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Appendix 1: Forms of malnutrition throughout the life course and their public health significance

Definition

Public health significance

Under-nutrition

Low birth weight (LBW)
(1,2)

Preterm birth (1-5)

Small-for-gestational age
(SGA) (1, 2, 4)

Wasting (acute
malnutrition) in children,
0-5 years (6, 7)

Stunting (chronic
malnutrition) in children,
0-5 and 5-19 years (7, 8)

Underweight in children,
0-5 years (7,9)

Thinness (also referred
to as “moderate and
severe underweight”) in
children, 5-19 years (10,
11)

Anaemia in children (12,
13)

Underweight in adults
(14-16)

Birth weight < 2500 g. Comprises babies born preterm and/or with fetal
growth restriction. Very low birth weight < 1500 g.

Births prior to 37 complete weeks after the first day of the last menstrual
period before the pregnancy. Moderate to late preterm (32 to < 37 weeks).
Very preterm (28 to < 32 weeks). Extremely preterm (< 28 weeks).

Birthweight < 10th centile for a gender-specific completed gestational age.
Further divided into term-SGA and preterm-SGA.

Weight-for-height more than 2 standard deviation scores (SDS) below the age-
and sex-specific median of the 2006 World Health Organization (WHO) child
growth standards. Moderate wasting (> -3 and < -2 SDS). Severe wasting (< -3
SDS).

Height-for-age more than 2 SDS below the sex-specific median of the 2006 (0-5
years) and 2007 (5-19 years) WHO child growth standards. Moderate stunting
(> -3 and < -2 SDS). Severe stunting (< -3 SDS).

Weight-for-age more than 2 SDS below the sex-specific median of the 2006
WHO child growth standards (0-5 years).

Body Mass Index (BMI)-for-age more than 2 SDS below the sex-specific median
of the 2007 WHO child growth standards (0-5 years). Mild thinness (> -2 and < -
15DS).

Haemoglobin concentrations < 110 g/I (Children 0—4 years) and < 120 g/I
(Children 6—14 years) in populations living at sea level.

BMI < 18.5 kg/m’. Mild underweight (=17.0 and < 18.5 kg/m’). Moderate
underweight (= 16.0 and <17 kg/m”). Severe underweight (< 16 kg/m”).
European Society of Clinical Nutrition and Metabolism (ESPEN) proposed cut-
offs of <15 and <17 kg/m’ in females and male respectively to identify low fat-
free mass index (FFMI), calculated as fat-free mass/height’ in kg/m’.

a) Statistics: Globally 20 million (15-20 % of all births).

b) Health impact: Associated with postnatal mortality and morbidity as well as
impaired cognitive development and non-communicable diseases (NCDs) later in
life.

a) Globally ~ 15 million infants.

b) Associated with high risk of neonatal mortality, poor cognitive development
and pulmonary sequelae.

a) ~ 32.4 million infants (27 % of livebirths) in low- and middle income countries.
b) Associated with postnatal mortality and morbidity.

a) Globally ~ 52 million (7.7 %) children < 5 years are wasted, including 17 million
severely wasted.

b) Associated with impaired immune function, child morbidity and mortality.
Recurrent episodes or long-term of wasting may impair linear growth.

a) Globally ~ 155 million (23 %) children < 5 years are stunted.

b) Largely irreversible long-term health impacts including cognitive impairment,
reduced physical growth potential and birth weight of offspring, increased risk of
diet-related NCDs and reduced economic productivity. Stunting in childhood is
associated with adult short stature, though some height recovery may occur
during later childhood/adolescence.

a) Globally ~ 94.5 million (14 %) children < 5 years are underweight.

b) Associated with risk of infectious diseases postnatal mortality. May reflect
wasting and/or stunting, and thus a difficult measure to interpret.

a) Global age-standardised prevalence of 12.4 % in boys and 8.4 % in girls.

b) Associated with risk of infectious diseases and for girls of childbearing age with
mortality, delivery complications, preterm birth, and intrauterine growth
retardation.

a) Globally ~ 273 million (43 %) children <5 years.

b) Associated with impaired cognitive and motor development as well as
increased morbidity and mortality.

a) Global age-standardised prevalence of 8.8 % in men and 9.7 % in women.
b) Increased risk of morbidity and mortality, including frailty in old age.




Acute energy deficiency
(AED) (15)

Short stature in adults
(11)

Sarcopenia in adults (17-
19)

Anaemia in woman of
reproductive age (12, 13)

A state of negative energy balance resulting in a steadily declining body weight
and energy stores.

No universal definition currently available, reflecting significant inter-
population variability in average height. Potential categorisations include 10"
centile, lowest quartile. A universal approach matching that in children could
be height-for-age >2 SDS below the sex-specific median of the 2007 (5-19
years) WHO growth standards, equivalent to < 161.9 and < 150.1 cm at 19
years for males and females respectively.

Progressive and generalised loss of skeletal muscle tissue, strength and
function as a result of ageing. Cut-off points depend on the assessment
technique used to measure muscle mass, strength and function. It is suggested
to use a value of more than 2 SDS below a sex-specific mean reference value of
healthy young adults.

Haemoglobin concentrations < 120 g/I (Non-pregnant women) and < 110 g/I
(Pregnant woman) in populations living at sea level.

a) No data available.
b) Lowers resistance to infection and work capacity.

a) No data available.
b) Similar risk as for stunting in childhood.

a) Globally 5-13 % in persons above 60 years.
b) Results in physical disability, poor quality of life and mortality.

a) Globally ~ 496 million (29 %) non-pregnant and ~ 32 million (38 %) pregnant
women.

b) Low levels of haemoglobin during pregnancy are associated with risk of
miscarriage, stillbirths, preterm delivery and having a LBW child. Associated with
maternal morbidity, mortality, fatigue, lethargy and low productivity.

Overweight

High birth weight (fetal
macrosomia) (20)

Large-for-gestational age
(20)

Overweight and obesity
in children, 0-5 years (7,
21)

Overweight (but not
obesity) in children, 5-19
years (10, 11)

Obesity in children, 5-19
years (10, 11)

Overweight in adults (14,
22-24)

Birth weight > 4000-4500 g. May be divided into 3 categories: Birth weight >
4000 and <4500 g (Grade 1). Birth weight of > 4,500 and <5000 g (Grade 2).
Birth weight 25,000 g (Grade 3).

Birth weight > 90th percentile for a given gestational age.

Weight-for-height more than 2 SDS above the age- and sex-specific median of
the 2006 WHO child growth standards.

BMI-for-age more than 1 SDS to 2 SDS above the sex-specific median of the
2007 WHO child growth standards. A SDS > 1 is equivalent to a BMI of 25.4 and
25.0 kg/m2 at 19 years for boys and girls, respectively.

BMI-for-age more than 2 SDS above the sex-specific median of the 2007 WHO
child growth standards. A SDS > 2 is equivalent to a BMI of 30 kg/m’ at 19
years for both sexes.

BMI > 25.0 and < 30 kg/mz. Ethnic-specific criteria representing increased risk
for Asian populations are suggested by a WHO expert consultation: BMI > 23.0
and < 27.5 kg/m’.

a) Prevalence varies between 5-20 %.

b) Grade 1: Increased risk of labour complications. Grade 2: An additional risk of
maternal and newborn morbidity. Grade 3: An additional risk of still birth and
neonatal mortality.

a) No data, but definition automatically extends to ~10%.
b) Depending on gestational age, risks are similar to those of high birth weight.

a) Increasing in all regions of the worlds, the estimated global number of
overweight children < 5 years is ~ 41 million (6 %).

b) Overweight from an early age has been found to track throughout childhood,
adolescence and into adulthood, where it increases the risk of diet-related NCDs.

a) No data available.

b) Overweight from an early age has been found to track throughout childhood,
adolescence and into adulthood, where it increases the risk of diet-related NCDs.

a) Global age-standardised prevalence of 7.8 % in boys and 5. 6 % in girls

b) Same as for overweight. In addition, obesity lowers self-esteem, increases risk
of psychosocial problems and lowers educational attainment.

a) Global age-standardised prevalence of 36.9 % in men and 38.0 % in women

b) A risk factor for a wide array of NCDs, including cardiovascular and kidney
diseases, type-2-diabetes, some cancers, and musculoskeletal disorders.




