
37

Aiming Low Is Harder
Induction for Lower Bounds in Probabilistic Program Verification

MARCEL HARK, RWTH Aachen University, Germany

BENJAMIN LUCIEN KAMINSKI, RWTH Aachen University, Germany

JÜRGEN GIESL, RWTH Aachen University, Germany

JOOST-PIETER KATOEN, RWTH Aachen University, Germany

We present a new inductive rule for verifying lower bounds on expected values of random variables after

execution of probabilistic loops as well as on their expected runtimes. Our rule is simple in the sense that loop

body semantics need to be applied only finitely often in order to verify that the candidates are indeed lower

bounds. In particular, it is not necessary to find the limit of a sequence as in many previous rules.

CCS Concepts: · Mathematics of computing → Probabilistic algorithms; Markov processes; · Theory

of computation→ Denotational semantics.

Additional Key Words and Phrases: probabilistic programs, verification, weakest precondition, weakest

preexpectation, lower bounds, optional stopping theorem, uniform integrability

ACM Reference Format:

Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2020. Aiming Low Is Harder:

Induction for Lower Bounds in Probabilistic Program Verification. Proc. ACM Program. Lang. 4, POPL, Article 37

(January 2020), 28 pages. https://doi.org/10.1145/3371105

1 INTRODUCTION AND OVERVIEW

We study probabilistic programs featuring discrete probabilistic choices as well as unbounded loops.
Randomized algorithms are the classical application of such programs. Recently, applications in
biology, quantum computing, cyber security,machine learning, and artificial intelligence led to rapidly
growing interest in probabilistic programming [Gordon et al. 2014].
Formal verification of probabilistic programs is strictly harder than for nonprobabilistic pro-

grams [Kaminski et al. 2019]. Given a random variable 𝑓 , a key verification task is to reason about
the expected value of 𝑓 after termination of a program 𝐶 on input 𝑠 . If 𝑓 is the indicator function of
an event 𝐴, then this expected value is the probability that 𝐴 has occurred on termination of 𝐶 .
For verifying probabilistic loops, most approaches share a common, conceptually very simple,

technique: an induction rule for verifying upper bounds on expected values, which are characterized
as least fixed points (lfp) of a suitable function Φ. This rule, called łPark inductionž, reads

Φ(𝐼) ⊑ 𝐼 implies lfp Φ ⊑ 𝐼 ,

i.e., for a candidate upper bound 𝐼 we check Φ(𝐼) ⊑ 𝐼 (for a suitable partial order ⊑) to prove that 𝐼
is indeed an upper bound on the least fixed point, and hence on the soughtśafter expected value.

Authors’ addresses: Marcel Hark, RWTH Aachen University, Germany, marcel.hark@cs.rwth-aachen.de; Benjamin Lucien

Kaminski, RWTH Aachen University, Germany, benjamin.kaminski@cs.rwth-aachen.de; Jürgen Giesl, RWTH Aachen

University, Germany, giesl@cs.rwth-aachen.de; Joost-Pieter Katoen, RWTH Aachen University, Germany, katoen@cs.rwth-

aachen.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART37

https://doi.org/10.1145/3371105

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3371105
https://doi.org/10.1145/3371105

37:2 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

For lower bounds, a simple proof principle analogous to Park induction, namely

𝐼 ⊑ Φ(𝐼) implies 𝐼 ⊑ lfp Φ , �

is unsound in general. Sound rules (see Sect. 9), on the other hand, often suffer from the fact that
either 𝑓 needs to be bounded, or that one has to find the limit of some sequence, as well as the
sequence itself, rendering those rules conceptually much more involved than Park induction.

Our main contribution (Sect. 5, Thm. 37) is to provide relatively simple side conditions that can
be added to the (unsound) implication above, such that the implication becomes true, i.e.,

𝐼 ⊑ Φ(𝐼) ∧
some side
conditions

implies 𝐼 ⊑ lfp Φ . ✓

In particular, our side conditions will be simple in the sense that (a variation of) Φ needs to be
applied to a candidate 𝐼 only a finite number of times, which is beneficial for potential automation.

The need for verifying lower bounds on expected values is quite natural: First of all, they help to
assess the quality and tightness of upper bounds. Moreover, giving total correctness guarantees for
probabilistic programs amounts to lowerśbounding the correctness probability, e.g., in order to
establish membership in complexity classes like RP and PP.
In addition to expected values of random variables at program termination, lower bounds on

expected runtimes are also of significant interest: Lower bounds on expected runtimes which depend
on secret program variables may compromise the secret, thus allowing for timing sideśchannel
attacks; łvery largež lower bounds could indicate potential denialśofśservice attacks.

In order to enable practicable reasoning about lower bounds on expected runtimes, we will show
how our inductive lower bound rule carries over to expected runtimes (Sect. 8, Thm. 46). As an
example to show the applicability of our rule, we will verify that the wellśknown and notoriously
difficult coupon collector’s problem [Motwani and Raghavan 1995] (Sect. 8, Ex. 47), modeled by
the probabilistic program1

𝑥 := 𝑁 #
while (0 < 𝑥) {

𝑖 := 𝑁 + 1 #
while (𝑥 < 𝑖) { 𝑖 := Unif [1..𝑁] } #
𝑥 := 𝑥 − 1

} ,

has an expected runtime of at least 𝑁H𝑁 , whereH𝑁 is the 𝑁 -th harmonic number.
Our new inductive rules will be stated in terms of soścalled expectation transformers [McIver

and Morgan 2005] (Sect. 2) and rely on the notions of uniform integrability (Sect. 3, in particular
3.4, and Sect. 4), martingales, conditional difference boundedness, and the Optional Stopping Theorem
(Sect. 5) from the theory of stochastic processes. However, we do not onlymake use of these notions
in order to prove soundness of our induction rule, but instead establish tight connections in terms of
these notions between expectation transformers and certain canonical stochastic processes (Sect. 4,
Thm. 25 and Sect. 5, Thm. 36). In particular, we will build upon the key result of this connection
(Thm. 25) to study exactly how inductive proof rules for both upper and lower bounds can be
understood in the realm of these stochastic processes and vice versa (Sect. 5, Thm. 37 and Sect. 7).
We see those connections between the theories of expectation transformers and stochastic processes

1The random assignment 𝑖 := Unif [1..𝑁] does not Ð strictly speaking Ð adhere to our syntax of binary probabilistic

choices, but it can be modeled in our syntax. For the sake of readability, we opted for 𝑖 := Unif [1..𝑁].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:3

as a stepping stone for applying further results from stochastic process theory to probabilistic
program analysis and possibly also vice versa.

As a final contribution, we revisit one of the few existing rules for lower bounds due to [McIver
and Morgan 2005], which gives sufficient criteria for a candidate being a lower bound on the
expected value of a bounded function 𝑓 . We show that their rule is also a consequence of uniform
integrability and we are moreover able to generalize their rule to a necessary and sufficient criterion
(Sect. 6, Thm. 41). We demonstrate the usability of our generalization by an example (Sect. 6, Ex. 42).

We refer to [Hark et al. 2019] for more case studies illustrating the effectiveness of our lower
bound proof rule, a more detailed introduction to probability theory, and more detailed proofs of
our results.

2 WEAKEST PREEXPECTATION REASONING

Weakest preexpectations for probabilistic programs are a generalization of Dijkstra’s weakest pre-
conditions for nonprobabilistic programs. Dijkstra employs predicate transformers, which push a
postcondition 𝐹 (a predicate) backward through a nonprobabilistic program 𝐶 and yield the weakest
precondition 𝐺 (another predicate) describing the largest set of states such that whenever 𝐶 is
started in a state satisfying 𝐺 , 𝐶 terminates in a state satisfying 𝐹 .2

The weakest preexpecation calculus on the other hand employs expectation transformers which
act on realśvalued functions called expectations, mapping program states to nonśnegative reals.3

These transformers push a postexpectation 𝑓 backward through a probabilistic program 𝐶 and
yield a preexpectation 𝑔, such that 𝑔 represents the expected value of 𝑓 after executing 𝐶 . The
term expectation coined by [McIver and Morgan 2005] may appear somewhat misleading at first.
We clearly distinguish between expectations and expected values: An expectation is hence not an
expected value, per se. Instead, we can think of an expectation as a random variable. In Bayesian
network jargon, expectations are also called factors.

Definition 1 (Expectations [Kaminski 2019; McIver and Morgan 2005]). Let Vars denote the finite
set of program variables and let Σ = {𝑠 | 𝑠 : Vars → Q} denote the set of program states.4

The set of expectations, denoted by F, is defined as

F =
{

𝑓
�

�

� 𝑓 : Σ → R≥0

}

,

where R≥0 = { 𝑟 ∈ R | 𝑟 ≥ 0 } ∪ {∞}. We say that 𝑓 ∈ F is finite and write 𝑓 ≺≺ ∞, if 𝑓 (𝑠) < ∞ for

all 𝑠 ∈ Σ. A partial order ⪯ on F is obtained by pointświse lifting the usual order ≤ on R≥0, i.e.,

𝑓1 ⪯ 𝑓2 iff ∀𝑠 ∈ Σ : 𝑓1 (𝑠) ≤ 𝑓2 (𝑠) .

(F, ⪯) is a complete lattice where suprema and infima are constructed pointświse.

We note that our notion of expectations is more general than the one of McIver and Morgan: Their
work builds almost exclusively on bounded expectations, i.e., nonśnegative realśvalued functions
which are bounded from above by some constant, whereas we allow unbounded expectations. As
a result, we have that (F, ⪯) forms a complete lattice, whereas McIver and Morgan’s space of
bounded expectations does not.

2We consider total correctness, i.e., from any state satisfying the weakest precondition𝐺 ,𝐶 definitely terminates.
3For simplicity of the presentation, we study the standard case of positive expectations. Mixedśsign expectations mapping

to the full extended reals require much more technical machinery, see [Kaminski and Katoen 2017].
4We choose rationals to have some range of values at hand which are conveniently represented in a computer.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:4 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

𝐶2 𝑓wp J𝐶2K (𝑓)

postexpectation 𝑓
evaluated in final states
after termination of𝐶2

weakest preexpectation of𝐶2

with respect to 𝑓

𝐶1wp J𝐶1K
(

wp J𝐶2K (𝑓)
)

weakest preexpectation of𝐶1

with respect to wp J𝐶2K (𝑓)

or in other words:

weakest preexpectation of𝐶1 #𝐶2

with respect to 𝑓

Fig. 1. Backwardśmoving continuationśpassing style weakest preexpectation transformer.

2.1 Weakest Preexpectations

Given program 𝐶 and postexpectation 𝑓 ∈ F, we are interested in the expected value of 𝑓 eval-
uated in the final states reached after termination of 𝐶 . More specifically, we are interested in

a function 𝑔 : Σ → R≥0 mapping each initial state 𝑠0 of 𝐶 to the respective expected value of 𝑓
evaluated in the final states reached after termination of 𝐶 on input 𝑠0. This function 𝑔 is called the
weakest preexpectation of 𝐶 with respect to 𝑓 , denoted wp J𝐶K (𝑓). Put as an equation, if 𝑠0𝜇𝐶 is the
probability (sub)measure5 over final states reached after termination of 𝐶 on initial state 𝑠0, then

6

𝑔(𝑠0) = wp J𝐶K (𝑓) (𝑠0) =

∫

Σ

𝑓 𝑑 (𝑠0𝜇𝐶) .

While wp J𝐶K (𝑓) in fact represents an expected value, 𝑓 itself does not. In an analogy to Dijkstra’s
preś and postconditions, as 𝑓 is evaluated in the final states after termination of 𝐶 it is called the
postexpectation, and as wp J𝐶K (𝑓) is evaluated in the initial states of𝐶 it is called the preexpectation.

2.2 The Weakest Preexpectation Calculus

We now show how to determine weakest preexpectations in a systematic and compositional manner
by recapitulating the weakest preexpectation calculus à la McIver and Morgan. This calculus employs
expectation transformers which move backward through the program in a continuationśpassing
style, see Fig. 1. If we are interested in the expected value of some postexpectation 𝑓 after executing
the sequential composition 𝐶1 # 𝐶2, then we can first determine the weakest preexpectation of
𝐶2 with respect to 𝑓 , i.e., wp J𝐶2K (𝑓). Thereafter, we can use the intermediate result wp J𝐶2K (𝑓)
as postexpectation to determine the weakest preexpectation of 𝐶1 with respect to wp J𝐶2K (𝑓).
Overall, this gives the weakest preexpectation of 𝐶1 # 𝐶2 with respect to the postexpectation 𝑓 .
The above explanation illustrates the compositional nature of the weakest preexpectation calculus.
wpśtransformers for all language constructs can be defined by induction on the program structure:

Definition 2 (ThewpśTransformer [McIver and Morgan 2005]). Let pGCL be the set of programs
in the probabilistic guarded command language. Then the weakest preexpectation transformer

wp : pGCL → F→ F

5𝑠0𝜇𝐶 (𝑠) ∈ [0, 1] is the probability that 𝑠 is the final state reached after termination of 𝐶 on input 𝑠0. We have
∑

𝑠∈Σ
𝑠0𝜇𝐶 (𝑠) ≤ 1, where the łmissingž probability mass is the probability of nontermination of𝐶 on 𝑠0.

6As Σ is countable, the integral can be expressed as
∑

𝑠∈Σ
𝑠0𝜇𝐶 (𝑠) · 𝑓 (𝑠) .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:5

Table 1. Rules for the wpśtransformer.

𝑪 wp J𝑪K (𝒇)

skip 𝑓

𝑏 := 𝑒 𝑓 [𝑏/𝑒]

if (𝜑) {𝐶1 } else {𝐶2 } [𝜑] · wp J𝐶1K (𝑓) + [¬𝜑] · wp J𝐶2K (𝑓)
{𝐶1 } [𝑝] {𝐶2 } 𝑝 · wp J𝐶1K (𝑓) + (1 − 𝑝) · wp J𝐶2K (𝑓)
𝐶1 # 𝐶2 wp J𝐶1K (wp J𝐶2K (𝑓))
while (𝜑) {𝐶 ′ } lfp Φ

wp
⟨𝐶′,𝜑 ⟩ 𝑓

Φ
wp

⟨𝜑,𝐶 ⟩ 𝑓
(𝑋) = [¬𝜑] · 𝑓 + [𝜑] · wp J𝐶K (𝑋) characteristic

function

is defined according to the rules given in Table 1, where [𝜑] denotes the Iversonśbracket of𝜑 , i.e., [𝜑] (𝑠)
evaluates to 1 if 𝑠 |= 𝜑 and to 0 otherwise. Moreover, for any variable 𝑏 ∈ Vars and any expression 𝑒 ,
let 𝑓 [𝑏/𝑒] be the expectation with 𝑓 [𝑏/𝑒] (𝑠) = 𝑓 (𝑠 [𝑏/𝑒]) for any 𝑠 ∈ Σ, where 𝑠 [𝑏/𝑒] (𝑏) = 𝑠 (𝑒)

and 𝑠 [𝑏/𝑒] (𝑥) = 𝑠 (𝑥) for all 𝑥 ∈ Vars \ {𝑏}.
We call the function Φ

wp
⟨𝜑,𝐶 ⟩ 𝑓

the characteristic function of while (𝜑) {𝐶 } with respect to 𝑓 . Its

least fixed point is understood in terms of ⪯. To increase readability, we omit wp, 𝜑 , 𝐶 , or 𝑓 from Φ

whenever they are clear from the context.

