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In EPR, spin relaxation is typically governed by interactions with the lattice or other spins. However, it
has recently been shown that given a sufficiently strong spin-resonator coupling and high resonator quality
factor, the spontaneous emission of microwave photons from the spins into the resonator can become the main
relaxation mechanism, as predicted by Purcell. With increasing attention on the use of microresonators for
EPR to achieve high spin-number sensitivity it is important to understand how this novel regime influences
measured EPR signals, for example the amplitude and temporal shape of the spin-echo. We study this regime
theoretically and experimentally, using donor spins in silicon, under different conditions of spin-linewidth
and coupling homogeneity. When the spin-resonator coupling is distributed inhomogeneously, we find that
the effective spin-echo relaxation time measured in a saturation recovery sequence strongly depends on the
parameters for the detection echo. When the spin linewidth is larger than the resonator bandwidth, the
different Fourier components of the spin echo relax with different characteristic times due to the role of the
resonator in driving relaxation which results in the temporal shape of the echo becoming dependent on the
repetition time of the experiment.

PACS numbers: 07.57.Pt,76.30.-v,85.25.-j

I. INTRODUCTION

Pulsed magnetic resonance spectroscopy proceeds by
applying sequences of control pulses to an ensemble of
electron or nuclear spins via an electromagnetic resonator
of frequency ω0 (at microwave or radio frequency, respec-
tively). Driven by these pulses, the spins undergo nuta-
tions on the Bloch sphere. Spins with identical Larmor
and Rabi frequencies (forming a spin packet) follow the
same trajectory. A prominent pulse sequence is the Hahn
echo: a first pulse imprints its phase coherence among
all spin packets, which quickly vanishes due to the in-
homogeneity in Larmor precession frequency. Coherence
is restored by a second control pulse applied after a de-
lay τ , which imposes a π phase shift to the spin packets
leading to their collective rephasing after another delay
τ . This causes the buildup of a macroscopic oscillating
magnetization and the emission of a pulse known as the
spin-echo, whose amplitude, shape, and time-dependence
bear the desired information on spin characteristics and
environment1.

The maximum spin-echo amplitude is governed by the
equilibrium spin longitudinal magnetization Sz0. After
each echo sequence, the spins are strongly out of equi-
librium, so that before the next sequence can be started,
a waiting time is needed for the longitudinal spin polar-
ization Sz to relax back towards Sz0 by energy exchange
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between each spin and its environment in a characteristic
time T1.

In solids, the dominant energy exchange processes
are usually spin-phonon or spin-spin interactions. For
isotropic systems, T1 depends only on global sam-
ple properties (temperature, concentration in magnetic
species, ...); as a result, all spin packets contributing to
the echo emission relax in the same way2. In anisotropic
systems, correlations may exist between T1 and the Lar-
mor frequency of the spins1,3. Spin and spectral diffu-
sion, as well as polarization transfer mechanisms, may
also play a role and lead to non-exponential Sz relax-
ation4,5.

Though much less common in EPR, spins can also,
in principle, relax to equilibrium by exchanging energy
with the radiation field. In free space, such radiative
relaxation is negligibly slow for spins (∼ 1012 s at for
electron spins at 9 GHz), however, it can however be con-
siderably accelerated by coupling the spin to a resonator.
This is known as the Purcell effect, and arises due to the
spatial and spectral confinement of the microwave field
provided by the resonator6–8. The timescale for spin re-
laxation resulting from the Purcell effect is a function of
the spin-resonator frequency detuning, δ, the resonator
energy damping rate κ, and the spin-resonator coupling
strength g:

T1 =
κ

4g2

[
1 +

(
2δ

κ

)2
]
. (1)

Here, g is equal to the half the Rabi frequency for a
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spin being driven by a resonator field with an average
energy of one photon, whose amplitude we denote δB1,
and κ = ω0/Q is determined by the resonator frequency
and total quality factor. At resonance, T1 = κ/4g2,
which shows that Purcell relaxation rate is enhanced for
resonators with high quality factor and small mode vol-
ume. In usual EPR spectrometers, g/2π ∼ 10−3 Hz, and
the Purcell time ∼ 108 s still much longer than typical
spin-lattice relaxation times. Recent experiments have
demonstrated that it is possible to considerably increase
g/2π up to 102−103 Hz by using the modes of supercon-
ducting micro-resonators, in which the microwave field
is confined at the micron- scale around superconduct-
ing electrodes. The main motivation to do so is to en-
hance the spin detection sensitivity, which scales with
g2 and record sensitivities of 102 − 103 spin/

√
Hz have

been demonstrated in this way9,10. However, as seen from
Eq. 1, radiative relaxation by the Purcell effect becomes
unavoidably enhanced in these regimes up to the point
where it may become the dominant relaxation channel
for spins that have long enough spin-lattice relaxation
times. This Purcell regime was reached recently for an
ensemble of electron spins coupled to a superconducting
micro-resonator at millikelvin temperatures11,12. It was
furthermore shown to enable electron spin hyperpolariza-
tion by radiative cooling13.

Given the increasing use of micro-resonators in EPR
which are capable of achieving substantial spin-resonator
coupling, it is important to understand any significant
influences which the Purcell relaxation regime may im-
pose on typical pulsed EPR measurements. For example,
one noticeable aspect of Eq. 1 is that Purcell relaxation
is a resonant phenomenon, with a strong frequency de-
pendence over a scale given by the resonator linewidth
κ11,12. Another consequence of Eq. 1 is that T1 depends
on the position r of a given spin within the resonator
mode, since g is proportional to the field mode ampli-
tude δB1(r). Therefore, in the Purcell regime, spin pack-
ets with different detuning and Rabi frequency also have
a different relaxation time T1, an unusual situation in
magnetic resonance. Because a spin echo is the sum of
the contribution of all spin packets, spin-echo relaxation
is expected to display a complex behavior, particularly
when either the Larmor frequency or the Rabi frequency
is inhomogeneously distributed, which happens with su-
perconducting micro-resonators whose B1 field is often
spatially-inhomogeneous.