Obesity in adults (14, 22,
24)

Abdominal obesity in
adults. Determined
based on waist
circumference (25)

Abdominal obesity in
adults. Determined
based on waist—hip ratio
(25)

Sarcopenic obesity (26-
30)

High body fatness (fat
percentage) in adults
(31)

BMI > 30 kg/m”. Severe obesity/obese class 2 (= 35 and <40 kg/m?) and morbid
obesity/obese class 3 (= 40 kg/m?). Ethnic-specific criteria representing high
risk for Asian populations are suggested by a WHO expert consultation: BMI >
27.5.

Risk of metabolic complications is increased with a waist circumference > 94
cm (men) and > 80 cm (women). Risk of metabolic complications is
substantially increased with a waist circumference > 102 cm (men) and > 88 cm
(women).

Ethnic-specific criteria where the risk of metabolic complications is increased.
Europid: >94 (men) and >80 (women); South Asian, Chinese and Japanese: >90
(men) and >80 (women).

Risk of metabolic complications is substantially increased with a waist—hip ratio
>0.90 (males) and > 0.85 (females).

Loss of muscle mass, while fat mass is preserved or even elevated. Thus, body
weight may be maintained. No universal definition, various proposals to
categorize a combination of low muscle mass and high adiposity.

Cut-off values for obesity by fat percentage: 25 % (men) and 35 % (women),
corresponding to a BMI of 30 kg/m’ in young Caucasians. These may be
replaced by cut-offs based on fat mass index, which is a size-adjusted index of
adiposity independent of the magnitude of fat-free mass.

a) Global age-standardised prevalence of 10.8 % in men and 14.9 % in women
(obesity). Severe (2.3 % and 5.0 %) and morbid (0.64 % and 1.6 %) obesity.

b) Same as for overweight. In addition, obesity lowers self-esteem, increases risk
of psychosocial problems and lowers educational attainment.

a) No data available.
b) Same as for overweight and obesity by BMI.

a) No data available.
b) Same as for overweight and obesity by BMI.

a) Across 10 high and low-/middle-income countries, national prevalence ranged
from 1.3% (India) to 11.0% (Spain). Prevalence varies according to diagnostic
criteria used.

b) Elevated cardio-metabolic risk in association with impaired physical function
and frailty

a) No data available.
b) Same as for overweight and obesity by BMI.
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Appendix 2. Malnutrition and the microbiome, and the effects of probiotics on cardio-metabolic risk markers

(A) Associations between different forms of malnutrition through the life-course with dysbiosis

Form of Age Population Study design | n Reported associations Ref
malnutrition
Low birth weight 37-42w Beijing, China Case-control | 24 Placenta of low birth weight neonates had significantly 1
gestational age lower bacterial richness than that of normal birth weight
neonates
Stunting 3-24m Vellore, South | Case-control | 20 Chronically stunted children had lower microbiome 2
India enrichment in probiotic species and increased
enrichment in inflammogenic taxa, but no difference in
microbiome diversity
M:10m + 10 m Malawi, 36 twin pairs Reduced microbiota diversity was associated with 3
follow-up Bangladesh stunting severity, while increased relative abundance of
B:3m + 14m some species predicted future growth faltering
follow-up
Severe-acute Malawi, Case- control | M: 19 Severe-acute malnutrition is associated with relative 4,5
malnutrition Bangladesh B: 76 microbiota immaturity, only partially ameliorated by
nutritional therapy
6-24m Uganda Comparison | 87 Non-oedematous children had lower gut microbiome 6
of 2 groups diversity than oedematous children
13.4+17.8m Nigeria, 15 Severe-acute malnutrition was associated with globally 7
Senegal decreased microbiome diversity, a depletion in oxygen-
sensitive prokaryotes, and an enrichment in potentially
pathogenic species
Sarcopenia 63-78y HICs Systematic review | 4 of 5 studies associated physical frailty with reduced 8
of 5 studies microbiome diversity
Anorexia nervosa 30+ 8y Japan 46 Lower amounts of total bacteria and altered microbiome | 9
composition in patients vs controls
Obesity Range of means HICs/MICs Comparison Meta-analysis of Only weak evidence for a systematic association 10
26-61y of 2 groups 10 studies between obesity status and microbial communities
18-27m us 77 Maternal obesity is associated with less varied 11

microbiome composition in the young child




(B) Effect of interventions using probiotics to reduce cardio-metabolic risk markers in adults

Form of cardio- Age Population Study design | n Effect of interventions using probiotics Ref
metabolic risk
BMI and % fat Adults HICs/MICs RCTs Meta analysis of Probiotic supplements promoted loss of BMI and %fat, 12
15 studies though the effect size was small
Waist girth Adults HICs/MICs RCTs Meta analysis of 4 | Consistent reduction in waist circumference across 13
studies studies
Type 2 diabetes Adults HICs/MICs RCTs Meta analyses of | Supplementation with probiotics reduced fasting blood 14,15
12 and 13 studies | glucose, insulin resistance and HDL cholesterol compared
to placebo
Gestational Adult women RCTs Meta analysis of 4 | Supplementation with probiotics reduced insulin 16
diabetes studies resistance compared to placebo, but did not affect
gestational weight gain
Hypertension Adults HICs/MICs RCTs Meta analysis of 9 | Supplementation with probiotics reduced systolic and 17
studies diastolic blood pressure compared to placebo, with the
effects stronger when multiple species of probiotic are
consumed
LDL and HDL Adults HICs/MICs RCTs Meta analysis of Supplementation with probiotics reduced LDL, though 18
15 and 14 studies | results showed heterogeneity, but had no consistent
effect on HDL
Triglycerides Adults HICs/MICs RCTs Meta analyses of | Supplementation with probiotics had no consistent 18
13 studies effect on triglycerides
Inflammatory Adults HICs/MICs RCTs Supplementation with probiotics reduced C-reactive 19
markers protein but not TNF Alpha or IL6
(C) Effect of interventions using probiotics to improve growth in children
Growth outcomes | Age Population Study design | n Effect of interventions using probiotics Ref
Weight and height | Children<5y HICs/LMICs RCTs and Systematic review | Positive effect of probiotics on child growth in 5 studies 20
for age non- of 10 RTCS and 2 in developing countries with mostly under-nourished
randomized non-randomized children, but no significant effect in 7 studies in

clinical trials

clinical trials

developed countries




(D) Effect of interventions using fecal microbiota transplantation (FMT) to reduce cardio-metabolic risk markers in adults

Form of cardio- | Age Population Donors n Effect of interventions using fecal transplant ation Ref
metabolic risk
Metabolic 55(SD 8)y | Male obese participants | Vegans 10 patients with 9 Changes in intestinal microbiota composition but no 21
syndrome of West European donors, vs 10 patients change in production capacity of an atherogenic
genetic background with autologous FMT metabolite, or markers of vascular inflammation
Metabolic 47 (SD 4) y | Male Caucasian obese Healthy 9 patients with 9 donors, | Improved insulin sensitivity of recipients at 6 weeks, 22
syndrome subjects lean men vs 9 patients with along with increased levels of butyrate-producing
autologous FMT intestinal microbiota
Metabolic 54 (49-60) | Male, omnivorous, Healthy 26 patients with 11 Transient improvement in insulin sensitivity at 6 weeks | 23
syndrome y Caucasian, obese lean men donors, vs 12 patients (not sustained), associated with changes in microbiota
subjects with autologous FMT composition and fasting plasma metabolites.

W — weeks; m — months; y — years; RCTs — Randomized controlled trials

HICs — High-income countries; MICs — Middle-income countries;
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Appendix 3: Expanded Panel 1

Mechanisms through which early nutrition impacts long-term phenotype

Early nutrition generates long-term effects on organ size, structure and function. Mammalian growth in fetal life and early infancy comprises
hyperplasia (cell proliferation), crucial for the development of organ structure, whereas from late infancy, growth shifts to hypertrophy
(increases in cell size).! For example, low birth weight infants have altered cardiac structure® and small liver, kidneys and spleen,®* while
macrosomic infants may demonstrate organomegaly.’

