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ABSTRACT
Until recently, mass-mapping techniques for weak gravitational lensing convergence recon-
struction have lacked a principled statistical framework upon which to quantify reconstruction
uncertainties, without making strong assumptions of Gaussianity. In previous work, we pre-
sented a sparse hierarchical Bayesian formalism for convergence reconstruction that addresses
this shortcoming. Here, we draw on the concept of local credible intervals (cf. Bayesian error
bars) as an extension of the uncertainty quantification techniques previously detailed. These
uncertainty quantification techniques are benchmarked against those recovered via Px-MALA
– a state-of-the-art proximal Markov chain Monte Carlo (MCMC) algorithm. We find that,
typically, our recovered uncertainties are everywhere conservative (never underestimate the
uncertainty, yet the approximation error is bounded above), of similar magnitude and highly
correlated with those recovered via Px-MALA. Moreover, we demonstrate an increase in
computational efficiency of O(106) when using our sparse Bayesian approach over MCMC
techniques. This computational saving is critical for the application of Bayesian uncertainty
quantification to large-scale stage IV surveys such as LSST and Euclid.

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical –
techniques: image processing.

1 IN T RO D U C T I O N

As photons from distant sources (galaxies) travel through space–
time to us, here and now their trajectories are perturbed by local mass
over- and underdensities, causing the observed shapes of structures
to be warped, or gravitationally lensed. This cosmological effect is
sensitive to all matter (both visible and invisible), and so provides
a natural cosmological probe of dark matter.

The gravitational lensing effect has (at first order) two distinct
effects: distant galaxies are magnified by a convergence field κ

and the third flattening (ellipticity) is perturbed from an underlying
intrinsic value by a shear field γ . A wide range of cosmologies can
be extracted from just the shear field (Alsing et al. 2016; Taylor
et al. 2018), though increasingly higher order statistics (Coles &
Chiang 2000; Munshi et al. 2008; Heavens 2009; Munshi & Coles
2017) are being computed on convergence maps directly.

As a result of the mass-sheet degeneracy (an a priori degeneracy
of the intrinsic brightness of galaxies; see Bartelmann & Schneider
2001), the convergence field cannot be observed directly. Instead,
measurements of the shear field γ must be taken and inverted
through some mapping to create an estimator for κ . Typically, these
inverse problems are ill-posed (often seriously) and so creating
unbiased estimators for the convergence κ can prove difficult.

� E-mail: m.price.17@ucl.ac.uk

Many convergence inversion techniques have been considered
(e.g. VanderPlas et al. 2011; Lanusse et al. 2016; Wallis et al.
2017; Chang et al. 2018; Jeffrey et al. 2018) though the simplest,
most direct method in the planar setting is that of Kaiser–Squires
(KS) inversion (Kaiser & Squires 1993). Though these methods
often produce reliable estimates of κ , they all either lack principled
statistical uncertainties on their reconstructions or make strong
assumptions of Gaussianity (which heavily degrades the quality
of non-Gaussian information in particular).

For example, Wiener filtering (see e.g. Horowitz, Seljak &
Aslanyan 2019) directly adopts Gaussian priors that are more
explicit assumptions of Gaussianity. Other approaches, such as
the KS method, recover a noisy convergence estimate that is post-
processed via convolution with a Gaussian kernel, which promotes
Gaussianity.

On large scales, the lensing information is primarily Gaussian
in nature, though on smaller scales (at higher resolutions) there
occurs a non-negligible non-Gaussian contribution that encodes
information about baryonic interactions and clustering among other
non-linear effects. Analysis of such effects is expected (Munshi et al.
2008) to provide competitive and more importantly complementary
constraints on cosmological parameters – in particular, parameters
related closely to dark matter such as σ 8 and �M. Consequently,
mapping techniques that preserve the non-Gaussian information
content are a crucial step forward for dark matter analysis via weak
gravitational lensing.
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In previous work (Price et al. 2018), we presented a new sparse
hierarchical Bayesian formalism for reconstructing the convergence
field. This not only regularizes the ill-posed inverse problem but
also allows us to explore the Bayesian posterior in order to recover
principled uncertainties on our reconstruction. It is important to note
here that this mathematical framework is entirely general and can
be applied for any posterior that belongs to the set of log-concave
functions – of which both sparsity enforcing Laplace-type priors
and standard Gaussian priors are members.

Often, hierarchical Bayesian inference problems are solved by
Markov chain Monte Carlo (MCMC) techniques (see e.g. Trotta
2017), which explicitly return a large number of samples from
the full posterior distribution – from which one can construct
true Bayesian uncertainties. Samples of the posterior via MCMC
algorithms construct theoretically optimal estimates of the posterior
(in the limit of a large number of samples), but in practice can be
extremely computationally taxing to recover fully.

In fact, when the dimensionality becomes large these methods
become infeasible – often referred to as the curse of dimensionality.
In the context of lensing inverse problems, each pixel constitutes a
dimension, and so for a resolution of 1024 × 1024 (which is typical)
the dimension of the problem is O(106).

Recent advancements in probability density theory (Robert 2001)
allow conservative approximations of Bayesian credible regions
of the posterior from knowledge of the maximum a posteriori
(MAP) solution alone (Pereyra 2017). The sparse Bayesian method
presented in previous work (see Price et al. 2018) recasts the
maximization of the posterior distribution as a convex optimization
problem from which the MAP solution can be rapidly com-
puted. Uncertainty quantification is then conducted utilizing the
aforementioned approximate credible regions of the posterior. In
Price et al. (2018), hypothesis testing (determining the statistical
significance of a feature of the recovered convergence map) was
introduced to the weak lensing setting as a form of uncertainty
quantification.

