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Abstract. Inverse problem of estimating initial pressure in photoacoustic tomog-

raphy is ill-posed and thus sensitive to errors in modelling and measurements. In

practical experiments, accurate knowledge of the speed of sound of the imaged target

is commonly not available, and therefore an approximate speed of sound is used in the

computational model. This can result in errors in the solution of the inverse problem

that can appear as artefacts in the reconstructed images. In this paper, the inverse

problem of photoacoustic tomography is approached in a Bayesian framework. Errors

due to uncertainties in the speed of sound are modelled using Bayesian approximation

error modelling. Estimation of the initial pressure distribution together with informa-

tion on the reliability of these estimates are considered. The approach was studied

using numerical simulations. The results show that uncertainties in the speed of sound

can cause significant errors in the solution of the inverse problem. However, modelling

of these uncertainties improves the accuracy of the solution.

Keywords: photoacoustic tomography, inverse problems, Bayesian methods, modelling

of errors, uncertainty quantification
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1. Introduction

Photoacoustic tomography (PAT) is a hybrid imaging technique that combines strong

optical contrast and high ultrasonic resolution in a single modality. It has a variety of

applications in biomedical imaging [1, 2, 3, 4, 5, 6, 7]. In PAT measurement situation,

absorption of an externally illuminated short light pulse induces a transient pressure

distribution inside the medium through a photoacoustic effect. This pressure propagates

through the medium as an acoustic wave and can be measured on the boundary of the

target using ultrasound sensors. Then, in the image reconstruction problem of PAT, the

initial pressure is reconstructed from the measured ultrasound signal. As an alternative

to the conventional image reconstruction, a full solution of the inverse problem, i.e.

posterior probability density, can be examined [8, 9].

In many inverse problems methodologies used in PAT, the numerical solution of the

forward model is required in the solution of the inverse problem. These methods require

knowledge of the speed of sound. However, in practical experiments, the speed of sound

is usually not known accurately. In fact, in many of the PAT reconstruction schemes,

the speed of sound is considered as a known (fixed, often constant) nuisance parameter.

This can cause severe errors in the solution of the inverse problem. Therefore, various

methods have been proposed to mitigate the issue. For example, a constant speed

of sound has been optimized according to some image quality metric, such as image

sharpness [10]. However, such approach can be difficult to apply when the actual speed

of sound distribution is not constant. In addition, repeating image reconstruction with

several speed of sound values can become time consuming. Alternatively, in the half-

time and partial-time image reconstruction methods, an image is reconstructed from a

dataset that has been temporally truncated to exclude the data components that have

been strongly aberrated [11, 12]. Although this approach reduces artefacts induced by

acoustic heterogeneities, significant distortions can remain, especially in cases where

broad range of acoustic properties is present. In addition, temporal truncation leads

to loss of data that can cause problems by increasing the ill-posedness of the problem.

On the other hand, small speed of sound variations have also been compensated by

estimating the acoustic travel time using correlation information between measured

signals [13]. Correspondingly, artefacts induced by strong acoustic heterogeneities have

been mitigated by weighting the back-projected signals by the probability that the signal

is being undisturbed during the propagation [14].

Basically, the speed of sound could be jointly estimated with the initial pressure

distribution [15, 16, 17, 18, 19]. However, this is generally an unstable problem [20].

Stabilization of the problem has been proposed by reducing the number of unknowns for

example by utilizing information of the structure of the speed of sound distribution [19].

Alternatively, adjunct imaging data, such as ultrasound tomography or passive-element

measurements, can be utilized to estimate the speed of sound distribution [21, 22, 23, 24].

Unfortunately, not all PAT measurement devices can conduct these measurements. In

addition, an integration of these adjunct imaging modalities with PAT measurement
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setups can be challenging.

In this work, the inverse problem of PAT is approached in a Bayesian framework to

ill-posed inverse problems [25, 26, 8]. Therefore, all parameters are treated as random

variables that are characterized by their probability distributions. Measurements,

model of the imaging situation and prior information are used to infer the probability

distributions of the unknown parameters of primary interest. That is, we solve the

conditional distribution of the initial pressure in each pixel of the discretized domain,

i.e. the full posterior distribution. In addition, point estimates for images of the

unknown initial pressure and its credibility are inspected. The Bayesian framework

facilitates representing and taking into account uncertainties in parameters, models,

and geometries [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. In this work, modelling

of errors due to speed of sound variations is studied by Bayesian approximation error

modelling [25]. In the approach, these errors are approximated as Gaussian distributed

noise and included into the noise model of the data likelihood.