Early nutrition impacts various hormonal axes regulating growth and appetite. For example, both under- and over-nutrition in the perinatal
period affect insulin metabolism®® and hypothalamic circuits regulating food intake.’ Low birth weight infants may be insulin-sensitive at
birth, but are susceptible to insulin-resistance in association with faster childhood weight gain.

Both inter-uterine growth retardation and maternal diabetes expose the fetus to oxidative stress, impacting cardiac structure,
haemodynamics and endothelial dysfunction.™

Maternal nutrition in pregnancy is associated with variability in offspring gene expression. For example, peri-conceptional exposure to
maternal famine has been associated with epigenetic changes in IGF1 expression that persisted into early old-age,™* while season of
conception in a rural African population was associated with diverse epigenetic effects in infancy.'> Maternal obesity and gestational

13,14

diabetes is associated with epigenetic effects on genes associated with metabolic disease, and dietary interventions in pregnancy may

alter neonatal gene expression.” Some such epigenetic changes may have adverse long-term health effects.

Exposing infants and young children to a relatively narrow range of sweet and salty tastes in early life may also have long-term negative

consequences by reducing the repertoire of foods these children learn to like, and thus shaping their future food choices towards

. . 16-19
obesogenic diets.

Telomeres provide a marker of cellular aging sensitive to early nutritional experience. For example, placental and/or neonatal telomere

20,21

length is associated with some components of maternal nutritional status, and predict post-natal body composition,?? while exclusive

breast-feeding may reduce telomere attrition.?

24,25

The gut microbiome rapidly matures in early life, and early malnutrition disrupts this process. For example, among twins discordant for

kwashiorkor, the affected sibling developed narrower gut microbiome diversity, and transplanting this biota to germ-free mice induced

10



growth failure.”® The microbiome shows both resilience within individuals over time,?” with implications for health status and diease risk, but
also the capacity to respond to dietary change,? use of pre- and pro-biotics, and fecal transplantation.”

* Collectively, these mechanisms generate a profound imprint of early malnutrition on later phenotype, impacting both the risk and the
metabolic effects of subsequent overweight.
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Appendix 4: Meta-analyses for inter-generational transmission of underweight and overweight,

and how each form of malnutrition increases risk of the other

Outcome Exposure and Studies | Agerange | Pooled effect Confounding, effect Conclusions Ref
reference group (n) of (95% CI) modification and biases

outcome

Inter-generational cycle of under-nutrition

Low birth weight | Maternal low BMI (vs 78 Birth RR 1.64 Most studies from HICs, but Increased risk of low birth 1
normal BMI), defined (1.39, 1.94) effect size similar in HICs and | weight in low BMI mothers
variably across studies LMICs

Low birth weight, | Maternal low BMI (vs 8 Birth LBW: OR 1.66 | All studies from LMICs. BMI Low BMI mothers at increased | 2

SGA normal BMI), defined (1.50,1.84) measured before or during risk of delivering LBW and
variably across studies SGA: OR 1.85 early pregnancy SGA babies

(1.69, 2.02)

Preterm birth Maternal low BMI (vs 78 Birth RR 1.29 Most studies from HICs, Increased risk of preterm 1
normal BMI), defined (1.15, 1.46) difference non-significant in delivery in low BMI mothers
variably across studies LMICs in HICs but not LMICs

Preterm birth Maternal low BMI (vs 11 Birth OR1.13 All studies from LMICs. BMI Low BMI mothers at high risk | 2
normal BMI), defined (1.01,1.27) measured before or during of delivering preterm babies
variably across studies early pregnancy

Low birth weight | Maternal short stature | 56 Birth RR 1.81 Studies from HICs and LMICs. Increased risk of low birth 3
(vs normal stature) (1.47,2.23) Unadjusted effects reported, weight offspring in mothers of
defined variably across some heterogeneity in short stature
studies adjusted analyses

Preterm birth Maternal short stature | 56 Birth RR1.23 Studies from HICs and LMICs. Increased risk of preterm 3
(vs normal stature) (1.11, 1.37) Unadjusted effects reported delivery in mothers of short
defined variably across stature
studies

Low birth weight | Maternal anemia low 17 Birth RR 1.31 Studies from LMICs Maternal anaemia assessed 4
haemoglobin) vs non (1.13, 1.51) by low haemoglobin is
anaemic in first 2 associated with increased risk
trimesters of low birth weight

Preterm birth Maternal anemia (low 13 Birth RR 1.63 Studies from LMICs Maternal anaemia assessed 4
haemoglobin) vs non (1.33,2.01) by low haemoglobin is

anaemic in first 2
trimesters

associated with increased risk
of preterm birth
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Preterm birth Gestational weight 4 Birth OR 1.70 Effect modified by pre- Low gestational weight gain
gain below IOM (1.32,2.20) pregnancy BMI. Weight self- associated with increased risk
guidelines Vs weight reported or measured at first | of preterm delivery
gain within guidelines antenatal visit

SGA Gestational weight 4 Birth OR 1.53 Adjusted for sex, ethnicity and | Low gestational weight gain
gain below IOM (1.44, 1.64) parity associated with increased risk
guidelines vs weight Effect modified by pre- of SGA
gain within guidelines pregnancy BMI

Stunting Low birth weight 19 12-60m LBW: OR 2.92 | Studies from LMICs. Being born LBW or SGA
(<2.5kg) vs 22.5kg (2.56, 3.33) Wide age range of outcome increased the odds of stunting
SGA (<10th percentile) SGA: OR 2.32 (12-60 months) in early childhood
vs 210" percentile (2.12, 2.54)

Stunting Pre-term birth vs term | 19 12-60m OR 1.69 Studies from LMICs. Preterm birth increases the
delivery (1.48, 1.93) Wide age range of outcome odds of stunting in early

(12-60 months) childhood

Wasting Low birth weight 19 12-60m LBW OR 2.68 Studies from LMICs. Being LBW or SGA increased
(<2.5kg) vs 22.5kg (2.23, 3.21) Wide age range of outcome the odds of wasting in early
SGA (<10" percentile) SGA: OR2.36 | (12-60 months) childhood
vs 210" percentile (2.14, 2.60)

Wasting Pre-term birth vs term | 19 12-60m OR 1.55 Studies from LMICs. Preterm birth increases the
delivery (1.21, 1.97) Wide age range of outcome odds of wasting in early

(12-60 months) childhood

Inter-generational cycle of overweight

Macrosomia Pre-pregnancy obesity | 16 Birth OR1.93 All studies from HIC or MICs. Pre-pregnancy obesity is

(>4 or >4.5 kg) (BMI 230) vs nonobese (1.65, 2.27) Adjusted for pregnancy associated with increased risk

weight gain, parity, ethnicity of macrosomia

Macrosomia,, Gestational weight 11,13 Birth M: OR 1.95 Effect modified by pre- Gestational weight gain above

LGA, variably gain below IOM (1.79, 2.11) pregnancy BMI guidelines associated with

defined guidelines vs weight LGA: OR 1.85 increased risk of macrosomia
gain within guidelines (1.76, 1.95) and LGA

Macrosomia,, Gestational diabetes vs | 12 Birth OR1.71 Adjusted for pre-pregnancy Gestational diabetes

LGA, variably non-diabetes (1.52,1.94) BMI, gestational weight gain, associated with increased risk

defined parity and ethnicity of macrosomia independent

of maternal BMI

Overweight in Pre-pregnancy 4 Childhood | OVW:OR 1.95 | Studies from 3 HICs and 1 Pre-pregnancy overweight/

childhood overweight or obesity 3.5-18y (1.77, 2.13) LMICs obesity increase the risk of
vs normal weight OB: OR 3.06 overweight in the offspring
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(2.68, 3.49)