Example 3 (Applying the wp Calculus). Consider the probabilistic program 𝐶 given by

{𝑏 := 𝑏 + 5 } [4/5] {𝑏 := 10 } .

Suppose we want to know the expected value of 𝑏 after execution of𝐶 . For this, we determinewp J𝐶K (𝑏).
Using the annotation style shown in Fig. 2a, we can annotate the program𝐶 as shown in Fig. 2b, using
the rules from Table 1. At the top, we read off the weakest preexpectation of𝐶 with respect to 𝑏, namely
4𝑏
5 + 6. This tells us that the expected value of 𝑏 after termination of 𝐶 on 𝑠0 is equal to

4·𝑠0 (𝑏)
5 + 6.

The wpśtransformer satisfies what is sometimes called healthiness conditions [Hino et al. 2016;
Keimel 2015; McIver and Morgan 2005] or homomorphism properties [Back and von Wright 1998]:

Theorem 4 (Healthiness Conditions [Kaminski 2019; McIver and Morgan 2005]). Let𝐶 ∈ pGCL,
𝑆 ⊆ F, 𝑓 , 𝑔 ∈ F, and 𝑟 ∈ R≥0. Then:

(1) Continuity: wp J𝐶K (sup 𝑆) = sup wp J𝐶K (𝑆) .
(2) Strictness:7 wp J𝐶K is strict, i.e., wp J𝐶K (0) = 0.
(3) Monotonicity: 𝑓 ⪯ 𝑔 implies wp J𝐶K (𝑓) ⪯ wp J𝐶K (𝑔).
(4) Linearity: wp J𝐶K (𝑟 · 𝑓 + 𝑔) = 𝑟 · wp J𝐶K (𝑓) + wp J𝐶K (𝑔).

3 BOUNDS ONWEAKEST PREEXPECTATIONS

For loopśfree programs, it is generally straightforward to determine weakest preexpectations,
simply by applying the rules in Table 1, which guide us along the syntax of 𝐶 , see Ex. 3. Weakest

7Here, we overload notation and denote by 0 the constant expectation that maps every 𝑠 ∈ Σ to 0.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:6 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

⊲⊳((𝒈′ (meaning 𝑔′ ⊲⊳ 𝑔, for ⊲⊳ ∈ {⪯,=, ⪰})
wp((𝒈 (meaning 𝑔 = wp J𝐶 ′K (𝑓))
𝐶 ′

((𝒇 (postexpectation is 𝑓)

(a) Style for wp annotations.

=((4𝒃
5
+ 6

wp((4

5
· (𝒃 + 5) + 1

5
· 10

{𝑏 := 𝑏 + 5 } [4/5] {𝑏 := 10 }

((𝒃

(b) wp annotations for Ex. 3.

Fig. 2. Annotations for weakest preexpectations. It is more intuitive to read these from the bottom to top.

preexpectations of loops, on the other hand, are generally nonścomputable least fixed points and
we often have to content ourselves with some approximation of those fixed points.

For us, a sound approximation is either a lower or an upper bound on the least fixed point. There
are in principle two challenges: (1) finding a candidate bound and (2) verifying that the candidate
is indeed an upper or lower bound. In this paper, we study the latter problem.

3.1 Upper Bounds

The Park induction principle provides us with a very convenient proof rule for verifying upper
bounds. In general, this principle reads as follows:

Theorem 5 (Park Induction [Park 1969]). Let (𝐷, ⊑) be a complete lattice and let Φ : 𝐷 → 𝐷 be
continuous.8 Then Φ has a least fixed point in 𝐷 and for any 𝐼 ∈ 𝐷 ,

Φ(𝐼) ⊑ 𝐼 implies lfp Φ ⊑ 𝐼 .

In the realm of weakest preconditions, Park induction gives rise to the following induction principle:

Corollary 6 (Park Induction for wp [Kaminski 2019; Kozen 1985]). Let Φ𝑓 be the characteristic
function of the while loop while (𝜑) {𝐶 } with respect to postexpectation 𝑓 and let 𝐼 ∈ F. Then

Φ𝑓 (𝐼) ⪯ 𝐼 implies wp Jwhile (𝜑) {𝐶 }K (𝑓) ⪯ 𝐼 .

We call an 𝐼 that satisfies Φ𝑓 (𝐼) ⪯ 𝐼 a superinvariant. The striking power of Park induction is its
simplicity: Once an appropriate candidate 𝐼 is found (even though this is usually not an easy task),
all we have to do is push it through the characteristic function Φ𝑓 once and check whether we went
down in our underlying partial order. If this is the case, we have verified that 𝐼 is indeed an upper
bound on the least fixed point and thus on the soughtśafter weakest preexpectation.

Example 7 (Induction for Upper Bounds). Consider the program 𝐶geo, given by

while (𝑎 ≠ 0) { { 𝑎 := 0 } [1/2] {𝑏 := 𝑏 + 1 } } ,

where we assume 𝑏 ∈ N. Suppose we aim at an upper bound on the expected value of 𝑏 executing 𝐶geo.
Using the annotation style of Fig. 3a, we can annotate the loop 𝐶geo as shown in Fig. 3b, using

superinvariant 𝐼 = 𝑏 + [𝑎 ≠ 0], establishing Φ𝑏 (𝐼) ⪯ 𝐼 , and by Cor. 6 establishing wp
q
𝐶geo

y
(𝑏) ⪯

𝑏 + [𝑎 ≠ 0]. So the expected value of 𝑏 after termination of 𝐶geo on 𝑠0 is at most 𝑠0 (𝑏) + [𝑠0 (𝑎) ≠ 0].

For making a comparison to the lower bound case which we consider later, let us explain why Park
induction is sound using the soścalled TarskiśKantorovich Principle:

8It would even suffice for Φ to be monotonic, but we consider continuous functions throughout this paper.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:7

⊲⊳((𝑰 (see Fig. 2a)

𝚽((𝒈 (meaning 𝑔 = [¬𝜑] · 𝑓 + [𝜑] · 𝐼 ′′)

while (𝜑) {

⊲⊳((𝑰 ′′ (see Fig. 2a)
wp((𝑰 ′ (see Fig. 2a)

Body

88 𝑰 } (meaning we employ invariant 𝐼)

((𝒇 (postexpectation of loop is 𝑓)

(a) Annotation style for loops using invariants.

⪯((𝒃 + [𝒂 ≠ 0]

𝚽(([𝒂 = 0] · 𝒃 + [𝒂 ≠ 0] ·
(

𝒃 + 1

2

(
1 + [𝒂 ≠ 0]

))

while (𝑎 ≠ 0) {

=((𝒃 + 1

2

(
1 + [𝒂 ≠ 0]

)

wp((1

2

(
𝒃 + [0 ≠ 0] + 𝒃 + 1 + [𝒂 ≠ 0]

)

{ 𝑎 := 0 } [1/2] {𝑏 := 𝑏 + 1 }

88 𝒃 + [𝒂 ≠ 0] }

((𝒃

(b) wp loop annotations for Ex. 7.

Fig. 3. Annotation style for loops using invariants and annotations for Ex. 7. Inside the loop, we push
an invariant 𝐼 (provided externally, denoted by 88 𝑰) through the loop body, thus obtaining 𝐼 ′′ which
is (possibly an over- or underapproximation of) wp JBodyK (𝐼). Above the loop head, we then anno-
tate 𝑔 = [¬𝜑] · 𝑓 + [𝜑] · 𝐼 ′′. In the first line, we establish 𝑔 ⊲⊳ 𝐼 , for ⊲⊳ ∈ {⪯, ⪰}. Note that
if ⊲⊳ = ⪯, we have established the precondition of Cor. 6, since we have then overall established

Φ𝑓 (𝐼) = [¬𝜑] · 𝑓 + [𝜑] · wp JBodyK (𝐼) ⪯ [¬𝜑] · 𝑓 + [𝜑] · 𝐼 ′′ = 𝑔 ⪯ 𝐼

For reasoning about lower bounds, we will later employ ⊲⊳ = ⪰.

Theorem 8 (TarskiśKantorovich Principle, cf. [Jachymski et al. 2000]). Let (𝐷, ⊑) be a complete
lattice, let Φ : 𝐷 → 𝐷 be continuous, and let 𝐼 ∈ 𝐷 , such that 𝐼 ⊒ Φ(𝐼). Then the sequence 𝐼 ⊒ Φ(𝐼) ⊒

Φ
2 (𝐼) ⊒ Φ

3 (𝐼) ⊒ · · · is a descending chain that converges to an element

Φ
𝜔 (𝐼) = lim

𝑛→𝜔
Φ
𝑛 (𝐼) ∈ 𝐷 ,

which is a fixed point of Φ. In particular, Φ𝜔 (𝐼) is the greatest fixed point of Φ that is ⊑ 𝐼 .
Dually, now let 𝐼 ⊑ Φ(𝐼). Then 𝐼 ⊑ Φ(𝐼) ⊑ Φ

2 (𝐼) ⊑ Φ
3 (𝐼) ⊑ · · · is an ascending chain that

converges to a fixed point Φ𝜔 (𝐼) ∈ 𝐷 . Moreover, Φ𝜔 (𝐼) is the least fixed point of Φ that is ⊒ 𝐼 .

The wellśknown Kleene Fixed Point Theorem (cf. [Lassez et al. 1982]), which states that lfp Φ =

Φ
𝜔 (⊥), where ⊥ is the least element of 𝐷 , is a special case of the TarskiśKantorovich Principle.
In our setting, applying the TarskiśKantorovich principle to a superinvariant 𝐼 , the iteration of

Φ on 𝐼 will yield some fixed point ⊑ 𝐼 and this fixed point is necessarily ⊒ lfp Φ.

3.2 Lower Bounds

For verifying lower bounds, we do not have a rule as simple as Park induction available. In particular,
for a given complete lattice (𝐷, ⊑) and monotonic function Φ : 𝐷 → 𝐷 , the rule

𝐼 ⊑ Φ(𝐼) implies 𝐼 ⊑ lfp Φ , �

is unsound in general. We call an 𝐼 satisfying 𝐼 ⊑ Φ(𝐼) a subinvariant and the above rule simple
lower induction. Generally, we will call an 𝐼 that is a subś or a superinvariant an invariant. 𝐼 being
an invariant thus expresses mainly its inductive nature, namely that 𝐼 is comparable with Φ(𝐼) with
respect to the partial order ⊑.

An explanation why simple lower induction is unsound is as follows: By Thm. 8, we know from
𝐼 ⊑ Φ(𝐼) that Φ𝜔 (𝐼) is the least fixed point of Φ that is greater than or equal to 𝐼 . Since Φ𝜔 (𝐼) is a

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:8 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

fixed point, Φ𝜔 (𝐼) ⊑ gfp Φ holds, but we do not know how 𝐼 compares to lfp Φ. We only know that
if indeed 𝐼 ⊑ lfp Φ and 𝐼 ⊑ Φ(𝐼), then iterating Φ on 𝐼 also converges to lfp Φ, i.e.,

𝐼 ⊑ lfp Φ and 𝐼 ⊑ Φ(𝐼) implies Φ
𝜔 (𝐼) = lfp Φ .

If, however, 𝐼 ⊑ Φ(𝐼) and 𝐼 is strictly greater than lfp Φ, then iterating Φ on 𝐼 will yield a fixed point
strictly greater than lfp Φ, contradicting soundness of simple lower induction.
While we just illustrated by means of the TarskiśKantorovich principle why the simple lower

induction rule is not sound in general, we should note that the rule is not per se absurd: So called
metering functions [Frohn et al. 2016] basically employ simple lower induction to verify lower bounds
on runtimes of nonprobabilistic programs [Kaminski 2019, Thm. 7.18]. For weakest preexpectations,
however, simple lower induction is unsound:

Counterexample 9 (Simple Induction for Lower Bounds). Consider the following loop 𝐶cex ,
where 𝑏, 𝑘 ∈ N

while (𝑎 ≠ 0) {

{ 𝑎 := 0 } [1/2] {𝑏 := 𝑏 + 1 } #
𝑘 := 𝑘 + 1

} .

As in Ex. 7, wp J𝐶cexK (𝑏) = 𝑏 + [𝑎 ≠ 0]. In particular, this weakest preexpectation is independent of 𝑘 .
The corresponding characteristic function is

Φ𝑏 (𝑋) = [𝑎 = 0] · 𝑏 + [𝑎 ≠ 0] · 1
2 ·

(

𝑋 [𝑎/0] + 𝑋 [𝑏/𝑏 + 1]
)

[𝑘/𝑘 + 1] .

Let us consider 𝐼 ′ = 𝑏+[𝑎 ≠ 0] · (1+2𝑘), which does depend on𝑘 . Indeed, one can check that 𝐼 ′ ⪯ Φ𝑏 (𝐼
′),

i.e., 𝐼 ′ is a subinvariant. If the simple lower induction rule were sound, we would immediately conclude
that 𝐼 ′ is a lower bound on wp J𝐶cexK (𝑏), but this is obviously false since

wp J𝐶cexK (𝑏) = 𝑏 + [𝑎 ≠ 0] ≺ 𝐼 ′ .

3.3 Problem Statement

The purpose of this paper is to present a sound lower induction rule of the following form: Let Φ𝑓

be the characteristic function of while (𝜑) {𝐶 } with respect to 𝑓 and let 𝐼 ∈ F. Then

𝐼 ⪯ Φ𝑓 (𝐼) ∧
some side
conditions

implies 𝐼 ⪯ lfp Φ𝑓 .