The paper is organized as follows. Section 2 gives a brief review of the forward

model and the inverse problem of PAT in the Bayesian framework. In addition, the

Bayesian approximation error approach for modelling errors due to unknown speed of

sound in PAT is presented. In Section 3, approach is evaluated with simulations. Finally,

discussions and conclusions are given in Sections 4 and 5.

2. Photoacoustic tomography

2.1. Forward model

The forward problem in PAT is to solve the acoustic field caused by absorption of a

light pulse as a function of time at the sensors surrounding the object when the acoustic

properties of the medium are known. The acoustic wave propagation in a non-absorbing

medium and free space can be described by a wave equation





(
∂2

∂t2
− c(r)2∇2

)
p(r, t) = 0, r ∈ R

d, t ∈ [0, T [

p(r, t = 0) = p0(r), when r ∈ Ω ⊂ R
d, 0 otherwise

∂

∂t
p(r, t = 0) = 0

(1)

where p(r, t) is the acoustic pressure at point r and time t , p0(r) is the initial pressure

distribution, and c(r) is the speed of sound [6, 2]. In PAT measurements, the acoustic

pressure wave p(r, t) is only recorded over a subset S of the boundary of the target Ω

for some time t = 0 to T , with Ω being an imaging domain, and T being the duration

of time that the photoacoustic time series is captured for. In this paper, the solution

of the wave equation is numerically approximated using a k-space time-domain method

implemented with the k-Wave MATLAB toolbox [38].
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2.2. Inverse problem

The inverse problem of PAT is to estimate the initial pressure distribution given the

measured pressure waves based on an observation model. In this paper, a discrete

observation model for PAT in the presence of an additive noise is considered which can

be written as

pt = K(c)p0 + e, (2)

where pt ∈ R
m is a vector composed of the acoustic pressure waves sampled at discrete

set of sensors at discrete time points, p0 ∈ R
n is the discrete initial pressure distribution,

K(c) ∈ R
m×n is the linear operator which maps the initial pressure distribution to the

measured data by discretizing the forward model (1), and e ∈ R
m denotes the noise. In

this paper, the matrix K(c) is formed by utilizing the k-Wave toolbox by looping over

each pixel describing p0, setting the pixel value to one while keeping the other pixels

at zero and computing the acoustic output [8]. These outputs then form the columns

of the matrix K(c). This corresponds to computing the impulse response of a discrete

system approximating (1).

In this paper, the solution of the inverse problem is based on the Bayesian approach

[26, 25]. Let us consider all parameters as random variables. The solution of the inverse

problem is the posterior density π(p0|pt), and it can be written using the Bayes’ formula

as

π(p0|pt) ∝ π(p0)π(pt|p0), (3)

where π(p0) is the prior probability density and π(pt|p0) is the likelihood density.

The likelihood density can be written as

π(pt|p0) =

∫
π(pt, e|p0)de =

∫
π(pt|p0, e)π(e|p0)de. (4)

Given the observation model (2), we have π(pt|p0, e) = δ(pt − K(c)p0 − e) and the

likelihood becomes

π(pt|p0) =

∫
δ(pt −K(c)p0 − e)π(e|p0)de = πe|p0(pt −K(c)p0|p0). (5)

In the case p0 and e are mutually independent

π(pt|p0) = πe(pt −K(c)p0), (6)

where πe is the probability density of the noise e. This leads to a posterior distribution

π(p0|pt) ∝ π(p0)πe(pt −K(c)p0). (7)

That is, in the above, noise e was premarginalized and is not present in (7).

In this paper, a Gaussian distributed prior p0 ∼ N (ηp0,Γp0) with mean ηp0 and

covariance matrix Γp0 is considered. In addition, noise is assumed a Gaussian i.e.

e ∼ N (ηe,Γe), where ηe is the mean and Γe is the covariance matrix. Thus, the posterior

density (7) is also a Gaussian distribution p0|pt ∼ N (ηp0|pt,Γp0|pt), where

ηp0|pt = Γp0|pt

(
K(c)TΓ−1

e (pt − ηe) + Γ−1
p0
ηp0

)
(8)
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Γp0|pt =
(
K(c)TΓ−1

e K(c) + Γ−1
p0

)−1
(9)

are the mean and covariance of the posterior distribution, respectively.

In this paper, the entire posterior density is determined and inspected. The

mean of the posterior, which corresponds to the maximum a posteriori estimate,

is visualized to inspect the estimated initial pressure as an image. Furthermore,

reliability of the estimates is assessed by determining pixel-wise standard deviations.

