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Abstract

The process of learning new behaviors over time is a problem of great interest in both 

neuroscience and artificial intelligence. However, most standard analyses of animal training data 

either treat behavior as fixed or track only coarse performance statistics (e.g., accuracy, bias), 

providing limited insight into the evolution of the policies governing behavior. To overcome these 

limitations, we propose a dynamic psychophysical model that efficiently tracks trial-to-trial 

changes in behavior over the course of training. Our model consists of a dynamic logistic 

regression model, parametrized by a set of time-varying weights that express dependence on 

sensory stimuli as well as task-irrelevant covariates, such as stimulus, choice, and answer history. 

Our implementation scales to large behavioral datasets, allowing us to infer 500K parameters (e.g., 

10 weights over 50K trials) in minutes on a desktop computer. We optimize hyperparameters 

governing how rapidly each weight evolves over time using the decoupled Laplace approximation, 

an efficient method for maximizing marginal likelihood in non-conjugate models. To illustrate 

performance, we apply our method to psychophysical data from both rats and human subjects 

learning a delayed sensory discrimination task. The model successfully tracks the psychophysical 

weights of rats over the course of training, capturing day-to-day and trial-to-trial fluctuations that 

underlie changes in performance, choice bias, and dependencies on task history. Finally, we 

investigate why rats frequently make mistakes on easy trials, and suggest that apparent lapses can 

be explained by sub-optimal weighting of known task covariates.

1 Introduction

A vast swath of modern neuroscience research requires training animals to perform specific 

tasks. This training is expensive and time-consuming, yet the data collected during the 

training period are often discarded from analysis. Moreover, animals can learn at vastly 

different rates, and may learn different strategies to achieve a criterion level of performance 

in a given task. Most neuroscience studies ignore such variability, and commonly track only 
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coarse statistics like accuracy and bias during training. These statistics are not sufficient to 

reveal subtle differences in strategy, such as unequal weighting of task variables or reliance 

on particular aspects of trial history. However, behavior collected during training may 

provide valuable insights into an animal’s mental arsenal of problem solving strategies, and 

uncover how those strategies evolve with experience. Understanding detailed differences in 

behavior may shed light on differences in neural activity across animals or task conditions, 

reveal general aspects of behavior, or inspire the development of new learning algorithms 

[1].

One reason training data are frequently ignored is a lack of good methods for tracking 

behavior during training, or for tracking continued learning after the dedicated training 

phase has ended. Of the few approaches to characterizing time-varying psychophysical 

behavior, perhaps the simplest is to apply standard logistic regression to separate blocks of 

trials. While useful in certain specific situations, there are numerous drawback to such a 

blocking approach, including: the need to choose a block size, the removal of dependencies 

between adjacent blocks, and the inability to track finer time-scale changes within a block. 

Such an approach also assumes that there is a single timescale at which all psychophysical 

weights vary. Smith and Brown introduced an assumed density filtering method for tracking 

psychophysical performance on a trial-by-trial basis [2]. This approach of explicitly tracking 

a parameter to determine the earliest time at which statistically significant learning had 

occurred during training has been extended in various contexts [3, 4]. Here we propose an 

alternate approach based on exact MAP estimation of time-varying psychophysical weights, 

with efficient and scalable methods for inferring hyperparameters governing the timescale of 

changes for different weights.

In this paper, we present a dynamic logistic regression model for time-varying 

psychophysical behavior. Our model quantifies animal behavior at single-trial resolution, 

allowing for intuitive visualization of learning dynamics and direct analysis of 

psychophysical weight trajectories. We develop efficient inference methods that exploit 

sparse structure in order to scale to large datasets with high-dimensional, time-varying 

psychophysical weights. Moreover, we use the decoupled Laplace approximation method [5] 

to perform highly efficient approximate maximum marginal likelihood inference for a set of 

hyperparameters governing the rates of change for different psychophysical weights. We 

apply our method to a large behavioral data set of rats demonstrating a variety of constantly 

evolving complex behaviors over tens of thousands of trials, as well as human subjects with 

significantly more stable behavior. We compare the predictions of our model to conventional 

measures of behavior, and conclude with an analysis of lapses on perceptually easy trials to 

demonstrate the model’s explanatory power. We expect that our method will provide 

immediate practical benefit to trainers, in addition to giving unprecedented insight into the 

development of new behaviors. An implementation of all methods are available as the 

Python package PsyTrack [6].

