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Abstract 

Purpose:  Mesorectal lymph node staging plays an important role in treatment decision-

making. Here, we explore the benefit of higher-order diffusion MRI (dMRI) models 

accounting for non-Gaussian diffusion effects to classify mesorectal lymph nodes both 1) ex-

vivo at ultrahigh field correlated with histology and 2) in-vivo in a clinical scanner upon 

patient staging. 

Methods. The preclinical investigation included 54 mesorectal lymph nodes, which were 

scanned at 16.4T with an extensive dMRI acquisition. Eight diffusion models were compared 

in terms of goodness of fit, lymph node classification ability and histology correlation. In the 

clinical part of this study, 10 rectal cancer patients were scanned with dMRI at 1.5T and 72 

lymph nodes were analysed with Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent 

Motion (IVIM), Kurtosis and IVIM-Kurtosis. 

Results. Compartment models including restricted and anisotropic diffusion improved the 

preclinical data fit as well as the lymph node classification compared to standard ADC. The 

comparison with histology revealed only moderate correlations, and the highest values were 

observed between diffusion anisotropy metrics and cell area fraction. In the clinical study, 

the diffusivity from IVIM-Kurtosis was the only metric showing significant differences 

between benign (0.80±0.30μm2/ms) and malignant (1.02±0.41 μm2/ms, p=0.03) nodes. IVIM-

Kurtosis also yielded the largest area under the ROC curve (AUC=0.73) and significantly 

improved the node differentiation when added to the standard visual analysis by experts 

based on T2-weighted imaging.  

Conclusions. Higher order diffusion MRI models perform better than standard ADC and 

may be of added value for mesorectal lymph node classification in rectal cancer patients.  
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Introduction 

Characterizing the involvement of lymph nodes is a very important prognostic marker 

in rectal cancer patients as it determines the local recurrence and overall survival 

rates (1). To date, the gold standard for lymph node characterization is histology of 

the surgical specimen using hematoxylin and eosin (H&E) staining to highlight 

differences in cellular structure between normal lymphatic tissue and tumour (1). 

However, pre-operative characterization is beneficial because neoadjuvant 

chemoradiation has been shown to decrease the incidence of local relapse in high-

risk patients (2), such as those with lymph node involvement. Thus, there is a clinical 

need for accurate pre-operative, preferably non-invasive, imaging techniques for 

lymph node characterization (3). 

Magnetic Resonance Imaging (MRI) plays an important role in non-invasive 

imaging, including in cancer detection and staging (4). In the case of rectal cancer 

staging, T2-weighted MRI can be considered the contemporary gold standard for 

determining lymph node involvement. Unfortunately, T2 weighted MRI, whether 

based on size thresholds or morphologic characteristics such as shape, contour and 

heterogeneity has been shown to be quite a blunt tool with respect to lymph node 

characterization (5-7). Other contrasts, such as dynamic contrast enhancement (8), 

susceptibility contrast (9) or diffusion weighted imaging (10), have also been 

proposed for lymph nodes characterization with variable degrees of success. 

Diffusion MRI (dMRI) is becoming an increasingly attractive modality, 

providing a non-invasive, indirect characterization of tissue microstructure (11, 12). 

The simplest dMRI metric, namely apparent diffusion coefficient (ADC), has been 

widely used for cancer imaging (13) as a biomarker reflecting increased cellularity in 

malignant tumours (14).  For lymph node characterization, ADC has shown variable 

performance. For instance, some studies of cervical and axillary lymph nodes show 

that ADC is a promising technique for determining lymph node involvement (15, 16), 

while other studies, for example in cervical and perigastric lymph nodes, show a low 

accuracy of ADC for benign/malignant differentiation (17, 18). In rectal cancer, an 

accuracy of ~70% for lymph node involvement has been previously reported for ADC 

(19). As ADC assumes a single isotropic water pool which exhibits isotropic 

Gaussian diffusion, it lacks specificity to the underlying changes in tissue 

microstructure and cannot between variations in cell size, cellularity, orientation 
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distribution, etc. This is also reflected in a variable correlation of ADC with histology 

data (14).    

