

same as Pf
σ JcK, but counts the number of symbols that currently

lie on top of γ0 on the stack and which self–loops if that number is
exactly n and Pf

σ JcK would perform another push onto the stack.
It is evident that

ExpRewPfσJcK (T ) = sup
n∈N

ExpRew
n〈PfσJcK〉 (T ) ,

since
n〈

Pf
σ JcK

〉
exhibits a partial behavior of Pf

σ JcK in the sense
that every path of

n〈
Pf
σ JcK

〉
that reaches T is (up to renaming)

also a path of Pf
σ JcK. In the other direction, every path π of Pf

σ JcK
that reaches T can be implemented with finite stack size. Therefore,
there exists an n0 ∈ N such that for all n ≥ n0 the path π is also a
path of

n〈
Pf
σ JcK

〉
.

Consider now that by Theorem 3.1 and its proof we can con-
clude that

sup
n∈N

wp[c]]
wp[callDn P]

(f) = wp[c,D] (f) .

It is therefore only left to show that the missing link

λσ • ExpRew
n〈PfσJcK〉 (T ) = wp[c]]

wp[callDn P]
(f)

holds for all n ∈ N. The proof of this equality proceeds by
induction on n:

The base case n = 0: We have to show that

λσ • ExpRew
0〈PfσJcK〉 (T ) = wp[c]]

wp[callD0 P]
(f)

holds. Whenever the automaton Pf
σ JcK would perform the push

action associated with a procedure call, the automaton
0〈
Pf
σ JcK

〉

immediately self–loops as no push to the stack whatsoever is al-
lowed in this restricted automaton. Therefore, we can syntactically
replace every call in c by an abort and still obtain the same behav-
ior for the corresponding restricted automaton. Formally,

ExpRew
0〈PfσJcK〉 (T ) = ExpRew

0〈PfσJc[callP/abort]K〉 (T ) .
Now, since syntactically callD0 P = abort we have

wp[c]]
wp[callD0 P]

(f) = wp[c]]abort (f)

and therefore, it is left to show that

λσ • ExpRew
0〈PfσJc[callP/abort]K〉 (T ) = wp[c]]abort (f)

holds. The proof of this equality proceeds by structural induction
on c: For the base cases we have:

The effectless program skip: On the denotational side, we have

wp[skip]]abort (f)(σ) = f(σ) .
On the operational side we have skip[callP/abort] = skip. Let

init(skip) = `, stmt (`) = skip, and succ1 (`) = ↓. The only path
of

0〈
Pf
σ JskipK

〉
reaching T is

ρ =
(
〈`, σ〉 , γ0

) 1−→
(
〈↓, σ〉 , γ0

) 1−→
(
〈Term, σ〉 , γ0

)
and its reward is

1 · 1 ·
(
0 + 0 + f(σ)

)
= f(σ) .

As ρ is the only path reaching T , we have

ExpRew
0〈PfσJskipK〉 (T ) = f(σ) = wp[skip]]abort (f)(σ) .

The diverging program abort: On the denotational side, we have

wp[abort]]abort (f)(σ) = 0(σ) = 0 .
On the operational side we have abort[callP/abort] = abort.

Let init(abort) = `, stmt (`) = abort, and succ1 (`) = ↓. The
paths of

0〈
Pf
σ JabortK

〉
are all of the form(

〈`, σ〉 , γ0

) 1−→
(
〈`, σ〉 , γ0

) 1−→
(
〈`, σ〉 , γ0

) 1−→ · · ·
and none of them ever reaches T . Thus the expected reward is an
empty sum and we therefore have

ExpRew
0〈PfσJabortK〉 (T ) = 0 = wp[abort]]abort (f)(σ) .

The assignment x := E: On the denotational side, we have

wp[x := E]]abort (f)(σ) = f [x/E] (σ)

= f
(
σ
[
x 7→ σ(E)

])
.