In addition, marginal densities of the posterior distribution are computed p0,k|pt ∼

N (ηp0|pt,k,Γp0|pt,kk), where ηp0|pt,k is the value of ηp0|pt in the kth pixel and Γp0|pt,kk is the

value of the kth diagonal element of Γp0|pt. Covariances of pixels are also inspected.

2.3. Inverse problem in the presence of modelling errors

The inverse problem may be simplified by using an approximate model. The

approximate model can be, for example an approximation of a complex physical model,

a discrete model with discretization errors larger than measurement precision, or model

with uncertainties such as unknown boundary shape. In this paper, we study a situation

in which the exact speed of sound is not known and instead we have approximate

knowledge of it. We denote the corresponding forward model as K(c̃) where c̃ is a

constant or piece-wise constant (nominal) value for the speed of sound.

If an approximate forward model K(c̃) is utilized, the observation model can be

written utilizing the Bayesian approximation error modelling [25] in the form

pt = K(c̃)p0 + ǫ+ e

= K(c̃)p0 + n, (10)

where n = ǫ+e is total error, and ǫ = K(c)p0−K(c̃)p0 is approximation error describing

the modelling error between the exact and the approximate model.

Now, observation model (10) is used and premarginalization over the measurement

noise e and modelling error ǫ is carried out by following the approach in [39]. Thus, the

likelihood is

π(pt|p0) =

∫
π(pt, n|p0)dn. (11)

With the help of the joint density

π(pt, n, p0) = π(pt|n, p0)π(n|p0)π(p0)

= π(pt, n|p0)π(p0) (12)

the likelihood can be written as

π(pt|p0) =

∫
π(pt|n, p0)π(n|p0)dn. (13)

Given the observation model (10), we have π(pt|n, p0) = δ(pt−K(c̃)p0−n) yielding the

likelihood

π(pt|p0) =

∫
δ(pt −K(c̃)p0 − n)π(n|p0)dn

= πn|p0(pt −K(c̃)p0|p0). (14)
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If we ignore the mutual dependence of n and p0,

π(pt|p0) = πn(pt −K(c̃)p0). (15)

Let us assume that noise is Gaussian distributed e ∼ N (ηe,Γe), and approximate

the modelling error as Gaussian ǫ ∼ N (ηǫ,Γǫ). Thus, the total error is Gaussian

distribution n ∼ N (ηn,Γn) where ηn = ηe + ηǫ and Γn = Γe + Γǫ, and a Gaussian

approximation for the likelihood is obtained.

With a Gaussian prior, the posterior density is Gaussian p0|pt ∼ N (ηp0|pt,Γp0|pt),

where

ηp0|pt = Γp0|pt

(
K(c̃)TΓ−1

n (pt − ηn) + Γ−1
p0
ηp0

)
(16)

Γp0|pt =
(
K(c̃)TΓ−1

n K(c̃) + Γ−1
p0

)−1
. (17)

It should be noted that as K(c̃) → K(c) the estimates approach each other.

3. Numerical studies

In the simulations, two problems were considered. In the first problem, a numerical

soft tissue mimicking phantom that possessed a spatially variable speed of sound was

studied. In the second problem, a numerical soft tissue and bone mimicking phantom

that consisted of two regions with varying speed of sounds was examined. In this

problem, boundaries of the regions were assumed to be known. In practice, this kind of

information could be received for example from computed tomography image.

The inverse problem was solved using three different likelihood models: 1) an

accurate forward model (AFM) using K(c) that presents (unrealistic) situation where

the speed of sound is known exactly, 2) an inexact forward model (IFM) with K(c̃) that

represents typical situation where some preassigned values for the speed of sound are

used, and 3) an inexact forward model with error modelling (IFM&EM). In the case

of the AFM, the posterior density was solved using (8)-(9). In the case of the IFM,

(16)-(17) were used. If modelling errors were ignored, we set the modelling error as

ǫ = 0 resulting in n ∼ N (ηe,Γe).

For IFM&EM, modelling error was computed by sampling and approximating it

as a Gaussian as follows. First, a set of samples {p(l)0 , l = 1, ..., Ns} were drawn

from the teaching distribution of the initial pressure. In addition, a set of samples

{c(l), l = 1, ..., Ns} were drawn from the teaching distribution of the speed of sound.

Then, samples of the approximation error were computed using

ǫ(l) = K(c(l))p
(l)
0 −K(c̃)p

(l)
0 (18)

where a constant or piece-wise constant speed of sound was used in the inexact forward

model K(c̃). Further, the mean and covariance of the approximation error were

computed as

ηǫ =
1

Ns

Ns∑

l=1

ǫ(l) (19)
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Figure 1. The simulated (true) initial pressure distribution p0 and the speed of

sound distributions c1 and c2 used in the soft tissue mimicking simulations. The initial

pressure distribution is given in arbitrary units and the speed of sound distributions

are given in units of m/s. The square and circle in the left image indicate the pixels

where the covariances and marginal densities are plotted.