It is the purpose of this article to analyze the im-
plications of these correlations between relaxation time,
detuning and Rabi frequencies on the shape and time-
dependence of the spin-echo in the Purcell regime. We
first provide a simplified model that yields analytical re-
sults for the spin-echo amplitude and shape in the Purcell
regime, and enables us to identify qualitatively novel ef-
fects. When the Rabi frequency is inhomogeneously dis-
tributed, the spin-echo amplitude is found to come back
to equilibrium with an approximately exponential tem-
poral dependence, but with a time constant that depends

on the control pulse amplitude. When the Larmor fre-
quency is inhomogeneously distributed over a frequency
range broader than the resonator linewidth, the various
Fourier components of a spin echo relax with different
time constants, which also implies that the echo shape
becomes dependent on the waiting time between consec-
utive sequences. The third section describes the experi-
mental setup and samples used to test these effects, and
the fourth section presents the measurements, their qual-
itative agreement with our simplified model, and their
quantitative agreement with the simulation of the Bloch
equations including explicitly the Purcell decay contribu-
tion.

II. SPIN-ECHO IN THE PURCELL REGIME : A SIMPLE
MODEL

In this section we analyze a simple model which exem-
plifies the consequences of Purcell relaxation by consid-
ering analytically-tractable limiting scenarios.

A. System description and equations of motion

The system to be modelled is shown in Fig. 1. An
ensemble of spins S = 1/2 interact with the microwave
field inside the resonator used for inductive detection,
which is capacitively coupled to a measurement line. The
resonator is characterized by its frequency ω0, and total
energy damping rate κ. Energy is lost by leakage into the
measurement line (with a rate κc = ω0/Qc) and internal
losses (rate κi = ω0/Qi), with κ = κc + κi. Control
pulses at ω0 are sent to the resonator input through the
measurement line, into which the subsequent spin echo
signals are emitted then routed via a circulator towards
the detection chain.

Each of the j = 1, .., N spins is characterized by its Lar-
mor frequency ωj (or equivalently the spin-cavity detun-
ing δj = ωj − ω0) and its coupling to the resonator field
gj . In the weak spin-resonator coupling limit gj � κ, the
spin-resonator quantum correlations can be neglected.
The dynamics is well described by equations involving
only the expectation value of the spin and resonator field
operators14, written in the frame rotating at ω0 as


Ṡ
(j)
x = −δjS(j)

y + 2gjY S
(j)
z − S(j)

x /T
(j)
2

Ṡ
(j)
y = δjS

(j)
x − 2gjXS

(j)
z − S(j)

y /T
(j)
2

Ṡ
(j)
z = 2gjXS

(j)
y − 2gjY S

(j)
x − (S

(j)
z − Sz0)/T

(j)
1 .

(2)

Here, S
(j)
x,y,z is the expectation value of the correspond-

ing dimensionless spin j operator (with S
(j)
x,y,z = σx,y,z/2,

σx,y,z being the Pauli operators) and X,Y is the expecta-
tion value of the intra-resonator field operators expressed
in dimensionless units14. Here we use the convention that
X = (a + a†)/2 and Y = i(a − a†)/2, a (resp. a†) be-
ing the resonator annihilation (resp. creation) operator,
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FIG. 1. A Sketch of electron-spin resonance spectroscopy
in the Purcell regime. (a) An ensemble of spins is detected
via a resonator of frequency ω0. Each spin can have a dif-
ferent coupling strength gj and frequency detuning δj with
the resonator, which leads to different individual Purcell re-

laxation time constants T
(j)
1 . The resonator has an internal

energy decay rate κi and is coupled to a drive and measure-
ment line with an energy decay rate κc. (b) A typical Hahn
echo sequence with rectangular pulses. Final echo contains
contributions from different spin packets. The relative am-
plitude of contributions depends on experimental parameters
such as the pulse amplitude β and the repetition rate.

which differs from the one used in Refs. 14 and 15 by
a factor 2. Phase coherence of spin j relaxes in a time

T
(j)
2 , and S

(j)
z relaxes towards the thermal equilibrium

polarization Sz0 = tanh(~ω0/2kTs) in a time T
(j)
1 . Be-

cause we are specifically interested in the impact of Pur-
cell relaxation on spin-echo signals, we will in the follow-
ing consider that the only decoherence mechanism is the

Purcell relaxation, implying that T
(j)
1 = κ

4g2j
[1 + (

2δj
κ )2]

and T
(j)
2 = 2T

(j)
1 .

Note that these equations are identical to the usual
Bloch equations, with the Rabi frequency given by
2gjα(t), and α(t) ≡

√
X(t)2 + Y (t)2. Purcell relaxation

appears as a T1 mechanism, and its particular features
arise from the dependence of T1 on the properties of a
spin packet.

Using standard input-output theory16, the resonator
field in the rotating frame at ω0 obey Eqs.

{
Ẋ(t) =

√
κcβX(t)− κ

2X(t)−
∑N
j=1 gjS

(j)
y

Ẏ (t) =
√
κcβY (t)− κ

2Y (t) +
∑N
j=1 gjS

(j)
x ,

(3)

where βX,Y (t) are the in-phase and out of phase compo-
nents of the control field. We also need to compute the
field leaking out of the cavity, as it contains the spin free-
induction-decay and echo signals. The output field com-
ponents Xout(t), Yout(t) are given by the input-output
relations

{
Xout(t) =

√
κcX(t)− βX(t)

Yout(t) =
√
κcY (t)− βY (t).