On the operational side we have x := E[callP/abort] = x :=
E. Let init(x := E) = `, stmt (`) = x := E, and succ1 (`) = ↓.
The only path of

0〈
Pf
σ Jx := EK

〉
reaching T is

ρ =
(
〈`, σ〉 , γ0

) 1−→
( 〈
↓, σ

[
x 7→ σ(E)

]〉
, γ0

)
1−→
( 〈

Term, σ
[
x 7→ σ(E)

]〉
, γ0

)
and its reward is

1 · 1 ·
(

0 + 0 + f
(
σ
[
x 7→ σ(E)

]) )
= f

(
σ
[
x 7→ σ(E)

])
.

As ρ is the only path reaching T , we have

ExpRew
0〈PfσJx:=EK〉 (T ) = f

(
σ
[
x 7→ σ(E)

])
= wp[x := E]]abort (f)(σ) .

The call callP : On the denotational side, we have

wp[callP ]]abort (f)(σ) = wp[abort]]abort (f)(σ)
On the operational side we have callP [callP/abort] = abort.

Therefore, we can fall back to the base case abort.
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The inductive hypothesis on c1 and c2: We now assume that for
arbitrary but fixed programs ci, with i ∈ {1, 2}, holds

λσ • ExpRew
0〈PfσJci[callP/abort]K〉 (T ) = wp[ci]

]
abort (f) .

We can then proceed with the inductive steps:

The sequential composition c1; c2: On the denotational side, we
have

wp[c1; c2]]abort (f)(σ) = wp[c1]]abort

(
wp[c2]]abort (f)

)
(σ) .

Operationally, we have

(c1; c2)[callP/abort] = c1[callP/abort] ; c2[callP/abort] .
We furthermore observe that any path of the automaton

0〈
Pf
σ Jc1[callP/abort] ; c2[callP/abort]K

〉
reaching T is of the form

ρ =
(
〈init(c1[callP/abort]), σ〉 , γ0

) a1−→ · · ·
ak−→
( 〈
↓, σ′

〉
, γ0

)
1−→
( 〈

init(c2[callP/abort]), σ′
〉
, γ0

) ak+2−−−→ · · ·
ak′−→

( 〈
↓, σ′′

〉
, γ0

)
1−→
( 〈

Term, σ′′
〉
, γ0

)
and any such a path’s reward is given by

k∏
i=1

(
ai

)
·

0 + · · ·+ 0

+

k′∏
i=k+2

ai
 · (0 + · · ·+ 0 + f(σ′′)

)
=

k∏
i=1

(
ai

)
·

k′∏
i=k+2

ai
 · f(σ′′)

Next, we observe that for any such path ρ a suffix of it, namely( 〈
init(c2[callP/abort]), σ′

〉
, γ0

) ak+2−→ · · ·
ak′−→

( 〈
↓, σ′′

〉
, γ0

) 1−→
( 〈

Term, σ′′
〉
, γ0

)
,

is a path of
0〈

Pf
σ′ Jc2[callP/abort]K

〉
reaching T with reward

k′∏
i=k+2

ai
 · (0 + · · ·+ 0 + f(σ′′)

)

=

k′∏
i=k+2

ai
 · f(σ′′) .

Moreover, we can think of the expected reward of
0〈

Pf
σ′ Jc2[callP/abort]K

〉
as an expectation

λσ′ • ExpRew
P
f

σ′ Jc2[callP/abort]K (T ) ,
which by the inductive hypothesis on c2 is equal to

wp[c2]]abort (f) .

Therefore,
0〈

P
wp[c2[callP/abort]]

]
abort

(f)
σ Jc1[callP/abort]K

〉
and

0〈
Pf
σ Jc1[callP/abort] ; c2[callP/abort]K

〉
have the same ex-

pected reward, as in the former all paths reaching T have the form(
〈init(c1[callP/abort]), σ〉 , γ0

) a1−→ · · ·
ak−→
( 〈
↓, σ′

〉
, γ0

) 1−→
( 〈

Term, σ′
〉
, γ0

)

and reward
k∏
i=1

(
ai

)
·
(
0+ · · ·+0 + wp[c2[callP/abort]]]abort (f)(σ′)

)
= wp[c2[callP/abort]]]abort (f)(σ′) .