In this article, we introduce a further uncertainty quantification
technique called local credible intervals (cf. pixel-level error bars).
Both hypothesis testing and local credible intervals were previously
developed and applied to the radio interferometric setting (Cai,
Pereyra & McEwen 2017a, b). We also remark that there are
alternative ways of testing image structures (Repetti, Pereyra &
Wiaux 2018). This paper serves as a benchmark comparison of
our sparse hierarchical Bayesian formalism (see Price et al. 2018)
to a bespoke MCMC algorithm, Px-MALA (Durmus, Moulines &
Pereyra 2016; Pereyra 2016; Cai, Pereyra & McEwen 2017a, b). Px-
MALA utilizes Moreau–Yosida envelopes and proximity operators
(tools from convex analyses) to support non-differentiable terms in
the prior or likelihood, making it one of the only somewhat efficient
ways to support non-smooth sparsity-promoting priors (on which
our sparse Bayesian mass-mapping framework is based) in high-
dimensional settings.

The remainder of this article is structured as follows. We begin
with Section 2 in which we review our sparse hierarchical Bayesian
models for mass mapping and present a brief overview of the Px-
MALA MCMC algorithm. We then cover the relevant mathematical
background of approximate Bayesian uncertainty quantification in
Section 3 before introducing the concept of local credible intervals
– an additional form of uncertainty quantification. In Section 4, we
conduct a series of mock scenarios to compare the uncertainties
recovered by our MAP approach, and the full MCMC (Px-MALA)
treatment. Finally, we draw conclusions and discuss future work in
Section 5.

Section 2 relies on a strong understanding of Bayesian inference
and MCMC techniques along with a moderate understanding of
proximal calculus and compressed sensing. As such, for the reader
interested only in the application and benchmarking, Section 4
onwards is relevant content.

2 H I E R A R C H I C A L BAY E S I A N I N F E R E N C E
FOR MASS MAPPI NG

Hierarchical Bayesian models provide a flexible, well-defined
approach for dealing with uncertainties in a variety of problems.
For an overview of Bayesian hierarchical modelling and MCMC
techniques in the context of astrophysics, we refer the reader to
Trotta (2017).

We begin by presenting an overview of the sparse hierarchical
Bayesian approach developed in previous work (see Price et al.
2018), where we also review the weak lensing planar forward
model. Following this, we make the MAP optimization problem
explicit. We then review the Bayesian parameter inference
hierarchy adopted in our sparse Bayesian mass-mapping algorithm
(Price et al. 2018). Finally, we provide a short introduction to the
Px-MALA and MYULA proximal MCMC algorithms (Durmus
et al. 2016; Pereyra 2016).

2.1 Bayesian inference

Mathematically, let us begin by considering the posterior distribu-
tion, which by Bayes’ theorem is given by

p(κ|γ ) = p(γ |κ)p(κ)∫
CN p(γ |κ)p(κ)dκ

. (1)

Bayes’ theorem relates the posterior distribution p(κ|γ ) to the
product of some likelihood function p(γ |κ) and some prior p(κ). It
is important to note here that a model is implicit which collectively
defines the noise and the proposed relationship between obser-
vations γ and inferences κ – specifically, this term characterizes
the noise model and the assumed mapping {κ �→γ }. Note that the
denominator in equation (1) is the model’s marginal likelihood,
which is unrelated to κ .

Suppose the discretized complex shear field γ ∈ CM and the
discretized complex convergence field κ ∈ CN – where M represents
the number of binned shear measurements and N represents the
dimensionality of the convergence estimator – are related by a
measurement operator � ∈ CM×N defined such that

� ∈ CM×N : κ ∈ CN �→ γ ∈ CM. (2)

Further, suppose a contaminating noise n is present. Measurements
of γ are produced via

γ = �κ + n. (3)

For the case considered within this paper, we take n ∼ N (0, σ 2
n ) ∈

CM , i.e. i.i.d. (independent and identically distributed) additive
Gaussian noise. For the purpose of this paper, we consider the
simplest planar mapping,

� = F−1DF. (4)

Here, F (F−1) is the forward (inverse) discrete fast Fourier trans-
forms and D is the weak lensing planar forward model in Fourier
space (e.g. Kaiser & Squires 1993),

Dkx ,ky
= k2

x − k2
y + 2ikxky

k2
x + k2

y

. (5)
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The measurement operator � has also been extended to superres-
olution image recovery (Price et al. 2018), but that is beyond the
scope of this paper.

In the majority of weak lensing surveys, M < N (i.e. the shear
field is a discrete undersampling of the underlying convergence
field) and so inverting the forward model is typically ill-posed (often
seriously). To regularize ill-posed inverse problems, a term encoding
prior information is introduced – this is referred to as either the prior
or regularization term.

We choose a prior that reflects the quasi-philosophical notion
of Occam’s Razor – a prior that says if two solutions are equally
viable, the one that makes the fewest assumptions (the fewest active
variables – non-zero coefficients in a sparse domain) is more likely
to be true. Mathematically, this is equivalent to imposing sparsity
that minimizes the number of non-zero coefficients in a sparse
representation (dictionary).

One could select any sparsifying domain, though a natural choice
for most physical systems is wavelets. We choose to use wavelets
as our sparsifying dictionary in this paper and in previous work.

The natural sparsity-promoting prior is the �0-norm ‖.‖0, often
referred to as the Hamming distance, i.e. the total number of
non-zero coefficients of a field. However, this function is non-
differentiable and (perhaps more importantly) non-convex. As
such, it cannot exploit the computational advantages provided by
conventional convex optimization techniques.

Researchers therefore often select the next most natural sparsity-
promoting prior, the �1-norm ‖.‖1, which is convex and can be
shown to share the same MAP solution as if one were to use the
�0-norm in certain cases (see e.g. Donoho 2006; Candès & Wakin
2008, on convex relaxation).