Γǫ =
1

Ns − 1

Ns∑

l=1

(ǫ(l) − ηǫ)(ǫ
(l) − ηǫ)

T. (20)

It should be noted that simulation of the approximation error statistics is a

computationally intensive task, since the computation time for setting up the error

model is roughly equivalent to two times the number of samples multiplied by the time

for forward solution. However, this can be done off-line and the error model needs to

be estimated only once for a fixed measurement setup, and for the expected range of

uncertainties.

The accuracy of the posterior mean estimates was evaluated by computing the

relative errors of the estimates with respect to the true initial pressure distribution

using

Ep0 = 100% ·
‖p0 − p̂0‖

‖p0‖
, (21)

where p0 is the simulated initial pressure distribution and p̂0 is the estimated value

interpolated to the simulation space.

3.1. Soft tissue mimicking simulations

3.1.1. Data simulation In the simulations, a square domain of size 10mm × 10mm

was considered. The sensors were placed in one full view and two limited view sensor

geometries. The full view (four side) configuration contained 100 sensors surrounding

the domain. In the first limited view geometry, 50 sensors were placed in two adjacent

sides of the domain (two side), and in the other geometry, 25 sensors were placed in one

side of the domain (one side).

In data simulation, the medium was modelled as inhomogeneous. The simulated

initial pressure distribution consisted of a homogeneous background with initial pressure

zero that included 25 Gaussian inclusions that had a peak value of 10 and a full-width

at half-maximum of 0.8mm. The inclusions were located in a 5 × 5 grid pattern. The

simulated initial pressure distribution is illustrated in Figure 1. Two different speed
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Table 1. Parameters of the squared exponential distribution used in generating the

speed of sound distributions and in teaching the modelling error in the soft tissue

mimicking simulations: mean ηc(m/s), standard deviation σc(m/s) and characteristic

length scale lc(mm).

c1 c2
ηc σc lc ηc σc lc

Data simulation 1475 50/6 0.75 1450 125/6 0.75

Modelling error 1470 100/6 1 1470 100/6 1

of sound distributions c1 and c2 were considered and they are shown in Figure 1.

The speed of sound distributions were chosen to imitate a heterogeneous soft tissue.

The generated speed of sound distributions c1 and c2 were drawn from a squared

exponential distribution [40] using parameters which are shown in Table 1. The speed

of sound distribution c1 was generated from distribution with 99.7% in the range of

[1450, 1500]m/s and c2 from broader distribution in range of [1388, 1513]m/s.

Photoacoustic data was generated using the k-Wave MATLAB toolbox [38]. The

simulation grid consisted of 300×300 pixels with 33µm pixel width. The pressure signals

were recorded for 2401 time steps at a temporal sampling rate of 200MHz to ensure

the numerical stability of the forward model. However, the grid used in the solution of

the inverse problem supports only much lower frequencies. Thus, the simulated signal

was downsampled to 33MHz. A Gaussian noise with a standard deviation of 1% of the

maximum value of the simulated data was added to the simulated pressure signals.

3.1.2. Approximation of the modelling errors In order to form an approximation of

the modelling error, 10 000 samples were drawn from the teaching distributions of the

initial pressure and speed of sound. The teaching distribution for the initial pressure

was the Ornstein-Uhlenbeck process [40] with parameters listed in Table 2. In case that

negative parameter values were drawn, absolute values of them were taken in order to

make the samples positive and thus keep the model physical. For the speed of sound,

a squared exponential distribution with parameters given in Table 1 was used as the

teaching distribution. With these parameters, 99.7% of the speed of sound values were

expected to be normally distributed within the range [1420, 1520]m/s. For the inexact

forward model, a constant speed of sound value 1500m/s was used. Then, samples of

the approximation error were computed from a set of forward solutions using (18) and

the mean and covariance of the modelling error were approximated from these samples

using (19) and (20).

3.1.3. Solution of the inverse problem For the solution of the inverse problem, the

computation domain was discretized into 200×200 pixels with 50µm pixel width. In the

case of the AFM, the true speed of sound distribution interpolated from the simulation



Modelling of speed of sound errors in photoacoustic tomography 9

Table 2. Parameters of the Ornstein-Uhlenbeck distribution used in simulating the

initial pressure distributions when teaching the modelling error and in the solution of

the inverse problem in the case of the soft tissue mimicking simulations: mean ηp0
,

standard deviation σp0
and characteristic length scale lp0

(mm).