2 Dynamic logistic regression model

Here we describe our dynamic model for time-varying psychophysical behavior. We 

consider a general two-alternative forced choice (2AFC) sensory discrimination task in 
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which the animal is presented with a stimulus xt ∈ ℝd, and makes a choice yt ∈ {0, 1} 

between two options that we will refer to as “left” and “right” (although the method can be 

extended to multi-choice tasks [7]).

We model the animal’s behavior as depending on an internal model parametrized by a set of 

weights wt ∈ ℝK that govern how the animal’s choice depends on an input “carrier” vector 

gt ∈ ℝK for the current trial t (Fig. 1a,b). This carrier gt contains the task stimuli xt for the 

current trial, as well as a variety of additional covariates (e.g., stimulus, choice, or answer 

history over the preceding one or more trials), and a constant “1” to capture bias towards one 

choice or the other (see Sec. S1 for more detail). Empirically, animal behavior in early 

training often exhibits dependencies on both stimulus and choice history [8–10]; including 

these features is therefore critical to building an accurate model of the animal’s evolving 

psychophysical strategy (we return to this with a study of lapses in Sec. 6).

Given the weight and carrier vectors, the animal’s choice behavior on a given trial is 

described by a Bernoulli generalized linear model (GLM), also known as the logistic 

regression model (Fig. 1c):

p yt   gt, wt =
exp yt gt ⋅ wt
1 + exp gt ⋅ wt

. (1)

Unlike standard psychophysical models, which assume weights are constant across trials and 

that behavior is therefore constant, we instead assume that the weights evolve gradually 

through time. We model this evolution with independent Gaussian innovations noise added 

to the weights after each trial [11, 12]:

wt = wt − 1 + ηt, ηt 𝒩 0,  diag σ1
2, … , σK

2 , (2)

where wt denotes the weight vector on trial t, ηt is the noise added to the weights after the 

previous trial, and σk
2 denotes the variance of the noise for weight k, also known as the 

volatility hyperparameter. Here diag σ1
2, … , σK

2  denotes a diagonal matrix with the volatility 

hyperparameters for each weight along the main diagonal. We note that this choice of prior 

on w is largely agnostic, though more structured priors could be considered.

3 Inference

Inference involves fitting the entire trajectory of the weights from the noisy response data 

collected over the course of experiment. This amounts to a very high-dimensional 

optimization problem when we consider models with several weights and datasets with tens 

of thousands of trials. Moreover, we wish to learn the volatility hyperparameters σk in order 

to determine how quickly each weight evolves across trials.
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3.1 Efficient global optimization for wMAP

Let w denote the massive weight vector formed by concatenating all of the length-N 
trajectory vectors for each weight k = 1, …,K, where N is the total number of trials. We can 

then express the prior over the weights by noting that η = Dw, where D is a block-diagonal 

matrix of K identical N × N difference matrices (i.e., 1 on the diagonal and −1 on the lower 

off-diagonal). Because the prior on η is simply 𝒩(0,  Σ), where Σ has each of the σk
2 stacked 

N times along the diagonal, the prior for w is 𝒩(0,  C) with C−1 = DTΣ−1D. The log-posterior 

is then given by

log p(w |𝒟) = 1
2 log |C−1| − w⊤C−1w + ∑t = 1

N log p yt |gt,  wt + const, (3)

where 𝒟 = gt,  yt t = 1
N  is the set of input carriers and responses, and const is independent 

of w. Our goal is to find the w that maximizes this log-posterior. With NK total parameters 

(potentially 100’s of thousands) in w, however, most procedures that perform a global 

optimization of all parameters at once are not feasible; for example, related work has 

calculated trajectories by maximizing the likelihood using local approximations [2]. 