We now define the likelihood function (data fidelity term) as a
multivariate Gaussian with diagonal covariance � = σ 2

n I such that

p(γ |κ) ∝ exp

(−‖�κ − γ ‖2
2

2σ 2
n

)
, (6)

which (as in Price et al. 2018) is regularized by a non-differentiable
Laplace-type sparsity-promoting wavelet prior

p(κ) ∝ exp
(

− μ‖�†κ‖1

)
, (7)

where � is an appropriately selected sparsifying dictionary (such
as a wavelet dictionary) in which the signal is assumed to be sparse,
and μ ∈ R+ is a regularization parameter. Substituting p(γ |κ) and
p(κ) into equation (1) yields

p(κ|γ ) ∝ exp

{
−

(
μ‖�†κ‖1 + ‖�κ − γ ‖2

2

2σ 2
n

)}
. (8)

Note that one can choose any convex log-priors, e.g. an �2-norm
prior from which one essentially recovers Weiner filtering (see
Padmanabhan, Seljak & Pen 2003; Horowitz, Seljak & Aslanyan
2019, for alternate iterative Weiner filtering approaches).

2.2 Sparse MAP estimator

Drawing conclusions directly from p(κ|γ ) can be difficult because
of the high dimensionality involved, which will be detailed in the
next section. As an alternative, Bayesian methods often derive
solutions by computing estimators that summarize p(κ|γ ), such
as maximizing the probability of the recovered κ conditional on the
data γ . Such a solution is referred to as the MAP solution. From the

monotonicity of the logarithm function, it is evident that

κmap = argmax
κ

{
p(κ|γ )

}
= argmin

κ

{ − log( p(κ|γ ) )
}

= argmin
κ

{
μ‖�†κ‖1︸ ︷︷ ︸

f (κ)

+‖�κ − γ ‖2
2/2σ 2

n︸ ︷︷ ︸
g(κ)

}
, (9)

which is a convex minimization problem and can therefore be
computed in a highly computationally efficient manner.

To solve the convex minimization problem given in equation (9),
we implement an adapted forward–backward splitting algorithm
(Combettes & Pesquet 2009). A complete description of the steps
adopted when solving this optimization problem, and the full
details of the sparse hierarchical Bayesian formalism are outlined
in previous work (Cai et al. 2017b; Price et al. 2018).

2.3 Sparse dictionary and regularization parameter

Here we provide a concise overview of the parameter selection
aspect of our sparse Bayesian mass-mapping algorithm, which
was developed and presented in previous work – for a complete
description, see Price et al. (2018) and Pereyra, Bioucas-Dias &
Figueiredo (2015).

The prior term in equation (9) promotes the a priori knowledge
that the signal of interest κ is likely to be sparse in a given dictionary
�. A function f(x) is sparse in a given dictionary � if the number
of non-zero coefficients is small compared to the total size of
the dictionary domain. Wavelets form a general set of naturally
sparsifying dictionaries for a wide range of physical problems, and
have recently been shown to work well in the weak lensing setting
(Lanusse et al. 2016; Peel, Lanusse & Starck 2017; Jeffrey et al.
2018; Price et al. 2018). For the purpose of this paper, we restrict
ourselves to Daubechies 8 (DB8) wavelets (with eight wavelet
levels) for simplicity, though a wide variety of wavelets could be
considered (e.g. Pires, Starck & Amara 2009; Carrillo, McEwen &
Wiaux 2012; Starck, Murtagh & Fadili 2015). Note that the exact
choice of wavelet representation (and prior) is independent from the
results of this benchmarking paper, thus a discussion of dictionary
(and prior) optimality is not of primary concern.

An issue in these types of regularized optimization problems
is the setting of regularization parameter μ – several approaches
have been presented (Paykari et al. 2014; Lanusse et al. 2016; Peel
et al. 2017; Jeffrey et al. 2018). For uncertainties on reconstructed κ

maps to be truly principled, μ must be computed in a well-defined,
statistically principled way. In Price et al. (2018), a hierarchical
Bayesian inference approach to compute the theoretically optimal
μ was adopted, which we outline in Appendix A.

2.4 Proximal MCMC sampling

Sampling a full posterior distribution is very challenging in high-
dimensional settings, particularly when the prior p(κ) considered
is non-differentiable – like the sparsity-promoting prior given in
equation (7). In the following, we recall two proximal MCMC
methods developed in Durmus et al. (2016) and Pereyra (2016) –
MYULA and Px-MALA – which can be applied to sample the full
posterior density p(κ|γ ) for mass mapping. After a set of samples
has been obtained, various kinds of analysis can be performed,
such as summary estimators of κ , and a range of uncertainty
quantification techniques, as presented in Cai et al. (2017a, b).
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For a probability density p ∈ C1 with Lipschitz gradient, the
Markov chain of the unadjusted Langevin algorithm (ULA) to
generate a set of samples {l(m)}∈CN based on a forward Euler–
Maruyama approximation with a step size δ > 0 has the form

l(m+1) = l(m) + δ

2
∇ log p[l(m)] +

√
δw(m+1), (10)

where w(m+1) ∼ N (0, 1N ) (a N-sequence of standard Gaussian
random variables).

However, the chain generated by ULA given above converges to
p with asymptotic bias. This kind of bias can be corrected at the
expense of some additional estimation variance (Roberts & Tweedie
1996) after involving a Metropolis–Hasting (MH) accept–reject
step in ULA, which results in the MALA algorithm (Metropolis-
adjusted Langevin Algorithm). However, the convergence of ULA
and MALA is limited to a continuously differentiable log p with
Lipschitz gradient, which prohibits their application to our focus on
mass mapping with non-differentiable sparsity-promoting prior in
equation (7).