ηp0 σp0 lp0

Modelling error 5 10/6 0.75

Inverse problem 5 10/2 0.75

domain to the reconstruction domain was used. In the case of the IFM, fixed constant

value for the speed of sound of 1500m/s was used.

The Ornstein-Uhlenbeck process was used as the prior model for the initial pressure.

The parameters of the prior model are given in Table 2. For the measurement noise,

a Gaussian distributed noise with zero mean and standard deviation set to 1% of the

peak positive amplitude of the noisy simulated data was used. Furthermore, in the case

of the IFM, two situations were considered: ignoring the modelling errors (IFM) and

utilizing the simulated modelling error distribution (IFM&EM).

3.1.4. Results The mean and standard deviation of the posterior distribution of the

initial pressure obtained using different likelihood models and sensor geometries are

shown in Figures 2 and 3 for the two different speed of sound distributions c1 and c2,

respectively. Furthermore, marginal densities at two pixels inside of the domain are

shown in Figure 4. The relative errors of the estimates are given in Table 3.

As it can be seen, the most accurate estimates for the initial pressure are obtained

when the speed of sound is accurately known. In this case, also the relative errors

are smallest. Using a constant value for the speed of sound causes errors into the

posterior distribution that appear as artefacts in the images of the posterior mean which

is especially evident in the two side sensor geometry. These artefacts cause significant

increase in the relative errors. However, standard deviations are almost the same size as

in the case of the exactly known speed of sound. This indicates that reliability of these

estimates may not be realistic in the case of the inaccurate speed of sound. The errors in

the estimated initial pressure can be reduced, if the uncertainties in the speed of sound

are modelled and taken into account in the solution of the inverse problem. However,

modelling of these errors does not compensate for all the errors in the posterior mean

and some artefacts remain in the images, see for example the lower right corner of the

posterior mean obtained using IFM&EM and two side sensor geometry in Figures 2 and

3. This is reflected to relative errors that are lower than in the case of the constant

speed of sound but slightly higher than the relative errors with the accurate speed of

sound. On the other hand, modelling of the errors increases the width of the posterior

distribution that can be seen in the standard deviations in Figures 2 and 3 and especially

in the marginal densities in Figure 4. That is, although all the errors cannot be reduced,
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Figure 2. Posterior mean (left block) and standard deviation (right block) for the

soft tissue mimicking simulations with the speed of sound distribution c1. Shown in

the blocks are the results obtained using the AFM, IFM and IFM&EM. The rows from

top to bottom represent the four side (first row), two side (second row) and one side

(third row) sensor geometries. The red dots in the first column images indicate the

locations of the sensors.

Table 3. Relative errors of the estimated mean of the posterior in percentage obtained

using the AFM, IFM and constant IFM&EM in four side, two side and one side sensor

geometries in the case of the soft tissue mimicking simulations.

c1 c2
AFM IFM IFM&EM AFM IFM IFM&EM

Four side 5 17 11 6 33 20

Two side 8 122 28 9 275 51

One side 31 74 55 24 108 68

the uncertainty of the estimates is increased, which indicates that the reliability of these

estimates can be evaluated with better accuracy.

When comparing the different sensor geometries, it can be seen that the estimates

of the posterior mean obtained using the full view sensor geometry are qualitatively and

quantitatively better and the standard deviations are smaller than in the limited view

geometries. As the sensor geometry turns more limited view, accuracy of the estimates

is reduced and the estimates of the initial pressure become distorted in the areas not

closed by the sensors. In addition, the standard deviations increase. This demonstrates

behavior of inverse problems. That is, in the case of mildly ill-posed inverse problem,
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Figure 3. Posterior mean (left block) and standard deviation (right block) for the

soft tissue mimicking simulations with the speed of sound distribution c2. Shown in

the blocks are the results obtained using the AFM, IFM and IFM&EM. The rows from

top to bottom represent the four side (first row), two side (second row) and one side

(third row) sensor geometries. The red dots in the first column images indicate the

locations of the sensors.

such as full-view measurement geometry and inaccuracies in the speed of sound, small

errors may not cause large errors in the solution of the inverse problem. Further, in

the case of ill-posed inverse problem, such as limited view measurement geometry, even

small errors in modelling can cause large errors into the solution. However, it should also

be noted that, although in the case of mildly ill-posed inverse problem, the estimated

mean of the posterior distribution may appear qualitatively good and the relative error

is relatively small, the width of the posterior may still be too narrow to be considered

as a credible reliability estimate. This can be seen for example in the images on the

first row of Figure 4, where marginal densities of the posterior distribution are narrow

and thus the true values are not within their support in the cases where incorrect speed

of sound value is used and its errors are not modelled.