Overweight in High birth weight 66 Infancy OR 1.66 Studies from HICs and MICs High birth weight predisposes | 10
childhood or (>4000g) vs <4000g onwards (1.55, 1.77) to later overweight
adulthood 6m-79y
Infant body Mothers with any 10,8 Birth to 3 FM: A 83g Unadjusted data presented Infants of diabetic mothers 11
composition diabetes vs non- weeks (49g, 117g) Small observational studies have higher fat mass but no
diabetic mothers FFM: -11g Overall results influenced by difference in fat-free mass
(-99.2g, 77.3g) | large GDM group
Overweight in Gestational diabetes vs | 8 -11 years OR 1.35 Weak evidence, association Offspring of diabetic mothers | 12
childhood non-diabetic mothers (1.01, 1.80) only evident in 4 studies at may have higher risk of
>1ly childhood overweight
Overweight in Rapid weight gain 0-24 | 14 Childhood | OR3.66(2.59, | Studies from HICs and MICs. RWG in infancy was 13
childhood m (>0.67 z-scores) vs (>24 m) 5.17) Wide age range at outcome. associated with
slower weight gain Covariates included sex, birth | overweight/obesity from
weight, breastfeeding and childhood to adulthood
maternal BMI, education, SES
Overweight metabolic perturbation and elevated risk of markers of nutritional deficiency
SGA Gestational weight 13 Birth OR 1.28 (1.14, | Studies from HICs. 9 studies Inadequate gestational weight | 14
gain below IOM 1.43) self reported BMI gain in obese women is
guidelines in obese associated with increased risk
women vs adequate of SGA
weight gain
Low birth weight | Maternal hypertension | 14 Birth RR 2.7 Heterogeneity across studies Maternal hypertension 15
vs normal blood (1.9, 3.8) increases risk of LBW
pressure
Preterm birth Maternal hypertension | 30 Birth RR 2.7 Heterogeneity across studies Maternal hypertension 15
vs normal blood (1.9, 3.6) increases risk of preterm birth
pressure
Vitamin D Obesity vs normal BMI 15 4-45 years | OR 3.43(2.33, | Studies from MICs to HICs. Prevalence of vitamin D 16
deficiency 5.06) Wide age range at outcome. deficiency is greater in obese
Results similar in Asian and individuals
European-American
populations
Iron Deficiency Overweight/Obese vs 15 1-57 years | OR1.31 Studies for middle and HICs Overweight/obese persons 17
normal BMI (1.01, 1.68) Varied method used to had increased risk of iron
diagnose iron deficiency deficiency
Initiation of Maternal obesity vs 81 Birth RR 1.23 (1.03, | Studies from HICs Obese mothers are less likely 18

breastfeeding,

to initiate breast-feeding, and
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delayed normal BMI 1.47) to experience delayed
lactogenesis RR 2.06 lactogenesis
(1.18, 3.61)
Under-nutrition and elevated risk of subsequent metabolic perturbation
Impaired insulin Catch-up vs no catch- 2 3-30m A 2.54 Only 2 studies analysed Catch-up growth following 19
sensitivity up following low birth (2.33,2.76) LBW is associated with higher
weight fasting insulin levels
Type 2 Diabetes Low birth weight vs 8 20-75y RR 1.55 Studies from HICs Low birth weight was 20
2500-4000g (1.39, 1.73) associated elevated risk of
T2DM
Hypertension Low birth weight vs 9 4-84y OR1.21 Most studies from HICs, a few | Low birth was associated with | 21
>2500g (1.3, 1.30) from LMICs elevated risk of hypertension
Type 2 Diabetes Short stature vs tall 17 18-85 RR 0.85 Studies from MICs to HICs Taller women have a lower 22
stature years (0.76, 0.96) Significant in women but not likelihood of T2DM compared
men to shorter women.
Gestational Height of diabetic vs 38 Mean 31y | A-1.13cm Screening for GDM varied Women with GDM were 23
diabetes non-diabetic women (-0.78, -1.50) among studies shorter than women without
Coronary heart Per 6.5 cm decline in 121 Mean age CHD: HR 1.06 Studies from HICs and LMICs Shorter adults are associated 24
disease and adult height 55+10y (1.06, 1.10) Adjusted for age at baseline with increased risk of CHD
stroke Stroke: HR and smoking status, and morbidity and mortality than
1.07 (1.04, stratified by decades of year taller adults
1.10) of birth. Adjustment for
adiposity, blood pressure,
lipids, inflammation, diabetes
and SES made little difference
Gestational High iron status 9,7 Mean 22- H: OR 1.52 Studies from HICs and LMICs Elevated iron status increased | 25
diabetes (haemoglobin, ferritin) 32y (1.23, 1.88) the risk of GDM, and hence
in pregnancy vs low F: OR 2.09 might be an adverse
iron status (1.48, 2.96) consequence 9f
supplementation programmes

LBW — Low birth weight, birth weight <2.5 kg; Preterm birth — delivery <37 weeks gestation; SGA — Small-for-gestational age, <10™ percentile
Stunting — Height-for-age z-score <-2; Wasting — Weight-for-age z-score <-2

T2DM — Type 2 diabetes; GDM Gestaitonal diabetes; CHD — Coronary heart disease

HIC — High income country; MIC — Middle-income country; LMIC — Low-/Middle-income country; SES — Socio-economic status

PR — Prevalence ratio; OR — Odds ratio; HR — Hazard ratio
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Appendix 5: Expanded Panel 2

Developmental links between stunting, obesity and cardio-metabolic risk in Brazil

e Under-nutrition in early life promotes survival by energy-sparing, selectively preserving some tissues and organs over others.® This is
achieved by endocrine changes impacting growth, energy expenditure and body composition, which then interact with the composition and

energy content of the diet.

* Among children from Brazilian shanty-towns, prospective studies have shown that stunting is associated with a decrease in Resting
Metabolic Rate associated with a higher velocity of weight gain, as well as a diminished fasting and post-prandial fat oxidation.” These
changes are associated with an increase in adiposity, especially truncal fat, at the expenses of a decrease in lean body mass, mediated by a
higher insulin sensitivity at this age although beta cell production and plasma insulin concentration are low.>® Altogether, these changes
preserve body energy, especially central body fat, mediated by higher cortisol” and insulin sensitivity>, with lower thyroid activity’.

* By adulthood, the adverse effects of overweight on cardio-metabolic traits are exacerbated among those also stunted. Among overweight
adults, stunting is associated with lower T3, higher insulin resistance, and higher glycated haemoglobin. In overweight women, stunting is
also associated with dyslipidaemia and higher blood pressure.®®

* Adequate treatment of under-nutrition during childhood requires both appropriate diet and the treatment of infections.'® Recovery in
height and weight leads to normalization of insulin activity,' leptin,™ cortisol stress response, body composition and bone mineral density."™

14,15
h

Conflicting results that demand further investigation revealed either hig or low®® blood pressure among Brazilian children recovered

from malnutrition.

References to Appendix 5

1. Dulloo AG. Regulation of body composition during weight recovery: integrating the control of energy partitioning and thermogenesis. ClinNutr 1997; 16 Suppl
1: 25-35.
Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35(7): 595-601.
Latini G, De Mitri B, Del Vecchio A, Chitano G, De Felice C, Zetterstrom R. Foetal growth of kidneys, liver and spleen in intrauterine growth restriction:
"programming" causing "metabolic syndrome" in adult age. Acta Paediatr 2004; 93(12): 1635-9.

4. Hoffman DJ, Sawaya AL, Verreschi |, Tucker KL, Roberts SB. Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat
oxidation in shantytown children from Sao Paulo, Brazil. Am J Clin Nutr 2000; 72(3): 702-7.

5. Martins PA, Sawaya AL. Evidence for impaired insulin production and higher sensitivity in stunted children living in slums. Brit J Nutr 2006; 95: 996-1001.

19



10.

11.

12.

13.

14.

15.
16.

Hoffman DJ, Martins PA, Roberts SB, Sawaya AL. Body fat distribution in stunted compared with normal-height children from the shantytowns of Sdo Paulo,
Brazil. Nutrition 2007; 23: 640-646.

Martins VJB, Neves APO, Garcia MC, et al. Normal cortisol response to cold pressor test, but lower free thyroxine, after recovery from undernutrition. Brit J
Nutr 2015; 115: 14-23.

Floréncio TT, Ferreira HS, Cavalcante JC, Stux GR, Sawaya AL. Short stature, abdominal obesity, insulin resistance and alterations in lipid profile in very low-
income women living in Maceid, north-eastern Brazil. Eur J Cardiovasc Prev Rehabil 2007; 14: 346-348.