Proximal MCMC methods – such as MYULA and Px-MALA –
can be used to address non-differentiable sparsity-promoting priors
(Durmus et al. 2016; Pereyra 2016). Without loss of generality,
consider a log-concave posterior that is of the exponential family

p(κ|γ ) ∝ exp {−f (κ) − g(κ)}, (11)

for lower semicontinuous convex and Lipschitz differentiable log-
likelihood g(x) ∈ C1 and lower semicontinuous convex log-prior
f (x) /∈ C1. It is worth noting that this is precisely the setting adopted
within this paper, where from (8)

f (κ) = μ‖�†κ‖1, and g(κ) = ‖�κ − γ ‖2
2/2σ 2

n . (12)

To sample this posterior, the gradient ∇log p is required; how-
ever, f(x) is not Lipschitz differentiable. To account for the non-
differentiability of f(x), let us now define the smooth approximation
pλ(κ|γ ) ∝ exp { − fλ(κ) − g(κ)}, where

f λ(κ) ≡ min
κ̂∈CN

{
f (κ̂) + ‖κ̂ − κ‖2/2λ

}
(13)

is the λ-Moreau–Yosida envelope of f, which can be made arbitrarily
close to f by letting λ → 0 (see Parikh & Boyd 2014). Then we have
lim
λ→0

pλ(κ|γ ) = p(κ|γ ), and more importantly that, for any λ > 0,

the total-variation distance between the distributions pλ and p is
bounded by ‖pλ − p‖TV ≤ λμN, providing an explicit bound on
the estimation errors involved in using pλ instead of p (see Durmus
et al. 2016, for details). Also, the gradient ∇log pλ = −∇fλ − ∇g
is always Lipschitz continuous, with ∇f λ(κ) = (

κ − proxλ
f (κ)

)
/λ,

where proxλ
f (κ) is the proximity operator of f at κ defined as

proxλ
f (κ) ≡ argmin

κ̂∈CN

{
f (κ̂) + ‖κ̂ − κ‖2/2λ

}
. (14)

Replacing ∇log p by ∇log pλ in the Markov chain of ULA and
MALA given in (10) yields

l(m+1) =
(

1 − δ

λ

)
l(m) + δ

λ
proxλ

f (l(m)) − δ∇g(l(m))

+
√

2δw(m), (15)

which is named the MYULA algorithm (Moreau–Yosida regular-
ized ULA). The MYULA chain (15), with small λ, efficiently
delivers samples that are approximately distributed according to
the posterior p(κ|γ ). By analogy with the process used to obtain
MALA from ULA, we create the Px-MALA (proximal MALA)

after involving an MH (Metropolis–Hasting) accept–reject step in
MYULA.

Essentially, the main difference of the two proximal MCMC
methods (MYULA and Px-MALA) is that Px-MALA includes a
Metropolis–Hastings step, which is used to correct the bias present
in MYULA. Therefore, Px-MALA can provide results with more
accuracy, at the expense of a higher computational cost and slower
convergence (Pereyra 2016). Note, however, that these MCMC
methods (as with any MCMC method) will suffer when scaling to
high-dimensional data. Refer to, e.g. Durmus et al. (2016), Pereyra
(2016), and Cai et al. (2017a) for a more detailed description of the
proximal MCMC methods.

In this article, akin to the experiments performed in Cai et al.
(2017b), we use the proximal MCMC method Px-MALA as a
benchmark in the subsequent numerical tests presented in this work.

3 A PPROX I MATE BAY ESI AN UNCERTAINTY
QUANTI FI CATI ON

Though MAP solutions are theoretically optimal (most probable,
given the data), one is often interested in the posterior distribution
about this MAP point estimate – a necessity if one wishes to
be confident in one’s result. As described in Section 2.4, we
can recover this posterior distribution completely using proximal
MCMC techniques such as Px-MALA. However, these approaches
are highly computationally demanding. They are feasible in the
planar setting at a resolution of 256 × 256, where computation is of
O(30 hours), but quickly become unrealistic for high resolutions.

More fundamentally, if we extend mass mapping from the planar
setting to the spherical setting (Wallis et al. 2017), the wavelet
and measurement operators become more complex – fast Fourier
transforms are replaced with full spherical harmonic transforms –
and the recovery of the posterior via MCMC techniques becomes
highly computationally challenging at high resolutions.

In stark contrast to traditional MCMC techniques, recent ad-
vances in probability density theory have paved the way for efficient
calculation of theoretically conservative approximate Bayesian
credible regions of the posterior (Pereyra 2017). This approach
allows us to extract useful information from the posterior without ex-
plicitly having to sample the full posterior. Crucially, this approach
is shown to be many orders of magnitude less computationally
demanding than state-of-the-art MCMC methods (Cai et al. 2017a)
and can be parallelized and distributed.

In the following section, we formally define the concept of a
Bayesian credible region of the posterior. We discuss limitations of
computing these credible regions and highlight recently proposed
approximations to Bayesian credible region. Finally, we outline
recently developed computationally efficient uncertainty quantifi-
cation techniques, which can easily scale to high-dimensional data.
Specifically, we introduce the concept of local credible intervals
(cf. pixel level error bars) presented first in Cai et al. (2017b) to the
weak lensing setting.

3.1 Highest posterior density

A posterior credible region at 100(1 − α) per cent confidence is a
set Cα ∈ CN , which satisfies

p(κ ∈ Cα|γ ) =
∫

κ∈CN

p(κ|γ )ICα
dκ = 1 − α. (16)

Generally, there are many regions that satisfy this constraint. The
minimum volume, and thus decision-theoretical optimal (Robert
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2001), region is the highest posterior density (HPD) credible region,
defined to be

Cα := {κ : f (κ) + g(κ) ≤ εα}, (17)

where f(κ) is the prior and g(κ) is the data fidelity (likelihood) term.
In the above equation, εα is an isocontour (i.e. level-set) of the
log-posterior set such that the integral constraint in equation (16)
is satisfied. In practice, the dimension N of the problem is large
and the calculation of the true HPD credible region is difficult to
compute.

Recently, a conservative approximation of Cα has been derived
(Pereyra 2017), which can be used to tightly constrain the HPD
credible region without having to explicitly calculate the integral in
equation (16):

C ′
α := {κ : f (κ) + g(κ) ≤ ε′

α}. (18)

By construction, this approximate credible region is conservative,
which is to say that {Cα ⊂ C ′

α}. Importantly, this means that if a
κ map does not belong to C ′

α then it necessarily cannot belong
to Cα . The approximate level-set threshold ε′

α at a confidence of
100(1 − α) per cent is given by

ε′
α = f (κmap) + g(κmap) + τα

√
N + N, (19)

where we recall N is the dimension of κ . The constant τα =√
16 log(3/α) quantifies the envelope required such that the HPD

credible region is a subset of the approximate HPD credible region.
There exists an upper bound on the error introduced through this
approximation, which is given by

0 ≤ ε′
α − εα ≤ ηα

√
N + N, (20)

where the factor ηα = √
16 log(3/α) + √

1/α. This approximation
error scales at most linearly with N. As will be shown in this paper,
this upper bound is typically extremely conservative in practice, and
the error is small.