Higher-order dMRI models, which account for non-Gaussian diffusion, have 

been proposed to better characterize the diffusion properties in complex tissue 

microstructures. Diffusion Kurtosis (20) accounts for the signal departure from a 

mono-exponential decay at high b-values and has been successfully applied for 

cancer imaging, improving the differentiation of both primary tumours (21, 22) as well 

as lymph nodes (23-25), compared to ADC. To separate the effects of tissue 

perfusion and diffusion, the intra-voxel incoherent motion (IVIM) (26) captures the 

fast signal decay at low b-values due to flow effects, and, in many cases, provided 

better tumour characterization compared to ADC (27). For rectal cancer, IVIM also 

improved lymph node differentiation (28, 29), although the results are not consistent 

between the two studies. Combining IVIM and Kurtosis can provide insight into both 

perfusion and non-Gaussian diffusion effects, and has shown potential for 

differentiating various tumours (30, 31) as well as lymph nodes in the head and neck 

region (32), however, to our knowledge, it has not been employed so far to image 

lymph nodes involved in rectal cancer.  

To further enhance the specificity of dMRI-derived parameters to the 

underlying microstructure, recently proposed higher-order dMRI techniques (33-40) 

employ biophysical compartment models of various (assumed) tissue features to fit 

the dMRI measurements, usually acquired at multiple b-values and diffusion times. 

Such approaches showed enhanced ability over ADC to explain the diffusion 

measurements and differentiate between benign and malignant tumours in various 

cancer types, such as xenograft colorectal tumours (33), prostate cancer (37, 41-44), 

breast cancer (40) and gliomas (45, 46). Moreover, the estimated dMRI parameters 

for restriction size and volume fraction correlated well with histology measurements 

(33, 41, 47). Compartment models have also been employed in a preliminary study 

to characterize diffusion in lymph node tissue ex-vivo (48), showing that models 

which include restriction and anisotropy provide the best fit to the data, although only 

3 samples were included and a direct link to tissue microstructure through 

histological validation was not presented.  

Here, we aimed to investigate whether a diffusion modelling approach could 

characterize lymph node structure and define lymph node involvement in rectal 

cancer. To this end, in the first part, we performed an ex-vivo study at ultrahigh field 
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MRI employing a rich dMRI protocol on lymph nodes extracted from the surgical 

specimens of rectal cancer patients. In this dataset, we compared various higher 

order diffusion models in terms of signal characterization, as well as node 

differentiation capability. We also correlated various diffusion metrics with 

quantitative histology features, which to our knowledge has not been studied so far. 

In the second part, we employed a clinically feasible dMRI acquisition and modelling 

approach at 1.5T to characterize higher order diffusion properties of mesorectal 

lymph nodes in rectal cancer patients upon staging, and investigated its benefit for 

node differentiation compared to standard T2-weighted qualitative assessment by 

expert radiologists.  

 

Methods 

Part 1: Ex-vivo imaging of lymph nodes at ultra-high field 

The ex-vivo study aims to investigate the diffusion properties of benign and malignant lymph 

node tissue and their relationship with histological features in rectal cancer patients which 

were staged as N+, i.e. at least one lymph node has been classified as malignant following 

the pathological examination. 

Institutional setting and lymph node harvesting 

This study was approved by the institutional ethics committee and informed consent 

was obtained from all participating patients. Sixteen patients underwent surgery 

without neoadjuvant therapy and mesorectal specimens were excised and immersed 

in a 4% formaldehyde solution for 72h. Lymph nodes present in more than 1 cut slice 

(~ 5 mm thickness) were extracted, and processed as follows: one half was sent for 

pathologic staging performed by a gastrointestinal pathologist (8 years of 

experience), and the other half, which is normally discarded, was used for this 

study’s ex-vivo scanning. Following the pathologic results, 5 additional patients with 

node-negative disease were excluded.  

Prior to scanning, lymph node “halves” were washed with a 1% phosphate 

buffered saline solution for 24h and then mounted in a 10 mm NMR tube filled with 

Flourinert®, preferably grouped in pairs of similar size and originating from the same 

histopathologic block. In total, 75 nodes were scanned. Insufficient image quality due 

to susceptibility artifacts and/or image distortions retrospectively related to 

inadequate shimming, poor specimen preparation reflected by a highly 
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inhomogeneous H&E staining in pathology as well as accidental sample mishandling 

resulted in the exclusion of 14 benign and 7 malignant nodes, as detailed in the 

Supporting Information Figure S1. Thus, the final analysis included 54 nodes (31 

malignant) originating from 9 patients (mean age 63.2 years, 6 males). 