Whereas the use of the Hessian matrix for second-order methods often provides dramatic 

speed-ups, a Hessian of (NK)2 parameters is usually too large to fit in memory (let alone 

invert) for N > 1000 trials. On the other hand, we observe that the Hessian of our log-

posterior is sparse:

H = ∂2

∂w2 log p(w |𝒟) = C−1 + ∂2L
∂w2 (4)

where C−1 is a sparse (banded) matrix, and ∂2L/∂w2 is a block-diagonal matrix. The block 

diagonal structure arises because the log-likelihood is additive over trials, and weights at one 

trial t do not affect the log-likelihood component from another trial t′. We take advantage of 

this sparsity, using a variant of conjugate gradient optimization that only requires a function 

for computing the product of the Hessian matrix with an arbitrary vector [13]. Since we can 

compute such a product using only sparse terms and sparse operations, we can utilize quasi-

Newton optimization methods in SciPy to find a global optimum for our weights, even for 

very large N [14].

3.2 Hyperparameter fitting with the decoupled Laplace approximation

So far we have addressed the problem of finding a global optimum for w given a specific 

hyperparameter setting θ = {σk}; now we must also find the optimal hyperparameters. 

Cross-validation is not easily applied given the number of different volatility parameters, and 

so we turn instead to approximate marginal likelihood. To select between models with 

different θ, we use a Laplace approximation to the posterior, 

p(w |𝒟,  θ) ≈ 𝒩 w |wMAP, − H−1 , to estimate the marginal likelihood (or evidence) as [15]:
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p(y |g,  θ) = p(y|g,  w) p(w|θ)
p(w |𝒟,  θ) ≈ exp(L) ⋅ 𝒩(w |0,  C)

𝒩 w |wMAP, − H−1 . (5)

Naive optimization of θ requires a re-optimization of wMAP for every change in θ, strongly 

restricting the dimensionality of tractable θ to whatever could be explored with grid search; 

the simplest approach is to reduce all σk to a single σ, as assumed in [16].

Here we use the decoupled Laplace method [5] to avoid the need to re-optimize for our 

weight parameters after every update to our hyperparameters by making a Gaussian 

approximation to the likelihood of our model. The optimization is explained in Algorithm 1. 

By circumventing nested optimization of θ and w, we can consider larger sets of 

hyperparameters and more complex priors over our weights, while still fitting in minutes on 

a laptop (Fig. 2c). For example, letting each weight evolve with its own distinct σk often 

allows for both a more accurate fit to data and additional insight into the dynamics (as in 

Fig. 3b). In practice, we also parametrize θ by fixing σk,t=0 = 16, an arbitrary large value that 

allows the likelihood to determine w0 rather than forcing the weights to initialize near some 

predetermined value.

3.3 Overnight dynamics

Another specific parametrization of θ made possible by the decoupled Laplace method is the 

inclusion of an additional type of hyperparameter, σday, to modulate the change in weights 

occurring between training sessions. Intuitively, one might expect that between the last trial 

of a session and the first trial of the next session, change in behavior is greater than between 

trials that are consecutive within the same session. By indexing the first trial of each session, 

we can introduce a new set of hyperparameters {σk,day} which we can then optimize to 

account for the between-session changes within each weight.

Whereas all 2·K hyperparameters in θ = {σ1, …,σK, σ1,day, …,σK,day} can have distinct 

values in the most flexible version of the model, there are certain optional constraints that 

may be more relevant to animal behavior. For example, when both the {σk} and {σk,day} are 

fixed be very small, it means that weights effectively do not change, replicating the standard 

logistic regression model with constant weights. On the other hand, when fixing {σk} to be 

very small and {σk,day} to be very large, we would recover a different set of constant 

weights for each session, replicating a particular blocked approach to logistic regression 

discussed earlier. By only fixing the {σk,day} to be large while optimizing freely over each of 

