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Mitochondrial DNA mutations in renal disease: an overview
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Abstract
Kidneys have a high energy demand to facilitate the reabsorption of the glomerular filtrate. For this reason, renal cells have a high
density of mitochondria. Mitochondrial cytopathies can be the result of a mutation in both mitochondrial and nuclear DNA.
Mitochondrial dysfunction can lead to a variety of renal manifestations. Examples of tubular manifestations are renal Fanconi
Syndrome, which is often found in patients diagnosed with Kearns-Sayre and Pearson’s marrow-pancreas syndrome, and distal
tubulopathies, which result in electrolyte disturbances such as hypomagnesemia. Nephrotic syndrome can be a glomerular
manifestation of mitochondrial dysfunction and is typically associated with focal segmental glomerular sclerosis on histology.
Tubulointerstitial nephritis can also be seen in mitochondrial cytopathies and may lead to end-stage renal disease. The underlying
mechanisms of these cytopathies remain incompletely understood; therefore, current therapies focus mainly on symptom relief. A
better understanding of the molecular disease mechanisms is critical in order to improve treatments.
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Introduction

Mitochondria are important organelles with the main function
of converting the energy derived from oxidative phosphoryla-
tion into a “fuel” in the form of adenosine triphosphate (ATP),
that can be used to catalyse cellular processes. Other important
functions include calcium storage, regulation of metabolism
and apoptosis, and cell signalling [1]. Mitochondria are pres-
ent in all eukaryotic cells apart from mature red blood cells,
which means that any organ has the possibility to be affected
by mitochondrial dysfunction, resulting in a wide spectrum of
manifestations [2]. Collectively, disorders of mitochondrial
function are referred to as “mitochondrial cytopathies”. Even
though our understanding of the mitochondria and its genome

is increasing, the underlying mechanisms of these cytopathies
remain incompletely understood to this day. Their estimated
prevalence is around 1 in 5000, but this may be an underesti-
mation as a substantial number of patients with a mitochon-
drial cytopathy caused by a mitochondrial DNA (mtDNA)
mutation might be eluding diagnosis [3, 4].

Mitochondrial disorders are best known to affect the ner-
vous system and muscles, but essentially all organs can be
involved. The kidneys together with the heart have the highest
energy demand of all organs when corrected for organ weight
[5, 6]. Renal cells are therefore rich in mitochondria and de-
pend on mitochondrial aerobic respiration to facilitate the
energy-consuming task of reabsorption of the majority of the
glomerular filtrate. Proximal tubulopathy is the most com-
monly recognised renal phenotype in children with mitochon-
drial disorders, since the proximal tubule not only has a high-
energy demand but also lacks the capability to synthesis ATP
anaerobically from glycolysis [7]. However, distal tubular de-
fects, especially hypomagnesaemia, are also increasingly
recognised as a renal manifestation of mitochondrial
cytopathies [8]. The majority of mitochondrial proteins are
encoded by the nuclear genome and mitochondrial
cytopathies can therefore usually be explained by traditional
Mendelian genetics. The mitochondrial genome and its genet-
ics are, however, different from the nuclear genome and
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Mendelian genetics in various aspects. These differences re-
sult in interesting biological and clinical consequences.

While mtDNA mutations are typically inherited from the
mother, they can also occur de novo. Moreover, a number of
nuclear genes are responsible for proper maintenance of
mtDNA and mutations in these genes can therefore lead to
quantitative (mtDNA depletion) and qualitative defects
(mtDNA deletions) defects in mtDNA [9]. In this review, we
will focus on renal diseases caused by genetic mutations in
mitochondrial DNA.