If we compare the results of different speed of sound distributions, c1 and c2, it can

be seen that even small increase in the variation of the speed of sound values in the

simulated data, increases the errors in the estimates. Furthermore, it can be noticed

that, although modelling of the errors was taught using speed of sound values with

distribution closer to the wider distribution, it still cannot compensate the errors as

well as in the case of the narrow distribution as can be seen from the images of posterior

mean. This is due to fact that, in the case of PAT, even small variations in the speed of

sound, can cause large variations in the measured time dependent photoacoustic wave.
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Figure 4. Marginal probability densities of the posterior distributions at locations

denoted by � and © in Figure 1 for the soft tissue mimicking simulations. The left

block shows results for the simulated speed of sound c1 and the right block shows the

results for c2. The rows presents results obtained using four side (first row), two side

(second row) and one side (third row) sensor geometries. Shown in the graphs are

results for the AFM, IFM and IFM&EM with black line denoting the true value initial

pressure distribution.

Thus, the best result in compensation of errors would be achieved if the width of the

teaching distribution is chosen judiciously and case-specifically.

To visualize covariance of the posterior distribution, covariance at two pixels inside

of the domain were plotted and are shown in Figure 5 for the speed of sound distribution

c1. As it can be seen, both ignorance of modelling errors and modelling of these errors

changes the covariance. Furthermore, it can be noticed that the covariance obtained

using the full view sensor geometry has similar correlation to all directions. As sensor

geometry turns more limited view, the correlation between the pixels increases and the

shape of the correlation pattern changes. In addition, the point (©) that is far from the

sensor correlates more strongly with other pixels than the point (�) that is close to the

sensor. Furthermore, in the distant point, the correlation seems to have same direction

as the limited view stripe artefacts.

3.2. Soft tissue and bone mimicking simulations
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Figure 5. The absolute values of the posterior covariances of the initial pressure on

a logarithmic scale at locations denoted by � and © in Figure 1 for the soft tissue

mimicking simulations with the speed of sound distribution c1. The left block presents

the results in the point marked with � and the right block presents the results in the

point marked with ©. Shown in the blocks are the results obtained using the AFM,

IFM and IFM&EM in four side (first row), two side (second row) and one side (third

row) sensor geometry. The red dots in the first column images indicate the locations

of the sensors.

3.2.1. Data simulation A more complicated situation in which the domain was

composed of two sub-regions in which the speed of sound was significantly different

was studied. The purpose of the simulation was to mimic the speed of sound in soft

tissue and bone. The simulations were performed again in a square domain of size

10mm× 10mm. Same sensor geometries as in the previous simulations were used.

The initial pressure distribution and the speed of sound distribution employed to

simulate photoacoustic data are shown in Figure 6. The initial pressure distribution

consisted of many different shaped and sized somewhat smooth inclusions. The acoustic

heterogeneity imitated a bony structure inside a soft tissue with shape of semicircle and

thickness of 0.7mm. The speed of sound distribution was created using the squared

exponential prior with parameters listed in Table 4, i.e. the speed of sound in the bony

structure are on the interval [2675, 2845]m/s with 99.7% probability and the speed of

sound values in the soft tissue are on the interval [1530, 1590]m/s with 99.7% probability.

In the computation of the forward solution, the computation domain was discretized

into 300×300 with 33µm pixel width, and 4001 time steps at a temporal sampling rate

of 333MHz were considered. The measured signal was downsampled to 66MHz. In

addition, a white Gaussian noise that had a zero mean and a standard deviation of 1%



Modelling of speed of sound errors in photoacoustic tomography 14

p
0

-5 0 5

x(mm)

-5

0

5

y
(m

m
)

0

2

4

6

8

10

c
3

1500

1550

1600

2650

2775

2900

Figure 6. The simulated (true) initial pressure distribution p0 and the speed of sound

distribution c3 used in the soft tissue and bone mimicking simulations. The initial

pressure distribution is given in arbitrary units and the speed of sound distributions

are given in units of m/s. The square and circle in the left image indicate the pixels

where the covariances and marginal densities are plotted

Table 4. Parameters of the squared exponential distribution used in simulating the

speed of sound distributions and in teaching the modelling error in the soft tissue

and bone mimicking simulations: mean ηc(m/s), standard deviation σc(m/s) and

characteristic length scale lc(mm).