{σk}, we essentially find the best weight trajectory within each session, while allowing the 

weights to “reset” at the start of each new session. The decoupled Laplace method makes it 

feasible to optimize over any subset of these hyperparameters at once, allowing exploration 

of many types of models and the localization of behavioral dynamics to specific weights or 

periods of training.
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4 Simulation results

We first demonstrate our method using simulated data. We generate K =4 weight trajectories 

over N = 64, 000 trials, simulating each as a Gaussian random walk with variance σk
2 and a 

reflecting boundary at ±4. For each trial, we then drew the carrier vector gt from a standard 

normal, calculated P(Right), and used this probability to sample a choice yt. Since our model 

is probabilistic (Eq. 1), we can draw many behavioral realizations (y’s) from the same “true” 

weight trajectories. Our method not only accurately estimates the weight trajectories across 

realizations (Fig. 2a), but also recovers the hyperparameter σk for each weight across many 

different simulations (Fig. 2b). We also tested the scalability of the method over increasing 

number of trials (Fig. 2c). We note that having more than 64K trials for a single animal is 

highly unusual, and so fifteen minutes of computation time on a laptop is a rough upper 

bound for most practical use; behavioral datasets commonly have only a few thousand trials 

and can be fit in seconds. In order to confirm the efficacy of our decoupled Laplace method 

in recovering the best setting of hyperparameters, we confirm with grid search that the 

algorithm converges on the hyperparameters with the highest evidence and highest cross-

validated log-likelihood on simulated data (see Fig. S1).

5 Behavioral dynamics in rats & humans

To further explore the advantages and insights provided by our model, we apply our method 

to behavioral data from both rats and humans performing a 2AFC delayed response task, as 

reported in [17]. The task involves the presentation of two auditory stimuli of different 

amplitude, separated by a delay. If the first stimulus (Tone A) is louder than the second 

(Tone B), then the subject must go right to receive a reward, and vice-versa (Fig. 3a; for 

more detail see [17]). In our model, the “correct” set of weights for performing this task with 

high accuracy are a large, positive weight for Tone A, an equal and opposite weight for Tone 

B (the two sensitivities to stimuli), and zeros for all other (task-irrelevant) weights. We 

applied our method to early training data from 20 rats and 9 human subjects to uncover how 

behavior evolved in this particular task. Here we show examples from one rat and one 

human subject (Figs. 3b,c); see Figs. S2 & S3 for analysis of additional rats and human 

subjects.

5.1 Rat data

Behavior is highly dynamic in the case of a rat (Fig. 3b), reflective of the animal’s initial 

uncertainty about the task structure and gradual honing of its behavioral strategy. First, we 

notice that the animal starts naive: the initial strategy does not depend upon the two auditory 

stimuli at all, as both the Tone A & B weights (red & yellow) begin near 0. Instead, behavior 

is clearly influenced by the previous trial: the weights on answer history (purple; preference 

to choose the side that was correct on the previous trial, or “win-stay/lose-switch”) and on 

choice history (green; preference to choose the same side as on the previous trial, or 

“perseverance”) both dominate initially. There is also an overall tendency to choose left, as 

indicated by the negative bias weight (blue). As training progresses, both the bias and 

dependencies on task history steadily decrease, suggesting that the rat is learning the task 

structure.
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Second, we can compare the evolution of the weights on Tone A vs. Tone B. The sensitivity 

to the value of Tone B is developed very early in training, and quickly grows to a large 

negative value (preference to go left when Tone B is loud). In contrast, the sensitivity to 

Tone A stays close to zero for many thousands of trials before growing to have a large 

positive value (preference to go right when Tone A is loud). Again, this observation is 

consistent with the intuition that associative learning is stronger for the most recent stimulus. 

The temporal separation of Tone A from the choice not only makes it more difficult to learn 

the association, but also makes leveraging knowledge of that association more difficult since 

the rat must work to maintain information about Tone A in working memory [18, 17]. 

Despite this, we see that the animal ultimately develops weights of equal magnitude and 

opposite signs for the two stimuli, again demonstrating successful learning.

Finally, we observe a small but significant sensitivity to the previous trial’s stimuli (pink); 

the positive value indicates a preference to go right when the average of Tones A & B on the 

previous trial was higher. This reconfirms the dependence of choice behavior on sensory 

history found in [17].