(4)

The combination of Eqs. 1 to 4 is the theoretical frame-
work that describes EPR spectroscopy in the Purcell
regime. All the specific characteristics of the spin ensem-
ble are provided by the distributions of Larmor frequency
ρδ(δ) and coupling constant ρg(g), normalized such that∫
dgρg(g) =

∫
dδρδ(δ) = 1. We also define Γ as the

standard deviation of ρδ, thus corresponding to the spin
ensemble inhomogeneous linewidth.

Although this is not immediately apparent, we note
that radiation damping is automatically included in the
above equations, since they treat on an equal footing the
intra-resonator field and the spin operators and thus in-
corporate all feedback effects of the radiation field on the
spin dynamics14,17. This underlines the distinction be-
tween radiative damping and Purcell relaxation, which
both are radiative effects but with different characteris-
tics and impact on the spin dynamics.

Throughout this article, we make the extra simpli-
fying hypothesis that the spin-ensemble cooperativity
C =

∑
g2j /(κΓ) verifies C � 1. In this limit, the field

generated by the spins is small compared to the intra-
resonator field18 so that radiation damping can be en-
tirely neglected. One can thus 1) compute the intra-
resonator field [X(t), Y (t)] using Eq. 3 with the last term
neglected, 2) use it to solve the spin dynamics (Eq. 2),
and 3) compute the output field with Eqs. 3 and 4. This
is the approach that is used to simulate numerically the
spin-echo signals under arbitrary control pulse sequences,
and in the next sections to derive approximate expres-
sions for the echo amplitude. More details on the simu-
lations can be found in the Appendix.

B. Hahn echo amplitude

We now derive an approximate analytical expression
for the amplitude of a Hahn echo, based on Eqs. 1 to 4
and a number of simplifying assumptions.

To simplify the discussion, we suppose that the con-
trol pulses generate a quasi-instantaneous intra-resonator
field with a simple rectangular time-dependence of dura-
tion dt. This can be achieved if dt � κ−1, or by using
shaped pulses that compensate for the finite resonator
response time14,15,19. We thus consider input pulses on
the in-phase X direction, with an amplitude βX ≡ β dur-
ing dt while βY = 0, related to the input power Pin as
β =

√
Pin/~ω0. The corresponding intra-resonator field

amplitude is α = 2
√
κcβ/κ.

Under each control pulse, spin j undergoes a Rabi nu-

tation1 with a frequency
√

(2gjα)2 + δ2j . We assume that

Γ� 2gjα for all spins so that the dependence of the Rabi
frequency on δj can be neglected. Also, we assume that
ρδ is symmetric and is excited in its centre.
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The Hahn-echo pulse sequence is shown in Fig. 1. A
first pulse of amplitude β/2 and duration dt is followed by
a waiting time τ , then by a second pulse of amplitude β
and same duration, and by a second waiting time t. An
echo is formed around t = τ because of the refocusing
of the spin packets (we assume dt� τ). We also use an
equivalent Hahn-echo sequence where the two pulses have
the same amplitude β, but the first pulse duration is dt/2.
The spin-echo originates solely from the y component of
the magnetization, and the contribution of spin j can be
shown1,20 to be

S(j)
y (τ + t) = −S(j)

z sin3(2αgjdt) cos δj(t− τ). (5)

where S
(j)
z is spin j longitudinal polarization at the time

of the first control pulse. The latter is not necessarily
equal to Sz0 because the waiting time since the previous
pulse sequence may not be sufficiently long. Importantly,

because of Purcell relaxation, S
(j)
z depends on gj and δj ,

which leads to novel effects as shown below. Note that
we have, however, neglected the impact of spin relaxation
during the Hahn echo sequence, because in most relevant

scenarios τ � T
(j)
1 .

To obtain simple expressions for the echo amplitude,
we also consider that the resonator field dynamics ad-
justs adiabatically to the spin operators, as would be the
situation in the limit of low resonator Q. Equations 3
and 4 then yield

Xout(τ + t) = −2

√
κc
κ

∑
j

gjS
(j)
y (τ + t)

= −2

√
κc
κ

∫ ∫
gρg(g)ρδ(δ)Sy(g, δ, t)dδdg, (6)

where we have taken the continuous limit in the last ex-
pression and defined Sy(g, δ, t) as being equal to S

(j)
y (τ +

t) for a spin j having a coupling gj = g and detuning
δj = δ. Note also that we have implicitly assumed that
there is no correlation between the frequency of a given
spin and its coupling constant g, an assumption that is
not always verified21.

This echo amplitude Xout(t + τ) depends in an intri-
cate way on the pulse amplitude and on the shape of the
inhomogeneous distributions ρg and ρδ. In the following
we consider two limiting cases.

C. Narrow-line case

Let us first assume that the spin ensemble has a
linewidth much narrower than the resonator, ie Γ � κ.
Then, T1 ≈ κ/(4g2), implying that Sz and Sy do not
depend any longer on δ. Overall, the echo amplitude at
t = τ becomes

Xout(2τ) = 2

√
κc
κ

∫
gSzρg(g) sin3

(
2αgdt

)
dg. (7)

To appreciate the impact of Purcell relaxation, we
now focus on the so-called saturation recovery sequence
schematically depicted in Fig. 2c, which is commonly
used to measure spin relaxation time. It consists of
applying a saturating pulse at time t = 0 (so that
Sz(t = 0) = 0 for all spins), followed by a Hahn-echo
sequence applied after a waiting time T at t = T . Its
maximum amplitude at time t = T + 2τ is denoted by
Xout(T ) for simplicity in the following. At the beginning
of the Hahn-echo sequence,

Sz(T ) = Sz0

(
1− e−T/T1

)
. (8)

In the usual situation where spin relaxation is not
Purcell-limited or when it is governed by interactions
with the lattice, and where the system is moreover
isotropic, all spins then relax with the same time constant
T1. In Eq. 7, Sz can be factorized ; the echo amplitude
is proportional to Sz(T ), and it follows the exponential
dependence of Sz(T ), which enables to measure T1. The
echo amplitude effectively measures the longitudinal po-
larization Sz(T ), which justifies its denomination as a
detection echo; in particular, its parameters (pulse am-
plitude, duration, ...) have no impact on the measured
T1.