We still want our lower induction rule to be simple in the sense that checking the side conditions
should be conceptually as simple as checking 𝐼 ⪯ Φ𝑓 (𝐼). Intuitively, we want to apply the semantics
of the loop body only finitely often, not 𝜔 times, to avoid reasoning about limits of sequences or
anything alike. We provide such side conditions in our main contribution, Thm. 37, which transfers
the Optional Stopping Theorem of probability theory to weakest preexpectation reasoning.

3.4 Uniform Integrability

We now present a sufficient and necessary criterion to underśapproximate the least fixed points
that we seek for. Let again Φ𝑓 be the characteristic function of while (𝜑) {𝐶 } with respect to 𝑓 .
Thm. 4 implies that Φ𝑓 is continuous and monotonic.

Let us consider a subinvariant 𝐼 , i.e., 𝐼 ⪯ Φ𝑓 (𝐼). If we iterate Φ𝑓 on 𝐼 ad infinitum, then the
TarskiśKantorovich principle (Thm. 8) guarantees that we will converge to some fixed point Φ𝜔

𝑓
(𝐼)

that is ⪰ 𝐼 . From monotonicity of Φ𝑓 and Thm. 8, one can easily show that Φ𝜔
𝑓
(𝐼) coincides with

lfp Φ𝑓 if and only if 𝐼 itself was already ⪯ lfp Φ𝑓 , i.e.:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:9

Theorem 10 (Subinvariance and Lower Bounds). For any subinvariant 𝐼 , we have

Φ
𝜔
𝑓 (𝐼) = lfp Φ𝑓 iff 𝐼 ⪯ lfp Φ𝑓 .

More generally, for any expectation 𝑋 (not necessarily a sub- or superinvariant), if iterating Φ𝑓 on
𝑋 converges to the least fixed point of Φ𝑓 , then we call 𝑋 uniformly integrable for 𝑓 :

Definition 11 (Uniform Integrability of Expectations). Given a loop while (𝜑) {𝐶 }, an ex-
pectation 𝑋 ∈ F is called uniformly integrable (u.i.) for 𝑓 ∈ F if lim

𝑛→𝜔
Φ
𝑛
𝑓
(𝑋) exists and

lim
𝑛→𝜔

Φ
𝑛
𝑓 (𝑋) = lfp Φ𝑓 .

So far, we have thus established the following diagram which we will gradually extend over the
next two sections:

𝐼 u.i. for 𝑓 Φ
𝑛
𝑓
(𝐼)

𝑛→𝜔
−−−−−→ lfp Φ𝑓

𝐼 ⪯ Φ𝑓 (𝐼) ⇒ 𝐼 ⪯ lfp Φ𝑓

Def. 11

Thm. 10
and Def. 11

Uniform integrability [Grimmett and Stirzaker 2001] Ð a notion originally from probability theory
Ð will be essential for the Optional Stopping Theorem in Sect. 5. While, so far, we have studied the
function Φ𝑓 solely from an expectation transformer point of view and defined a purely expectationś
theoretical notion of uniform integrability without any reference to probability theory, we will
study in Sect. 4 the function Φ𝑓 from a stochastic process point of view. Stochastic processes are not
inductive per se, whereas expectation transformers make heavy use of induction. We will, however,
rediscover the inductiveness also in the realm of stochastic processes. We will also see how our
notion of uniform integrability corresponds to uniform integrability in its original sense.

4 FROM EXPECTATIONS TO STOCHASTIC PROCESSES

In this section, we connect concepts from expectation transformers with notions from probability
theory. In Sect. 4.1, we recapitulate standard constructions of probability spaces for probabilistic
programs, instantiate them in our setting, and present our new results on connecting expectation
transformers with stochastic processes (Sect. 4.2) and uniform integrability (Sect. 4.3). Proofs can
be found in [Hark et al. 2019, App. C]. For further background on probability theory, we refer to
[Hark et al. 2019, App. B] and [Bauer 1971; Grimmett and Stirzaker 2001].

We fix for this section an arbitrary loop while (𝜑) {𝐶 }. The loop body𝐶 may contain loops but
we require 𝐶 to be universally almostśsurely terminating (AST), i.e., 𝐶 terminates on any input with
probability 1. The set of program states can be uniquely partitioned into Σ = Σ𝜑 ⊎ Σ¬𝜑 , with 𝑠 ∈ Σ𝜑

iff 𝑠 |= 𝜑 . The set Σ¬𝜑 thus contains the terminal states from which the loop is not executed further.

4.1 Canonical Probability Space

We begin with constructing a canonical probability measure and space corresponding to the
execution of our loop. As every pGCL program is, operationally, a countable Markov chain, our
construction is similar to the standard construction for Markov chains (cf. [Vardi 1985]).
In general, a measurable space is a pair (Ω,𝔉) consisting of a sample space Ω and a 𝜎śfield 𝔉

of Ω, which is a collection of subsets of Ω, closed under complement and countable union, such
that Ω ∈ 𝔉. In our setting, a loop while (𝜑) {𝐶 } induces the following canonical measurable
space:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:10 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

Definition 12 (Loop Space). The loop while (𝜑) {𝐶 } induces a uniquemeasurable space (Ωloop, 𝔉loop)

with sample space Ω
loop

≔ Σ
𝜔 = {𝜗 : N → Σ}, i.e., it is the set of all infinite sequences of

program states (soścalled runs). For 𝜗 ∈ Ω
loop, we denote by 𝜗 [𝑛] the 𝑛śth state in the sequence

𝜗 (starting to count at 0). The 𝜎śfield 𝔉loop is the smallest 𝜎śfield that contains all cylinder sets
𝐶𝑦𝑙 (𝜋) = { 𝜋𝜗 | 𝜗 ∈ Σ

𝜔 }, for all finite prefixes 𝜋 ∈ Σ
+, denoted as

𝔉loop =
〈{

𝐶𝑦𝑙 (𝜋)
�

� 𝜋 ∈ Σ
+
}〉

𝜎
.

Intuitively, a run 𝜗 ∈ Ω is an infinite sequence of states 𝜗 = 𝑠0 𝑠1 𝑠2 𝑠3 · · · , where 𝑠0 represents the
initial state on which the loop is started and 𝑠𝑖 is a state that could be reached after 𝑖 iterations of
the loop. Obviously, some sequences in Ω

loop may not actually be admissible by our loop.
We next develop a canonical probability measure corresponding to the execution of the loop,

which will assign the measure 0 to inadmissible runs. We start with considering a single loop
iteration. The loop body 𝐶 induces a family of distributions9

•𝜇𝐶 : Σ → Σ → [0, 1] ,

where 𝑠𝜇𝐶 (𝑠
′) is the probability that after one iteration of 𝐶 on 𝑠 , the program is in state 𝑠 ′.

The loop while (𝜑) {𝐶 } induces a family of probability measures on (Ωloop, 𝔉loop). This family
is parameterized by the initial state of the loop. Using the distributions •𝜇𝐶 above, we first define
the probability of a finite nonśempty prefix of a run, i.e., for 𝜋 ∈ Σ

+. Here, 𝑠𝑝 (𝜋) is the probability
that 𝜋 is the sequence of states reached after the first loop iterations, when starting the loop in
state 𝑠 . Hence, the family

•𝑝 : Σ → Σ
+ → [0, 1]

of distributions on Σ
+ is defined by

(1) 𝑠𝑝 (𝑠 ′) = [𝑠 = 𝑠 ′]

(2) 𝑠𝑝 (𝜋𝑠 ′𝑠 ′′) =

{

𝑠𝑝 (𝜋𝑠 ′) · [𝑠 ′′ = 𝑠 ′] , if 𝑠 ′ ∈ Σ¬𝜑

𝑠𝑝 (𝜋𝑠 ′) · 𝑠
′
𝜇𝐶 (𝑠

′′), if 𝑠 ′ ∈ Σ𝜑

.

Using the family •𝑝 , we now obtain a canonical probability measure on the loop space.

Lemma 13 (LoopMeasure [Feller 1971, Kolmogorov’s Extension Theorem]). There exists a unique
family of probability measures •P : Σ → 𝔉 → [0, 1] with

𝑠P (𝐶𝑦𝑙 (𝜋)) = 𝑠𝑝 (𝜋) .

We now turn to random variables and their expected values. A mapping 𝑋 : Ω → R≥0 on a

probability space (Ω,𝔉, P) is called (𝔉ś)measurable or random variable if for any open set𝑈 ⊆ R≥0

its preimage lies in𝔉, i.e., 𝑋−1 (𝑈) ∈ 𝔉. If 𝑋 (Ω) ⊆ N = N∪ {𝜔}, then this is equivalent to checking
𝑋−1 ({𝑛}) ∈ 𝔉 for any 𝑛 ∈ N. The expected value E (𝑋) of a random variable 𝑋 is defined as

E (𝑋) ≔
∫

Ω
𝑋𝑑P.10 If 𝑋 takes only countably many values we have

E (𝑋) =

∫

Ω

𝑋 𝑑P =
∑

𝑟 ∈𝑋 (Ω)

P
(

𝑋−1 ({𝑟 })
)

· 𝑟 .

We saw that while (𝜑) {𝐶 } gives rise to a unique canonical measurable space (Ωloop, 𝔉loop) and to
a family of probability measures 𝑠P parameterized by the initial state 𝑠 on which our loop is started.
We now define a corresponding parameterized expected value operator •E.

9Since the loop body𝐶 is AST, these are distributions and not subdistributions.
10Details on integrals for arbitrary measures can be found in [Hark et al. 2019, App. B].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:11

Definition 14 (Expected Value for Loops •
E). Let 𝑠 ∈ Σ and 𝑋 : Ωloop → R≥0 be a random

variable. The expected value of 𝑋 with respect to the loop measure 𝑠P, parameterized by state 𝑠 , is

defined by 𝑠E (𝑋) ≔
∫

Ω
𝑋 𝑑 (𝑠P).

Next, we define a random variable that corresponds to the number of iterations that our loop makes
until it terminates.

Definition 15 (Looping Time). The mapping

𝑇¬𝜑 : Ω
loop → N, 𝜗 ↦→ inf{𝑛 ∈ N | 𝜗 [𝑛] ∈ Σ¬𝜑 } ,

is a random variable and called the looping time of while (𝜑) {𝐶 }. Here,N = N∪{𝜔} and inf ∅ = 𝜔 .

The canonical 𝜎śfield𝔉loop contains infinite runs. But after 𝑛 iterations of the loop we only know
the first 𝑛 + 1 states 𝑠0 · · · 𝑠𝑛 of a run. Gaining knowledge in this successive fashion can be captured
by a soścalled filtration of the 𝜎śfield𝔉loop. In general, a filtration is a sequence (𝔉𝑛)𝑛∈N of subsets
of𝔉, such that𝔉𝑛 ⊆ 𝔉𝑛+1 and𝔉𝑛 is a 𝜎śfield for any 𝑛 ∈ N, i.e.,𝔉 is approximated from below.

Definition 16 (Loop Filtration). The sequence (𝔉
loop
𝑛)𝑛∈N is a filtration of𝔉loop, where

𝔉
loop
𝑛 =

〈

{𝐶𝑦𝑙 (𝜋) | 𝜋 ∈ Σ
+, |𝜋 | = 𝑛 + 1}

〉

𝜎
,

i.e.,𝔉
loop
𝑛 is the smallest 𝜎śfield containing {𝐶𝑦𝑙 (𝜋) | 𝜋 ∈ Σ

+, |𝜋 | = 𝑛 + 1}.11

Next, we recall the notion of stopping times from probability theory.

Definition 17 (Stopping Time). For a probability space (Ω,𝔉, P) with filtration (𝔉𝑛)𝑛∈N, a random

variable 𝑇 : Ω → N is called a stopping time with respect to (𝔉𝑛)𝑛∈N if for every 𝑛 ∈ N we have
𝑇 −1 ({𝑛}) = {𝜗 ∈ Ω | 𝑇 (𝜗) = 𝑛} ∈ 𝔉𝑛 .

Let us reconsider the looping time 𝑇¬𝜑 and the loop filtration (𝔉
loop
𝑛)𝑛∈N. In order to decide

for a run 𝜗 = 𝑠0𝑠1 · · · ∈ Ω
loop whether its looping time is 𝑛, we only need to consider the states

𝑠0 · · · 𝑠𝑛 . Hence, (𝑇
¬𝜑)−1 ({𝑛}) ∈ 𝔉

loop
𝑛 for any 𝑛 ∈ N and thus 𝑇¬𝜑 is a stopping time with respect to

(𝔉
loop
𝑛)𝑛∈N.
Note that 𝑇¬𝜑 does not reflect the actual runtime of while (𝜑) {𝐶 }, as it does not take the

runtime of the loop body 𝐶 into account. Instead, 𝑇¬𝜑 only counts the number of loop iterations of
the łouter loopž while (𝜑) {𝐶 }. This enriches the class of probabilistic programs our technique
will be able to analyze, as we will not need to require that the whole program has finite expected
runtime, but only that the outer loop is expected to be executed finitely often.

4.2 Canonical Stochastic Process

Now we can present our novel results on the connection of weakest preexpectations and stochastic
processes. Henceforth, let 𝑓 , 𝐼 ∈ F. Intuitively, 𝑓 will play the role of the postexpectation and 𝐼 the
role of an invariant (i.e., 𝐼 is a subś or superinvariant). We now present a canonical stochastic
process, i.e., a sequence of random variables that captures approximating wp Jwhile (𝜑) {𝐶 }K (𝑓)
using the invariant 𝐼 .

Definition 18 (Induced Stochastic Process). The stochastic process induced by 𝐼 , denoted X𝑓 ,𝐼 =

(𝑋
𝑓 ,𝐼
𝑛)𝑛∈N, is given by

𝑋
𝑓 ,𝐼
𝑛 : Ωloop → R≥0, 𝜗 ↦→

{

𝑓 (𝜗 [𝑇¬𝜑 (𝜗)]) , if 𝑇¬𝜑 (𝜗) ≤ 𝑛

𝐼 (𝜗 [𝑛 + 1]), otherwise
.