5.2 Human subjects

In contrast to the rat, the weight trajectories for the human subject are largely stable and 

reflect accurate behavioral performance (Fig. 3c); not much learning is happening. This is 

expected, as a human subject can understand the task structure and execute the correct 

behavioral strategy from the very first trial. We emphasize that the strength of our model is 

not only its flexibility to fit the dynamic behavior of the rat, but also to automatically detect 

and confirm the stable behavior of the human. While the human dataset is stable enough to 

be fitted using standard logistic regression, it would require starting from the assumption 

that behavior was indeed stable.

Our method also allows several interesting observations regarding the types of decision-

making biases a human subject might possess. For example, there is a non-zero choice bias 

(blue) with a slow fluctuation, that tends leftward over most of the session. Also, while the 

weights for Tones A & B are clearly the two largest, the magnitude of the Tone B weight is 

consistently larger, indicating a higher sensitivity to the more recent stimulus. Furthermore, 

the weight on sensory history (pink) is non-vanishing, once again corroborating the findings 

of [17]; whereas behavior was even better explained without the weights on answer and 

choice history (see Sec. S1 for more detail).

5.3 Comparison to conventional measures

Finally, we ask how well our model actually describes the animal’s choice behavior. To this 

end, we relate our model back to more conventional measures of behavior, considering two 

important measures most commonly used by a trainer: the empirical accuracy (Fig. 4a) and 

the empirical bias (Fig. 4b). The empirical accuracy tracks the local fraction of trials with a 

correct response, whereas the empirical bias captures the tendency to prefer one side on 

error trials (see Sec. S3 for details). The two measures were then compared with the 

corresponding quantities predicted by our model. The close match between empirical and 

predicted performance validates the model’s ability to capture the animal’s true dynamic 
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strategy, in addition to the already-demonstrated success of our inference method to find the 

best weights and hyperparameters given the model. It also emphasizes that our analysis 

provides highly interpretable measures that could successfully replace (and extend) 

conventional training evaluators.

6 Exploring lapse

Looking at the psychometric curve of a single rat from its end-of-training data (Fig. 5a), it is 

clear that the rat does not achieve perfect performance even on the easiest trials (left/right 

ends of the stimulus axis). This gap in performance is particularly common in rodent data 

and there is much speculation as to its cause [19]. One possible hypothesis is that the trials 

are not easy enough, and that perfect performance would be achieved on sufficiently easy 

trials; in other words, this is to explain the gap as a result of insufficient sensitivity to task 

stimuli [20–22]. An alternative hypothesis is that there exists a so-called “lapse rate” 

inherent in the animal’s behavior, for example as an effect from an ∊-greedy strategy where 

the animal makes a completely random choice on a certain fraction of trials, perhaps for 

exploratory purposes. Our analysis of the rat data can provide an answer to the debate, as it 

captures the behavior of the animal precisely enough to predict, not just describe.

To explore the predictive power of our method further, we look at two distinct models in Fig. 

5b: the basic model (in red) has dynamic weights only on the task stimuli (Tones A & B) and 

choice bias, while the history-aware model (in black) has additional weights for various 

history dependencies. On the x-axis of Fig. 5b, we have binned all trials of our rat according 

to their gt∙wt values. Recall that in our model, larger magnitudes of g ∙ w result in more 

confident predictions, with predicted choice probabilities closer to 0 or 1. We see that the 

empirical probability of choosing right within each bin of g ∙ w (plotted in dots) matches the 

predicted probability according to the logistic function of Eq. 1 (plotted as faded gray 

curve). We then plotted the number of trials in each g ∙ w bin in the histograms (with right-

side axis). We see that for our basic model, the trial predictions are never more confident 

than 90% (no tails on the red histogram), whereas our history-aware model has a substantial 

portion of trials predicted with almost 100% confidence (longer tails on the black 

histogram). In terms of the cross-validated log-likelihood, the history-aware model provides 

a 20% boost over the basic model. All model predictions are calculated on held-out data; see 

Sec. S4 for details.