We now introduce a recently proposed strategy for uncertainty
quantification, building on the concept of approximate HPD credible
regions. For further details on the strategy, we recommend the reader
to see related work (Cai et al. 2017b).

3.2 Local credible intervals

Local credible intervals can be interpreted as error bars on individual
pixels or superpixel regions (collection of pixels) of a reconstructed
κ map. This concept can be applied to any method for which
the HPD credible region (and thus the approximate HPD credible
region) can be computed. Mathematically, local credible intervals
can be computed as follows (Cai et al. 2017b).

Select a partition of the κ domain � = ∪i�i such that superpixels
�i (e.g. an 8 × 8 block of pixels) are independent subsets of the κ

domain �i ∩ �j = ∅, ∀ {i �= j}. Clearly, provided the superpixels
�i completely tessellate � they can be of arbitrary dimension. We
define indexing notation on the superpixels �i via the index operator
ζ�i

, which satisfy analogous relations to the standard set indicator
function given in equation (A5), i.e. ζ�i

= 1 if the pixel of the
convergence map κ belongs to �i and 0 otherwise.

For a given superpixel region �i, we quantify the uncertainty by
finding the upper and lower bounds ξ+,�i

and ξ−,�i
, respectively,

which raise the objective function above the approximate level-
set threshold ε′

α (or colloquially, ‘saturate the HPD credible region
C ′

α’). In a mathematical sense, these bounds are defined by

ξ+,�i
= max

ξ

{
ξ |f (κi,ξ ) + g(κi,ξ ) ≤ ε′

α, ∀ξ ∈ R
}

(21)

Figure 1. Schematic of the process to construct local credible intervals. At
each iterative step, the superpixel region is uniformly increased (decreased)
by a step size. Once the level-set threshold ε′

α is saturated, the iteration is
terminated. Note that this diagram does not represent the bisection method
that is adopted in this article, which is a little more involved, but just a simple
iterative scheme for conceptualization.

and

ξ−,�i
= min

ξ

{
ξ |f (κi,ξ ) + g(κi,ξ ) ≤ ε′

α, ∀ξ ∈ R
}
, (22)

where κi,ξ = κmap(I − ζ�i
) + ξζ�i

is a surrogate solution where
the superpixel region has been replaced by a uniform intensity ξ .
We then construct the difference image

∑
i(ξ+,�i

− ξ−,�i
), which

represents the length of the local credible intervals (cf. error bars)
on given superpixel regions at a confidence of 100(1 − α) per cent.

In this paper, we locate ξ± iteratively via bisection, though
faster converging algorithms could be used to further increase com-
putational efficiency. A schematic diagram for constructing local
credible intervals is found in Fig. 1. Conceptually, this is finding the
maximum and minimum constant values that a superpixel region
could take, at 100(1 − α) per cent confidence – which is effectively
Bayesian error bars on the convergence map.

In plain English, starting from the MAP convergence solution
κmap – at which all pixels are in positions that minimize the objective
function – we then select a subset of the pixels (e.g. an 8 × 8 block
of pixels). We start by averaging the pixels in the block that is
selected. We then set the pixels within this block to the average
value. Following this, we iteratively raise/lower the now uniform
value of the pixels within this block whilst keeping the rest of
the image fixed. After each iteration, we check if the surrogate
solution (κmap with the block of interest replaced by some constant
value) is an acceptable solution (i.e. the objective function is below
the threshold ε′

α). We find the values (upper and lower bounds) at
which objective function is equal to the threshold ε′

α . We then take
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Mass mapping with uncertainty quantification 399

Figure 2. Two of the largest clusters extracted from the Bolshoi simulation data base, labelled as Bolshoi 7 and 8 somewhat arbitrarily. In both cases, at least
one massive subhalo is located within the FoF (friends of friends) subcatalogue, as can be clearly seen.

the difference between these bounds, which is the local credible
interval for a given ‘block of interest’ (superpixel region).

4 EVA LUATION O N SIMULATIONS

For computing Bayesian inference problems, one would ideally
adopt an MCMC approach as they are (assuming convergence)
guaranteed to produce optimal results; however, these approaches
are computationally demanding and can often be computationally
infeasible. Therefore, it is beneficial to adopt approximate but
significantly computationally cheaper methods, such as the MAP
estimation approach reviewed in this article – first presented in Price
et al. (2018).

However, the approximation error introduced through these
approximate methods must be ascertained. Therefore, in this
section, we benchmark the uncertainties reconstructed via our
MAP algorithm to those recovered by the state-of-the-art proximal
MCMC algorithm, Px-MALA (Durmus et al. 2016; Pereyra 2016).
Additionally, we compare the computational efficiencies of both
approaches, highlighting the computational advantages provided
by approximate methods.

For simplicity and brevity, throughout we will refer to any
uncertainties recovered via our aforementioned MAP reconstruction
method as ‘MAP uncertainties’. Additionally, we will refer to the
MAP reconstruction method discussed throughout this paper as
‘MAP algorithm’.

4.1 Data sets

We select four test convergence fields: two large-scale Buzzard
N-body simulation (DeRose, Wechsler & Rykoff, in preparation;
Wechsler, in preparation) planar patches selected at random, and
two of the largest dark matter haloes from the Bolshoi N-body
simulation (Klypin, Trujillo-Gomez & Primack 2011). This se-
lection is chosen such as to provide illustrative examples of the
uncertainty quantification techniques in both cluster and wider field
weak lensing settings.

4.1.1 Bolshoi N-body

The Bolshoi cluster convergence maps used were produced from
two of the largest haloes in the Bolshoi N-body simulation. These
clusters were selected for their large total mass and the complexity
of their substructure, as can be seen in Fig. 2.