Mitochondrial genome and genetics

Genome

The mitochondrial genome is a circular, double-stranded
DNA molecule with a length of 16,569 base pairs. It contains
37 genes, encoding 22 tRNA, 2 rRNAs and 13 polypeptides
(Fig. 1) [10]. Unlike the nuclear DNA, there are no interven-
ing sequences and the entire mtDNA is either coding or in-
volved in the regulation of transcription [11]. Both the tRNAs
and rRNAs are involved in the intramitochondrial synthesis of
proteins. The polypeptides are part of the five complexes in-
volved in oxidative phosphorylation (OXPHOS). The com-
plexes can be divided into two parts, complexes I–IV consti-
tute the electron transport chain, while complex V is involved
in the generation of ATP [12]. Approximately 1500 proteins

are localised inside the mitochondria, of which 90 are in-
volved in OXPHOS; most are encoded by nuclear genes
[13]. Indeed, complex II is completely encoded by nuclear
DNA, while the other complexes contain subunits that are
derived from both nuclear and mitochondrial DNA (Table 1)
[12]. There is also evidence that nuclear tRNAs are
transported into mitochondria [19]. This dual genetic control
contributes to the heterogeneity in clinical phenotypes.

Transcription of mtDNA occurs continuously on both
strands, independent of the cell cycle and it also occurs in
non-dividing cells. The strands are called heavy (H), encoding
for 12 protein subunits, 2 rRNAs, and 14 tRNAs, and light
(L), which encodes for 1 mRNA and 8 tRNAs [20]. The main
noncoding region is called the displacement loop (D-loop),
which controls addition, replication, transcription and transla-
tion of mtDNA [11]. Transcription of mtDNA is dependent on
the association between DNA-directed polymerase RNA mi-
tochondrial (POLRMT) and two initiation factors: mitochon-
drial transcription factor A (TFAM) and mitochondrial tran-
scription factor B1 or B2 (TFB1M or TFB2M) [21]. The ex-
pression of the mitochondrial genome is initiated by the tran-
scription of mtDNA from bidirectional heavy- and light-
strand promoters to produce polycistronic transcripts [22].
The role of TFAM is to recruit POLRMT to the promoter
initiation site in order for TFB2M to melt the promoter [23].
For the elongation stage, POLMRT requires transcription
elongation factor (TEFM), which promotes POLRMT to form
longer transcripts [24]. MtDNA replication is accomplished

Fig. 1 The circular human
mitochondrial genome. The
letters represent the tRNA genes.
ND: NADH dehydrogenase;
COX: Cytochrome C Oxidase;
ATP6/8: ATP synthase genes 6
and 8
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by various nuclear-encoded proteins. One of the proteins re-
sponsible is DNA polymerase γ (POLγ). POLγ is a
heterotrimer with two subunits POLγA, which proofreads
newly synthesised DNA, and POLγB, which enhances inter-
actions with the DNA template. Mutations in POLγA lead to
the accumulation of genetic alterations in mtDNA [25].

Genetics

Within a eukaryotic cell, multiple mitochondria exist, that
each contains 1 to 15 mtDNA molecules. Mutations that
affect all mtDNA copies are termed homoplasmic; mutat-
ed and wild-type DNA are also able to coexist in the same
cell and are thus referred to as heteroplasmic. In contrast
to nuclear DNA, the replication of mtDNA is not linked
to the cell cycle, which allows some templates to replicate
more than once during each cycle and others not at all
[26]. In order for the mitochondria to become dysfunc-
tional, a minimum amount of the mutated mtDNA has to
be present in the cell, which is also referred to as the
threshold level. This level, however, can be different be-
tween tissues due to the divergent energy dependence
[27]. The threshold level of mutation is important for
the clinical manifestations of the disease.