In the Purcell regime, T1 is different for spin-packets
with different couplings g; the detection echo amplitude
Xout(T ) has thus no reason to be even exponential. Be-
cause of the strong g-dependence of the integrand in Eq. 7
however, an approximate exponential dependence is nev-
ertheless recovered in a number of situations, but with
an effective relaxation time that now depends on the pa-
rameters of the detection echo.

We now make this reasoning explicit by considering
three types of coupling constant distributions ρg shown
in Fig. 2. The spins may be located in an area where
B1 is very homogeneous (type A), or on the contrary
very inhomogeneous (types B and C). To consider situa-
tions encountered in recent experiments, we assume that
B1 is generated by a narrow wire deposited at the sur-
face of a sample containing the spins. The spins may
be distributed within a thin layer just below the sample
surface (type B), or homogeneously in the bulk (type C).
Assuming that δB1(r) = µ0δi/(2πr), r being the spin-
wire distance and δi the quantum fluctuations of the ac
current in the resonator, it is straightforward to see that
ρg(g) = δ(g − gA) in type A, ρ(g) = gB/g

2 in type B,
and ρ(g) = g2C/g

3 in type C.
For completeness, it is interesting to note that the situ-

ation may be complicated by the presence of correlations
between the spin Larmor and Rabi frequency. This was
reported in Ref. 9 and 11. There, silicon donor spins
were confined to a thin layer (100 nm) below the surface
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of a silicon sample, on top of which a thin-film resonator
with a 5µm-wide inductance was deposited. Because of
the mechanical strain exerted by the thin metallic film
on the silicon substrate21 due to differential thermal con-
tractions between the metal and the silicon, the spin hy-
perfine interaction becomes correlated with the lateral
position relative to the wire, which also happens to be
approximately correlated to B1. As a result, the Larmor
and Rabi frequencies of the spins are correlated, and by
properly choosing the biasing field B0 the system is much
better described by type A than type B. This approxi-
mate correlation is valid only when the wire transverse
dimensions are large compared to the spin layer thick-
ness, and was indeed no longer found in Ref. 10 where
the wire width was decreased to 500 nm.

We will now compute the signal expected from a satu-
ration recovery sequence for three afore-mentioned types
of spin distribution, by inserting Eq. 8 into Eq. 7.

In type A, we obtain straightforwardly

Xout(T ) = 2

√
κc
κ

gA sin3(2αgAdt)Sz0
(
1− exp

− T
T1(gA)

)
.

(9)
Because the coupling constant has a well-defined value

gA, the spin relaxation time is identical for all mea-
sured spins and we are in the same situation as in usual
magnetic resonance, where the detection echo amplitude
relaxes exponentially with the Purcell relaxation time
T1(gA), independently of α.

To deal with types B and C, it is useful to introduce
the Rabi nutation angle ψ = 2αgdt. The T dependent
echo amplitude can then be written as

Xout(T ) = 2

√
κc
κ

Sz0

∫ [
1− exp

− T
T1(α,ψ)

]
f(ψ)dψ, (10)

with T1(α,ψ) = κα2dt2

ψ2 and f(ψ) = ψρψ sin3 ψ/(2αdt).

The function f(ψ) indicates the relative contribution of
spin packets to the total echo signal as a function of their
Rabi angle ψ. As shown in Fig. 2 for types B and C, it
displays a maximum at a value ψ0 close to π/2. In a
crude approximation, f(ψ) ∼ δ(ψ − ψ0), so that

Xout(T ) = 2

√
κc
κ

Sz0
(
1− exp

− T
T1(α,ψ0)

)
. (11)

Despite the broad coupling constant distribution, one
thus recovers an approximate exponential dependence
of the detection echo amplitude on the waiting time T .
However, the effective measured relaxation time scales
like α2, the square of the amplitude of the pulse used in
the detection echo sequence. The physical interpretation
is straightforward : the detection echo signal mostly orig-
inates from the contribution of spins that undergo first
a π/2 pulse and then a π pulse during the refocusing
step. When the pulse amplitude is varied, this amounts
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FIG. 2. Rabi angle selectivity in the narrow line case. (a)
Types of spin implantation in the substrate, type A: point
distribution, type B: thin layer distribution, type C: bulk dis-
tribution. Contours of rf magnetic field B1 created by the
inductor are sketched as dashed curves. (b) Calculated rela-
tive echo contribution f(ψ) from spin packets with different
Rabi angle ψ. (c) Saturation recovery of the echo amplitude
calculated using the model. We have taken small Rabi angles
0 < ψ < π. Solid black curves show exponential recovery of
polarization with a decay constant T1 (α,ψ0), where ψ0 is the
value where f(ψ) is maximum in panel (b).

to selecting spins with different coupling constants g, and
therefore different relaxation times.

To verify the validity of approximating f(ψ) by a δ
function, we compute Eq. 10 numerically for types B and
C. The results are shown in Fig. 2(c) for the decay of the
spin-echo amplitude A(T ) (open circles), compared to the
single-exponential approximation of Eq. 11 (solid lines,
taking into account the different values of ψ0 for types
B and C). The qualitative agreement demonstrates that
Eq. 11 correctly captures the impact of Purcell relaxation
on the effective relaxation time measured in a saturation-
recovery sequence.