Raw particle data were extracted from the Bolshoi simulation
using CosmoSim,1 and was then gridded into 1024 × 1024 images.
These images inherently contain shot noise and so were passed
through a multiscale Poisson denoising algorithm before being re-
gridded to 256 × 256.

The denoising algorithm consisted of a forward Anscombe trans-
form (to Gaussianize the noise), several TV-norm (total-variation)
denoising optimizations of different scales, before finally inverse
Anscombe transforming. Finally, the images were re-scaled on to
[0, 1] – a similar denoising approach for Bolshoi N-body simulations
was adopted in related articles (Lanusse et al. 2016).

4.1.2 Buzzard N-body

The Buzzard v-1.6 shear catalogues are extracted by ray tracing
from a full end-to-end N-body simulation. The origin for tracing is
positioned in the corner of the simulation box and so the catalogue
has 25 per cent sky coverage. Access to the Buzzard simulation
catalogues was provided by the LSST-DESC collaboration.2

In the context of this paper, we restrict ourselves to working
on the plane, and as such we extracted smaller planar patches.
To do so, we first project the shear catalogue into a coarse
HEALPix3 (Gorski et al. 2005) gridding (with Nside of 16). Inside
each HEALPix pixel, we tessellate the largest possible square
region, on to which we rotate and project the shear catalogue.
Here HEALPix pixelization is solely used for its equal area pixel
properties.

1https://www.cosmosim.org
2http://lsst-desc.org
3http://healpix.sourceforge.net/documentation.php

MNRAS 492, 394–404 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/394/5672642 by U
C

L (U
niversity C

ollege London) user on 22 January 2020

https://www.cosmosim.org
http://lsst-desc.org
http://healpix.sourceforge.net/documentation.php


400 M. A. Price et al.

Figure 3. Two ∼1.2 deg2 planar random extractions from the Buzzard V-1.6 N-body simulation catalogue, each containing O(106) galaxies.

After following the above procedure, the Buzzard v-1.6 shear
catalogue reduces to ∼3 × 103 planar patches of angular size
∼1.2 deg2, with ∼4 × 106 galaxies per patch. In previous work
(Price et al. 2018), we utilized 60 of these realizations, but for the
purpose of this paper we select at random two planar regions to
study, which we grid at a 256 × 256 resolution. These plots can be
seen in Fig. 3.

4.2 Methodology

To draw comparisons between our MAP uncertainties and those
recovered via Px-MALA, we conduct the following set of tests on
the aforementioned data sets (see Section 4.1).

Initially, we transform the ground truth convergence κ in into a
clean shear field γ in by

γ in = �κ in. (23)

This clean set of shear measurements is then contaminated with a
noise term n to produce mock noisy observations γ such that

γ = γ in + n. (24)

For simplicity, we choose the noise to be zero mean i.i.d. Gaussian
noise of variance σ 2

n , i.e. n ∼ N (0, σ 2
n ). In this setting, σ n is

calculated such that the signal-to-noise ratio (SNR) is 20 dB
(decibels) where

σn =
√

‖�κ‖2
2

N
× 10− SNR

20 . (25)

Throughout this uncertainty benchmarking, we use a fiducial noise
level of 20 dB. For further details on how a noise level in dB maps
to quantities such as galaxy number density and pixel size, see Price
et al. (2018). In particular, we draw the reader’s attention to Price
et al. (table C1 2018). The noise level of 20 dB considered here is
somewhat optimistic (corresponding to between 30 and 100 galaxies
per square arcmin for a band limit of ∼400), which is appropriate for
the purposes of benchmarking against MCMC simulations, which
is the focus of the current article (less optimistic simulations would
simply increase the absolute level of the quantified uncertainties but
not their relative level).

We then apply our entire reconstruction pipeline (Price et al.
2018), as briefly outlined in Section 2.1, to recover κmap, along
with the objective function – with regularization parameter μ

and noise variance σ 2
n . Using these quantities, and the Bayesian

framework outlined in Sections 2 and 3, we conduct uncertainty
quantifications on κmap.

To benchmark the MAP reconstructed uncertainties, we first
construct an array of local credible interval maps described in
Section 3 for superpixel regions of sizes [4, 8, 16] at 99 per cent
confidence. These local credible interval maps are then compared
to those recovered from the full MCMC analysis of the posterior.

We adopt two basic statistical measures to compare each set
of recovered local credible interval maps: the Pearson correlation
coefficient r and the recovered SNR. The Pearson correlation
coefficient between our MAP local credible interval map ξmap ∈ RN ′

and the Px-MALA local credible interval map ξ px ∈ RN ′
, where N

′

is the dimension of the superpixel space, is defined to be

r =
∑N ′

i=1(ξmap(i) − ξ̄map)(ξ px(i) − ξ̄ px)√∑N ′
i=1(ξmap(i) − ξ̄map)2

√∑N ′
i=1(ξ px(i) − ξ̄ px)2

, (26)

where x̄ = 〈x〉. The correlation coefficient r ∈ [ − 1, 1] quantifies the
structural similarity between two data sets: 1 indicates maximally
positive correlation, 0 indicates no correlation, and −1 indicates
maximally negative correlation.

The second of our two statistics is the recovered SNR, which is
calculated between ξmap and ξ px to be

SNR = 20 × log10

( ‖ξ px‖2

‖ξ px − ξmap‖2

)
, (27)

where ξ px recovered by Px-MALA is assumed to represent the
ground truth Bayesian local credible interval, and ‖.‖2 is the �2-
norm. The SNR is a measure of the absolute similarity of two
maps – in this context, rather than the structural correlation that
is encoded into r, the SNR is a proxy measure of the relative
magnitudes of the two data sets. Additionally, we compute the root
mean squared per cent error (RMSE),

RMSE = 100 ×
(‖ξ px − ξmap‖2

‖ξ px‖2

)
per cent. (28)
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Figure 4. Local credible intervals (cf. Bayesian error bars) at 99 per cent confidence for the Bolshoi-7 (top) and Bolshoi-8 (bottom) cluster sparse reconstruction
in both the Px-MALA setting (top) and MAP (bottom) for superpixel regions of dimension (4 × 4), (8 × 8), and (16 × 16) – left to right, respectively. Note
that these plots display the variation about the mean of each set of LCIs, with the mean being given numerically in the subfigure legends – this is done to best
display the topological similarity whilst also conveying the absolute difference in size between the methods. Notice that the mean of the MAP LCIs is in all
cases larger than that of the corresponding Px-MALA LCIs. Further note that the smaller the dimension of the superpixel the larger the local credible interval,
which is because adjusting fewer pixels raises the objective function by less, and so the smaller superpixels can be raised/lowered by more before saturating
the level-set threshold. All numerical results are displayed in Table 1.