Finally, we directly compare the model-predicted accuracy to the empirical accuracy, across 

all 20 rats, for both the basic model (Fig. 5c) and the history-aware model (Fig. 5d). Sorting 

trials by their predicted accuracy, we plot the top 1, 5, & 10% of trials in each rat and find 

that almost all rats have a significant proportion of their trials being predicted with >95% 

accuracy in the history-aware model (Fig. 5d).

We thus demonstrated that our method can predict the rats’ choice behavior with near-

perfect accuracy on a significant subset of trials. This finding contradicts the hypothesis 

postulating an inherent lapse rate, where the animal is making random choices on a subset of 

trials (where such randomness would prevent prediction above a certain accuracy). While 

random choice is a well-established behavioral strategy seen in many experimental settings, 
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our method allows for critical disambiguation between true randomness and deterministic 

strategies that may appear random [23]. Our method, with the full history-aware model, is 

able to quantify and explain gaps in performance typically left unexplained by conventional 

analyses.

7 Discussion

We presented a method for efficiently and flexibly characterizing the dynamics of 

psychophysical behavior, allowing for unprecedented insight into how animals learn new 

tasks. We have made key advancements with regard to both efficiency and scalability, 

allowing us to quickly fit a complex, trial-to-trial description of behavior for even the largest 

of datasets. We demonstrated on a real dataset (of unusually large size) the explanatory as 

well as predictive power of our method, as compared to two conventional measures of 

behavior. In particular, the flexibility of the model allowed us to address an important open 

question in behavioral psychology, known as lapse.

Our approach is developed under a simple generic model of psychometric behavior, which 

worked nicely for the datasets we analyzed in this paper. Here we briefly discuss two aspects 

of the model that may be extended in a future study, potentially to address specific features 

of different tasks. First, while the weight trajectories are allowed to evolve over time, the 

volatility hyperparameter σ is a single value optimized over the entire dataset. When 

analyzing a long trajectory, it may be necessary to also allow σ to slowly vary over time, so 

that the dynamics of early training and the stability of late training can be explained 

separately. Including more complex parameterizations of the prior, such as the overnight 

σday described in Sec. 3.3, may also provide a practical solution in modeling sudden, step-

like changes in behavior. Second, the success of our method is fundamentally dependent on 

the ability of the psychometric model to correctly describe the animal’s behavior. Different 

tasks may require more careful modeling of certain aspects of the choice behavior. In 

particular, our model only applies to 2-alternative forced choice tasks in its current form, 

though there is a clear extension to multi-alternative choice [7]. Despite these limitations, we 

expect the agnostic flexibility, explanatory power, and computational efficiency of our 

method to make it a useful tool for exploring behavioral dynamics. Our Python package 

PsyTrack should make the analysis easily accessible [6].

Our method can be easily applied to the vast troves of largely unanalyzed animal training 

data to provide both scientific insight and practical utility. The immediate applicability, as a 

potential everyday tool for scientists-trainers, places our method a significant step forward 

from previous works that offered theoretical paths [16]. At the lowest level, this method 

allows trainers to stay aware of the behavioral strategies developed by their animals, useful 

for identifying common pitfalls and disentangling distinct strategies that may appear similar 

on the surface. Furthermore, while many trainers are already using various automated 

heuristics during training, the output of our method can be used as a more specific and 

accurate input to such heuristics. By enabling a quantitative feedback loop where the trainer 

can (i) diagnose a problem, (ii) prescribe an adaptively optimized training program to correct 

it, and (iii) monitor the consequence of that correction, we feel that our method will set a 

new standard for systematic animal training.
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Figure 1: 
Model schematic. (a) On each trial, a variety of both task-related and task-irrelevant 

variables may affect an animal’s choice behavior. We call the carrier vector of all K input 

variables on a particular trial gt. (b) As the animal trains on the task, psychophysical weights 

wt evolve with independent Gaussian noise, altering how strongly each variable affects 

behavior. (c) The probability of “right” given the input is described by a logistic function of 