Keeping that in mind and applying the inductive hypothesis to c1
now yields the desired statement:

ExpRew
0〈PfσJc1[callP/abort];c2[callP/abort]K〉 (T )

= ExpRewP
wp[c2[call P/abort]](f)
σ Jc1[callP/abort]K (T )

= wp[c1]]abort

(
wp[c2]]abort (f)

)
(σ) (I.H. on c1)

= wp[c1; c2]]abort (f)(σ)

The conditional choice if (G) {c1} else {c2}: We distinguish two
cases:

In Case 1 we have σ |= G. Then on the denotational side, we
have

wp[if (G) {c1} else {c2}]]abort (f)(σ)

=
(

[G] · wp[c1]]abort (f) + [¬G] · wp[c2]]abort (f)
)
(σ)

= wp[c1]]abort (f)(σ) ([G] (σ) = 1 and [¬G] (σ) = 0)
On the operational side we have(

if (G) {c1} else {c2}
)
[callP/abort]

= if (G) {c1[callP/abort]} else {c2[callP/abort]} .
Regarding the control flow, let the following hold:
init(if (G) {c1[callP/abort]} else {c2[callP/abort]}) = `,
stmt (`) = if (G) {c1[callP/abort]} else {c2[callP/abort]},
succ1 (`) = init(c1[callP/abort]), and finally
succ2 (`) = init(c2[callP/abort]). We observe that any path of
0〈
Pf
σ Jif (G) {c1[callP/abort]} else {c2[callP/abort]}K

〉
finally

reaching T is of the form

ρ =
(
〈`, σ〉 , γ0

)
1−→
(
〈init(c1[callP/abort]), σ〉 , γ0

) a2−→ · · ·
ak−→
( 〈
↓, σ′

〉
, γ0

) 1−→
( 〈

Term, σ′
〉
, γ0

)
and it’s reward is given by

1 ·
k∏
i=2

(
ai

)
·
(
0 + 0 + · · ·+ 0 + f(σ′)

)
=

k∏
i=2

(
ai

)
· f(σ′) .

Next, observe that removing from any such path ρ the initial seg-
ment, i.e. removing

(
〈`, σ〉 , γ0

) 1−→ , gives a path of the form(
〈init(c1[callP/abort]), σ〉 , γ0

) a2−→ · · ·
ak−→
( 〈
↓, σ′

〉
, γ0

) 1−→
( 〈

Term, σ′
〉
, γ0

)
,

which is a path of
0〈
Pf
σ Jc1[callP/abort]K

〉
reaching T with re-

ward
k∏
i=2

(
ai

)
·
(
0 + · · ·+ 0 + f(σ′)

)
=

k∏
i=2

(
ai

)
· f(σ′) .

Notice that if we remove the initial segments from every path in
Paths

0〈PfσJif (G) {c1[callP/abort]} else {c2[callP/abort]}K〉 we obtain ex-
actly the set Paths

0〈PfσJc1[callP/abort]K〉. Thus
0〈

Pf
σ Jif (G) {c1[callP/abort]} else {c2[callP/abort]}K

〉
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as well as
0〈
Pf
σ Jc1[callP/abort]K

〉
have the same expected re-

ward. This immediately yields the desired statement:

ExpRew

0〈
Pfσ

s(
if (G) {c1} else {c2}

)
[callP/abort]

{〉
(T )

=ExpRew
0〈PfσJif (G) {c1[callP/abort]} else {c2[callP/abort]}K〉 (T )

=ExpRew
0〈PfσJc1[callP/abort]K〉 (T )

=wp[c1]]abort (f)(σ) (I.H. on c1)

=wp[if (G) {c1} else {c2}]]abort (f)(σ)
The reasoning for Case 2, i.e. σ 6|= G, is completely analogous
using the inductive hypothesis on c2

The probabilistic choice {c1} [p] {c2}: On the denotational side,
we have

wp[{c1} [p] {c2}]]abort (f)(σ)

=
(
p · wp[c1]]abort (f) + (1− p) · wp[c2]]abort (f)

)
(σ)

= p · wp[c1]]abort (f)(σ) + (1− p) · wp[c2]]abort (f)(σ)
On the operational side we have(

{c1} [p] {c2}
)
[callP/abort]