11Note that here𝔉loop =
⋃

𝑛∈N
𝔉
loop
𝑛 which is not the case for general filtrations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:12 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

Now, in what sense does the stochastic process X𝑓 ,𝐼 capture approximating the weakest preex-

pectation of our loop with respect to 𝑓 by invariant 𝐼? 𝑋
𝑓 ,𝐼
𝑛 takes as argument a run 𝜗 of the loop

and assigns to 𝜗 a value as follows: If the loop has reached a terminal state within 𝑛 iterations, it
returns the value of the postexpectation 𝑓 evaluated in that terminal state. If no such terminal state
is reached within 𝑛 steps, it simply approximates the remainder of the run, i.e.,

𝜗 [0] · · · 𝜗 [𝑛] 𝜗 [𝑛+1] 𝜗 [𝑛+2] 𝜗 [𝑛+3] · · · ,

by returning the value of the invariant 𝐼 evaluated in 𝜗 [𝑛+1]. We see that𝑋
𝑓 ,𝐼
𝑛 needs at most the first

𝑛 + 2 states of a run to determine its value. Thus, 𝑋
𝑓 ,𝐼
𝑛 is not𝔉𝑛śmeasurable but𝔉𝑛+1śmeasurable,

as there exist runs that agree on the first 𝑛 + 1 states but yield different images under 𝑋
𝑓 ,𝐼
𝑛 . Hence,

we shift the loop filtration (𝔉
loop
𝑛)𝑛∈N by one.

Definition 19 (Shifted Loop Filtration). The filtration (𝔊
loop
𝑛)𝑛∈N of𝔉loop is defined by

𝔊
loop
𝑛 ≔ 𝔉

loop

𝑛+1 =
〈

{𝐶𝑦𝑙 (𝜋) | 𝜋 ∈ Σ
+, |𝜋 | = 𝑛 + 2}

〉

𝜎
.

Note that (𝑇¬𝜑)−1 ({𝑛}) ∈ 𝔉
loop
𝑛 ⊆ 𝔉

loop

𝑛+1 = 𝔊
loop
𝑛 , so 𝑇¬𝜑 is a stopping time w.r.t. (𝔊

loop
𝑛)𝑛∈N as well.

Lemma 20 (Adaptedness of Induced Stochastic Process). X𝑓 ,𝐼 is adapted to (𝔊
loop
𝑛)𝑛∈N, i.e.,𝑋

𝑓 ,𝐼
𝑛

is𝔊
loop
𝑛 śmeasurable.

The loop space, the loop measure, and the induced stochastic process X𝑓 ,𝐼 are not defined by
induction on the number of steps performed in the program. The loop space, for instance, contains
all infinite sequences of states, whether they are admissible by the loop or not. The loop measure
filters out the inadmissible runs and gives them probability 0.
Reasoning by invariants and characteristic functions, on the other hand, is inductive. We will

thus relate iterating a characteristic function on 𝐼 to the stochastic process X𝑓 ,𝐼 . For this, let Φ𝑓

again be the characteristic function of while (𝜑) {𝐶 } with respect to 𝑓 , i.e.,

Φ𝑓 (𝑋) = [¬𝜑] · 𝑓 + [𝜑] · wp J𝐶K (𝑋) .

We now develop a first connection between the stochastic process X𝑓 ,𝐼 and Φ𝑓 , which involves
the notion of conditional expected values with respect to a 𝜎śfield, for which we provide some
preliminaries here. In general, for 𝑀 ⊆ Ω, by slight abuse of notation, the Iverson bracket [𝑀] :

Ω → R≥0 maps 𝜗 ∈ Ω to 1 if 𝜗 ∈ 𝑀 and to 0 otherwise. [𝑀] is𝔉śmeasurable iff𝑀 ∈ 𝔉. If 𝑋 is a
random variable on (Ω,𝔉, P) and𝔊 ⊆ 𝔉 is a 𝜎śfield with respect to Ω, then the conditional expected

value E (𝑋 | 𝔊) : Ω → R≥0 is a𝔊śmeasurable mapping such that for every 𝐺 ∈ 𝔊 the equality
E (𝑋 · [𝐺]) = E (E (𝑋 | 𝔊) · [𝐺]) holds, i.e., restricted to the set 𝐺 the conditional expected value
E (𝑋 | 𝔊) and 𝑋 have the same expected value. Hence, E (𝑋 | 𝔊) is a random variable that is like
𝑋 , but for elements that are indistinguishable in the subfield𝔊, i.e., they either are both contained
or none of them is contained in a𝔊śmeasurable set, it łdistributes the value of 𝑋 equallyž.

Theorem 21 (Relating X
𝒇 ,𝑰 and 𝚽𝒇). For any 𝑛 ∈ N and any 𝑠 ∈ Σ, we have

𝑠E

(

𝑋
𝑓 ,𝐼
𝑛+1

�

�

�𝔊
loop
𝑛

)

= 𝑋
𝑓 ,Φ𝑓 (𝐼)
𝑛 .

Note that both sides in Thm. 21 are mappings of type Ωloop → R≥0. Intuitively, Thm. 21 expresses

the following: Consider some cylinder 𝐶𝑦𝑙 (𝜋) ∈ 𝔊
loop
𝑛 , i.e., 𝜋 = 𝑠0 · · · 𝑠𝑛+1 ∈ Σ

𝑛+2 is a sequence

of states of length 𝑛 + 2. Then, 𝑋
𝑓 ,Φ𝑓 (𝐼)
𝑛 and 𝑋

𝑓 ,𝐼
𝑛+1 have the same expected value under 𝑠P on the

cylinder set 𝐶𝑦𝑙 (𝜋) independent of the initial state 𝑠 of the loop.
Using Thm. 21, one can now explain in which way iterating Φ𝑓 on 𝐼 represents an expected

value, thus revealing the inductive structure inside the induced stochastic process:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:13

Corollary 22 (Relating Expected Values of X𝒇 ,𝑰 and Iterations of 𝚽𝒇). For any 𝑛 ∈ N and any
𝑠 ∈ Σ, we have

𝑠E

(

𝑋
𝑓 ,𝐼
𝑛

)

= Φ
𝑛+1
𝑓 (𝐼) (𝑠) .

Intuitively, Φ𝑛+1
𝑓

represents allowing for at most 𝑛 + 1 evaluations of the loop guard. For any state

𝑠 ∈ Σ, the number Φ𝑛+1
𝑓

(𝐼) (𝑠) is composed of

(a) 𝑓 ’s average value on the final states of those runs starting in 𝑠 that terminate within 𝑛 + 1
guard evaluations, and

(b) 𝐼 ’s average value on the (𝑛 + 2)śnd states of those runs starting in 𝑠 that do not terminate
within 𝑛 + 1 guard evaluations.

We now want to take 𝑛 to the limit by considering all possible numbers of iterations of the loop
body. We will see that this corresponds to evaluating the stochastic process X𝑓 ,𝐼 at the time when
our loop terminates, i.e., the looping time 𝑇¬𝜑 :

Definition 23 (Canonical Stopped Process). The mapping

𝑋
𝑓 ,𝐼

𝑇 ¬𝜑 : Ω
loop → R≥0, 𝜗 ↦→

{

𝑋
𝑓 ,𝐼

𝑇 ¬𝜑 (𝜗)
(𝜗) = 𝑓 (𝜗 [𝑇¬𝜑 (𝜗)]), if 𝑇¬𝜑 (𝜗) < ∞

0, otherwise

is the stopped process, corresponding to X
𝑓 ,𝐼 stopped at stopping time 𝑇¬𝜑 . As this mapping is

independent of 𝐼 , we write 𝑋
𝑓

𝑇 ¬𝜑 instead of 𝑋
𝑓 ,𝐼

𝑇 ¬𝜑 .

The stopped process now corresponds exactly to the quantity we want to reason about Ð the value
of 𝑓 evaluated in the final state after termination of our loop. For nonterminating runs we get 0, as
there exists no state in which to evaluate 𝑓 .
We now show that the limit of the induced stochastic process X𝑓 ,𝐼 corresponds to the stopped

process 𝑋
𝑓

𝑇 ¬𝜑 . For the following lemma, note that a statement over runs 𝛼 holds almostśsurely in

the probability space (Ωloop,𝔉loop, 𝑠P), if 𝑠P ({ 𝜗 ∈ Ω | 𝜗 satisfies 𝛼 }) = 1, i.e., the set of all elements
of the sample space satisfying 𝛼 has probability 1.

Lemma 24 (Convergence of X𝒇 ,𝑰 to 𝑿
𝒇

𝑻¬𝝋). The stochastic process X
𝑓 ,𝐼 ·

[

(𝑇¬𝜑)−1 (N)
]

converges

pointświse to 𝑋
𝑓

𝑇 ¬𝜑 , i.e., for all 𝜗 ∈ Ω
loop,

lim
𝑛→𝜔

𝑋
𝑓 ,𝐼
𝑛 (𝜗) ·

[

(𝑇¬𝜑)−1 (N)
]

(𝜗) = 𝑋
𝑓

𝑇 ¬𝜑 (𝜗) .

So if while (𝜑) {𝐶 } is universally almostśsurely terminating, then X
𝑓 ,𝐼 converges to 𝑋

𝑓

𝑇 ¬𝜑 almostś
surely with respect to the measure 𝑠P for any 𝑠 ∈ Σ.

Intuitively, the factor
[

(𝑇¬𝜑)−1 (N)
]

(𝜗) selects those runs 𝜗 where the looping time 𝑇¬𝜑 is finite.

If the loop is AST, then this factor can be neglected, because then
[

(𝑇¬𝜑)−1 (N)
]

is the constant
function 1 for the probability measures 𝑠P. In any case, (i.e., whether the looping time is almostś
surely finite or not) the expected value of the stopped process captures precisely the weakest
preexpectation of our loop with respect to the postexpectation 𝑓 , since only the terminating runs

are taken into account by 𝑋
𝑓

𝑇 ¬𝜑 and by lfp Φ𝑓 when computing the expected value of 𝑓 after
termination of the loop. So from Cor. 22 and Lem. 24 we get our first main result:

Theorem 25 (Weakest Preexpectation is Expected Value of Stopped Process).

wp Jwhile (𝜑) {𝐶 }K (𝑓) = lfp Φ𝑓 = 𝜆𝑠� 𝑠E
(

𝑋
𝑓

𝑇 ¬𝜑

)

.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:14 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

Thm. 25 captures our soughtśafter least fixed point as an expected value of a canonical stopped
process. This is what will allow us to later apply the Optional Stopping Theorem. Moreover, it is
crucial for deriving our generalization of an existing rule for lower bounds (cf. Sect. 6) and the
connection of upper bounds to the Lemma of Fatou (cf. Sect. 7).

4.3 Uniform Integrability

As we will see in Sect. 5, uniform integrability of a certain stochastic process is the central aspect of
the Optional Stopping Theorem (Thm. 31). In probability theory, uniform integrability means that
taking the expected value and taking the limit of a stochastic process commutes.

Definition 26 (Uniform Integrability of Stochastic Processes, [Grimmett and Stirzaker 2001,
Lemma 7.10.(3)]). Let X = (𝑋𝑛)𝑛∈N be a stochastic process on a probability space (Ω,𝔉, P) with
almostśsurely existing limit lim𝑛→𝜔 𝑋𝑛 . The process X is uniformly integrable if

E

(

lim
𝑛→𝜔

𝑋𝑛

)

= lim
𝑛→𝜔
E (𝑋𝑛) .

Counterexample 27 ([Grimmett and Stirzaker 2001, Sect. 7.10]). Consider the stochastic process
X = (𝑋𝑛)𝑛∈N on a probability space (Ω,𝔉, P) with P (𝑌𝑛 = 𝑛) = 1

𝑛
= 1− P (𝑌𝑛 = 0). Then E (𝑋𝑛) = 1.

Moreover, X converges almost surely to 𝑌 ≡ 0, i.e., the constant function 0. So, E (𝑌) = 0. But

lim
𝑛→𝜔
E (𝑋𝑛) = lim

𝑛→𝜔
1 = 1 ≠ 0 = E (0) ,

so X is not u.i.

Note that our notion of uniform integrability of expectations from Def. 11 coincides with uniform
integrability of the corresponding induced stochastic process.

Corollary 28 (Uniform Integrability of Expectations and Stochastic Processes). Let the loop
while (𝜑) {𝐶 } be AST.12 Then 𝐼 is uniformly integrable for 𝑓 (in the sense of Def. 11) iff the induced

stochastic process X𝑓 ,𝐼 is uniformly integrable (in the sense of Def. 26), i.e.,

lim
𝑛→𝜔

Φ
𝑛
𝑓 (𝐼) = lfp Φ𝑓 iff ∀𝑠 ∈ Σ : 𝑠E

(

lim
𝑛→𝜔

𝑋
𝑓 ,𝐼
𝑛

)

= lim
𝑛→𝜔

𝑠E

(

𝑋
𝑓 ,𝐼
𝑛

)

.

Cor. 28 justifies the naming in Def. 11: an expectation 𝐼 is uniformly integrable for 𝑓 iff its induced
process X𝑓 ,𝐼 is uniformly integrable. So, we can now extend the diagram from Sect. 3.4 as follows:

X
𝑓 ,𝐼 u.i. •E

(

𝑋
𝑓 ,𝐼
𝑛

)

𝑛→𝜔
−−−−−→ •E

(

𝑋
𝑓

𝑇 ¬𝜑

)

𝐼 u.i. for 𝑓 Φ
𝑛
𝑓
(𝐼)

𝑛→𝜔
−−−−−→ lfp Φ𝑓

𝐼 ⪯ Φ𝑓 (𝐼) ⇒ 𝐼 ⪯ lfp Φ𝑓

Cor. 28

Lem. 24 and Def. 26

Cor. 22
and Thm. 25

Def. 11

Thm. 10
and Def. 11

Uniform integrability is very hard to verify in general, both in the realm of stochastic processes as
well as in the realm of expectation transformers. Thus, one usually tries to find sufficient criteria
for uniform integrability that are easier to verify. The very idea of the Optional Stopping Theorem
is to provide such sufficient criteria for uniform integrability which then allow deriving a lower
bound as we will discuss in the next section.
12It suffices that 𝑠P (𝑇 ¬𝜑

< ∞) = 1 for any 𝑠 . But this is equivalent to AST as we required the body of the loop to be AST.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:15

5 THE OPTIONAL STOPPING THEOREM OFWEAKEST PREEXPECTATIONS

In this section, we develop an inductive proof rule for lower bounds on preexpectations by using
the results of Sect. 4 and the Optional Stopping Theorem (Thm. 31). The proofs of our results in this
section can be found in [Hark et al. 2019, App. D]. Recall that we have fixed a loop while (𝜑) {𝐶 }, a
finite postexpectation 𝑓 , a corresponding characteristic function Φ𝑓 , and another finite expectation
𝐼 which plays the role of an invariant.

We first introduce the Optional Stopping Theorem from probability theory. It builds upon the
concept of submartingales. A submartingale is a stochastic process that induces a monotonically
increasing sequence of its expected values.