Mitochondrial DNA is inherited exclusively from ma-
ternal egg cells, because the paternal mitochondria and
their DNA are actively eliminated [28]. As a result, fa-
thers with mtDNA mutations are at no risk of transmitting
the defect to their offspring. In addition, a mutation can
occur de novo [29]. The risk of disease in offspring is
dependent on the type of mutation and heteroplasmy in
the mother. In the case of a homoplasmic mutation, all the
maternal offspring will inherit the affected mtDNA. The
penetrance, however, can be variable between patients,
because it is also dependent on interactions with nuclear
DNA. This is consistent with the role of nuclear genetic
modifiers. Environmental factors can also contribute to
the manifestation of the phenotype. When the mother
carries a heteroplasmic mutation, both the normal and
mutant mtDNA are randomly distributed to the daughter
cells. This can lead to different levels of mutated mtDNA

between offspring, depending on the number of mutated
copies in the respective oocyte. But, as the mutated copies
are randomly distributed during cell division after
fertilisation, it can also lead to divergent mutant load be-
tween the various tissues in the offspring. This distribu-
tion of mutant mitochondria, however, is subject to the
“bottleneck effect”: during germ cell development, there
is a reduction in mtDNA molecules, so that only a small
number are present in oocytes [30]. Depending on the
number of mutant mtDNA that was randomly chosen for
a given cell, different ratios of healthy and mutant mito-
chondria will be present in the various oocytes [31]. In
addition, there may be focal destruction of mutant
mtDNA by autophagy or elimination of cells with a high
load of mutant with mitochondria because of their reduced
fitness [32]. These factors may explain why mitochondrial
mutations do not affect all offspring, or even organs with-
in the same individual, equally.

The mutation rate in the mitochondrial genome is 5 to
10 times greater than in the nuclear genome [33]. This can
be attributed to the high amount of reactive oxygen species
(ROS) in the mitochondria, that are produced during the
ATP synthesis, which can damage mtDNA. Spontaneous
mutations from ROS affect the mitochondrial genome
more extensively than the nuclear genome. Reasons for
this include the absence of protective histones in the mito-
chondria and the lack of efficient internal repair mecha-
nisms for DNA in the mitochondrial genome compared to
the nuclear genome. These mutations can lead to mito-
chondrial dysfunction, leading to a further increase in
ROS production [34]. This progressive damage in the mi-
tochondrial genome and the consequent decrease in
mtDNA copy number is thought to contribute to ageing
and has been associated with cardiovascular and chronic
kidney disease [35]. Generally, the mutations in mtDNA
are mostly located in the genes involved in maintenance,
transcription, and translation of mtDNA such as transfer
and ribosomal RNAs as opposed to in the genes encoding
for the OXPHOS subunits [36]. Yet, regardless of the lo-
cation of the mtDNA mutation, renal manifestations and
especially proximal tubulopathy have been reported.

Table 1. The number of nuclear
and mitochondrial genes for each
respiratory complex

Complex Genes nuclear DNA Genes mitochondrial DNA Total genes

Complex I [14] (Blue) 38 7 45

Complex II [15] 4 0 4

Complex III [16]

(Orange)

10 1 11

Complex IV [17]

(Yellow)

10 3 13

Complex V [18] (Red) 14 2 16

The first column refers to the colour of the genes in Fig. 1
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Tubular defects

Proximal tubular dysfunction

A generalised impairment of proximal tubule function is
ca l l ed rena l Fancon i synd rome (RFS) , and i s
characeterised by decreased reabsorption of various fil-
tered solutes, such as electrolytes, sugars, amino acids
and proteins [37]. Features typically associated with RFS
include low molecular weight proteinuria, generalised
aminoaciduria, hypophosphatemia (with or without bone
disease), non-diabetic glycosuria, hypouricosuria and
proximal renal tubular acidosis. If a renal biopsy is per-
formed it will typically show dysmorphic mitochondria on
electron microscopy [38]. However, the manifestation of
RFS can differ between these patients, depending on the
severity of the tubular dysfunction. Accordingly, the renal
manifestations could be limited to a subset of the
beforementioned abnormalities [37]. Besides mitochondri-
al mutations, this disorder can result from many other
causes such as inherited metabolic disease or toxic agents.