= {c1[callP/abort]} [p] {c2[callP/abort]}
Let init({c1[callP/abort]}[p]{c2[callP/abort]}) = `, stmt (`) =
{c1[callP/abort]} [p] {c2[callP/abort]}, let
succ1 (`) = init(c1[callP/abort]), and let
succ2 (`) = init(c2[callP/abort]). We observe that any path of
0〈
Pf
σ J{c1[callP/abort]} [p] {c2[callP/abort]}K

〉
reaching T is

either of the form

ρ1 =
(
〈`, σ〉 , γ0

)
p−→
(
〈init(c1[callP/abort]), σ〉 , γ0

) a2−→ · · ·
ak−→
( 〈
↓, σ′

〉
, γ0

) 1−→
( 〈

Term, σ′
〉
, γ0

)
and it’s reward is given by

p ·

(
0 +

k∏
i=2

(
ai

)
·
(
0 + · · ·+ 0 + f(σ′)

))

= p ·
k∏
i=2

(
ai

)
· f(σ′) ,

or it is of the form

ρ2 =
(
〈`, σ〉 , γ0

) 1−p−−→(
〈init(c2[callP/abort]), σ〉 , γ0

) a′2−→ · · ·
a′
k′−→
( 〈
↓, σ′′

〉
, γ0

) 1−→
( 〈

Term, σ′′
〉
, γ0

)
and it’s reward is given by

(1− p) ·

0 +
k′∏
i=2

a′i
 · (0 + · · ·+ 0 + f(σ′′)

)
= (1− p) ·

k′∏
i=2

a′i
 · f(σ′′) .

Notice that there is a possibility to partition the set

Paths
0〈PfσJ{c1[callP/abort]} [p] {c2[callP/abort]}K〉

into two sets Pp containing those paths starting with(
〈`, σ〉 , γ0

) p−→
(
〈init(c1[callP/abort]), σ〉 , γ0

)
, and a set

P1−p containing those paths starting with
(
〈`, σ〉 , γ0

) 1−p−→(
〈init(c2[callP/abort]), σ〉 , γ0

)
.

Next, observe that removing from any path in Pp the initial
segment, i.e. removing

(
〈`, σ〉 , γ0

) p−→ , gives exactly the set

Paths
0〈PfσJc1[callP/abort]K〉. The paths of

0〈
Pf
σ Jc1[callP/abort]K

〉
reaching T are of the form(

〈init(c1[callP/abort]), σ〉 , γ0

) a2−→ · · ·
ak−→
( 〈
↓, σ′

〉
, γ0

) 1−→
( 〈

Term, σ′
〉
, γ0

)
,

and have reward
k∏
i=2

(
ai

)
·
(
0 + · · ·+ 0 + f(σ′)

)
=

k∏
i=2

(
ai

)
· f(σ′).

Dually, removing from any path in P1−p the initial segment, i.e.
removing

(
〈`, σ〉 , γ0

) 1−p−−→ , gives exactly the set

Paths
0〈PfσJc2[callP/abort]K〉 .

The paths of Pf
σ Jc2[callP/abort]K reaching T are of the form(

〈init(c2[callP/abort]), σ〉 , γ0

) a′2−→ · · ·
a′
k′−→
( 〈
↓, σ′′

〉
, γ0

) 1−→
( 〈

Term, σ′′
〉
, γ0

)
,

and have reward
k′∏
i=2

a′i
 · (0 + · · ·+ 0 + f(σ′)

)
=

k′∏
i=2

a′i
 · f(σ′′).

Since Pp and P1−p was a partition of the path set

Paths
0〈PfσJ{c1[callP/abort]} [p] {c2[callP/abort]}K〉 ,

we can conclude:

ExpRew
0〈PfσJ{c1[callP/abort]} [p] {c2[callP/abort]}K〉 (T )

= p · ExpRew
0〈PfσJc1[callP/abort]K〉 (T )

+ (1− p) · ExpRew
0〈PfσJc2[callP/abort]K〉 (T )

= p · wp[c1]]abort (f)(σ) + (1− p) · wp[c1]]abort (f)(σ)
(I.H. on c1 and c2)

= wp[{c1} [p] {c2}]]abort (f)(σ)
This ends the proof for the base case of the induction on n and

we can now state the inductive hypothesis:

Inductive hypothesis on n: We assume that for an arbitrary but
fixed n ∈ N holds

λσ • ExpRew
n〈PfσJcK〉 (T ) = wp[c]]

wp[callDn P]
(f)

for all programs c. We can then proceed with the inductive step:

Inductive step n→ n+ 1: We now have to show that

λσ • ExpRew
n+1〈PfσJcK〉 (T ) = wp[c]]

wp[callDn+1 P]
(f)

holds assuming the inductive hypothesis on n. The proof of this
equality proceeds quite analogously, again by structural induction
on c:

The base cases skip, abort, x := E: The proofs for these base
cases are completely analogous to the proofs conducted in the base
case n = 0.

The procedure call callP : The procedure call is technically a
base case in the structural induction on c as it is an atomic state-
ment. It does, however, require using the inductive hypothesis on
n. The proof goes as follows: By an argument on the transition re-
lation ∆ of

n+1〈
Pf
σ JcallPK

〉
we see that

ExpRew
n+1〈PfσJcallPK〉 (T ) = ExpRew

n〈PfσJD(P)K〉 (T ) .
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To the right hand side, we can apply the inductive hypothesis on n
and then obtain the desired result:

λσ • ExpRew
n+1〈PfσJcallPK〉 (T )

= λσ • ExpRew
n〈PfσJD(P)K〉 (T )

= wp[D(P)]]callDn P (f) (I.H. on n)

= wp[callP ]]
callDn+1 P

(f)

Inductive hypothesis and all inductive steps: The inductive hy-
pothesis and the proofs for the inductive steps are completely anal-
ogous to the inductive hypothesis and the proofs conducted in the
base case n = 0. Exemplarily, we shall sketch the proof for the
sequential composition: By a lengthy argument and application of
the inductive hypothesis on c2 (completely analog to the base case
for n = 0) one arrives at

ExpRew
n+1〈PfσJc1;c2K〉 (T )

= ExpRew

n+1〈
P

wp[c2]
]

wp[callDP n+1]
σ Jc1K

〉
(T ) .

Applying the inductive hypothesis on c1 then yields the desired
result:

λσ • ExpRew

n+1〈
P

wp[c2]
]

wp[callDP n+1]
σ Jc1K

〉
(T )

= wp[c1]]
wp[callDP n+1]

(
wp[c2]]

wp[callDP n+1]
(f)

)
= wp[c1; c2]]

wp[callDP n+1]
(f)

A.11 Case Study
The omitted details for proving the second partial correctness prop-
erty are provided in Figure 9.

[left<right ]

right−left+1

right∑
i=left

([
a[i ]<val

]
·g[left/min(i+ 1, right)]

+
[
a[i ]>val

]
·g[right/max(i− 1, left)]

)
+ [left = right ] ·

[
a[left ] 6= val

]
1 : mid := uniform(left, right);

[left < right ] ·
([
a[mid ] < val

]
· g[left/ · · · ]

+
[
a[mid ] > val

]
· g[right/ · · · ]

+ [left ≥ right ] · f
2 : if (left < right){[

a[mid ]<val
]
·g[left/ · · · ] +

[
a[mid ]>val

]
·g[right/ · · · ]

3 : if (a[mid ] < val){
g[left/min(mid + 1, right)]

4 : left := min(mid + 1, right);

g

5 : callB

f

6 : } else {[
a[mid ] > val

]
· g[right/ · · · ] +

[
a[mid ] < val

]
7 : if (a[mid ] > val){

g[right/max(mid − 1, left)]

8 : right := max(mid − 1, left);

g

9 : callB

f

10 : } else { f skip f } f
11 : } f
12 : } else { f skip f } f

Figure 9. Proof that callB finds an index at which the value
at this position is unequal to val when started in a sorted array
a[left .. right ] in which the value val does not exist. We write
j C h for i � wp[C] (h). Recall that g = [left ≤ right ] ·[
sorted(left , right)

]
·
[
∀x ∈ [left , right ] : a[x] 6= val

]
and

f =
[
a[mid ] 6= val

]
, and that we assume g � wlp[callB] (f).
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