Floréncio TT, Ferreira HS, Cavalcante JC, Sawaya AL. Short stature, obesity and arterial hypertension in very low income population in North-eastern Brazil.
Nutr Metab Cardiovasc Dis 2004; 14: 26-33.

Martins VJ, de Albuquerque MP, Sawaya AL. Endocrine changes in undernutrition, metabolic programming, and nutritional recovery. In: Preedy VR, Patel VB,
eds. Handbook of famine, starvation, and nutritional deprivation. Switzerland: Springer International Publishing AG; 2017: 1-21.

Martins VJB, Martins PA, Neves J, Sawaya AL. Children recovered from malnutrition exhibit normal insulin production and sensitivity. Brit J Nutr
2008; 99: 297-302.

Martins VJB, Neves APO, Franco MCP, Clemente APG, Sawaya AL. Impact of nutritional recovery with linear growth on the concentrations of
adipokines in undernourished children living in Brazilian slums. Brit J Nutr 2014; 112: 937-944.

Neves J, Martins PA, Sesso R, Sawaya AL. Malnourished children treated in day-hospital or outpatient clinics exhibit linear catch-up and normal
body composition. J Nutr 2006; 136: 648-655.

Sesso R, Barreto GP, Neves J, Sawaya AL. Malnutrition is associated with increased blood pressure in childhood. Nephron Clin Pract 2004; 97:
c61-c66.

Clemente AP, Santos CD, Silva AA, et al. Mild stunting is associated with higher blood pressure in overweight adolescents. Arq Bras Cardiol 2012; 98(1): 6-12.
Martins VJB, Sesso R, Clemente APG, Fernandes MBF, Sawaya AL. Albuminuria, renal function and blood pressure in undernourished children
recovered from undernutrition. Pediatr Nephrol 2017; 32: 1555-1563.

20



Appendix 6: Methods for logistic regression analyses illustrated in Figure 2

We conducted logistic regression analysis to explore the associations of maternal phenotype with two outcomes, (a) the risk of giving birth to a child
that was stunted between the age of 18 and 60 months, and (b) the risk of the mother delivering by caesarean section. We analysed data from a
number of countries from different geographical regions using the most recent DHS surveys.

In each case, generalised linear models were used to estimate the risk (odds) of the outcome for each of the combinations of maternal short stature
(yes/no) and maternal overweight and obesity. The reference group comprised women with normal stature and low-to-normal body mass index
(BMI). Exposures were therefore short women with normal BMI; overweight women of normal stature; obese women of normal stature; short
overweight women; and short obese women.

The analyses excluded twin births (except for Nigeria that had no information on twin births and thus included both single and twin births). The
analyses were adjusted for wealth index, maternal age, rural/urban residence, birth order and offspring sex. Low to normal BMI, overweight and
obesity were defined as having a BMI <25 kg/m2, BMI 225 & <30 kg/m? and BMI 230 kg/m?, respectively. For the Asian countries (Cambodia, India
and Nepal), low to normal BMI, overweight and obesity were defined as having a BMI <23 kg/m?, BMI 223 & <27 kg/m* and BMI 227 kg/m?,
respectively. For all countries, maternal short stature was defined as having a height in the bottom quartile of the population sample.

An overall Odds Ratio (OR) estimate was estimated using Linear (Mixed-Effects) Models. We used a restricted maximum likelihood estimator to
estimate the between country variance t>. The function ‘rma.uni’ in the R — package ‘Metafor’ was used to estimate the overall OR value and
associated confidence intervals. All analyses were carried out in R version 3.4.1 (The R foundation for Statistical Computing).

21



Appendix 7. The capacity-load conceptual model of non-communicable disease risk

The capacity-load model is a conceptual model intended to aid interpretation of studies on nutrition, growth and the developmental origins of adult
non-communicable diseases (NCDs). It builds on the ground-breaking thrifty phenotype hypothesis of Hales and Barker,* but has some differences.
Obesity is widely recognised as a key physical factor driving the global NCD epidemic, though it is also associated with unhealthy diets, physical
inactivity and smoking.” Since the late 1980s, however, variability in early growth patterns has also been understood to contribute to NCD risk.>*

The thrifty phenotype hypothesis focused on the elevated NCD risk of adults born with low birth weight (<2500g), and proposed that in utero under-
nutrition caused the fetus to constrain growth of some organs/tissues (eg pancreas, liver) to protect others such as the brain.' These differences in
organ growth would track into later life, so that the smaller organs of those under-nourished in fetal life would reduce tolerance of high-energy diets
and obesity in adult life, predisposing to diabetes and other NCDs. Early support for the hypothesis was given by a study showing that a low birth
weight relative to adult height, indicating failure to grow in fetal life relative to growth potential, was associated with elevated risk of hypertension
in middle-age.’ Follow-up studies of the Dutch Hunger Winter, which exposed fetuses to maternal starvation, also supported the hypothesis,®’ while
numerous animal studies have shown that maternal dietary restriction in pregnancy elevated cardio-metabolic risk in the offspring.?

However, it is increasingly recognised inverse associations of birth weight with later NCD risk are not restricted to those born small, but apply across

most of the birth weight spectrum. Each additional unit of birth weight is associated with lower NCD risk.**°

In many studies, therefore, the highest
risk is found in those born large who remain normal BMI in adult life, whereas the lowest risk is found in those born small who become obese in

. 910 . .. . .
adult life.”™ These continuous associations require explanation.

Because associations of birth weight with NCD risk often emerge most strongly, or depend on, statistical adjustment for adult size, some have
suggested that NCD risk is entirely explained by change in size between birth and adulthood.'* However, among a large sample of adults of identical
size, who had therefore had similar rates of weight gain from birth onwards, NCD risk remained strongly inversely associated with birth weight.*

Thus, the magnitude of growth achieved by birth is a critical factor in NCD risk variability.

The capacity-load model™ focuses on two generic traits, each of which has broadly continuous associations with NCD susceptibility, but which act
together to determine actual risk. * Metabolic capacity’ refers to physiological traits developing during early life, which promote the life-long
capacity for homeostasis. This in turn prevents the manifestation of metabolic damage that leads to NCDs. Specific components of metabolic
capacity include a variety of traits, each of which broadly scales with birth weight across the entire birth weight range. These include nephron
number in the kidney, pancreatic beta cell mass, the size of organs such as the liver and kidney, airway and blood vessel diameter. The continuous
nature of these scaling associations is assumed to explain why greater size at birth has a dose-response inverse association with NCD risk.
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A second set of traits, termed ‘metabolic load’, and primarily developing from early post-natal life onwards, challenges this capacity for homeostasis.
Relevant traits include adiposity, an energy-dense diet, physical inactivity, psychosocial stress and behaviours such as smoking. All of these perturb
metabolism, and the lower the metabolic capacity, the greater the deleterious effects of elevated load.

13,14
d.

Non-communicable disease risk is then predicted to scale negatively with capacity, and positively with loa The greatest risk is expected in those

with low capacity and high load, in other words those born small who become obese and lead an unhealthy lifestyle in adult life. The lowest risk is
expected and those who have achieved healthy rates of growth in early life, and who maintain a normal BMI and lead a healthy lifestyle in adult life.

This is consistent with cohort studies from diverse settings.>*%*

— However, some studies show a U-shaped association between birth
High risk groups

i) Born small, obese as adult weight and NCD risk.'® The heaviest infants have high adiposity

filij Born large, obese as adut (macrosomia) in combination with less lean tissue than expected for

their high birth weight, indicating both elevated load but also
constrained capacity. Fetuses of mothers with gestational diabetes

o may initially demonstrate poor growth, followed by catch-up weight
ISK O
non-communicable

Disease

gain in the third trimester.”” Such individuals are prone to
subsequent obesity and elevated NCD risk.”® The capacity-load

Type 2 diabetes model is illustrated in Supplementary Figure 1, demonstrating
Hypertension
Stroke

Cardiovascular disease

these two high-risk groups.