 

Histopathologic analysis for comparison with MRI  

To match histology to MRI, the scanned lymph nodes were embedded in 

paraffin and sliced parallel to cut surface every 50µm using a Leica RM2245 

microtome (Leica Biosystems. Newcastle, United Kingdom). One slice per interval 

was stained with hematoxylin-eosin (H&E) and analyzed using a Zeiss Axio Lab A1, 

(Carl Zeiss Microscopy GmbH Germany) with a 40x amplification.  

 

 

 

Diffusion MRI acquisition protocol at 16.4T 

The ex-vivo MRI images were acquired on a 16.4T Bruker Aeon Ascend scanner 

interfaced with an AVANCE IIIHD console and operating a Micro5 probe with a 

gradient system capable of producing up to 3000 mT/m in all directions. A 10 mm 

birdcage coil was used for signal reception and RF transmission and samples were 

scanned at 37°C. The diffusion weighted images were acquired in stimulated echo 

acquisition mode (STEAM) using standard line-by-line readout with imaging 

parameters detailed in Table 1a. Single diffusion encoding (SDE) sequences with 6 

gradient directions and duration δ = 1 ms were acquired at four b-values up to 2000 

s/mm2 and multiple diffusion times Δ from 5 to 150ms, as detailed in Table 1a, 

leading to a total scan time of ~6h per node. 

 

MR image analysis 

Diffusion weighted images were analyzed in Matlab® (Mathworks, Natick, 

Massachussets, US). The acquired data was first normalized for each Δ to account 

for T1 relaxation effects, due to different mixing times in the STEAM sequence. Then, 

eight diffusion models were fitted voxel-wise. The models included standard 

representations, such as ADC, diffusion tensor (DTI) and diffusion kurtosis (DKI), as 

well as several two-compartment models which account for anisotropic and/or 

restricted diffusion. In particular, the following models were considered (using the 
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nomenclature in (49)):  BallBall, BallSphere, ZeppelinBall, ZeppelinSphere, and 

BallFiniteCylinder, where “Ball”  describes isotropic Gaussian diffusion (a single Ball 

compartment is equivalent to ADC), “Zeppelin” describes a cylindrically symmetric 

anisotropic Gaussian diffusion tensor, and “Sphere” describes isotropic, restricted 

diffusion. When fitting models with restriction, the same diffusivity for the restricted 

and Gaussian compartments was assumed (50). Details regarding the compartment 

models, specific parameter ranges and model assumptions are given in Supporting 

Information Table S1. For restricted diffusion, we used the signal expressions 

derived in (51) based on the Gaussian Phase Distribution approximation (52) for 

STEAM diffusion sequences (53-55). 

 

Experiment 1 – Information-based comparison of DW-MRI models  

The models were compared based on the Bayesian Information Criterion (BIC) 

which accounts for the goodness of fit and penalizes increasing number of model 

parameters: 

𝐵𝐼𝐶 = 𝑙𝑛(𝑁)𝑘 − 2𝑙𝑛(𝐿) 

where N is the number of data points, k is the number of model parameters and  

𝑙𝑛(𝐿)is the maximum value of the log likelihood function of the model, which 

accounts for Rician noise (51).  

The BIC was computed voxel-wise for each model, then the models were 

compared based on the number of voxels where they occupy a certain rank.  

 

Experiment 2 – Differentiation between benign and malignant nodes based on 

dMRI models 

Next, we investigated the model parameter differences between benign and 

malignant lymph nodes for the standard DTI model as well as the best fitting model 

(ZeppelinSphere).  

 To study the ability of differentiating between benign and malignant nodes, we 

performed a receiver operating characteristic (ROC) analysis for the standard 

models (Ball, Kurtosis and Tensor) as well as for the best fitting ZeppelinSphere 

model. The parameters included in the analysis for each diffusion model were the 

following: Ball – MD, Kurtosis – MD and kurtosis, Tensor – MD and FA, 

ZeppelinSphere – fsphere, D, FAZeppelin and Rsphere. The ROC analysis was performed 
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with two sets of histogram features for each model parameter: median values across 

each node and median plus inter-quartile range (IQR).  