Mutations

Renalmanifestationswithout any extra-renal dysfunctionmay be
the first clinical symptom of mitochondrial disorders, since prox-
imal tubule cells are highly dependent on ATP provision [39].
However, ultimately, multiple organs may be affected with con-
sequent neurological symptoms, myopathy, deafness or cardiac
problems [40–43]. In fact, these other symptoms may predomi-
nate and kidney involvement is only recognised later: multiple
cases have been reported of patients initially diagnosed with
Pearson’s marrow-pancreas syndrome (PMPS), defined by
sideroblastic anaemia and pancreas dysfunction, who also devel-
oped RFS [44–46]. Similar reports exist for Kearns-Sayre (KSS)
[47–50] and Leigh syndrome [40]. Several studies have found
large mtDNA deletions in mitochondrial DNA to be the under-
lying cause, ranging from 2.7 to 7.4 kbp deletions [48, 51–55].
Overall, these patients show phenotypic similarities to Pearson
and Kearns-Sayre syndromes. Furthermore, RFS can be a symp-
tom of cytochrome C oxidase (CCO) deficiency [41, 56]. After
analysis of the respiratory chain complexes using muscle biop-
sies, complex III and IV were found to have a decreased activity
[39, 42, 43, 48].

Distal tubular dysfunction

In addition to proximal tubulopathy, there have also been pa-
tients described suffering from specific electrolyte distur-
bances, most commonly hypomagnesemia and hypokalaemia.
The key nephron segment for regulated magnesium reabsorp-
tion is the distal convoluted tubule (DCT) and its high-energy
consumption makes it vulnerable to mitochondrial dysfunc-
tion [57]. Several cases have been described of patients suf-
fering from electrolyte disturbances, consistent with DCT dys-
function. Again, many of these patients have multisystem dis-
orders, such as Kearns-Sayre syndrome [58–60] or Leigh syn-
drome [61].

Table 2. Overview ofmitochondrial mutations reported in patients with
proximal tubular dysfunction

Category Mutation Reference

Isolated proximal tubulopathy 2.8 kbp deletion Szalbocs et al. [55]

KSS 5 kbp deletion Shoffner et al. [50]

KSS 5.4 kbp deletion Mori et al. [48]

KSS/PMPS 7.4 kbp deletion Lee et al. [54]

PMPS 3.3 kbp deletion Solano et al. [45]

PMPS 4977 bp deletion Niaudet et al. [51]

PMPS 5.7 kbp deletion Majander et al. [52]

CCO 7.3 kbp deletion Au et al. [53]

Table 3. Overview of
mitochondrial mutations reported
in patients with distal tubular
dysfunction.

Category Mutation Reference

Hypomagnesemia and hypokalaemia T4291C Wilson et al. [8]

Hypomagnesemia and hypokalaemia 8.8 kbp deletion Goto et al. [49]

Hypoparathyroidism 7813 bp deletion

8348 bp deletion

8587 bp deletion

9485 bp deletion

Wilichowski et al. [65]

Hypoparathyroidism 6 kbp deletion Lee et al. [67]

Hypoparathyroidism 6741 bp deletion Isotani et al. [68]

Hypoparathyroidismwith hypomagnesemia and hypokalaemia 8661 bp deletion Emma et al. [70]

Tubulopathy with PMPS 8034 bp deletion Van Ouweland et al. [71]

Pediatr Nephrol



Mutations

Numerous patients were found to have hypoparathyroid-
ism leading to hypocalcaemia and hyperphosphatemia
[58, 60, 62–68]. Magnesium is an important co-factor
for the release of PTH hormone and thus, hypoparathy-
roidism is a common consequence of hypomagnesemia
[69]. Magnesium levels were, however, not checked in
every patient with hypoparathyroidism, but were signif-
icantly decreased in multiple cases [58, 61, 62, 66, 67].
Furthermore, most patients with hypomagnesemia also
suffered from hypokalaemia [61, 62, 67]. Overall, these
patients also suffered from sensorineural hearing deficits
and myopathic symptoms. In a few cases, a clear dele-
tion in mitochondrial DNA was found, ranging from 6
kbp to 8.8kbp (Table 3) [49, 65, 67, 70, 71].