Definition 29 (Submartingale). Let (𝑋𝑛)𝑛∈N be a stochastic process on a probability space (Ω,𝔉, P)

adapted to a filtration (𝔉𝑛)𝑛∈N of𝔉, i.e., a sequence of random variables 𝑋𝑛 : Ω → R≥0 such that 𝑋𝑛

is𝔉𝑛śmeasurable. Then (𝑋𝑛)𝑛∈N is called a submartingale with respect to (𝔉𝑛)𝑛∈N if

(a) E (𝑋𝑛) < ∞ for all 𝑛 ∈ N, and

(b) E (𝑋𝑛+1 | 𝔉𝑛) ≥ 𝑋𝑛 .

It turns out that submartingales are closely related to subinvariants. In fact, 𝐼 being a subinvariant
(plus some side conditions) gives us that the stochastic process induced by 𝐼 is a submartingale.

Lemma 30 (Subinvariant Induces Submartingale). Let 𝐼 be a subinvariant, i.e., 𝐼 ⪯ Φ𝑓 (𝐼), such
that Φ𝑛

𝑓
(𝐼) ≺≺ ∞ for every 𝑛 ∈ N, that is, Φ𝑛

𝑓
(𝐼) only takes finite values. Then the induced stochastic

process X𝑓 ,𝐼 is a submartingale with respect to (𝔊
loop
𝑛)𝑛∈N.

Given a submartingale (𝑋𝑛)𝑛∈N and a stopping time 𝑇 , the goal of the Optional Stopping Theorem
is to prove a lower bound for the expected value of 𝑋𝑛 at the stopping time𝑇 . To this end, we define
a stochastic process (𝑋𝑛∧𝑇)𝑛∈N where for any 𝜗 ∈ Ω, 𝑋𝑛∧𝑇 (𝜗) = 𝑋𝑛 (𝜗) if 𝑛 is smaller than the
stopping time 𝑇 (𝜗) and otherwise, 𝑋𝑛∧𝑇 (𝜗) = 𝑋𝑇 (𝜗) (𝜗). Hence, E (lim𝑛→𝜔 𝑋𝑛∧𝑇) is the expected
value of𝑋𝑛 at the stopping time𝑇 . The Optional Stopping Theorem asserts that the first component
𝑋0 of the stochastic process (𝑋𝑛)𝑛∈N is a lower bound for E (lim𝑛→𝜔 𝑋𝑛∧𝑇) provided that (𝑋𝑛∧𝑇)𝑛∈N
is uniformly integrable. Moreover, the Optional Stopping Theorem provides a collection of criteria
that are sufficient for uniform integrability of (𝑋𝑛∧𝑇)𝑛∈N.

Theorem 31 (Optional Stopping Theorem [Grimmett and Stirzaker 2001, Theorems 12.3.(1),
12.4.(11), 12.5.(1), 12.5.(2), 12.5.(9)]). Let (𝑋𝑛)𝑛∈N be a submartingale and 𝑇 be a stopping time on a
probability space (Ω,𝔉, P) with respect to a filtration (𝔉𝑛)𝑛∈N. Then X∧𝑇 = (𝑋𝑛∧𝑇)𝑛∈N defined by

𝑋𝑛∧𝑇 : Ω → R≥0, 𝜗 ↦→ 𝑋min(𝑛,𝑇 (𝜗)) (𝜗),

is also a submartingale w.r.t. (𝔉𝑛)𝑛∈N. If X∧𝑇 converges almostśsurely and is uniformly integrable,

E (𝑋0) = E (𝑋0∧𝑇) ≤ lim
𝑛→𝜔
E (𝑋𝑛∧𝑇) = E

(

lim
𝑛→𝜔

𝑋𝑛∧𝑇

)

.

If one of the following conditions holds, thenX∧𝑇 converges almostśsurely and is uniformly integrable:

(a) 𝑇 is almostśsurely bounded, i.e., there is a constant 𝑁 ∈ N such that P (𝑇 ≤ 𝑁) = 1.
(b) E (𝑇) < ∞ and there is a constant 𝑐 ∈ R≥0, such that for each 𝑛 ∈ N

E (|𝑋𝑛+1 − 𝑋𝑛 | | 𝔉𝑛) ≤ 𝑐 holds almostśsurely .

(c) There exists a constant 𝑐 ∈ R≥0 such that 𝑋𝑛∧𝑇 ≤ 𝑐 holds almostśsurely for every 𝑛 ∈ N.

Our goal now is to transfer the Optional Stopping Theorem from probability theory to the realm
of weakest preexpectations in order to obtain inductive proof rules for lower bounds on weakest
preexpectations. So far, we have introduced the looping time 𝑇¬𝜑 (which is a stopping time w.r.t.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:16 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

(𝔉
loop
𝑛)𝑛∈N), presented the connection of subinvariants and submartingales, and defined the concept

of uniform integrability also for expectations. Hence, the only missing ingredient is a proper
connection of expectations to the condition łE (|𝑋𝑛+1 − 𝑋𝑛 | | 𝔉𝑛) ≤ 𝑐ž in Thm. 31 (b). To translate
this concept to expectations, we require that the expectation 𝐼 has a certain shape depending on
the postexpectation 𝑓 .

Definition 32 (Harmonization). An expectation 𝐼 harmonizes with 𝑓 ∈ F if it is of the form

𝐼 = [¬𝜑] · 𝑓 + [𝜑] · 𝐼 ′ ,

for some expectation 𝐼 ′ ∈ F.

Def. 32 reflects that in terminal states 𝑡 of the loop the invariant 𝐼 evaluates to 𝑓 (𝑡). For an invariant
𝐼 to harmonize with postexpectation 𝑓 is a minor restriction on the shape of 𝐼 . It is usually easy to
choose an 𝐼 that takes the value of 𝑓 for states in which the loop is not executed at all. Moreover,
performing one iteration of Φ𝑓 obviously brings any expectation łinto shapež:

Corollary 33 (Harmonizing Expectations). For any 𝑓 , 𝐽 ∈ F, Φ𝑓 (𝐽) harmonizes with 𝑓 .

The actual criterion that connects łE (|𝑋𝑛+1 − 𝑋𝑛 | | 𝔉𝑛) ≤ 𝑐ž with the invariant 𝐼 is called conditional
difference boundedness (see also [Fioriti and Hermanns 2015; Fu and Chatterjee 2019]):

Definition 34 (Conditional Difference Boundedness). Let 𝐼 ∈ F. We define the function𝐻 : F→
F and the expectation Δ𝐼 ∈ F as13

𝐻 (𝑋) = [𝜑] · wp J𝐶K (𝑋) and Δ𝐼 = 𝜆𝑠�
(

𝐻
(

|𝐼 − 𝐼 (𝑠) |
)

(𝑠)
)

.

The expectation 𝐼 is called conditionally difference bounded (c.d.b.) if for some constant 𝑐 ∈ R≥0

Δ𝐼 (𝑠) ≤ 𝑐 holds for all 𝑠 ∈ Σ.

The expectation Δ𝐼 expresses the expected change of 𝐼 within one loop iteration. So, if 𝐼 is c.d.b. it is
expected to change at most by a constant in one loop iteration.

Example 35. Reconsider the program 𝐶cex from Counterex. 9 and expectation 𝐼 = 𝑏 + [𝑎 ≠ 0]. We
will check conditional difference boundedness of 𝐼 , using the function 𝐻 given by

𝐻 (𝑋) = [𝑎 ≠ 0] · 1
2 ·

(

𝑋 [𝑎/0] + 𝑋 [𝑏/𝑏 + 1]
)

[𝑘/𝑘 + 1] .

We then check the following:

Δ𝐼 =
(

𝜆𝑠� [𝑎 ≠ 0] · 1
2 ·

(

|𝐼 − 𝐼 (𝑠) | [𝑎/0] + |𝐼 − 𝐼 (𝑠) | [𝑏/𝑏 + 1]
)

[𝑘/𝑘 + 1]
)

(𝑠)

= 𝜆𝑠�
(

[𝑎 ≠ 0] · 1
2 ·

(

|𝐼 [𝑎/0] − 𝑠 (𝑏) − [𝑎 ≠ 0] (𝑠) | + |𝐼 [𝑏/𝑏 + 1] − 𝑠 (𝑏) − [𝑎 ≠ 0] (𝑠) |
))

(𝑠)

= [𝑎 ≠ 0] (𝑠) · 1
2 ·

(

|𝑠 (𝑏) + [0 ≠ 0] − 𝑠 (𝑏) − 1| + |𝑠 (𝑏) + 1 + [𝑎 ≠ 0] (𝑠) − 𝑠 (𝑏) − 1|
)

= [𝑎 ≠ 0] (𝑠) · 1
2 ·

(

|−1| + |1|
)

≤ 1 .

Thus, 𝐼 is c.d.b. by the constant 1. In contrast, the subinvariant 𝐼 ′ = 𝑏 + [𝑎 ≠ 0] · (1 + 2𝑘) from
Counterex. 9 is not conditionally difference bounded. Indeed, we would get (cf. [Hark et al. 2019, App.
D] for details)

Δ𝐼 ′ =
(

[𝑎 ≠ 0] · (1 + 2𝑘)
)

(𝑠) ,

which cannot be bounded by a constant.

Finally, we can connect the expected change of 𝐼 to a property of the stochastic process X𝑓 ,𝐼 . This
is our second major result.

13Recall that we have fixed a loop while (𝜑) {𝐶 }.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:17

Theorem 36 (Expected Change of 𝑰). Let 𝐼 ≺≺ ∞ harmonize with 𝑓 . Then

𝑠E

(

�

�𝑋
𝑓 ,𝐼
𝑛+1 − 𝑋

𝑓 ,𝐼
𝑛

�

�

�

�

�𝔊
loop
𝑛

)

= 𝑋 0,Δ𝐼
𝑛 .

The stochastic process X𝑓 ,𝐼 induced by 𝐼 exhibits an interesting correspondence: If Δ𝐼 is bounded

by a constant 𝑐 (i.e., if 𝐼 is c.d.b.), then so is 𝑋 0,Δ𝐼
𝑛 and thus Thm. 36 ensures that precondition (b) of

the Optional Stopping Theorem (Thm. 31) is fulfilled. Note that Thm. 36 depends crucially on the
fact that 𝐼 ≺≺ ∞ as otherwise the wellśdefinedness of the expectation Δ𝐼 cannot be ensured.

Now Lem. 30 allows us to use the Optional Stopping Theorem from probability theory (Thm. 31)
to prove a novel Optional Stopping Theorem for weakest preexpectations, which collects sufficient
conditions for uniform integrability. In particular, due to Thm. 36, our Optional Stopping Theorem
shows that our notion of conditional difference boundedness is an (easyśtoścheck) sufficient
criterion for uniform integrability and hence, for ensuring that a subinvariant is indeed a lower
bound for the weakest preexpectation under consideration. After stating the theorem, we will
discuss the intuition of its parts in more detail.

Theorem 37 (Optional Stopping Theorem for Weakest Preexpectation Reasoning). Con-
sider a loop while (𝜑) {𝐶 } where 𝐶 is AST. Let 𝐼 ≺≺ ∞ be a subinvariant w.r.t. the postexpectation
𝑓 ≺≺ ∞ (i.e., 𝐼 ⪯ Φ𝑓 (𝐼)). 𝐼 is uniformly integrable for 𝑓 iff 𝐼 is a lower bound, i.e.,

𝐼 ⪯ lfp Φ𝑓 = wp Jwhile (𝜑) {𝐶 }K (𝑓) .
𝐼 is uniformly integrable for 𝑓 if one of the following three conditions holds:

(a) The looping time 𝑇¬𝜑 of while (𝜑) {𝐶 } is almostśsurely bounded, i.e., for every state 𝑠 ∈ Σ

there exists a constant 𝑁 (𝑠) ∈ N with 𝑠P (𝑇¬𝜑 ≤ 𝑁 (𝑠)) = 1 and Φ𝑛
𝑓
(𝐼) ≺≺ ∞ for every 𝑛 ∈ N.

(b) The expected looping time of while (𝜑) {𝐶 } is finite for every initial state 𝑠 ∈ Σ, 𝐼 harmonizes
with 𝑓 , Φ𝑓 (𝐼) ≺≺ ∞, and 𝐼 is conditionally difference bounded.

(c) Both 𝑓 and 𝐼 are bounded and while (𝜑) {𝐶 } is AST.

We can now extend the diagram from Sect. 4 connecting the realm of stochastic processes (on
the right) and the realm of expectation transformers (on the left) for a universally almostśsurely
terminating program. The respective Optional Stopping Theorems provide the sufficient criteria
for uniform integrability, which is marked by the dashed implications.

𝐼 c.d.b. by 𝑐 •E

(

�

�𝑋
𝑓 ,𝐼
𝑛+1 − 𝑋

𝑓 ,𝐼
𝑛

�

�

�

�

�𝔊𝑛

)

≤ 𝑐

X
𝑓 ,𝐼 u.i. •E

(

𝑋
𝑓 ,𝐼
𝑛

)

𝑛→𝜔
−−−−−→ •E

(

𝑋
𝑓

𝑇 ¬𝜑

)

𝐼 u.i. for 𝑓 Φ
𝑛
𝑓
(𝐼)

𝑛→𝜔
−−−−−→ lfp Φ𝑓

𝐼 ⪯ Φ𝑓 (𝐼) ⇒ 𝐼 ⪯ lfp Φ𝑓

Thm. 36

Thm. 37 (b)

Thm. 31

Cor. 28

Lem. 24 and Def. 26

Cor. 22
and Thm. 25

Def. 11

Thm. 10
and Def. 11

Let us elaborate on the different cases of our Optional Stopping Theorem (Thm. 37): Case (a)
yields an alternative proof for the technique of soścalled metering functions by [Frohn et al. 2016]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:18 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

for deterministic terminating loops. As for the severity of the finiteness condition łΦ𝑛
𝑓
(𝐼) ≺≺ ∞

for every 𝑛 ∈ Nž, note that if the body 𝐶 is loopśfree, this condition is vacuously satisfied as 𝐼
itself is finite and cannot become infinite by finitely iterations of Φ𝑓 . If 𝐶 contains loops, then
we can establish the finiteness condition by finding a finite superinvariant 𝑈 with 𝐼 ⪯ 𝑈 ≺≺ ∞.
In this case, we can also guarantee Φ𝑛

𝑓
(𝐼) ≺≺ ∞.14

Case (b) applies whenever the outer loop is expected to be executed finitely often. In particular,
this holds if the entire loop terminates positively almostśsurely (i.e., within finite expected runtime).