D. Narrow-coupling case

We now consider the case where the coupling constant
is single-valued (corresponding to type A in the previous
section) ρg(g) = δ(g − gA). The pulse amplitude is cho-
sen such that 2gAαdt = π/2, so that the control pulses
implement the ideal Hahn-echo sequence. The Larmor
frequency on the other hand is broadly distributed, with
Γ� κ.
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In that limit, the Hahn echo amplitude Eq. 6 becomes

Xout(τ + t) = 2

√
κc
κ

∫
Szρδ cos δ(t− τ)dδ. (12)

Consider now that the echo sequences are repeated mul-
tiple times, with a waiting time T in-between two con-
secutive sequences, and let us assume that the spins are
fully un-polarized at the immediate end of a sequence,
Sz = 0. Then at the beginning of each echo, the longitu-
dinal polarization Sz is given by Eq. 8.

In a usual situation where T1 is not correlated with
the spin Larmor frequency, Sz can be factored out of the
integral in Eq. 12, and the echo temporal shape is simply
given by the Fourier transform of the Larmor frequency
distribution ρδ(δ).

In the Purcell regime however, we get that

Sz = Sz0
(
1− e−T/T1(δ)

)
, (13)

so that

Xout(τ + t) = 2

√
κc
κ

Sz0 ×∫ (
1− e−T/T1(δ)

)
ρδ(δ) cos δ(t− τ)dδ, (14)

whose Fourier transform is

X̃out(δ, T ) = 2

√
κc
κ

Sz0(1− e−T/T1(δ)
)
ρδ(δ). (15)

The Fourier components X̃out(δ) of the echo therefore
relax with a time constant T1(δ) that follows the Purcell
effect, and should thus increase with detuning quadrati-
cally.

Moreover, the spin-echo temporal shape is given by
the Fourier transform of ρδ(δ)

(
1− e−T/T1(δ)

)
, which now

depends on the repetition time T . The interpretation
is here again straightforward. Because of the depen-
dence of the relaxation time on the detuning, the physi-
cal spin distribution ρδ(δ) is effectively renormalized by
the factor

(
1 − e−T/T1(δ)

)
. At short times 4g2AT � κ,(

1−e−T/T1(δ)
)
' T/T1 = 4g2T/κ×1/(1+4δ2/κ2), imply-

ing that the effective spin distribution is given by the res-
onator filter function. In the long time limit 4g2AT � κ,
this effective distribution is closer to the physical spin dis-
tribution function ρδ(δ). Note that this Purcell-filtering
of the spin distribution should not be mistaken for the
electromagnetic filtering of the spin-echo signal by the
cavity, which will always be there in a real experiment
but was neglected here for simplicity because of the low-
Q assumption.

III. MATERIALS AND METHODS

We now describe the sample and setup used to demon-
strate the effects discussed above. Reaching the Pur-
cell regime requires spins with long intrinsic spin relax-
ation times, and resonators with a small mode volume
and high quality factor. Bismuth donors in silicon at
millikelvin temperature have an intrinsic relaxation time
T1,int = 1500 s, and are thus in the Purcell regime when-
ever T1 � T1,int. This was shown in Ref. 11, where
T1 = 1 s was reached when the bismuth donors were
at resonance with a high-quality-factor superconducting
micro-resonator. All the measurements reported in this
article are also in this Purcell regime.

We present data from three different devices. Each
device is a silicon sample that was implanted with bis-
muth atoms close to its surface, and on which a discrete-
element superconducting LC resonator was patterned.
The resonators consist of an interdigitated capacitance
shunted by a micron- or sub-micron-scale wire which
plays the role of the inductance [Fig. 3(a-c)]. The devices
are mounted in a copper sample holder, and coupled ca-
pacitively to a microwave antenna which determines the
coupling rate κc. In devices 1 and 2 [Fig. 3(d-e)], the
implantation depth is ∼ 100 nm, with a peak concen-
tration of 8 × 1016 cm−3, the silicon sample is isotopi-
cally enriched in 28Si, and the resonator is made in alu-
minum. In device 3 [Fig. 3(f)], the implantation depth is
∼ 1 µm, with a smaller peak concentration of 1016 cm−3,
the silicon is of natural isotopic abundance, and the res-
onator is made of niobium. Of particular importance for
this work is the geometry of the resonator inductance,
which strongly impacts the coupling constant distribu-
tion ρg(g). It is 100 nm wide and 10 µm long in device
1, 500 nm wide and 100 µm long in device 2, and 2 µm
wide and 700 µm long in device 3. The characteristics of
the devices are summarized in Table I.

Bismuth atoms implanted in the silicon form four co-
valent bonds to the silicon lattice, while the fifth valence
electron is trapped at low temperatures by the hydro-
genic potential formed by the ionized bismuth atom; its
spin gives rise to the ESR signal22. Due to the hyperfine
interaction between the unpaired electron spin and the
bismuth nuclear spin, allowed ESR transitions are found
close to ∼ 7.38 GHz at small magnetic fields. More de-
tails on the spin Hamiltonian and ESR transitions can be
found in the Appendix B. In our devices, bismuth donor
spins experience large strain when cooled to low temper-
ature because of the differential thermal expansion of Al
and Si21,23, which leads to ESR lines much broader than
both κ and the Rabi frequency 2gα in our experiments.
We model this by a constant distribution ρδ.

The coupling constant distribution ρg(g) is computed
by first estimating the rms current fluctuations in the
inductance δi0 = ω0

√
~/2Z0, where the LC resonator

impedance Z0 =
√
L/C is extracted from electromag-

netic simulations. This yields the position dependence of
the rms magnetic field fluctuations δB1(r) and of the cou-
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TABLE I. Device parameters