A classical description of a mitochondrial cytopathy
with DCT dysfunction was described in a large pedigree
[8]. Symptoms included hypertension, hypercholesterol-
emia and hypomagnesemia with hypokalaemia and
hypocalciuria, the electrolyte abnormalities being typical
for DCT dysfunction. The symptoms segregated with a
mtDNA mutation T4291C (Table 3) located 5' to the
anticodon in the mitochondrial tRNAIle gene. Further
symptoms included migraine headache, sensorineural
hearing loss and hypertrophic cardiomyopathy, which
are all phenotypes associated with mitochondrial
dysfunction.

Non-tubular manifestations

Nephrotic syndrome

It is not only tubular function that is affected by mitochondrial
cytopathies in the kidney. Podocytes also have mitochondria
and are energy-dependent. Steroid-resistant NS is a common
manifestation of mitochondrial dysfunction associated with
coenzyme Q deficiency, which is important to recognise, as
it is treatable by ubiquinone supplementation [72]. But ne-
phrotic syndrome (NS) can also be seen with mtDNA muta-
tions. Focal segmental glomerulosclerosis (FSGS) is a typical
histological feature seen in degenerative glomerular disorders.

Mutations

The point mutation m.A3243G, affecting tRNA leucine, is
known in patients suffering from myopathy, encephalopathy,
lactic acidosis, and stroke-like episodes (MELAS). This mu-
tation has also been described in patients with FSGS [73].
Interestingly, a patient suffering from MELAS with the
A3234G mutation was found to have end-stage renal disease
with glomerulosclerosis and interstitial fibrosis [74]. This mu-
tation is of particular interest in adults with mtDNA-related
disease, as it is the most commonly found mutation [75].
Patients typically present with diabetes and/or hearing loss
and the spectrum of renal manifestation besides nephrotic
syndrome can include also proximal and/or distal impairment
[75]. Different point tRNA mutations can also result in FSGS
[76–79]. Besides point mutations, a 2,905 bp deletion was
found to result in FSGS, followed by necrotising nephritis
with chronic interstitial nephritis [80].

Tubulointerstitial nephritis

Tubulointerstitial nephritis (TIN) is characterised by the infil-
tration of the kidney interstitium by inflammatory cells, which
can ultimately cause reduced excretory renal function [81].
The phenotype is generally kidney failure and low molecular
weight (‘tubular’) proteinuria, which are signs of proximal

Table 4. Overview of
mitochondrial mutations reported
in patients with nephrotic
syndrome

Category Mutation Reference

FSGS A3243G Dinour et al. [73]

End stage renal disease (FSGS) A3243G Mima et al. [74]

FSGS A4269G Taniike et al. [76]

FSGS G5538A Lim et al. [77]

FSGS A5728G Meulemans et al. [79]

FSGS A5843G Scaglia et al. [78]

FSGS 2905 bp deletion Becher et al. [80]

Table 5. Overview ofmitochondrial mutations reported in patients with
tubulointerstitial nephritis

Category Mutation Reference

TIN A547T Connor et al. [85]

TIN G586A D’Aco et al. [83]

TIN A608G Tzen et al. [84]

TIN T616C Connor et al. [85]

TIN A5656G Zsurka et al. [86]
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tubular dysfunction [82]. It is most often caused by drug re-
actions; however, it may also be caused by infections or sys-
temic disease. Dysregulation of apoptosis has been proposed
as a mechanism of pathogenesis of inflammatory processes in
mitochondrial TIN. Interestingly, a mitochondrial mutation in
the renal epithelial tissue may lead to inflammation while the
liver, heart and brain remain unaffected.