Metabolic capacity may continue to increase in post-natal life, for

Increasing example organs such as pancreatic beta-cell mass contribute to
metabolicload  increase during infancy,” and this may explain why poor infant
1 2 3 4 /" E8Bodymass Index weight gain also predicts NCD risk.* On this basis, child stunting and
/ Dietary glycemic load

Physical activity level  wasting in low-middle-income countries are predicted to reduce

Increasing metabolic capacity

Eg Birth weight, leg length metabolic capacity further, and elevate susceptibility to NCDs.
However, this susceptibility is only predicted to progress to overt
NCDs only if metabolic load subsequently increases. Consistent with this, survivors of severe-acute malnutrition in Malawi who remained thin had
lower height, leg length, lean mass and grip strength than controls, but did not show elevated cardio-metabolic risk.”’ In contrast, survivors of

exposure to the Biafran famine during pregnancy or infancy, who were typically overweight in middle age (increased load), showed elevated NCD
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risk compared to those non-exposed.?’ A useful marker of nutritional experience in post-natal life may therefore be relative leg length (leg
length/height), which is independent of birth weight.?* Various studies have linked short leg length with elevated NVCD risk,”*** supporting the
hypothesis that it indicates constraint of metabolic capacity. However, not all studies are consistent and the association between post-natal growth
variability and NCD is less well understood compared to fetal growth.

Recent studies have linked nutritional intakes during the peri-conceptional period with subsequent epigenetic variability in gene expression,” while
most components of metabolic load elevate oxidative stress. Both capacity and load could therefore be approached at more mechanistic levels.
Indeed, birth weight has limitations as a marker of metabolic capacity, as it may be confounded by variability in adiposity, and it reflects growth
variability in late but not early fetal life. For example, growth faltering in the first trimester is associated with slightly elevated birth weight.?®
Nevertheless, birth weight provides a valuable composite indicator of fetal nutritional experience, and it explains a substantial component of adult
NCD risk when analysed in combination with markers of metabolic load.*>**

In the absence of a higher metabolic load, a low metabolic capacity need not necessarily lead to high NCD risk. This is supported by studies of low-
/middle-income populations that have linked the emergence of the global NCD risk epidemic with nutrition transition and the obesity epidemic. Low
average birth weights and child malnutrition have long characterised such populations, but in the absence of acquiring high metabolic load the risk

of NCDs remains relatively low.

Which of capacity or load matters more may vary between settings. In high-income countries, where a large proportion of the population have
acquired high load (overweight/obesity), then variability in capacity may explain a substantial component of NCD risk variability. In low-/middle-
income countries, where the majority of the population have relatively low birth weights, and hence reduced metabolic capacity, then the
magnitude of metabolic load acquired by individuals may be the best predictor of NCD risk. This scenario also helps understand why NCDs typically
develop at lower BMI thresholds and younger age in low-/middle-income country populations compared to high-income country populations —
metabolic capacity is systematically lower.
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Appendix 8. Findings from longitudinal studies from low-/middle-income countries in Asia and sub-Saharan Africa

on interactive associations of early growth patterns and later nutritional status with cardio-metabolic (CM) risk

markers or non-communicable disease, and interpretation using the capacity-load conceptual model

Population ‘ Ref ‘ Location ‘ n ‘ Key findings ‘ Interpretation

Asia

India 1,2 Rural 631+663 | Compared to European neonates, Indian Indian infants have substantially reduced

VS neonates weighed 0.5 to 0.8 kg less and had metabolic capacity at birth compared to
controls | smaller abdominal and mid-arm girths but Europeans, and divert energy to truncal
relatively similar skinfolds adiposity, a marker of metabolic load

India 3,4 Urban 477 + CM risk at 8-9 y was associated with weight and In urban populations characterized by faster

539 inversely with birth weight. Lower birth weight post-natal weight gain, CM risk is associated
was associated with increased insulin resistance with both higher load and reduced capacity
and BP but not with B-cell function.

India 5 Rural 698 CM risk at 6 y was associated with current body In a rural population characterized by slower
size and adiposity, and with faster post-infancy growth, CM risk is associated with higher load,
growth, and inversely with birth weight for BP but | but only weakly with lower capacity. Low
not insulin resistance. Smaller mid-arm girth at 6 muscle accretion in infancy may indicate poor
m predicted insulin resistance at 6 y. development of capacity in post-natal life

India 6,7 Rural 631 and Markers of lean mass are lower in Indian children | Indians maintain a relatively higher metabolic

children, and South Asian adults compared to European, load per unit weight compared to Europeans
urban men and markers of adiposity higher, even after from early life through to adult life.
holding constant for BMI
South Asia | 8 Multi-ethnic | 1266 vs Adiposity was positively associated with HOMA-IR | Body fat imposes a more toxic metabolic load
study in UK | controls | in all ethnic groups, but more strongly among in South-Asian children compared to other
South Asian compared to black African-Caribbean | ethnic groups
and white European children

India 9 Urban 486 Growth in weight and length before 2 y was Early growth benefits metabolic capacity, from
associated with later height but not CM risk at 13 | early childhood weight gain elevates adiposity
y. Gains in fatness after 2 y were associated with and metabolic load
insulin resistance at 13 y

India 10- Urban 1492 and | Impaired glucose tolerance or diabetes was Diabetes risk was associated with rapid

12 2218 associated with rapid BMI gain in childhood and elevation of load during childhood, and with
adolescence but with thinness at birth and lower | low capacity developing in fetal life and
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BMI in infancy infancy
13 Rural 378 Risk of high BP increased in association with BMI. | High BP was associated with high load and
Those with high BP had low BMIl up to 2y, low with poor development of capacity before 3 y.
height at 3 y, and accelerated gain in BMI after 3y | Child stunting may indicate post-natal
constraint of capacity.

India 14 Urban 2076 High systolic BP was associated with high High BP was linked with high load in a high-SES
adiposity in high-SES girls, whereas high diastolic population, but with a marker of low capacity
BP was associated with short leg length in low-SES | in a low-SES population
girls

India 15 Urban 517 Birth weights were very low, with 29% below A low metabolic capacity increased risk of
2500g, while adult BMI was relatively low. coronary heart disease, even though
Prevalence of coronary heart disease was metabolic load was relatively modest
associated with low weight, length and head
circumference at birth, and with low maternal
pregnancy weight

China 16 Urban 2085 Number of adult non-communicable diseases was | Chronic disease risk increased inversely in
inversely associated with birth weight dose-response association with metabolic

capacity

China 17,18 | Urban 2019 Risk of impaired glucose tolerance and metabolic | Diabetes risk was associated in dose-response
syndrome was associated with adult central manner both with adult load, and inversely
obesity and unhealthy life-style, and inversely with capacity developing in fetal life
association with birth weight

China 19 Urban 973 Risk of diabetes and hypertension was associated | Risk of diabetes and hypertension increased in
with abdominal obesity. Birth weight was dose-response manner with adult load, and
inversely associated with abdominal obesity, inversely with capacity developing in fetal life
fasting glucose and BP

China 20 Urban 745 Risk of CVD events (nonfatal coronary heart Risk of CVD was associated with adult load and
disease or cerebrovascular disease, cardiovascular | inversely with capacity developing in fetal life
death) was associated with abdominal adiposity,
and inversely with birth weight

Sub-Saharan Africa

Gambia 21 Rural 219 Neither season of birth (a proxy for fetal In a lean and fit population, with negligible

nutritional experience) nor childhood weight was
associated with CM risk markers in early
adulthood.

metabolic load and low levels of overall CM
risk, variability in capacity was unrelated to CN
risk variability
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Malawi 22 Rural/Urban | 352 Severe-acute malnutrition in early childhood was | In later childhood, survivors of severe-acute
associated with reduced growth markers, lean malnutrition have reduced capacity, but in the
mass and grip strength, but not directly with CM absence of elevated load CM risk is unaffected
risk

South 23 Urban 849 At 5 years, systolic BP was associated with weight | Systolic BP was associated in dose-response

Africa and height, and inversely associated with birth manner both with childhood load, and
weight inversely with capacity developing in fetal life

DR Congo 24 Urban 2648 Birth weight inversely associated with BP and low | High BP was associated in dose-response
birth weight was associated with increased risk of | manner both with childhood load, and
hypertension for SBP and DBP. inversely with capacity developing in fetal life

Multiple 25 Rural and 16 Birth weight was inversely associated with later Studies on blood pressure from Africa are

urban studies BP in studies of children, but in adolescents the consistent with the capacity-load model in
results were inconsistent children, but not adolescence.