Conceptually, the SNR roughly compares the absolute mag-
nitudes of recovered local credible intervals, and the Pearson
correlation coefficient gives a rough measure of how geometrically
similar the local credible intervals are. In this sense, the closer r
is to 1 the more similar the recovered local credible intervals are,
and the higher the SNR the smaller the approximation error given
by equation (20). Thus, a positive result is quantified by both large
correlation and large SNR.

4.3 Results

As can be seen in Figs 4 and 5, the local credible intervals
recovered through our sparse hierarchical Bayesian formalism are
at all times larger than those recovered via Px-MALA – confirming
that the uncertainties are conservative, as proposed in Section 3.

Moreover, a strong correlation between the reconstructions can be
seen.

The largest correlation coefficients r are observed for superpixel
regions of dimension 16 × 16 in all cases (〈r〉 ≈ 0.9), peaking as
high as 0.98 for the Buzzard 1 extraction – which constitutes a near
maximal correlation, and thus an outstanding topological match
between the two recovered local credible intervals.

Additionally, in the majority of cases, the recovered SNR is
≥10 dB – in some situations rising as high as ≈13 dB (corre-
sponding to ≈20 per cent RMSE per cent error) – which indicates
that the recovered MAP uncertainties are close in magnitude to
those recovered via Px-MALA.

However, for superpixels with dimension 4 × 4, the structural
correlation between ξmap and ξ px becomes small – in one case
becoming marginally negatively correlated. This is likely to be a
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Figure 5. Local credible intervals (cf. Bayesian error bars) at 99 per cent confidence for the Buzzard-1 (top) and Buzzard-2 (bottom) cluster sparse
reconstruction in both the Px-MALA setting (top) and MAP (bottom) for superpixel regions of dimension (4 × 4), (8 × 8), and (16 × 16) – left to
right, respectively. Note that these plots display the variation about the mean of each set of LCIs, with the mean being given numerically in the subfigure
legends – this is done to best display the topological similarity whilst also conveying the absolute difference in size between the methods. Notice that the mean
of the MAP LCIs is in all cases larger than that of the corresponding Px-MALA LCIs. Further note that the smaller the dimension of the superpixel the larger
the local credible interval, which is because adjusting fewer pixels raises the objective function by less, and so the smaller superpixels can be raised/lowered
by more before saturating the level-set threshold. All numerical results are displayed in Table 1.

direct result of the error given by equation (20) inherited from
the definition of the approximate HPD credible region – as this
approximation has the side effect of smoothing the posterior hyper-
volume, and for small superpixels the hyper-volume is typically not
smooth, thus the correlation coefficient r decreases.

We conducted additional tests for large 32 × 32 dimension su-
perpixels, which revealed a second feature of note. For particularly
large superpixel regions (32 × 32 or larger), the SNR becomes small
for both Buzzard maps. This is a result of the assumption that within
a superpixel there exists a stable mean that is roughly uniform across
the superpixel. Clearly, for Buzzard-type data, on large scales this
breaks down and so the recovered local credible intervals deviate
from those recovered via Px-MALA. It is important to stress that
this is a breakdown of the assumptions made when constructing
local credible intervals and not an error of the approximate HPD
credible region.

The numerical results are summarized in Table 1. Typically, struc-
tures of interest in recovered convergence maps cover superpixel
regions of roughly 8 × 8 to 16 × 16, and so for most realistic
applications our MAP uncertainties match very well with those
recovered through Px-MALA. In most situations, weak lensing data
are gridded such that it best represents the features of interest, and
so structures of interest (by construction) typically fall within 8 × 8
to 16 × 16 dimension superpixel regions for 256 × 256 gridded
images – for higher resolution images the structures of interest, and
corresponding optimal superpixels will follow a similar ratio.

Overall, we find a very close relation between the local cred-
ible intervals recovered through our MAP algorithm with those
recovered via Px-MALA – a state-of-the-art MCMC algorithm.
We find that MAP and Px-MALA local credible intervals are
typically strongly topologically correlated (Pearson correlation
coefficient ≈0.9) in addition to being physically tight (RMSE error
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Table 1. Comparisons between the local credible interval maps recovered
via MAP and those recovered via Px-MALA. Note that higher superpixels
correspond to coarser resolutions whereas smaller superpixels lead to higher
resolution. This is because the superpixel size is the size of the groups of
pixels used to tile the original image – therefore, larger tiling components
lead to fewer tiles, and therefore lower resolution.

Super Pearson SNR RMSE
Pixel Correlation (dB) Error

Bolshoi-7

4×4 0.463 11.737 25.892 per cent
8×8 0.848 11.994 25.137 per cent
16×16 0.945 12.509 23.690 per cent

Bolshoi-8

4×4 − 0.168 11.467 26.710 per cent
8×8 0.929 11.490 26.637 per cent
16×16 0.941 11.350 27.070 per cent

Buzzard-1

4×4 0.164 10.666 29.289 per cent
8×8 0.916 10.473 29.948 per cent
16×16 0.984 9.262 34.427 per cent

Buzzard-2

4×4 0.140 10.653 29.333 per cent
8×8 0.904 10.465 29.973 per cent
16×16 0.926 9.217 34.605 per cent

Table 2. Numerical comparison of computational time of Px-MALA and
MAP. The MAP approach typically takes O(10−1) s, compared to Px-
MALA’s O(105) s. Therefore, for linear reconstructions, MAP is close to
O(106) times faster.