gt ∙ wt.
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Figure 2: 
Recovering weights and hyperparameters from simulated data. (a) Generating 20 behavioral 

realizations (y’s) from one simulated set of K =4 weights (in bold), we recover 20 sets of 

weights (faded). Observe that the recovered weights closely track the real weights in all 

realizations. (b) The hyperparameters σk recovered for each weight over 20 distinct 

simulations, as a function of number of trials. Note that with more trials, the recovered σk 

converge to the true σk (dotted black line). (c) Average computation time for full 

optimization of weights and hyperparameters for a single realization. Even with tens of 

thousands of trials, this model can be fit in minutes on a laptop.
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Figure 3: 
Application to rat and human data. (a) For this data from [17], a 2AFC delayed response 

task was used in which the subject experiences an auditory stimulus (Tone A) of a particular 

amplitude, a delay period, a second auditory stimulus (Tone B) of a different amplitude, and 

finally the choice to go either left or right. If Tone A was louder than Tone B, then a 

rightward choice receives a reward, and vice-versa. (b) The psychometric weights recovered 

from the first 20,000 trials of a rat. Weights in the legend labeled with a “−1” superscript 

indicate that the weight carries information from the previous trial. The faded vertical gray 

lines indicate session boundaries. In addition to being fit with its own trial-to-trial volatility 

hyperparameter σk, each weight is also fit with an additional hyperparameter σk,day for 

volatility between sessions. This results in “steps” at the session boundaries for some 

weights (see Sec. 3.3). Each weight also has a 95% posterior credible interval, indicated by 

the shaded region of matching color (for derivation refer to Sec. S2). (c) The psychometric 

weights recovered from a human subject.
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Figure 4: 
Comparing to empirical metrics. (a) The empirical accuracy of the rat in red, with a 95% 

confidence interval indicated by the shaded region. We overlay the predicted accuracy from 

model weights in maroon, using P(Correct) for each trial instead of the empirical {0, 1}. (b) 
The empirical bias of the rat, represented as the correct side minus the animal’s choice for 

each trial, where {Left, Right} = {0,1}. We plot a 95% confidence interval indicated by the 

shaded region, as well as the predicted bias from model weights, substituting P(Right) for 

the animal’s choice. All lines are smoothed with a Gaussian kernel of σ= 50. Predicted 

performance and bias are calculated using cross-validated weights (calculations and cross-

validation procedure detailed in Secs. S3 & S4).
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Figure 5: 
Psychometric curve and model predictions. (a) A conventional psychometric curve for a rat, 

generated from a subset of trials at the end of training where Tone B is held constant. (b) 
The same rat during early training, with two models: the basic model with stimuli and bias 

weights only (red), and the history-aware model (black). The histograms (with right-side 

axis) show the number of trials within each g ∙ w bin. The dots (with left-side axis) plot the 

fraction of trials, within each bin, in which the rat went right (yt = 1). (c) For all 20 rats in 

the population, we plot the predicted accuracy vs. empirical accuracy for the top 1, 5, & 10% 

of most strongly predicted trials in the basic model (red). (d) Same as (c) but for the history-

aware model (black).
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Algorithm 1

Optimizing hyperparameters with the decoupled Laplace approximation

Require: input carriers g, choices y

Require: initial hyperparameters θ0, subset of hyperparameters to be optimized θOPT

1: repeat

2:  Optimize for w given current θ → wMAP, Hessian of log-posterior Hθ, log-evidence E

3:  Determine Gaussian prior 𝒩 0,  Cθ  and Laplace appx. posterior 𝒩 wMAP, − Hθ
−1

4:  Calculate Gaussian approximation to likelihood 𝒩 wL, Γ  using product identity, where Γ−1 = − Hθ + Cθ
−1

 and wL = −ΓHθwMAP

5:  Optimize E w.r.t. θOPT using closed form update (with sparse operations) wMAP = − Hθ
−1Γ−1wL

6:  Update best θ and corresponding best E

7: until θ converges

8: return wMAP and θ with best E
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