 

Experiment 3 – Correlation between quantitative histology and dMRI metrics 

To investigate the link between parameters derived from dMRI data and histological 

features, we analyzed histology H&E slides and quantified the following parameters: 

cell count, average nuclear area, average cell area and cell area fraction. To ensure 

a relevant comparison between histology and MRI, the best matching H&E slice 

based on contour and visible landmarks was selected. Then, the histological features 

were quantified in a 420x560 µm2 field using a cell detection tool (QuPath®, Belfast, 

UK).  

 A similarly sized ROI was placed in the dMRI images by a radiologist with 8 

years of experience. Then, we quantified the correlation between the mean 

parameter values of the diffusion models and the histological features in the given 

ROIs. Specifically, we analysed the parameters of DTI and the best fitting 

ZeppelinSphere model. For the latter, we have excluded from the correlation 

analysis N = 97/1120 voxels where the estimated Rsphere reached the upper limit 

imposed during fitting, see Supporting Information Table S1. 

 

Part 2: Clinical imaging at 1.5 T 

The clinical study aims to investigate the benefit of including dMRI to differentiate between 

benign and malignant lymph nodes for rectal cancer patient staging. 

Institutional setting  

The clinical study was also carried out with the approval of the institution´s 

ethics committee. A total of 10 patients previously diagnosed with rectal cancer 

(mean age of 64.9 years, 5 males) were enrolled, after obtaining written informed 

consent. The imaging was performed on a 1.5T scanner (Ingenia, Philips 

Healthcare®, Best, The Netherlands) with the diffusion acquisition added to the 

clinical staging pelvic MRI. A spasmolytic agent was administered (Butylscopolamine 

20 mg) and a pressure belt was utilized (Orfit Industries, Wijnegem, Belgium) to 

minimize bowel and respiratory movement artefacts, respectively.  

 

Image acquisition and data analysis 
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The diffusion data was acquired using a Torso XL surface coil with multi-shot 

Spin-echo Echo-planar Imaging (SE-EPI), with the acquisition parameters detailed in 

Table 1b. The diffusion acquisition was split in three parts, with small b-values (50, 

100, 200 s/mm2) medium b-values (500, 1000 s/mm2) and high b-values (1500, 

2000, 2500 s/mm2), with imaging parameters detailed Table 1b The sequences were 

split to minimize the echo time of the acquisition (65 ms), as previous visual 

optimization showed it plays an important role for image contrast. To achieve this 

echo time for the high b-values, the repetition time was increased to 9.5 s to satisfy 

duty cycle constraints. Thus, by separating the sequences, the repetition time for the 

small and medium b-values could be lower to allow an overall shorter acquisition 

time (TR of 3.5 and 3.7 for small and medium b-values respectively). Moreover, 

splitting the sequences allowed for multiple b0-values (in this case 3), which were 

beneficial for the delineation of the ROIs to minimize the effects of motion.  The data 

was acquired in 3 orthogonal directions averaged on the scanner.  

In total, 76 lymph nodes were delineated by a radiologist (8 years experience) 

and matched to pathology during macroscopy. The process consisted of sequential 

slicing of the specimen, followed by positioning and numbering of the cut slices to 

match the MR imaging acquisition and dyeing of the extracted lymph nodes based 

on their radial position. Due to motion artifacts, 4 nodes were excluded, leaving 72 

nodes (14 malignant). Whole-node ROIs were defined on the high b-value images 

and copied to the low and medium b-value data sets. When necessary, the ROIs 

were slightly translated to account for motion during the acquisition. The average 

ROI signal for each b-value was normalized to the ROI average of the b0 images in 

the respective set. The normalized signal decay was fitted with four diffusion models, 

which can be used to characterize the diffusion properties of the tissue given the in-

vivo clinical acquisition. Thus, ADC was fitted to the measurements with medium b-

values, IVIM was fitted to the measurements with small and medium b-values, 

Kurtosis to the sets with medium and high b-values and IVIM-Kurtosis to the entire 

data set. In the clinical study, only models of isotropic diffusion without an explicit 

representation of restriction were fitted, as the acquired data did not have enough 

directional information for anisotropic models or diffusion times for models of 

restricted diffusion. On the other hand, the models included IVIM effects to account 

for perfusion. 
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We investigated the parameter differences between benign and malignant 

nodes and then employed a ROC analysis to compare the differentiation ability of the 

best performing model (IVIM + Kurtosis) with the standard T2-weighted classification 

performed by 2 experienced radiologists on a subset of 56 lymph nodes. 