Px-MALA MAP Ratio
Time (s) Time (s)

Buzzard-1

133 761 0.182 0.734 × 106

Buzzard-2

141 857 0.175 0.811 × 106

Bolshoi-7

95 339 0.153 0.623 × 106

Bolshoi-8

92 929 0.143 0.650 × 106

of ≈20–30 per cent). Moreover, we find that the MAP local credible
intervals are, everywhere, larger than the Px-MALA local credible
intervals, corroborating the assertion that the approximate HPD
level-set threshold ε′

α is in fact conservative.
We now compare the computational efficiency of our sparse

Bayesian reconstruction algorithm against Px-MALA. It is worth
noting that all Px-MALA computation was done on a high-
performance workstation (with 24 CPU cores and 256 GB of
memory), whereas all MAP reconstructions were done on a standard
2016 MacBook Air. The computation time for MAP estimation
is found to be O(seconds) whereas the computation time for Px-
MALA is found to be O(days). Specifically, we find that the MAP
reconstruction algorithm is of O(106) (typically ≥8 × 105) times
faster than the state-of-the-art Px-MALA MCMC algorithm, see
Table 2 for numerical results. Moreover, the MAP reconstruction
algorithm supports algorithmic structures that can be highly paral-
lelized and distributed.

5 C O N C L U S I O N S

In this article, we introduce the concept of local credible intervals
(cf. pixel-level error bars) – developed in previous work and applied
in the radio-interferometric setting – to the weak lensing setting
as an additional form of uncertainty quantification. Utilizing local
credible intervals, we validate the sparse hierarchical Bayesian
mass-mapping formalism presented in previous work (Price et al.
2018). Specifically, we compare the local credible intervals recov-
ered via the MAP formalism and those recovered via a complete
MCMC analysis – from which the true posterior is effectively
recovered.

To compute the asymptotically exact posterior, we utilize Px-
MALA – a state-of-the-art proximal MCMC algorithm. Using
the local credible intervals, we benchmark the MAP uncertainty
reconstructions against Px-MALA.

Quantitatively, we compute the Pearson correlation coefficient (r,
as a measure of the correlation between hyper-volume topologies),
and recovered SNR and the root mean squared percentage error
(SNR and RMSE, both as measures of how tightly constrained is
the absolute error).

We find that for a range of superpixel dimensions the MAP and
Px-MALA uncertainties are strongly topologically correlated (r ≥
0.9). Moreover, we find the RMSE to typically be ∼20–30 per cent,
which is tightly constrained when one considers this is a conserva-
tive approximation along each of at least O(103) dimensions.

Additionally, we compare the computational efficiency of Px-
MALA and our MAP approach. In a 256 × 256 setting, the
computation time of the MAP approach was O(seconds) whereas
the computation time for Px-MALA wasO(days). Overall, the MAP
approach is shown to beO(106) times faster than the state-of-the-art
Px-MALA algorithm.

A natural progression is to extend the planar sparse Bayesian
algorithm to the sphere, which will be the aim of upcoming work
– a necessity when dealing with wide-field stage IV surveys such
as LSST4 and Euclid.5 Additionally, we will expand the set of
uncertainty quantification techniques to help propagate principled
Bayesian uncertainties into the set of higher order statistics typically
computed on the convergence field.
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APPENDI X A : R EGULARI ZATI ON
MARGI NALI ZATI ON

A prior f(κ) is k-homogeneous if ∃ k ∈ R+ such that

f (ηκ) = ηkf (κ), ∀κ ∈ Rn, ∀η > 0. (A1)

As all norms, composite norms and compositions of norms and
linear operators (Pereyra et al. 2015), have homogeneity of 1, k
in our setting is set to 1. If we wish to infer κ without a priori
knowledge of μ (the regularization parameter) then we calculate
the normalization factor of p(κ|μ),

C(μ) =
∫

CN

exp{−μf (κ)}dκ. (A2)

For the vast majority of cases of interest, calculating C(μ) is not
feasible, due to the large dimensionality of the integral. However, it
was recently shown (Pereyra et al. 2015) that if the prior term f(κ)
is k-homogeneous then

C(μ) = Dμ−N/k, where D ≡ C(1). (A3)

A gamma-type hyper-prior is then selected (a typical choice for
scale parameters) on μ such that

p(μ) = βα

�(α)
μα−1e−βμIR+ (μ), (A4)

where the hyper-parameters (α, β) are very weakly dependent and
can be set to 1 (as in Pereyra et al. 2015), and ICα

is an indicator
function defined by

ICα
=

{
1 if, κ ∈ Cα

0 if, κ �∈ Cα.
(A5)

Now construct a joint Bayesian inference problem of p(κ , μ|γ )
with MAP estimator (κmap, μmap) ∈ CN × R+. By definition, at this
MAP estimator

0N+1 ∈ ∂κ,μ log p(κmap, μmap|γ ), (A6)

where 0i is the i-dimensional null vector. This in turn implies both
that

0N ∈ ∂κ log p(κmap, μmap|γ ), (A7)

from which equation (9) follows naturally, and

0 ∈ ∂μ log p(κmap, μmap|γ ). (A8)

Using equations (A3), (A4), and (A8), it can be shown (Pereyra
et al. 2015) that

μmap =
N
k

+ α − 1

f (κmap) + β
. (A9)

Hereafter, we drop the map superscript on μmap for simplicity. In
order to compute the MAP μ preliminary iterations are performed
as follows:

κ (t) = argmin
κ

{
f (κ; μ(t)) + g(κ)

}
, (A10)

μ(t+1) =
N
k

+ α − 1

f (κ (t)) + β
, (A11)

where α and β are (weakly dependent) hyper-parameters from a
gamma-type hyper-prior, N is the dimension of the reconstructed
space, and the sufficient statistic f(κ) is k-homogeneous. Typically,
the MAP solution of μ converges within ∼5–10 iterations, after
which μ is fixed and the optimization in equation (9) is computed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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