Device 1 Device 2 Device 3

Substrate 28Si 28Si natural Si
29Si in substrate (%) 0.05 0.05 4.7

Nmax (cm−3) 8 ×1016 8 ×1016 1016

Implantation depth (µm) ∼ 0.1 ∼ 0.1 ∼ 1

Resonator material Al Al Nb

Inductor width (µm) 0.1 0.5 2

Inductor length (µm) 10 100 700

ω0/2π (GHz) 7.25 7.25 7.41

Qi 8 ×104 2 × 105 2 × 105

Qc 3 × 104 7 × 104 104

Q = QiQc/(Qi +Qc) 2 × 104 5 × 104 104

Z0 (Ω) 15 30 40

B0 (mT) 3.7 3.7 62.5

π pulse duration (µs) 1 1 0.25

Peak pulse power (pW) 0.1 1 1000

pling constant g(r) = γe|〈0|Sx|1〉|δB1(r)24 [see Fig. 3(d-
f)]. Combined with the implantation profile, we then
estimate the coupling constant distribution ρg(g) for all
three devices [solid lines in Fig. 3(g)]. At small g, ρg(g)
scales like g−2 in all devices, as expected from the anal-
ysis of section IIC for type B. This dependence breaks
down for spins that are close to the wire (and have there-
fore the largest coupling to the resonator), and become
sensitive to its transverse dimension, which leads to a cut-
off in ρg(g). This cutoff lies at about 4 kHz, 0.8 kHz, and
0.1 kHz for devices 1 to 3. Because the inductor wire is
larger than the spin implantation depth in devices 2 and
3, ρg features a shoulder at about 0.6 kHz and 0.06 kHz
repsectively, due to the significant density of spins lying
right below the wire and therefore seeing a more uniform
B1 field ; in a sense, these devices are intermediate be-
tween types A and B.

The samples are cooled to 20 mK in a dilution refrig-
erator, and measured in a setup described schematically
in Fig. 4. Control pulses are sent at ω0 through an input
line that incorporates low-temperature attenuation, and
the reflected pulses together with the spin echo signal
are routed by a circulator towards a parametric amplifier
at 10 mK (either of the JPA25 or the JTWPA26 type).
After further amplification at 4 K by a High-Electron-
Mobility Transistor amplifier and at 300 K, the output
signal is homodyne demodulated by mixing with a local
oscillator also at ω0, yielding the echo signal Xout(t+ τ)
used for analysis. Details of pulse frequency, duration
and power are summarized in table I. We remark that
transient heating from pulses is negligible in our setup.

All three resonators have slightly different frequencies
ω0, all within 200 MHz of 7.37 GHz, the zero-field split-
ting of bismuth donors in silicon. The resonators are
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FIG. 3. Device details. (a-c) Optical photographs of the
three LC resonators, and scanning electron microscopy im-
ages of the sub-µm wide inductors for devices 1 and 2. The
direction of the static magnetic field B0 is also shown. (d-
f) Calculated coupling strength g/2π (in kHz) distribution
(color contour plots) for the 3 devices. The Bi dopants are
implanted homogeneously over the whole sample area with
an implantation profile N(z) (left trace); the spin signal orig-
inates dominantly from spins located directly below the in-
ductor. In panel (f), white rectangular areas on two sides of
the inductor represent regions that have been etched during
fabrication. (g) Log-log plot of calculated coupling distribu-
tion ρg(g). Dashed lines represent 1/g2 dependence.
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FIG. 4. Schematic of the measurement setup at different tem-
perature stages of our ESR spectrometer.

in the overcoupled regime (κc � κi), with total quality
factors in the 104−105 range. A magnetic field B0 is ap-
plied parallel to the sample, along the inductor wire, and
its value is chosen such that one of the bismuth donor
transitions is resonant with ω0.
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IV. EXPERIMENTAL RESULTS

A. Pulse-amplitude-dependent spin relaxation

We use device 1 to investigate the dependence of T1 on
the excitation amplitude β predicted in section 2C when
ρg is broadly distributed. As discussed earlier, in device
1 ρg corresponds well to type B so that the analysis of
Section IIC should apply.

Saturation recovery pulse sequences are applied, with
a saturation pulse of duration 2 ms and fixed amplitude,
followed after a variable delay T by a detection echo.
Square input pulses of duration 1 µs are used, of respec-
tive amplitudes β/2 and β. To more closely approximate
the narrow-line hypothesis of Section 2C, the echo signal
Xout(t + τ) is integrated over its duration TE yielding

the echo area Ae(T ) =
∫ +TE/2

−TE/2 Xout(t + τ)dt, which is

equal to the zero-detuning Fourier component and thus
contains the contribution of spins at resonance with the
resonator.

The resulting Ae(T ) is shown in Fig. 5(a), for two dif-
ferent values of β. We see that both datasets are sat-
isfactorily fitted by exponentially decaying curves, but
with different time constants T1. Figure 5(b) shows the
measured T1(β), which scales like β2 as predicted in sec-
tion IIC. We also measured T1 using an inversion re-
covery sequence [see Fig. 5(c)], using an inversion pulse
with the same amplitude and duration as the refocusing
pulse of the detection echo. Here for each data point, we
wait 30 ms between the echo detection and start of the
next sequence. The fitted T1 values are identical to the
saturation-recovery ones within error bars and display
the same β2 scaling. Note that this would probably not
hold if the inversion pulse amplitude was too different
from β.

In order to compare the experiments to simulations,
an absolute calibration of the input pulse amplitude β is
needed. Since attenuation and filtering along the input
line cannot be known precisely enough, the calibration is
performed by comparing the Rabi simulations to the ded-
icated Rabi pulse sequence shown in Fig. 6. A first pulse
of varying amplitude drives Rabi oscillations in the spin
ensemble followed, after a waiting time of 1 ms, by detec-
tion echo. The frequency and amplitude of the resulting
oscillations are compared to the simulation, which cali-
brates β (see Fig. 6). Using this independent calibration,
we simulate the saturation recovery experiment of Fig. 5,
taking into account the estimated ρg and ρδ for device A.
Both the shape of the relaxation curves Ae(T ) and the
dependence of the fitted T1 on β are well reproduced,
without adjustable parameters.