 

Statistical analysis 

To investigate the parameter differences between benign and malignant nodes, we 

employed a mixed effect linear model with the diffusion metrics as response variable, 

and the malignancy status as predictor variable. The model accounts for the 

hierarchical structure of the data. In the voxel-wise analysis of the ex-vivo dataset, 

there is a three-level hierarchy, with the voxels grouped by lymph node and by 

patient. In the ROI analysis of the clinical data there is a two-level hierarchy, with the 

whole node ROI values grouped by patient.  

To assess the differentiation ability of different models, we employ a ROC 

analysis. Specifically, we use the Matlab implemented following a multivariate linear 

regression.  Differences between ROC curves were assessed using the DeLong test 

(56).  

Results 

Part 1: Ex-vivo imaging of lymph nodes at ultra-high field 

Experiment 1 – Information-based comparison of dMRI models 

The first experiment compared the goodness of fit of different diffusion models 

according to their BIC values. Figure 1a) illustrates the model ranking for benign 

(left) and malignant nodes (right). The models are listed in decreasing order of their 

performance from the top to the bottom of the plots. The results show that models 

including anisotropy and restriction consistently rank higher both for benign and 

malignant nodes. Figure 1b) presents maps of the best fitting model for a benign and 

a malignant node. A spatial variability of the best fitting model pattern can be 

observed, which reflects the underlying structure, with the ZeppelinSphere model 

providing the best fit in the nodal parenchyma, while the tensor model provides the 

best fit in the nodal capsule. This pattern is consistent for other nodes where the 

capsule is visible (data not shown). 

Figure 2 shows example datasets for two voxels from a benign (left) and a 

malignant (right) lymph node which were fitted with the a) Tensor model and b) 
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ZeppelinSphere model. In both node types the ZeppelinSphere model fit (solid lines) 

better captured the trends in the experimental data (symbols) compared with the 

Tensor model, as expected from the results presented in Figure 1. The data also 

shows a higher spread of the measured signal in the diffusion time dimension for the 

malignant voxel compared to the benign voxel. The time-dependence pattern is 

variable across nodes; nevertheless, on average, malignant nodes exhibit stronger 

diffusion time dependence compared to benign nodes. 

 

Experiment 2 – Differentiation between benign and malignant nodes based on dMRI 

models 

The next analysis targeted the ability of different model parameters to differentiate 

between benign and malignant nodes. For the standard Diffusion Tensor model, 

when analyzing the voxelwise parameters from all nodes, both MD and FA show 

significant differences between benign and malignant nodes, with lower MD and 

higher FA in malignant nodes (p<0.01 in both cases), as illustrated in Supporting 

Information Figure S2. The results for the best fitting ZeppelinSphere model are 

presented in Figure 3. Parameter maps of diffusivity (Di), fractional anisotropy of the 

zeppelin compartment (FA), fraction of spherical compartment (fsphere) and radius of 

the spherical compartment (Rsphere) are shown in panel a) and the parameter 

differences between benign and malignant nodes in panel b). Di shows a significant 

decrease between benign and malignant nodes (p<0.01), while FA and fsphere show a 

significant increase (p<0.01). The sphere radius does not evidence any statistically 

significant difference between the groups. 

Figure 4 presents the ROC curves of four diffusion models (Ball, Kurtosis, 

Tensor and ZeppelinSphere), based only on median parameter values (a) or median 

and IQR values (b). When analyzing only the median values, the areas under curve 

(AUC) for all models considered were between 0.7 and 0.8, with the ZeppelinSphere 

showing a higher AUC (0.79). However, this difference was not significant based on 

the DeLong test. When including the IQR of the parameters, a significant increase 

(p<0.01) in the classification ability of the Tensor and ZeppelinSphere models was 

observed (AUC of 0.93 and 0.95, respectively). We have further tested whether the 

Tensor model fitted to a single shell acquisition (b = 1000 s/mm2, Δ = 5 ms) could 

also provide a good differentiation between benign and malignant nodes. The ROC 

analysis showed similar values of the AUC (0.78 and 0.92 for median and median + 
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IQR, respectively) which, although slightly smaller, are not significantly different from 

the ZeppelinSphere results. These results, together with the fact that including the 

IQR for the ADC and BallSphere models does not result in a significant increase in 

the AUC (data not shown), suggest that both anisotropy and its heterogeneity in the 

malignant lymph nodes plays an important role for the classification. 