To the best of our knowledge, Cases (a) and (b) are the first sufficiently simple induction rules for
lower bounds that do not require restricting to bounded postexpectations 𝑓 . While the requirements
on the loop’s termination behavior gradually weaken along (a) → (b) → (c), the requirements on
the subinvariant 𝐼 become stricter.

Finally, Case (c) yields an alternative proof of the result of [McIver and Morgan 2005] on inductive
lower bounds for bounded expectations in case of AST, which we will generalize in Sect. 6.
When comparing the cases (c) of Thm. 31 and Thm. 37, we notice that Thm. 31 (c) has no

restrictions on the stopping time, whereas Thm. 37 (c) requires almostśsure termination. This
might spark some hope that AST is not needed in Thm. 37 (c), but the following counterexample
shows that this is not the case:

Counterexample 38. Consider the program

while (true) { skip } ,

together with the bounded postexpectation 𝑓 = 1, i.e., we are interested in the termination probability
which is obviously 0. The corresponding characteristic function is given by

Φ1 (𝑋) = [¬true] · 1 + [true] · wp JskipK (𝑋) = 𝑋 ,

i.e., Φ1 is the identity map. Trivially, the bounded expectation 𝐼 = 1 is a fixed point of Φ1, thus in
particular 𝐼 is a subinvariant. Clearly, 𝐼 is not a lower bound on the actual termination probability, i.e.,
on lfp Φ1. If the condition of almostśsure termination in Thm. 37 (c) could be weakened, it has to be
ensured that for any program while (𝜑) {𝐶 } with universally almostśsurely terminating body 𝐶15

and postexpectation 𝑓 = 1, 1 is a lower bound only if the program terminates universally almostśsurely.
But this means that this property has to be at least as strong as almostśsure termination.

We reconsider Counterex. 9 illustrating unsoundness of simple lower induction and do sound lower
induction instead.

Example 39. Let us continue Ex. 35, where we have checked that for the program𝐶cex the expectation
𝐼 = 𝑏 + [𝑎 ≠ 0] is conditionally difference bounded by 1. It is easy to check that 𝐼 is a fixed point of the
characteristic function Φ𝑏 with respect to the postexpectation 𝑏, which by Park induction gives us a
finite upper bound on the least fixed point of Φ𝑏 . But up to now we could not prove that 𝐼 is indeed
equal to the least fixed point. Using Thm. 37, we can now do this.
First of all, we already have Φ𝑏 (𝐼) = 𝐼 ≺≺ ∞ and since 𝐼 is a fixed point, it is also a subinvariant.

Secondly, the loop is expected to be executed twice.16 Finally, 𝐼 = 𝑏 + [𝑎 ≠ 0] = [¬(𝑎 ≠ 0)] · 𝑏 +

[𝑎 ≠ 0] · (𝑏 + 1) harmonizes with 𝑏 and is conditionally difference bounded. Hence, the preconditions
of Thm. 37 (b) are satisfied and 𝐼 is indeed a lower bound on lfp Φ𝑏 . Since 𝐼 is a fixed point, it is the
least fixed point, i.e., we have proved wp J𝐶cexK (𝑏) = 𝐼 .

14The reason is that by Thm. 8 we have𝑈 ⪰ Φ
𝑛
𝑓
(𝑈) ⪰ Φ

𝜔
𝑓
(𝑈) and Φ𝜔

𝑓
(𝐼) ⪰ Φ

𝑛
𝑓
(𝐼) ⪰ 𝐼 for all 𝑛 ∈ N. By the monotonicity

of Φ𝑓 (Thm. 4),𝑈 ⪰ 𝐼 implies Φ𝜔 (𝑈) ⪰ Φ
𝜔 (𝐼) , which gives us ∞ ≻≻ 𝑈 ⪰ Φ

𝜔 (𝑈) ⪰ Φ
𝜔 (𝐼) ⪰ Φ

𝑛 (𝐼) .
15Note that in this case 1 is always a subinvariant.
16Positive almostśsure termination itself can also be verified by Park induction, see [Kaminski et al. 2016, 2018].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:19

Further case studies demonstrating the effectiveness of our proof rule, as well as an example that
cannot be treated by Thm. 37, are provided in [Hark et al. 2019, App. A].

6 LOWER BOUND RULES BY MCIVER AND MORGAN

In Sect. 5, we briefly mentioned the rules for lower bounds for bounded expectations by [McIver
and Morgan 2005] which are restated in Thm. 40 below. To the best of our knowledge, before our
new Thm. 37 these were the only existing inductive proof rules for weakest preexpectations.

Theorem 40 ([McIver and Morgan 2005]). Let 𝑓 ∈ F be a bounded postexpectation. Furthermore, let
𝐼 ′ ∈ F be a bounded expectation such that the harmonized expectation 𝐼 ∈ F given by 𝐼 = [¬𝜑] · 𝑓 +

[𝜑] ·𝐼 ′ is a subinvariant of while (𝜑) {𝐶 } with respect to 𝑓 . Finally, let𝑇 = wp Jwhile (𝜑) {𝐶 }K (1)
be the termination probability of while (𝜑) {𝐶 }. Then:

(1) If 𝐼 = [𝐺] for some predicate 𝐺 , then 𝑇 · 𝐼 ⪯ wp Jwhile (𝜑) {𝐶 }K (𝑓) .

(2) If [𝐺] ⪯ 𝑇 for some predicate 𝐺 , then [𝐺] · 𝐼 ⪯ wp Jwhile (𝜑) {𝐶 }K (𝑓) .

(3) If 𝜀 · 𝐼 ⪯ 𝑇 for some 𝜀 > 0, then 𝐼 ⪯ wp Jwhile (𝜑) {𝐶 }K (𝑓) .

Thm. 40 does not make any assumptions on the termination behavior of the loop, so, it is also
possible to analyze programs with termination probability < 1. It turns out that Thm. 40 (1) ś (3)
can be proved easily from our results from Sect. 4 in the case where𝐶 is AST where we do not need
the restriction that 𝐼 harmonizes with 𝑓 . In particular, we can show that in Thm. 40 (3) the fact that
𝑇 is the probability of termination is insignificant (see [Hark et al. 2019, App. E]). In fact, it suffices
if 𝑇 is the weakest preexpectation for some arbitrary bounded postexpectation, i.e., a least fixed
point (see [Hark et al. 2019, App. E] for details and proofs). So, we obtain the following generalized
version of Thm. 40 (3) in the case where 𝐶 is AST which is substantially more powerful: it states a
sufficient condition for a subinvariant to be a lower bound but also a necessary condition. This is
the main new contribution of this section.

Theorem 41 (Generalization of Thm. 40 (3)). Let 𝑓 ∈ F be a bounded postexpectation. Further-
more, let 𝐼 ∈ F be a bounded expectation such that 𝐼 is a subinvariant of while (𝜑) {𝐶 } with respect
to 𝑓 where 𝐶 is AST. There exist 𝜀 > 0 and 𝑔 ∈ F bounded s.t.

𝜀 · 𝐼 ⪯ wp Jwhile (𝜑) {𝐶 }K (𝑔) if and only if 𝐼 ⪯ wp Jwhile (𝜑) {𝐶 }K (𝑓) .

Example 42. Let us consider the program 𝐶rdw for an asymmetric random walk

while (𝑥 > 0) {

{ 𝑥 := 𝑥 − 1 } [1/3] { 𝑥 := 𝑥 + 1 } #
𝑦 := max(𝑦 − 1, 0)

} ,

with 𝑥,𝑦 ∈ N and𝑦 ≤ 100. This program is notAST but the body of the loop is indeed AST. Furthermore,
the postexpectation 𝑦 is bounded. If 𝑦 ≤ 𝑥 initially then 𝑦 is 0 after termination of the program. So,

wp J𝐶rdwK (𝑦) ≥ [𝑦 > 𝑥] ·
(

1
3

)𝑥
· (𝑦 − 𝑥) ≔ 𝐼 .

Now consider 𝑓 = [𝑦 even] · 200 · 𝑦2 + [𝑦 odd] · (𝑦 + 5)4. We have 𝐼 ′ ≤ Φ𝑓 (𝐼
′), where 𝐼 ′ = 400 · 𝐼

(see [Hark et al. 2019, App. E]). As we have 1
400 · 𝐼

′ ≤ wp J𝐶rdwK (𝑦) we can conclude from Thm. 41
that 𝐼 ′ ≤ wp J𝐶rdwK (𝑓). Note that this is easier than relating 𝐼 ′ and the termination probability as
required by Thm. 40 since the probability of termination of the loop is independent of 𝑦.

Of course, Ex. 42 is an artifical example. Nevertheless, it shows a strength of our generalisation:
it makes it easier to reason about bounded expectations which are independent of the probability
of termination. However, a drawback of Thm. 40 remains: one already needs a lower bound, i.e.,
one has to be able to read off a lower bound directly from the program.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:20 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

7 UPPER BOUNDS AND FATOU’S LEMMA

We saw that Park induction for proving upper bounds does not require additional conditions such
as conditional difference boundedness or even boundedness of 𝑓 or 𝐼 , respectively. The question
arises whether this fact is also explainable using our canonical stochastic process. Indeed, the
wellśknown Lemma of Fatou provides such an explanation. We will present a specialized variant of
it which is sufficient for our purpose.

Lemma43 (Fatou’s Lemma (cf. [Bauer 1971, Lemma2.7.1])). Let (𝑋𝑛)𝑛∈N be a stochastic process
on a probability space (Ω,𝔉, P). Then

E

(

lim
𝑛→𝜔

𝑋𝑛

)

≤ lim
𝑛→𝜔
E (𝑋𝑛) ,

where the lim on the leftśhandśside is pointświse.

We can now reprove Park induction for wp using Fatou’s Lemma: Let 𝐼 be a superinvariant, i.e.,
Φ𝑓 (𝐼) ⪯ 𝐼 . By Thm. 21, the canonical stochastic process X𝑓 ,𝐼 satisfies

𝑠E

(

𝑋
𝑓 ,𝐼
𝑛+1 | 𝔊𝑛

)

= 𝑋
𝑓 ,Φ𝑓 (𝐼)
𝑛 ≤ 𝑋

𝑓 ,𝐼
𝑛 .

By applying 𝑠E on both sides, we obtain 𝑠E

(

𝑋
𝑓 ,𝐼
0

)

≥ 𝑠E

(

𝑋
𝑓 ,𝐼
1

)

≥ This implies

𝑠E

(

𝑋
𝑓 ,𝐼
0

)

≥ 𝑠E

(

𝑋
𝑓 ,𝐼
𝑛

)

≥ 𝑠E

(

𝑋
𝑓 ,𝐼
𝑛 ·

[

(𝑇¬𝜑)−1 (N)
]

)

, (1)

as 𝑋
𝑓 ,𝐼
𝑛 ≥ 𝑋

𝑓 ,𝐼
𝑛 ·

[

(𝑇¬𝜑)−1 (N)
]

. We conclude
(

lfp Φ𝑓

)

(𝑠)

= 𝑠E

(

𝑋
𝑓

𝑇 ¬𝜑

)

(by Thm. 25)

= 𝑠E

(

lim
𝑛→𝜔

𝑋
𝑓 ,𝐼
𝑛 ·

[

(𝑇¬𝜑)−1 (N)
]

)

(by Lem. 24)

≤ lim
𝑛→𝜔

𝑠E

(

𝑋
𝑓 ,𝐼
𝑛 ·

[

(𝑇¬𝜑)−1 (N)
]

)

(by Fatou’s Lemma)

≤ lim
𝑛→𝜔

𝑠E

(

𝑋
𝑓 ,𝐼
0

)

(by (1))

= 𝑠E

(

𝑋
𝑓 ,𝐼
0

)

= Φ𝑓 (𝐼) (𝑠) (by Cor. 22)

≤ 𝐼 (𝑠) , (since Φ𝑓 (𝐼) ⪯ 𝐼)

so 𝐼 is indeed an upper bound on the least fixed point.
Note that here we handle arbitrary loops, i.e., they are not necessarily AST. While 𝐼 being a

superinvariant (plus some side conditions) still implies that X𝑓 ,𝐼 is a supermartingale, the second

part of Lem. 24 is not applicable, i.e., in general we have 𝑋
𝑓

𝑇 ¬𝜑 ≠ lim𝑛→𝜔 𝑋
𝑓 ,𝐼
𝑛 if the loop is not AST.

So in this case we cannot use classic results from martingale theory. Nevertheless, Fatou’s Lemma
combined with Thm. 25 and the first part of Lem. 24 provide a connection of Park induction for
upper bounds to stochastic processes.

8 LOWER BOUNDS ON THE EXPECTED RUNTIME

So far, we have developed techniques for verifying lower bounds on weakest preexpectations,
i.e., expected values of random variables upon program termination. In this section, we transfer

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:21

Table 2. Rules for the ertśtransformer.

𝑪 ert J𝑪K (𝒕)
skip 1 + 𝑡

𝑏 := 𝑒 1 + 𝑡 [𝑏/𝑒]

if (𝜑) {𝐶1 } else {𝐶2 } 1 + [𝜑] · ert J𝐶1K (𝑡) + [¬𝜑] · ert J𝐶2K (𝑡)

{𝐶1 } [𝑝] {𝐶2 } 1 + 𝑝 · ert J𝐶1K (𝑡) + (1 − 𝑝) · ert J𝐶2K (𝑡)

𝐶1 # 𝐶2 ert J𝐶1K (ert J𝐶2K (𝑡))

while (𝜑) {𝐶 ′ } lfp Φ
ert

⟨𝐶′,𝜑 ⟩ 𝑡

Φ
ert

⟨𝜑,𝐶 ⟩ 𝑡 (𝑋) = 1 + [¬𝜑] · 𝑡 + [𝜑] · ert J𝐶K (𝑋) characteristic
function

those techniques to verify lower bounds on expected runtimes of probabilistic programs. For this,
we employ the ertśtransformer [Kaminski et al. 2016, 2018], which is very similar to the wp-
transformer: Given program 𝐶 and postruntime 𝑡 ∈ F, we are interested in the expected time it
takes to first execute 𝐶 and then let time 𝑡 pass (where 𝑡 is evaluated in the final states reached
after termination of 𝐶). Again, the behavior (and the runtime) of 𝐶 depends on its input, so we are
actually interested in a function 𝑔 ∈ F mapping initial states 𝑠0 to the respective expected time. For
more details, see also [Kaminski 2019, Chapter 7]. Similarly to weakest preexpectations, expected
runtimes can be determined in a systematic and compositional manner by means of the ert calculus:

Definition 44 (The ertśTransformer [Kaminski et al. 2016, 2018]). Let pGCL be again the set of
programs in the probabilistic guarded command language. Then the expected runtime transformer

ert : pGCL → F→ F

is defined according to the rules given in Table 2. We call the function Φ
ert

⟨𝜑,𝐶 ⟩ 𝑡 the ertścharacteristic
function of the loop while (𝜑) {𝐶 } with respect to 𝑡 . Its least fixed point is understood in terms of
the partial order ⪯. To increase readability, we will again usually omit ert, 𝜑 , 𝐶 , or 𝑡 from Φ whenever
they are clear from the context.