ηc σc lc

Data simulation
Bone 2760 170/6 0.75

Tissue 1560 60/6 0.75

Modelling error
Bone 2750 300/6 1

Tissue 1550 100/6 1

of the maximum simulated data was added to these signals.

3.2.2. Approximation of the modelling error Statistics of the approximation error were

estimated using 10 000 initial pressure samples drawn from the Ornstein-Uhlenbeck

distribution and 10 000 speed of sound samples drawn from the squared exponential

distribution. Parameters of the sample distributions are given in Table 5 for the initial

pressure and in Table 4 for the speed of sound. In the initial pressure samples, negative

values were not allowed and thus the absolute values of the samples were considered.

Samples of the approximation error were computed from a set of forward solutions with

the accurate and inaccurate models using (18). In the accurate model, the sampled speed

of sounds were used. In the inaccurate model, the fixed constant value for the speed

of sound was chosen to be 1500m/s for the soft tissue and 2750m/s for the bone, and

boundaries of these regions were assumed to be known. The mean and the covariance

of the modelling error were computed from approximation error samples using (19) and

(20).



Modelling of speed of sound errors in photoacoustic tomography 15

Table 5. Parameters of the Ornstein-Uhlenbeck distribution used in simulating the

initial pressure distributions when teaching the modelling error and in the solution of

the inverse problem in the case of the tissue and bone mimicking simulations: mean

ηp0
, standard deviation σp0

and characteristic length scale lp0
(mm).

ηp0 σp0 lp0

Modelling error 5 10/6 0.75

Inverse problem 5 10/2 2

3.2.3. Solution of the inverse problem In the computation of the inverse solution, the

computation domain was discretized into 200× 200 pixels with 50µm pixel width. The

solution of inverse problem was computed using the accurate speed of sound (AFM), the

inaccurate speed of sound (IFM), and the inaccurate speed of sound together with error

modelling (IFM&EM). In the case of the AFM, the true speed of sound distribution

was interpolated from the simulation domain to the reconstruction domain. In the

IFM and IFM&EM, the fixed constant value for the speed of sound was chosen to be

1500m/s for the soft tissue and 2750m/s for the bone. In addition, the boundaries of

the sub-regions were assumed to be known exactly. As prior information, the Ornstein-

Uhlenbeck process was used. Prior parameters are given in Table 5. Measurement noise

was modelled as a Gaussian with zero mean and standard deviation set to 1% of the

peak positive amplitude of the noisy simulated data.

3.2.4. Results The mean and standard deviation of the posterior distribution of the

initial pressure obtained using different models and sensor geometries are shown in

Figure 7. In addition, marginal densities at two pixels inside of the domain are shown

in Figure 8. The relative errors of the estimates are given in Table 6.

As it can be seen, both the quality and the quantitative accuracy of the solution of

the inverse problem depend on exactness of the used model. Accurate modelling of the

speed of sound resulted in the most accurate estimates with the smallest relative errors.

Use of an inaccurate piece-wise constant speed of sound in the solution inverse problem

causes artefacts in the estimates of the posterior mean and results into significantly

higher relative errors. Although the estimates of posterior mean are not equally accurate

in the case of the true speed of sound and the inaccurate speed of sound, the standard

deviations are similar. This indicates that the standard deviations are too small when

the inaccurate speed of sound is used. On the other hand, accuracy and reliability of

the solution of the inverse problem can be improved by modelling uncertainties in the

speed of sound. Modelling of errors decreases the artefacts shown in the estimates of

posterior mean and decreases relative errors, thus making these estimates comparable

to the estimates with the accurate speed of sound. In addition, modelling of errors

increases the standard deviations. For example, as it can be seen in Figure 8 the true

value is within the principal support of the distribution in IFM&EM estimate.
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Figure 7. Posterior mean (left block) and standard deviation (right block) for the

soft tissue and bone mimicking simulations. Shown are the results obtained using the

AFM, IF) and IFM&EM. The rows from top to bottom represent four side (first row),

two side (second row) and one side (third row) sensor geometries. The red dots in the

first column images indicate the locations of the sensors.

Table 6. Relative errors of the estimated mean of the posterior in percentage obtained

using the AFM, IFM and IFM&EM in four side, two sides and one side sensor

geometries in the case of the soft tissue and bone mimicking simulations.