To confirm the interpretation given in Section IIC, we
show in Fig. 5(d) the relative contribution to the echo
of various spin packets as a function of the value of their
coupling constant g, extracted from the simulations for
the two example curves shown in Fig. 5 at a waiting time
T = 30 ms larger than T1, so that the spins are close to

0
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FIG. 5. Spin relaxation versus excitation amplitude (device
1). (a) Relaxation of the echo area Ae(T ) as a function of the
waiting time T in a saturation recovery sequence (shown in
inset), for two different values of β. Circles and red lines cor-
respond to measurements and numerical simulations. Black
lines correspond to least square fits of the data by single-
exponentials. (b) Comparison of experimentally extracted T1

values (open blue circles) with simulated ones (red diamonds),
for more β values. The dashed line is a quadratic fit to the
data. (c) Spin relaxation measurements using inversion recov-
ery method. (d) Calculated contribution (solid lines) of spin
packets with coupling g to the echo amplitude Ae(T = 30ms),
for the saturation recovery sequence and the two β values of
a). Dashed lines represent the corresponding f(ψ) function
introduced in the model section.
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FIG. 6. Rabi oscillations measured (circles) for two differ-
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provides a calibration of β.

equilibrium. As expected, an echo obtained with a larger
pulse amplitude (large β) has more contributions from
spins that are more weakly coupled, compared for the
echo using weaker pulses (smaller β). On the same figure
we also show f(ψ), and observe a satisfactory agreement
with our simple model.
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ery sequence (inset) applied to device 3. Simulations shown
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Fig.3g). (b) Color maps of measured and simulated spin re-

laxation X̃δ(T ) at different spin detunings δ. (c) Exponential
fits (lines) and the data (circles) for two values of δ/κ. (d)
Comparison of measured T1(δ) (open blue circles) with sim-
ulation without adjustable parameters (open red diamonds).
The dashed line shows the expected T1(δ) dependence based
on the Purcell formula Eq. 1 and on the measured T1 at δ = 0.

B. Detuning dependent spin relaxation

We investigate the detuning dependence of spin relax-
ation with devices 2 and 3 in which the coupling con-
stant distribution shows a plateau (Fig. 3), so that they
approach the narrow-coupling limit described in Section
IID and display well-defined Rabi oscillations allowing us
to perform Rabi nutations with a well-defined angle10.

The inversion recovery sequence is first applied to de-
vice 3 (see Fig. 7). The echo signal Xe(t + τ) is shown
in Fig. 7(a) for various values of the waiting time T . As
expected, its phase is inverted for short values of T com-
pared to long ones.

The Fourier transform of each curve X̃e(δ) is then com-
puted as shown by colormpas in Fig. 7(b). Figure 7(c)
shows the time dependence of two normalized Fourier
components (δ = 0 and δ = 0.5κ) and demonstrates

that X̃δ=0(T ) relaxes faster than X̃δ=0.5κ(T ) as antici-
pated. T1(δ) [see Fig. 7(d)] is then obtained by fitting
each Fourier component by an exponential decay. T1 in-
creases with δ as expected from Eq. 14, although it does
not exactly follow the Purcell effect.

To understand this discrepancy, we perform numerical
simulations, using the estimated ρg(g) and a constant ρδ
as already discussed, and without any adjustable param-
eter. We first compute the time traces Xe(t+ τ), which
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FIG. 8. Influence of Hahn echo sequence repetition rate γrep
on measured (open symbols) and simulated (lines) echo shape
Xout(t) (device 2). Bump-shaped control pulses are used to
generate 1µs-long intra-resonator pulses. Inset: Fourier trans-
form of some of the echos in the main graph (corresponding
symbols, lines and colors). The resonator linewidth is indi-
cated by a dashed area.

we find in quantitative agreement with the data as seen in
Fig. 7(a). We then Fourier transform the simulation re-
sult and extract T1(δ) as for the experimental data. The
result [see Fig. 7(b,d)] reproduces well the dependence
of δ found in the experimental values. Detailed analy-
sis of the simulation data shows that the finite width of
the ρg(g) distribution is actually causing the discrepancy
with the Purcell effect: the large-δ components of the
spin-echo come from spins more strongly coupled than
those contributing to the δ = 0 component.

We finally test the influence of the Hahn echo sequence
repetition rate γrep on the temporal echo shape with de-
vice 2 (see Fig. 8). In order to maximize the spin ex-
citation bandwidth, bump-shaped excitation pulses14,15

are used: they are designed to make the intra-resonator
field closely approximates a rectangular shape with rise
and fall times much shorter than the cavity damping time
2/κ, which thus brings the experiment closer to the ideal-
ized quasi-instantaneous pulse limit discussed in section
II. More quantitatively, the intra-resonator field pulse
length is 1 µs, resulting in an excitation bandwidth of
' 1 MHz (whereas κ/2π = 100 kHz). At constant in-
duced spin flip angle, the maximum amplitude of a bump
pulse is consequently much larger than for a square pulse.

Figure 8 shows that both the risetime and maximum
height of the echo decrease with increasing γrep. In par-
ticular, the rise becomes faster than 2/κ at γrep = 1 Hz,
which confirms spin excitation outside the resonator
bandwidth. The echo emission is however inevitably fil-
tered by the cavity and the echo-shape follows a cavity
ring-down with time constant ∼ 2/κ. Once again, nu-
merical simulations (see Fig. 8) capture the changes in
echo-shape and magnitude. Similar to device 1, the pulse
amplitude for device 2 (β = 5 × 106 s−1/2) is estimated
from corresponding Rabi and T1 measurements (≈ 30 ms,
extracted using square pulses).
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V. CONCLUSION

We have explored theoretically and experimentally the
consequences of spin relaxation by the Purcell effect on
the temporal shape and amplitude of spin echoes in a
number of experimental situations. Such effects arise
from the correlations between relaxation time of a given
spin packet, its detuning to the resonator, and its spin-
photon coupling constant (or equivalently its Rabi fre-
quency).