Example 45 (Applying the ert Calculus). Consider the probabilistic program 𝐶 given by

{𝑏 := 𝑏 + 5 } [4/5] {𝑏 := 10 } #
if (𝑏 = 10) { skip } else { skip # skip }

Suppose we want to know the expected runtime of 𝐶 . Then we need to determine ert J𝐶K (0). Reusing
the annotation styles of Fig. 2a for wp, we make the following ert annotations:

=((4 + [𝒃 ≠ 5] · 4

5

ert((1 + 4

5
·
(
1 + 2 + [𝒃 + 5 ≠ 10]

)
+ 1

5
·
(
1 + 2 + [10 ≠ 10]

)

{𝑏 := 𝑏 + 5 } [4/5] {𝑏 := 10 } #
=((2 + [𝒃 ≠ 10]
ert((1 + [𝒃 = 10] · (1 + 0) + [𝒃 ≠ 10] · (1 + 1 + 0)

if (𝑏 = 10) { skip } else { skip # skip }
((0

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:22 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

At the top, we read off the expected runtime of𝐶 , namely 4 + [𝑏 ≠ 5] · 45 . This tells us that the expected

runtime of 𝐶 is 4 if started in an initial state where 𝑏 is 5, and 4 + 4
5 = 24

5 otherwise.

The ertś and the wpśtransformers are not only similar in definition, but they are closely connected
by the following equality [Olmedo et al. 2016]:

ert J𝐶K (𝑡) = ert J𝐶K (0) + wp J𝐶K (𝑡) .

In addition, reasoning about upper bounds by Park induction works exactly the same way. For
reasoning about lower bounds using subinvariants, notice above that ert J𝐶K (0) is independent
of 𝑡 . So, we can combine our derivation of Thm. 37 for lower bounds on wp in Sect. 4 and 5 with
the equation above to establish the first inductive rule for verifying lower bounds on expected
runtimes:

Theorem 46 (Inductive Lower Bounds on Expected Runtimes). Let 𝑡, 𝐼 ∈ F with 𝑡, 𝐼 ≺≺ ∞

and let 𝐼 harmonize with 𝑡 . Furthermore, let ert
Φ𝑡 be the ertścharacteristic function of the loop

while (𝜑) {𝐶 } with respect to 𝑡 . If 𝐼 is conditionally difference bounded and wp
Φ𝑡 (𝐼) ≺≺ ∞, then

𝐼 ⪯ ert
Φ𝑡 (𝐼) implies 𝐼 ⪯ ert Jwhile (𝜑) {𝐶 }K (𝑡) .

We call an 𝐼 that satisfies 𝐼 ⪯ ert
Φ𝑡 (𝐼) a runtime subinvariant.

The proof of Thm. 46 can be found in [Hark et al. 2019, App. F.1]. We now illustrate the applicability
of Thm. 46:

Example 47 (CouponCollector [Pólya 1930]). Consider the wellśknown coupon collector’s problem:
There are 𝑁 different types coupons. A collector wants to collect at least one of each type. Each time she
buys a new coupon, its type is drawn uniformly at random. How many coupons does she (expectedly)
need to buy in order to have collected at least one coupon of each type?
We can model this problem by the program 𝐶cc for some nonśzero natural number 𝑁 ∈ N:

𝑥 := 𝑁 #
while (0 < 𝑥) {

𝑖 := 𝑁 + 1 #
while (𝑥 < 𝑖) {

𝑖 := Unif [1..𝑁]

} #
𝑥 := 𝑥 − 1

} ,

Variable 𝑥 represents the number of uncollected coupon types. The inner loop models the buying of
new coupons until an uncollected type is drawn.17

The expected runtime of 𝐶cc is proportional to the expected number of coupons the collector needs to
buy. We want to prove that 𝑁H𝑁 is a lower bound on that expected runtime, whereH𝑚 is the𝑚-th
harmonic number, i.e.,H0 = 0 andH𝑚 =

∑𝑚
𝑘=1

1
𝑘
. For this, we make the following annotations, reusing

the annotation style of Fig. 3a (for more detailed annotations, see [Hark et al. 2019, App. F.2]):

17The random assignment 𝑖 := Unif [1..𝑁] does Ð strictly speaking Ð not adhere to our pGCL syntax, but it can be modeled

in pGCL. For the sake of readability, we opted for 𝑖 := Unif [1..𝑁].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:23

=((1 + 𝑵H𝑵

ert((1 + [0 < 𝑵 ≤ 𝑵] · 𝑵H𝑵 + [𝑵 < 𝑵] · (𝑵H𝑵 + 𝑵 − 𝑵)

𝑥 := 𝑁 #
⪯(([0 < 𝒙 ≤ 𝑵] · 𝑵H𝒙 + [𝑵 < 𝒙] · (𝑵H𝑵 + 𝑵 − 𝒙)

=((1 + [0 < 𝒙 ≤ 𝑵] ·
(
𝑵H𝒙 + 3 + 𝑵

𝒙

)
+ [𝑵 < 𝒙] · (4 + 𝑵H𝑵 + 𝑵 − 𝒙)

𝚽((1 + [𝒙 ≤ 0] · 0 + [0 < 𝒙] ·
(

2 + 𝒕 + [𝒙 = 0] · ∞ + [𝒙 ≤ 𝑵] · 2𝑵
𝒙

)

while (0 < 𝑥) {

=((2 + 𝒕 + [𝒙 = 0] · ∞ + [𝒙 ≤ 𝑵] · 2𝑵
𝒙

ert((1 + 1 + 𝒕 + [𝒙 = 0] · ∞ + [𝒙 < 𝑵 + 1] · 2max
{

𝑵
𝒙
, 1

}

𝑖 := 𝑁 + 1 #
ert((1 + 𝒕 + [𝒙 = 0] · ∞ + [𝒙 < 𝒊] · 2max

{
𝑵
𝒙
, 1

}

(by [Hark et al. 2019, App. F.2, Lemma 86])

while (𝑥 < 𝑖) { 𝑖 := Unif [1..𝑁] } #
=((1 + [1 < 𝒙 ≤ 𝑵 + 1] · 𝑵

(
H𝒙 − 1

𝒙

)
+ [𝑵 + 1 < 𝒙] · (𝑵H𝑵 + 𝑵 − 𝒙 + 1)

︸ ︷︷ ︸

≕𝒕

ert((1 + [0 < 𝒙 − 1 ≤ 𝑵] · 𝑵H𝒙−1 + [𝑵 < 𝒙 − 1] · (𝑵H𝑵 + 𝑵 − (𝒙 − 1))

𝑥 := 𝑥 − 1

88 [0 < 𝒙 ≤ 𝑵] · 𝑵H𝒙 + [𝑵 < 𝒙] · (𝑵H𝑵 + 𝑵 − 𝒙) }

((0

By our above annotations, we have shown that

𝐼 = [0 < 𝑥 ≤ 𝑁] · 𝑁H𝑥 + [𝑁 < 𝑥] · (𝑁H𝑁 + 𝑁 − 𝑥)

is indeed a runtime subinvariant of the outer loop. Before we finish proving that 𝐼 is indeed a lower
bound on the expected runtime of the outer loop, let us take a closer look at the meaning of 𝐼 : If 𝐼 is a
lower bound, the outer loop takes at least expected runtime 𝑁H𝑥 if 𝑥 is between 1 and 𝑁 , and expected
runtime 𝑁H𝑁 +𝑁 − 𝑥 if 𝑥 is larger than 𝑁 . In the second case, the tooślarge 𝑥 value suggests that we
have to collect more coupons than there are different coupons. So we first collect 𝑁 −𝑥 arbitrary łexcess
coupons" before we enter the łnormal coupon collector mode" and collect the remaining 𝑁 coupons
in expected time 𝑁H𝑁 . Indeed, 𝑁H𝑥 (without case analysis) is not a lower bound on the expected
runtime and we would in fact fail to prove its subinvariance.
For the inner loop, we have used the fact that this loop is a soścalled independent and identically

distributed loop, for which exact expected runtimes can be determined [Batz et al. 2018, Theorem 4].
For more details, see [Hark et al. 2019, App. F.2, Lemma 86]. We stress that while in this case
we had an exact expected runtime for the inner loop available by external techniques, a suitable
underapproximation of the expected runtime of the inner loop using the technique presented in this
paper (Thm. 46) would have worked as well. Hence, our technique is generally applicable to nested
loops.
At the very top of the above annotations, we push 𝐼 over the initial assignment, thus verifying

1 + 𝑁H𝑁 (and hence also 𝑁H𝑁) as lower bound for the entire expected runtime of 𝐶cc .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:24 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

In order to establish that the subinvariant 𝐼 is in fact a lower bound, we are still left to prove
conditional difference boundedness of 𝐼 . For this, we first make the following annotations:

((
�
�𝑰 [𝒙/𝒙 − 1] − 𝑰 (𝒔)

�
� (𝐼 does not depend on 𝑖)

𝑖 := 𝑁 + 1

((
�
�𝑰 [𝒙/𝒙 − 1] − 𝑰 (𝒔)

�
� (by almost-sure term. of inner loop and [Batz et al. 2018, Lemma 1])

while (𝑥 < 𝑖) { 𝑖 := Unif [1..𝑁] }

((
�
�𝑰 [𝒙/𝒙 − 1] − 𝑰 (𝒔)

�
�

𝑥 := 𝑥 − 1

((
�
�𝑰 − 𝑰 (𝒔)

�
�

Now that we have determined wp Jouter loop bodyK
(
�

�𝐼 − 𝐼 (𝑠)
�

�

)

, we finally bound Δ𝐼 :

Δ𝐼 = 𝜆𝑠� wp Jouter loop bodyK
(
�

�𝐼 − 𝐼 (𝑠)
�

�

)

= 𝜆𝑠�
�

�𝐼 [𝑥/𝑥 − 1] − 𝐼 (𝑠)
�

�

= [𝑥 = 1] · 𝑁 + [1 < 𝑥 < 𝑁] · 𝑁
𝑥

+ [𝑥 = 𝑁 + 1] ·
(

1 + 1
𝑁+1

)

+ [𝑁 + 1 < 𝑥]

(by case analysis)

⪯ 1
2 + 𝑁

Hence, Δ𝐼 is bounded by a constant, as 𝑁 is constant within the program 𝐶cc . Finally, we would still
have to show wp

Φ𝑡 (𝐼) ≺≺ ∞, which is easily checked and thus omitted here. This concludes our lower
bound proof for the coupon collector’s problem.

In the example above, we have verified that 𝑁H𝑁 is a lower bound on the expected runtime of the
coupon collector program. This lower bound enjoys several nice properties: For one, our lower
bound is an exact asymptotic lower bound. Another fact is that our lower bound is a strict lower
bound. The actual runtime is a bit higher, as we have omitted some constants. This is, however,
a desirable fact, as often we are only interested in the asymptotic runtime and do not wish to
bother with the constants. Notice further, that we never had to find the limit of any sequence.
Loop semantics (be it wp or ert) were all applied only finitely many times in order to verify a tight
asymptotic lower bound.18 All in all, the above example demonstrates the effectiveness of our
inductive lower bound rule.

9 RELATED WORK

Weakest preexpectation reasoning. The weakest preexpectation calculus goes back to the predicate
transformer calculus by [Dijkstra 1975, 1976], which provides an important tool for qualitative
formal reasoning about nonprobabilistic programs. The probabilistic and quantitative analog to
predicate transformers for nonprobabilistic programs are expectation transformers for probabilistic
programs. Weakestśpreexpectationśstyle reasoning was first studied in seminal work on probabilis-
tic propositional dynamic logic (PPDL) by [Kozen 1983, 1985]. Its boxś and diamondśmodalities
provide probabilistic versions of Dijkstra’s weakest (liberal) preconditions. Amongst others, [Jones
1990], [Morgan et al. 1996], [McIver and Morgan 2005], and [Hehner 2011] have furthered this line
of research, e.g., by considering nondeterminism and proof rules for bounding preexpectations in
the presence of loops. Work towards automation of weakest preexpectation reasoning was carried
out, amongst others, by [Chen et al. 2015], [Cock 2014], [Katoen et al. 2010], and [Feng et al. 2017].
Abstract interpretation of probabilistic programs was studied in this setting by [Monniaux 2005].

18This is also true for the technique we used for the inner loop.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:25

Bounds on weakest preexpectations. Rules for bounding weakest preexpectations were considered
from very early on. Already [Kozen 1983] provides an induction rule for verifying upper bounds.
Pioneering work on lower bounds by means of limits of sequences was carried out by [Jones 1990]
and later reconsidered by [Audebaud and Paulin-Mohring 2009]. Proof rules that do not make use
of limits were studied by [Morgan 1996] and later more extensively in [McIver and Morgan 2005].
An orthogonal approach to lower bounds by means of bounded model checking was explored
by [Jansen et al. 2016].

Advanced weakest preexpectation calculi. Apart from reasoning about expected values of random
variables at termination of simple pGCL programs, more advanced expectationśbased calculi
were invented. For instance, [Morgan and McIver 1999] use expectation transformers to reason
about temporal logic. More recently, [Olmedo et al. 2018] studies expectation transformers for
probabilistic programs with conditioning. [Kaminski et al. 2016, 2018; Olmedo et al. 2016] introduce
expectation based calculi to reason about expected runtimes of probabilistic programs. [Batz et al.
2019] present a quantitative separation logic together with a weakest preexpectation calculus for
verifying probabilistic programs with pointerśaccess to dynamic memory.

In all of the aboveworks, the rules for lower bounds rely throughout on finding limits of sequences
as well as the sequences themselves. In particular, the proof of the (exact) expected runtime of the
coupon collector by [Kaminski et al. 2016] requires a fairly complicated sequence, whereas our
invariant in Ex. 47 was conceptually fairly easy and thus more informative for a human.