Mutations

In patients with tubulointerstitial nephritis, multiple mutations
in tRNAPhe were identified [83–85]. Moreover, in a family
diagnosed with severe progressive tubulointerstitial nephritis
the mutation A5656G was detected [86].

Genotype-phenotype

When reviewing mutations in the three clinical categories, it
becomes apparent that there is no obvious genotype-
phenotype correlation: large mitochondrial deletions can be
associated with proximal and distal tubular dysfunction, as
well as nephrotic syndrome. Similarly, the most common mi-
tochondrial mutation, A3234G, has initially been associated
primarily with FSGS, but a more comprehensive study of
adults with mitochondrial disease showed manifestations also
included hypophosphatemia, elevated urinary retinol-binding
protein and hypomagnesemia, as well as no obvious renal
involvement [75]. This variability was also reflected in the
extra-renal manifestations, which ranged from maternally
inherited diabetes and deafness to MELAS and myoclonic
encephalopathy with ragged red fibres.

Treatment

Since there is not yet a cure for mitochondrial diseases, the
current approach is to treat these patients with the aim to
alleviate symptoms and slow progression of the disease.
Typically, treatment consists of dietary supplements, predom-
inantly antioxidants, such as vitamin C, E, and K (40–160 mg/
day), because they are thought to be effective against the dam-
age caused by ROS generation [87]. These vitamins are elec-
tron acceptors, which allows them to bypass complex III de-
ficiencies. However, there is no sufficient evidence for the
actual benefit [88]. Riboflavin (50–400 mg/day), also known
as vitamin B2, acts as a flavoprotein precursor in complexes I
and II and is shown to be efficient in the C-1 and C-II defi-
ciencies [89]. Folic acid also belongs to the B vitamins family
and is involved in protein synthesis in mitochondria. Folate
deficiency is common in patients with mitochondrial
cytopathies and is often found in patients with Kearns-Sayre
syndrome [90]. Furthermore, Coenzyme Q10 (CoQ10) (80–

300 mg/day) is most often prescribed for patients with com-
plex III deficiencies, but also affects complexes I and II. It is
important for the mitochondrial electron transport chain, be-
cause it can move electrons from complex I to II and transfer
them to complex III [91]. Other treatments are α-lipoic acid
(suggested dosage 5–200 mg/day), which is an antioxidant
that can decrease the ROS generated by OXPHOS, therefore
decreasing oxidative stress in mitochondria [92], and L-
Arginine (150–300 mg/kg/day), a nitric oxide precursor [93,
94]. While these treatments focus on improving the function
of the mitochondria, organ-specific interventions, such as kid-
ney transplantation, can also be used as treatment. Treating
mitochondrial diseases, however, remains challenging, be-
cause the phenotype of the disease in each family is quite
variable, and so are the responses to medications. Nuclear
genetic modifiers could influence the response drastically.

Patients with mitochondrial disorders can receive genetic
counselling to try to prevent disease transmission. However,
due to the complexity of the inheritance of mtDNA this re-
mains difficult. To avoid transmission, the most reliable meth-
od is to use a donor oocyte. The major limitation is the lack of
a child who is biologically related to both parents. Another
approach is pronuclear transfer. This technique involves the
transfer of the pronuclei from one zygote to another, which
results in a zygote containing nuclear DNA from the parents
but mtDNA from a donor [95].

Conclusion and future perspective

In summary, the identification of the different mutations in
mitochondrial DNA has enabled us to have a better under-
standing of the effect of mitochondrial dysfunction on target
tissues, including the renal epithelium. A proximal
tubulopathy is the most common tubular manifestation, but
other patterns of electrolyte abnormalities have also been re-
ported suggesting the involvement of other tubular segments,
especially the DCT. Moreover, non-tubular defects due to mi-
tochondrial mutations have been described. A better under-
standing of the precise disease mechanisms is needed to facil-
itate improved treatments.
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