When the spin-resonator coupling is distributed in-
homogeneously, as is commonly the case for microres-
onators, the sub-ensemble of spins which contribute most
strongly to the measured signal is determined by the
pulse amplitude (i.e. with more weakly coupled spins
measured for stronger pulses, and vice versa). In the
Purcell regime for spin relaxation, the measured spin re-
laxation time is a strong function of the spin-resonator
coupling, and hence, of the pulse amplitudes used.

When the spin linewidth is broader than the resonator
linewidth, the relaxation time of the spin-echo Fourier
components varies quadratically with detuning, which
leads to a repetition-time- dependent shape for the spin-
echo. When on the other hand both the coupling and
detuning are well-defined, which can be achieved with
careful design of the microresonator and sample geome-
tries, typical pulse EPR results are recovered, although
with a relaxation time determined by the Purcell effect.

Microresonators are becoming of increasing impor-
tance in EPR as part of a push for greater spin num-
ber sensitivity. However, the combination of inhomoge-
nous spin-resonator coupling and the introduction of
resonator-induced spin relaxation via the Purcell effect,
lead to general and significant influences in the mea-
sured spin-echo shapes and decay profiles. Such ef-
fects require careful treatment and understanding when
analysing EPR data in this regime, and motivate, where
possible, design of sample and resonator geometries to
minimise their influence on conventional EPR measure-
ments. More generally, these qualitatively novel effects
confirm that Purcell relaxation constitutes a novel regime
for magnetic resonance that deserves deeper exploration
on its own.
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Appendix A: Numerical simulations

For the numerical simulations presented in the main
text, we have taken 600 discrete bins for Larmor fre-
quency distribution δj linearly spaced between −5κ and
5κ. Furthermore, spin linewidths are much larger than
κ and Rabi frequency, so we assume a constant spin dis-
tribution ρδ. The distribution in coupling strength is
incorporated by taking 150 bins of g values, again lin-
early spaced between the maximum and the minimum
value. The coupling strength distribution ρg(g) is de-
termined using a finite-element simulation of the mag-
netic field profile δB1(r) around the inductance (using
COMSOL) and also the knowledge of the implantation
profile below the inductor (measured by Secondary Ions
Mass Spectroscopy). The minimum g is determined by
the lateral size of the box in the COMSOL simulation,
which we choose to be four times the width of the in-
ductor while centered around the inductor. These boxes
are shown in the Fig. 3(d-f). Since all measurements are
done at low temperatures 20 mK and at large frequen-
cies ω0/2π ∼ 7 GHz, we take equilibrium polarization to
be 1. However, because of finite repetition rate γrep, the

initial conditions for the simulations are set by S
(j)
z (t =

0) = 1− exp[−1/(T
(j)
1 γrep)], S

(j)
x (0) = S

(j)
y (0) = 0.

Appendix B: Spin Hamiltonian of Bismuth donors in silicon

Implanted bismuth donors are substitutional impuri-
ties in the tetravalent silicon lattice. At low tempera-
tures, the extra fifth electron stays bound to the Bi nu-
cleus due to the Coulomb potential in a manner similar
to the electron in the hydrogen atom22. The spin Hamil-
tonian HBi of an isolated bismuth donor subject to a
magnetic field B0 applied along the z axis is given by

HBi = AS · I + ωe(Sz − δIz), (B1)

where S is the spin-1/2 operator of the donor electron, I
is the nuclear spin operator of the Bismuth nucleus (with
I = 9/2), ωe = γeB0, δ = γn/γe, and γe/2π = 28 GHz/T
and γn/2π = 6.962 MHz/T are respectively the electron
and nuclear spin gyromagnetic ratios. The hyperfine cou-
pling constant between the electron and nuclear spins of
the bcurves showismuth donor is A/2π = 1.4754 GHz.
We point out that the Hamiltonian does not contain

a nuclear quadrupolar term despite I = 9/2, thanks
to the symmetry of the electronic wave function in the
ground state. The Hamiltonian can be diagonalized nu-
merically, yielding 20 eigenstates |F,m〉, where F is the
eigenvalue of the total angular momentum F = S + I
and m its projection on the z-axis. At high magnetic
fields B0 > 300 mT, eigenstates are in the Zeeman ba-
sis and only nuclear-spin preserving ESR transitions are
allowed, i.e. |F = 4,m − 1〉 ⇐⇒ |F = 5,m〉. At
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FIG. 9. Allowed Sx transition frequencies for Bi electron spins
at low magnetic fields. Results shown in the main text are
acquired for devices 1,2 near the first transition and or the
device 3 near the fifth transition, as marked by arrows.

low fields, however, final eigenstates are strong hybridiza-
tion of nuclear and electronic counterpart. Therefore all
Sx transitions that satisfy ∆m = ±1 are allowed and
|F = 4,m〉 ⇐⇒ |F = 5,m− 1〉 transitions also become
available. We note that for |m| ≤ 4, two transitions
described above are quasi-degenerate in energy. Differ-
ent transitions however have different 〈0|Sx|1〉 matrix el-
ements. More details on energy levels in Bi can be found
in the Ref. 27.

Accounting for degeneracies, ten ESR transitions are
visible in Fig. 9. The resonance frequency of differ-
ent devices is also shown. For devices 1 and 2, ex-
periments are performed near the first transition |F =
4,−4〉 ⇐⇒ |F = 5,−5〉 that has a matrix element
of 0.48. For device 3, data are obtained on degener-
ate transitions |F = 4,−1〉 ⇐⇒ |F = 5, 0〉 and
|F = 4, 0〉 ⇐⇒ |F = 5,−1〉, each with a matrix el-
ement of 0.25. Different matrix elements for different
transitions have been accordingly taken into account in
the simulations. For all devices and all transitions, quan-
titative agreement is obtained between the measured re-
laxation times and the estimated Purcell times, without
adjustable parameter, which brings further confirmation
that the donors are indeed in the Purcell regime.
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