DR Congo 26 Urban 407 Risk of the metabolic syndrome was associated Risk of the metabolic syndrome increased in
with high BMI in both sexes, but also with low association with high adult load, and inversely
BMI in men, and with low birth weight in both with capacity developing in fetal life. However,
sexes. thin men (low load) also had elevated risk

compared to those of normal weight

Nigeria 27 Urban 1339 Exposure in early life to famine was associated Early malnutrition reduced capacity and
with short adult height, elevated CM risk markers | elevated load, and was associated with
and greater risk of hypertension, IGT and elevated CM risk. Capacity may have been
overweight compared to those unexposed. Fetal impaired during fetal life, infancy or both.
vs infant exposure could not be differentiated.

Multi-country studies

COHORTS * | 28 Urban 6511 Lower birth weight and accelerated weight gain Diabetes risk was associated with the rapid
after 48 months were risk factors for adult accumulation of load from early childhood
glucose intolerance. Adjusting for adult waist onwards, and with reduced capacity
girth, birth weight was inversely related to insulin | developing in early life.
resistance

COHORTS * | 29 Urban 4335 BP was associated with adult BMI, and inversely BP was associated positively with adult load,
with birth weight. Weight gain at any period from | and inversely with capacity developing in fetal
birth to adulthood was associated with higher BP | life. Weight gain elevates load throughout

post-natal life

COHORTS * | 30 Urban 3432 Birth weight and weight gain before 24 m were Growth in fetal life and infancy is beneficial for

more strongly associated with adult fat-free mass

tissues associated with capacity, whereas load
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than fat mass, whereas weight gain from mid- is more strongly associated with weight gain
childhood predicted both fat and fat-free masses | after 24 m

Young
Lives**

31 Rural and 3999 Birth weight was a strong predictor of child Poor fetal growth indicates long term
urban height, despite some attenuation of effect constraint of metabolic capacity, as indexed by
height

BMI — body mass index; SES — socio-economic status; BP — blood pressure; m — months; y — years

* COHORTS countries: Brazil, Guatemala, India, Philippines, South Africa
** YOUNG LIVES countries: Ethiopia, India, Peru, and Vietnam
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Appendix 9a: Meta-analyses of associations of adult height with risk of various cardio-metabolic diseases

Type of cardio-metabolic disease Number of studies Height exposure Risk (95% Cl) Ref
Gestational diabetes 38 > 168 vs < 157 cm (Asian/Pacific Islander) OR 0.18 (0.09, 0.36) 1
Gestational diabetes 38 > 168 vs < 157 cm (non-Hispanic white) OR 0.33 (0.29, 0.38) 1
Gestational diabetes 38 > 168 vs < 157 cm (Hispanic) OR 0.39 (0.31, 0.51) 1
Gestational diabetes 38 > 168 vs < 157 cm (non-Hispanic black) OR 0.59 (0.47, 0.75) 1
Type 2 diabetes (men) 8 Highest vs lowest height category RR 0.87 (0.71, 1.07) 2
Type 2 diabetes (men) 9 Highest vs lowest height category RR 0.85 (0.76, 0.96) 2
Non-fatal myocardial infarction 121 Per 6.5 cm increase HR 0.91 (0.89, 0.93) 3
Coronary death 121 Per 6.5 cm increase HR 0.93 (0.90, 0.96) 3
Coronary heart disease (M) 30 Asia Per standard deviation increase HR 0.95 (0.89, 1.01) 4
Coronary heart disease (F) 30 Asia Per standard deviation increase HR 1.00 (0.90, 1.10) 4
Ischaemic stroke 121 Per 6.5 cm increase HR 0.94 (0.90, 0.97) 3
Ischaemic stroke (M) 30 Asia Per standard deviation increase HR 0.98 (0.92, 1.04) 4
Ischaemic stroke (F) 30 Asia Per standard deviation increase HR 0.98 (0.89, 1.07) 4
Haemorrhagic stroke 121 Per 6.5 cm increase HR 0.90 (0.85, 0.95) 3
Haemorrhagic stroke (M) 30 Asia Per standard deviation increase HR 0.90 (0.84, 0.96) 4
Haemorrhagic stroke (F) 30 Asia Per standard deviation increase HR 0.86 (0.78, 0.95) 4

HR — Hazard ratio; OR — Odds ratio; RR — Relative risk
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Appendix 9b. Meta-analyses of associations of adult height with risk of various cancers

Type of cancer Number of studies Height exposure Risk (95% Cl) Ref
Head and neck cancer 20 Per 5 cm increase HR 1.02 (1.00, 1.05) 1
Thyroid cancer 15 Per 5 cm increase RR 1.16 (1.09, 1.23) 2
Lung cancer 16 Per 10 cm increase RR 1.06, (1.03, 1.09) 3
Kidney cancer 14 Per 10 cm increase RR 1.23 (1.18, 1.28) 4
Pancreatic cancer 12 Per 5 cm increase RR 1.07 (1.03,1.12) 5
Gallbladder cancer 19 Per 5 cm increase HR 1.10(1.03,1.17) 6
Colorectal cancer 47 Per 5 cm increase RR 1.04 (1.02, 1.05) 7
Osteosarcoma 7 51°- 89" centile vs <50 centile OR 1.35(1.18, 1.54) 8
Ovarian cancer 16 Per 10 cm increase RR1.16 (1.11, 1.21) 9
Endometrial cancer 30 Per 10 cm increase RR 1.15(1.09, 1.22) 10
Breast cancer (women) 159 Per 10 cm increase RR1.17 (1.15, 1.19) 11
Breast cancer (men) 21 Highest vs lowest tertile 1.18 (1.01, 1.38) 12
Testicular cancer 14 Per 5 cm increase OR 1.13 (1.07,1.19) 13
Prostate cancer 58 Per 10 cm increase OR 1.06 (1.03, 1.09) 14

HR — Hazard ratio; OR — Odds ratio; RR — Relative risk
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Appendix 10. Associations of breast-feeding with mechanisms of plasticity listed in Panel 1

For many of these mechanisms, evidence is only just beginning to emerge of how they respond to components of variability in breast-feeding.

However, there is some supportive evidence for each of the mechanisms listed in Panel 1, though currently it is weakest for epigenetic effects and

for telomere attrition.

Mechanism Population Study design n Reported association Ref
Differential organ | Bangladesh Birth cohort 2094 Longer duration of exclusive breast-feeding associated with larger thymus 1
growth participating in volume at 1 year
RCT
Denmark Cross-sectional | 47 Mean thymic index was 38.3 in exclusively breastfed infants, 27.3 in 2
study partially breastfed infants and 18.3 in formula fed infants at 4 mo (p<0.001)
Hormonal axes Spain Longitudinal 28 Milk leptin concentration at 1 month of lactation was negatively correlated | 3
study with infant BMI at 18 and 24 mo.
Canada Birth cohort 430 Higher breast milk leptin was associated with lower infant WFL z-score at4 | 4
months and 1 year
Oxidative stress us Longitudinal 56 Markers of oxidative stress in breast-milk were associated with greater 5
study infant WHZ in offspring of obese mothers but not normal weight mothers
Iran Longitudinal 140 Breast-milk total anti-oxidant capacity was greater than that of formula- 6
study milk, and individual variability predicted infant length but not weight at 1
year
Epigenetic effects | HICS Systematic 7 Breastfeeding might be associated with DNA methylation, but evidence is 7
review studies | very limited and more research is needed
Philippines Birth cohort 494 Duration of breast-feeding was associated DNA methylation of 8
inflammatory genes in young adulthood
Taste preference us RCT 97 A relatively brief experience (1 mo) with vegetable flavors in mothers' milk 9
was associated with preference for carrot but not broccoli flavour after
weaning
Australia Longitudinal 1905 Breastfeeding duration was associated with core and vegetable variety 10
cohort study scores at 2 years
Telomere attrition | US Longitudinal Exclusive breastfeeding at 4-6 wk was associated withy longer telomeresat | 11
study 4 and 5y of age
Philippines Birth cohort 1759 Duration of exclusive breast-feeding was not associated with telomere 12

length at young adulthood
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Gut microbiome us Longitudinal 107 During the first 30 days of life, predominantly breast-fed infants received 13
development study bacteria from both breast milk and areolar skin, seeding the infant gut
us Longitudinal 323 Breastfeeding was associated with infant intestinal microbial diversity, 14
study including individual taxa previously linked to early-life diet and health
outcomes
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Appendix 11: Maternal diabetes and breast-feeding