Martingaleśbased reasoning. Probabilistic program analysis using martingales was pioneered by
[Chakarov and Sankaranarayanan 2013]. Our rules rely on the notions of uniform integrability and
conditional difference boundedness as well as the Optional Stopping Theorem. Previous works have
also used these notions. [Barthe et al. 2016] focus on synthesizing exact martingale expressions.
[Fioriti and Hermanns 2015] develop a type system for uniform integrability in order to prove
(positive) almostśsure termination19 of probabilistic programs and give upper bounds on the
expected runtime. [Fu and Chatterjee 2019] give lower bounds on expected runtimes. [Kobayashi
et al. 2018] provide a semiśdecision procedure for lower bounding termination probabilities of
probabilistic higherśorder recursive programs. [Ngo et al. 2018] perform automated templateś
driven resource analysis, but infer upper bounds only.

The latter four works analyze the termination behavior of a probabilistic program, whereas we
focus on general expected values, e.g., of program variables. Furthermore, we do not only make use
of uniform integrability and/or conditional difference boundedness of some auxiliary stochastic
process in order to prove soundness of our proof rules but establish tight connections between
expectationśbased reasoning via induction and martingaleśbased reasoning.
Other work on probabilistic program analysis by specialized kinds of martingales includes

[Chakarov and Sankaranarayanan 2014], [Chatterjee et al. 2016], [Chatterjee et al. 2017], [Agrawal
et al. 2018], [Huang et al. 2018], [Fu and Chatterjee 2019], and [Wang et al. 2019]. For instance,
regarding expected runtimes of probabilistic (and possibly nondeterministic) programs, [Fu and
Chatterjee 2019] construct difference bounded (as opposed to conditionally difference bounded,
which is a strictly weaker requirement) supermartingales which have to correspond to the exact
asymptotic expected runtime. In contrast, our rule allows for reasoning about strict lower bounds.

10 CONCLUSION

In this paper, we have studied proof rules for lower bounds in probabilistic program verification.
Our rules are simple in the sense that the invariants need to be łpushed through the loop semantics"

19Termination with probability 1 (within finite expected time).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

37:26 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

only a finite number of times, much like invariants in Hoare logic. In contrast, existing rules for
lower bounds of unbounded weakest preexpectations required coming up with an infinite sequence
of invariants, performing induction to prove relative inductiveness of two subsequent invariants,
and then Ð most unpleasantly Ð finding the limit of this sequence. The main results of this paper
are the following:

(1) We have presented the first inductive proof rules (Thm. 37 (a) and (b)) for verifying lower
bounds on (possibly unbounded) weakest preexpectations of probabilistic while loops using
quantitative invariants. Our inductive rules are given as an Optional Stopping Theorem (OST)
for weakest preexpectations. They provide sufficient conditions for the requirement of uniform
integrability which are much easier to check than uniform integrability in general. Case
studies demonstrating the effectiveness but also the limitations of these rules are found
in [Hark et al. 2019, App. A].

(2) For proving our OST, we resort to the classical OST from probability theory. However, for most
notions that appear in the classical OST, like uniform integrability and conditional difference
boundedness, we were able to find purely expectationśtransformerśbased counterparts (see
Sect. 4 and 5). We thus conjecture that our OST can be proven in purely expectationśtheoretic
terms, which would most likely simplify the proof of our OST significantly as no probability
theory would be required anymore.

(3) We studied the inductive proof rules for lower bounds on bounded weakest preexpectations
from [McIver and Morgan 2005]. Our results gave rise to a generalization of their proof rule
to a sufficient and necessary criterion for lower bounds. (Thm. 41).

(4) We have investigated a measure theoretical explanation for why verifying upper bounds using
domain theoretical Park induction is conceptually simpler (Sect. 7). The underlying reason
is the wellśknown Lemma of Fatou. This leads us to speculate that Fatou’s Lemma could
be proved in purely domain theoretical terms, perhaps as an instance of Park induction. A
successful attempt at a similar idea is due to [Baranga 1991] who proved that the wellśknown
Banach Contraction Principle is a particular instance of the Kleene Fixed Point Theorem.

(5) We used the close connection between wp and ert to present the first inductive proof rule
for lower bounding expected runtimes (Thm. 46). As an example to demonstrate the power
of this rule, we inferred a nontrivial lower bound on the expected runtime of the famous
coupon collector’s problem (Ex. 47).

Future work includes extending our proof rules for weakest preexpectation reasoning to recursive
programs [Olmedo et al. 2016], to probabilistic programs with nondeterminism [McIver and Morgan
2001, 2005], and to mixedśsign postexpectations. For the latter, this will likely yield more appealing
proof rules for loops than those provided in [Kaminski and Katoen 2017] which currently involve
reasoning about sequences. Moreover, we are interested in (partially) automating the synthesis of
the quantitative invariants needed in our proof rules.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the German Research Council (DFG) Research
Training Group 2236 UnRAVeL and ERC Advanced Grant 787914 FRAPPANT. Furthermore, we
would like to thank Florian Frohn and Christoph Matheja for many fruitful discussions on examples
and counterexamples.

REFERENCES

Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic Ranking Supermartingales: An Efficient

Approach to Termination of Probabilistic Programs. PACMPL 2, POPL (2018), 34:1ś34:32.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

Aiming Low Is Harder 37:27

Philippe Audebaud and Christine Paulin-Mohring. 2009. Proofs of Randomized Algorithms in Coq. Science of Computer

Programming 74, 8 (2009), 568ś589.

Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus - A Systematic Introduction. Springer.

Andrei Baranga. 1991. The Contraction Principle as a Particular Case of Kleene’s Fixed Point Theorem. Discrete Mathematics

98, 1 (1991), 75ś79.

Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing Probabilistic Invariants via

Doob’s Decomposition. In Proc. of the International Conference on ComputerśAided Verification (CAV) (Lecture Notes in

Computer Science), Vol. 9779. Springer, 43ś61.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

Separation Logic: a Logic for Reasoning about Probabilistic Pointer Programs. PACMPL 3, POPL (2019), 34:1ś34:29.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2018. How Long, O Bayesian Network,

will I Sample Thee? - A Program Analysis Perspective on Expected Sampling Times. In Proc. of the European Symposium

on Programming Languages and Systems (ESOP) (Lecture Notes in Computer Science), Vol. 10801. Springer, 186ś213.

Heinz Bauer. 1971. Probability Theory and Elements of Measure Theory (first english ed.). Holt, Rinehart and Winston, Inc.,

New York.

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Proc. of the

International Conference on ComputerśAided Verification (CAV) (Lecture Notes in Computer Science), Vol. 8044. Springer,

511ś526.

Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed

Points. In Proc. of the Static Analysis Symposium (SAS) (Lecture Notes in Computer Science), Vol. 8723. Springer, 85ś100.

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2016. Algorithmic Analysis of Qualitative

and Quantitative Termination Problems for Affine Probabilistic Programs. In Proc. of the Symposium on Principles of

Programming Languages (POPL). ACM, 327ś342.

Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic Invariants for Probabilistic Termination. In Proc.

of the Symposium on Principles of Programming Languages (POPL). ACM, 145ś160.

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. CounterexampleśGuided Polynomial Loop

Invariant Generation by Lagrange Interpolation. In Proc. of the International Conference on ComputerśAided Verification

(CAV) (Lecture Notes in Computer Science), Vol. 9206. Springer, 658ś674.

David Cock. 2014. pGCL for Isabelle. Archive of Formal Proofs (2014).

Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18,

8 (1975), 453ś457.

Edsger Wybe Dijkstra. 1976. A Discipline of Programming. PrenticeśHall.

William Feller. 1971. An Introduction to Probability Theory and its Applications. Vol. II. John Wiley & Sons.

Yijun Feng, Lijun Zhang, David Nicolaas Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for

Probabilistic Programs. In Proc. of the International Symposium on Automated Technology for Verification and Analysis

(ATVA) (Lecture Notes in Computer Science), Vol. 10482. Springer, 400ś416.

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Composi-

tionality. In Proc. of the Symposium on Principles of Programming Languages (POPL). ACM, 489ś501.

Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen Giesl. 2016. Lower Runtime Bounds for Integer

Programs. In Proc. of the International Joint Conference on Automated Reasoning (IJCAR) (Lecture Notes in Computer

Science), Vol. 9706. Springer, 550ś567.

Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Proc. of the

International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI) (Lecture Notes in Computer

Science), Vol. 11388. Springer, 468ś490.

Andrew D. Gordon, Thomas A. Henzinger, Aditya Vithal Nori, and Sriram K. Rajamani. 2014. Probabilistic Programming. In

Proc. of Future of Software Engineering (FOSE). ACM, 167ś181.

Geoffrey Grimmett and David Stirzaker. 2001. Probability and Random Processes. Oxford University Press, Oxford; New

York.

Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming Low Is Harder - Inductive

Proof Rules for Lower Bounds on Weakest Preexpectations in Probabilistic Program Verification. CoRR abs/1904.01117

(2019). arXiv:1904.01117

Eric Charles Roy Hehner. 2011. A Probability Perspective. Formal Aspects of Computing 23, 4 (2011), 391ś419.

Wataru Hino, Hiroki Kobayashi, Ichiro Hasuo, and Bart Jacobs. 2016. Healthiness from Duality. In Proc. of the Annual

Symposium on Logic in Computer Science (LICS). ACM, 682ś691.

Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. 2018. New Approaches for AlmostśSure Termination of

Probabilistic Programs (Lecture Notes in Computer Science), Vol. 11275. Springer, 181ś201.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

http://arxiv.org/abs/1904.01117

37:28 Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen

Jacek Jachymski, Leslaw Gajek, and Piotr Pokarowski. 2000. The TarskiśKantorovitch Principle and the Theory of Iterated

Function Systems. Bulletin of the Australian Mathematical Society 61, 2 (2000), 247ś261.

Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Lukas Westhofen. 2016. Bounded Model

Checking for Probabilistic Programs. In Proc. of the International Symposium on Automated Technology for Verification

and Analysis (ATVA) (Lecture Notes in Computer Science), Vol. 9938. Springer, 68ś85.

Claire Jones. 1990. Probabilistic NonśDeterminism. Ph.D. Dissertation. University of Edinburgh, UK.

Benjamin Lucien Kaminski. 2019. Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph.D. Dissertation.

RWTH Aachen University, Germany. http://publications.rwth-aachen.de/record/755408/files/755408.pdf

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the Hardness of Analyzing Probabilistic

Programs. Acta Inf. 56, 3 (2019), 255ś285.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2017. AWeakest Preśexpectation Semantics forMixedśsign Expectations.

In Proc. of the Annual Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 1ś12.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected RunśTimes of Probabilistic Programs. In Proc. of the European Symposium on Programming

Languages and Systems (ESOP) (Lecture Notes in Computer Science), Vol. 9632. Springer, 364ś389.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. Journal of the ACM 65 (2018).

Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll Morgan. 2010. Linear-Invariant Generation for

Probabilistic Programs: Automated Support for ProofśBased Methods. In Proc. of the Static Analysis Symposium (SAS)

(Lecture Notes in Computer Science), Vol. 6337. Springer, 390ś406.

Klaus Keimel. 2015. Healthiness Conditions for Predicate Transformers. Electr. Notes Theor. Comput. Sci. 319 (2015), 255ś270.

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2018. On the Termination Problem for Probabilistic Higher-Order

Recursive Programs. CoRR abs/1811.02133 (2018). arXiv:1811.02133

Dexter Kozen. 1983. A Probabilistic PDL. In Proc. of the Annual Symposium on Theory of Computing (STOC). 291ś297.

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162ś178.

Jean-Louis Lassez, V. L. Nguyen, and Liz Sonenberg. 1982. Fixed Point Theorems and Semantics: A Folk Tale. Inform. Process.

Lett. 14, 3 (1982), 112ś116.

Annabelle McIver and Carroll Morgan. 2001. Partial Correctness for Probabilistic Demonic Programs. Theoretical Computer

Science 266, 1-2 (2001), 513ś541.

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

David Monniaux. 2005. Abstract Interpretation of Programs as Markov Decision Processes. Science of Computer Programming

58, 1ś2 (2005), 179ś205.

Carroll Morgan. 1996. Proof Rules for Probabilistic Loops. In Proc. of BCSśFACS 7th Refinement Workshop.

Carroll Morgan and Annabelle McIver. 1999. An ExpectationśTransformer Model for Probabilistic Temporal Logic. Logic

Journal of the Interest Group in Pure and Applied Logics 7, 6 (1999), 779ś804.

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. on Programming

Languages and Systems 18, 3 (1996), 325ś353.

Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press.

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In Proc. of the Conference on Programming Language Design and Implementation (PLDI). ACM, 496ś512.

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver. 2018.

Conditioning in Probabilistic Programming. ACM Trans. on Programming Languages and Systems 40, 1 (2018), 4:1ś4:50.

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about Recursive

Probabilistic Programs. In Proc. of the Annual Symposium on Logic in Computer Science (LICS). ACM, 672ś681.

David Park. 1969. Fixpoint Induction and Proofs of Program Properties. Machine Intelligence 5 (1969).

George Pólya. 1930. Eine Wahrscheinlichkeitsaufgabe in der Kundenwerbung. Zeitschrift für Angewandte Mathematik und

Mechanik 10, 1 (1930), 96ś97.

Moshe Ya’akov Vardi. 1985. Automatic Verification of Probabilistic Concurrent FiniteśState Programs. In Proc. of the Annual

Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society, 327ś338.

Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019. Cost

Analysis of Nondeterministic Probabilistic Programs. In Proc. of the Conference on Programming Language Design and

Implementation (PLDI). ACM, 204ś220.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 37. Publication date: January 2020.

http://publications.rwth-aachen.de/record/755408/files/755408.pdf
http://arxiv.org/abs/1811.02133

	Abstract
	1 Introduction and Overview
	2 Weakest Preexpectation Reasoning
	2.1 Weakest Preexpectations
	2.2 The Weakest Preexpectation Calculus

	3 Bounds on Weakest Preexpectations
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Problem Statement
	3.4 Uniform Integrability

	4 From Expectations to Stochastic Processes
	4.1 Canonical Probability Space
	4.2 Canonical Stochastic Process
	4.3 Uniform Integrability

	5 The Optional Stopping Theorem of Weakest Preexpectations
	6 Lower Bound Rules by McIver and Morgan
	7 Upper Bounds and Fatou's Lemma
	8 Lower bounds on the expected runtime
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