AFM IFM IFM&EM

Four side 4 31 12

Two side 7 60 22

One side 15 129 33

Comparing the estimates obtained using different sensor geometries, it can be seen

that the most accurate estimates of the posterior mean are obtained using the full

view sensor geometry and the accuracy of the estimates reduces in the limited view

geometries. Correspondingly, the standard deviations are smallest in case of the full

view sensor geometry and the use of the limited view sensor geometries increases the

standard deviations. Reduction of the accuracy and increase in uncertainty is more

significant in regions not enclosed by the sensors. This can be seen in Figure 8 where

the maximum of marginal density is further from the true value and the true value is

not within the principal support of the distribution. It also should be noted that the

standard deviation is larger in the location on the bony structure than on the soft tissue,
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Figure 8. Marginal probability densities of the posterior distributions at locations

denoted by � and © in Figure 6 for the soft tissue and bone mimicking simulations.

The rows presents results obtained using four side (first row), two side (second row) and

one side (third row) sensor geometries. Shown in the graphs are results for the AFM,

IFM and IFM&EM with black line denoting the true value initial pressure distribution.

and at least in the limited view sensor geometries, the bony structure also increases the

standard deviation of the soft tissue near it. Furthermore, the bony structure distorts

the standard deviation making the standard deviations not as smooth as in the case of

the soft tissue mimicking simulations.

Covariance of the posterior distribution is visualized in Figure 9 by plotting

covariance at two pixels inside of the domain. As it can be seen, the shapes of the

covariance patterns are different compared to the soft tissue mimicking simulations.

This likely arises from the bony structure. In addition, it can be noticed that modelling

of the errors changes the covariance. This is more evident in the pixel (©) that is far

from any sensor. Also, the sensor geometry changes the covariance. The correlation

between the pixels increases and the covariance pattern change in shape as the number

of the detection surfaces decreases. Especially, the pixel (©) that is distant from the

sensor correlates more strongly with other pixels than the pixel (�) that is close to the

sensor.
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Figure 9. The absolute values of the posterior covariances of the initial pressure on a

logarithmic scale at locations denoted by � and © in Figure 6 for the soft tissue and

bone mimicking simulations. The left block presents the results in the point marked

with � and the right block presents the results in the point marked with ©. Shown

in the blocks are the results obtained using the AFM, IFM and IFM&EM in four side

(first row), two side (second row) and one side (third row) sensor geometry. The red

dots in the first column images indicate the locations of the sensors.

4. Discussion

In this paper, the boundaries between soft tissue and a bone structure were assumed to

be known. This boundary information could be obtained, for example, from a computed

tomography (CT) image. However, these images are not always available. In addition,

segmentation of the regions from these images can be difficult and thus errors may occur

leading to errors in the estimates. Alternatively, it could be possible to utilize a similar

reduced parametrization approaches as in [19] to find constant speed of sound values

for the speed of sound in certain sub-regions, and then model the uncertainties using

the approach proposed in this work. Furthermore, it could be possible to model the

uncertainties related to the locations of the sub-region boundaries using the Bayesian

approximation error modelling.

The performance of the approximation error modelling depends on the prior and

teaching models that are used. The models should be chosen in such a way that the true

target is well supported by the model. The choice of these models and their parameters

is based on pre-existing knowledge of the imaged target. In practice, prior information

on the speed of sound in various tissues exists as a tabulated data, and anatomical

information could be obtained, for example, using an another imaging modality such as
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CT. Even though the prior model of the initial pressure utilized in this paper does not

represent the simulated target exactly, the results show that accurate solutions of the

inverse problem could still be achieved with this model. The results also suggests that

the approximation error modelling is robust to errors in the assumed speed of sound

used in the teaching of the approximation error. That is, even though the true speed

of sound distribution is not fully covered by teaching distribution, the approximation

error modelling can still correct some errors in the estimates.

In this paper, the medium was assumed to be non-attenuating and density

variations were also ignored. However, a biological tissue has usually variations in the

density values and it is attenuating. In future work, the approximation error modelling

could be extended to compensate errors caused by the uncertainties in these parameters

as well.

5. Conclusions

In this paper, errors caused by unknown speed of sound in PAT and modelling of these

errors utilizing the Bayesian approximation error modelling were studied. The approach

was evaluated with numerical simulations using different speed of sound distributions

and sensor geometries. Posterior mean, standard deviations, covariances and marginal

densities were inspected to evaluate the results.

Results show that inaccurate modelling of the speed of sound can lead to reduced

accuracy of the estimates of the posterior mean and overly confident uncertainty

estimates. However, modelling of the errors using the Bayesian approximation error

modelling can improve the solution of the inverse problem significantly by improving

the accuracy of the mean and making the credibilities more reliable. However, the

Bayesian approximation error modelling is able to compensate only for small variations

in the speed of sound.
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