Given the many benefits of breast-feeding for mothers and their offspring, it should be recommended as widely as possible. However, two issues
require attention in obese and diabetic mothers. First, they may find breast-feeding more difficult as they tend to experience delayed onset of
lactation, and in diabetic mothers this is exacerbated by poorer metabolic control, pre-pregnancy obesity and insulin control.™? Second, studies
report that breast-milk of diabetic mothers has altered concentrations of glucose, insulin and other hormones, and higher energy content,
compared to non-diabetic mothers.? This could potentially have metabolic effects on the offspring, with implications for future risk of overweight
and diabetes. In a study from Singapore, for example, infants of non-diabetic mothers who were breast-fed exclusively or predominantly to 4
months gained less weight and BMI than those not breast-fed. However, this constraint of weight gain by breast-feeding was not observed among
the offspring of mothers with gestational diabetes, potentially placing them at increased risk of childhood overweight.*

Nevertheless, there is growing evidence that neither of these issues precludes successful breastfeeding among diabetic mothers. Within a cohort of
both Type 1 and Type 2 diabetic mothers in Canada, breast-feeding was still associated with a significantly reduced risk of obesity in the offspring.’
Similarly, in studies from the US, the association of in utero exposure to maternal diabetes with childhood BMI and central adiposity was negated if
the child was breastfed for 26 months.®® The resolution to the apparent paradox that breast-milk of diabetic mothers can be metabolically different
altered and yet still beneficial appears to lie in counter-balancing metabolic effects during different periods of lactation.

More detailed studies compared the effects of breast-milk from diabetic mothers (DBM), versus banked breast-milk (BBM) from unrelated non-
diabetic women, on the offspring’s BMI status and glucose tolerance at 2 years. Regarding intake in the first 7 days of life, the risks of child
overweight and impaired glucose tolerance increased in dose-response manner in association with the proportion of DBM, and fell with the
proportion of BBM.? However, a similar study focusing on the later neonatal period found that the associations of DBM with adverse outcomes
disappeared if statistical adjustment was made for the volume of DBM in the first 7 days.'® Together, these studies suggest that the first week of
post-natal life is a ‘critical period’ for the programming effect of DBM on offspring metabolism.

Overall, when diabetic mothers breast-feed for >6 months, the impact of in utero exposure to maternal diabetes appears to be substantially
attenuated, and breast-feeding protects against rather than elevates the risk of childhood overweight.”® Moreover, another study showed that
components of breast-feeding associated with maternal diabetes, such as short breast-feeding duration, are important mediators of the link
between maternal diabetes and child overweight.'* Increasing the support for extended breast-feeding by diabetic mothers is therefore key to
maximising the health benefits for both mother and offspring.
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Appendix 12: Examples of populations at high risk of the double burden of malnutrition and its co-morbidities

Country

‘ Population

‘ Early growth

‘ Adult body composition

‘ Non-communicable disease profile

Ethnic minority groups within high-income nations

Canada Aboriginal and First High prevalence of high birth High levels of obesity, high levels of Higher rates of death from cardiovascular disease
Nations populations, weights associated with high truncal abdominal fat even after within each income quintile and level of
compared to those of prevalence of gestational adjusting for BMI, similar levels of lean | education, greater lifetime risk of developing
European ancestry diabetes mass diabetes and higher rates of gestational diabetes

Australia Aboriginal populations, Relatively lower average birth | Low average BMI in communities living | High prevalence of diabetes and hypertension,

compared to those of
European ancestry

weight and greater risk of low
birth weight and preterm
birth

traditional lifestyle, but high child and
adult obesity rates in urban
populations, and high susceptibility to
abdominal obesity

and high incidence of cardiovascular events.
Non-communicable diseases develop at relatively
low BMI levels and young age.

New Zealand

Maori and Pacific
Islander populations,
compared to those of
European ancestry

High prevalence of high birth
weights and high weights in
early infancy. Proposal that
low birth weight in these
populations should be
categorized <3000g.

Faster weight gain, higher BMI and
adiposity develop early in childhood.
BMlI, fat mass, lean mass and central
abdominal fat are all high in adulthood

High rates of diabetes, chronic kidney disease
and cardiovascular risk, associated with higher
age-standardised mortality rates

UK South Asian populations, | Lower average birth weight Higher body fat and lower muscle Higher rates of diabetes and coronary heart
compared to those of and greater prevalence of low | mass per BMI value, higher abdominal | disease, however these are not fully explained by
European ancestry birth weight adiposity, and faster rates of increased | conventional cardio-metabolic risk factors
in childhood obesity after adjusting for
ethnic differences in physique
UK African and Caribbean Lower average birth weight Lower levels of visceral fat, but higher | Higher rates of diabetes and stroke but lower
populations, compared and greater prevalence of low | levels of truncal obesity in women rates of coronary heart disease, however these
to those of European birth weight though not men, as well as higher lean | are not fully explained by conventional cardio-
ancestry mass, all contributing to higher BMI metabolic risk factors
us African American Lower average birth weight High lean-fat ratio per unit weight, less | Higher rates of diabetes, stroke and
populations, compared and greater prevalence of low | central fat deposition in men, higher cardiovascular disease, mediated by high blood
to those of European birth weight and preterm total BMI in women. Smaller mass of pressure and insulin resistance. Body
ancestry birth homeostatic organs (liver, heart, composition only accounts for some of these
spleen, kidneys) differences
us Hispanic American Little difference in birth High fat-lean ratio per unit weight, Higher rates of diabetes and cardiovascular

populations, compared
to those of European
ancestry

weight, higher rate of preterm
birth

more central fat distribution

disease, strongly mediated by central adiposity,
high blood pressure and insulin resistance
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Rural-urban migration

Peru Rural-urban migrants Higher rates of stunting in Rural-to-urban migrants almost match | Rural-to-urban migrants have intermediate
compared to rural and rural populations, indicating urban populations in prevalence of cardiovascular risk factors between rural and
urban populations poorer growth of migrants obesity and truncal obesity, with much | urban populations, with higher levels if they

relative to urban populations lower prevalence in rural populations. | migrated after 1 age. Migrants have lower
Obesity increases with duration of mortality rates than urban populations.
urban residence.

India Rural-urban migrants Lower average birth weights Urban populations have higher rates Cardio-metabolic risk factors increase more
compared to rural and and higher rates of stunting in | of obesity in childhood and adulthood, | slowly following migration than adiposity, but
urban populations rural populations, indicating and migrants rapidly converge on this migrants show elevated rates of diabetes,

poorer growth of migrants pattern. hypertension and cardiovascular disease.

relative to urban populations
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Appendix 13: Secular declines in age at menarche in low and middle-income countries

Country Period of measurement Rate of change (years/decade) Reference
The Gambia 1989-2008 -0.65 1
Cameroon (rural) 1925-1994 no change 2
Cameroon (urban) 1925-1994 -0.21 2
South Africa (black) 1956-2004 -0.50 3
South Africa (white) 1956-2004 -0.22 3
India (rural) 1955-1989 -0.03 4
Indian (urban) 1955-1989 -0.12 4
Southeast China (rural) 1955-1985 -0.34 5
Southeast China (urban) 1955-1985 -0.27 5
China (Beijing rural) 1980-2004 -0.35 6
China (Beijing urban) 1980-2004 -0.80 6
Korea 1920-1986 -0.64 7
Thailand 1975-2012 -0.12 8
Mexico 1940-2000 -0.26 9
Mexico 1960-1980 -0.78 10
Brazil (Rio de Janeiro) 1920-1940 -0.12 11
Brazil (Rio de Janeiro) 1960-1980 -0.22 11
Brazil (Amazonia) 1930-1980 -0.24 12
Colombia 1941-1989 -0.55 13
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