 

Experiment 3 – Correlation between quantitative histology and dMRI metrics 

Figure 5 summarizes the results of the quantitative histology analysis, based 

on corresponding ROIs drawn on microscopy and MRI images, as presented in 

Figure 5a) and b). The results show statistically significant differences (p<<0.01) 

between the benign and malignant lymph nodes for all the histological features 

included in the analysis (cellularity, average nuclear area, average cell area, cell 

area fraction). 

Figure 6 shows the significant correlation between dMRI derived metrics and 

the histology features described above. The correlations for the Tensor parameters 

are depicted in Figure 6a). MD showed a weak positive correlation with cell count 

(r=0.34, P=0.014) and weak negative correlations with nuclear area (r=-0.38, 

P=0.006), cell area (r=-0.39, P=3.4E-3) and cell area fraction (r=-0.36, P=0.011). FA 

exhibited a moderate positive correlation with nuclear area (r=0.57, P=1.5E-5) and 

cell area fraction (r=0.59, P=4.4E-6). The correlations for the ZeppelinSphere model 

parameters are depicted in Figure 6b). Zeppelin FA showed a moderate positive 

correlation with nuclear area (r=0.59, P=7.2E-6) and with cell area fraction (r=0.66, 

P=1.7E-7). Rsphere exhibited a moderate positive correlation with cell count (r=0.46, 

P=7.7E-4), and a moderate negative correlation with cell area (r=-0.44, P=1.6E-3) 

and the corresponding cell radius (r=-0.42, P=2.4E-3). For Di the correlation 

coefficients were smaller than 0.3. Another feature of this dataset is a large variability 

of the estimated parameters in the benign lymph nodes, especially for the 

diffusivities and sphere radius, which has a direct impact on the observed 

correlations.  

 

Part 2: Clinical imaging at 1.5T 

This section presents the analysis of the clinical dMRI data acquired at 1.5T. In total 

72 lymph nodes, originating from 10 patients with rectal cancer and without 

neoadjuvant therapy, were analyzed. 
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Figure 7 a) and b) illustrate examples of diffusion weighted images and ROI 

selection for a benign and a malignant node, respectively, and Figure 7c) plots the 

average signal decay separated by the malignancy types. The decay curves in 

Figure 7c) clearly revealed a faster decay for malignant nodes and a slower decay 

for benign nodes, which are also reflected in the model parameters presented in 

Figure 8 and Table 2. 

Figure 8a) shows box-plots of the parameter values for ADC, IVIM, Kurtosis 

and IVIM-Kurtosis estimated in benign and malignant nodes. ADC values were 

higher in malignant nodes compared with benign nodes; however, the difference was 

not statistically significant (P=0.26). The only parameter which reached a statistically 

significant threshold was the diffusivity (D) estimated from the IVIM-Kurtosis model 

(P=0.03), which has higher values in the malignant nodes. The diffusivity values from 

the IVIM and Kurtosis models were also higher in malignant nodes, however the 

differences were not statistically significant (P=0.11 and 0.22 for IVIM and Kurtosis, 

respectively). The pseudo-diffusivities from the IVIM and IVIM-Kurtosis models are 

lower in malignant nodes compared to benign nodes, with p values of 0.07 and 0.24, 

respectively. The kurtosis values in malignant nodes were also lower than in benign 

nodes, however the difference was not statistically significant (P=0.12 for the 

Kurtosis model and P=0.32 for the IVIM-Kurtosis model). 

Figure 8b) presents the ROC analysis which compared the four diffusion 

models in terms of differentiating between benign and malignant lymph nodes. ADC 

is the worst performing model, with an AUC value of 0.60, while IVIM-Kurtosis is the 

best performing one with an AUC of 0.73, however, the difference does not reach 

statistical significance according to the DeLong test (P=0.19). Figure 8c) shows that 

IVIM-Kurtosis also provides a better differentiation between benign and malignant 

nodes (AUC=0.80) compared to the standard clinical T2 classification based on the 

ESGAR 2016 criteria (57) (AUC=0.74 for Reader 1 and AUC=0.59 for Reader 2), 

which takes into consideration lymph node size, shape, contour and heterogeneity. 

Moreover, combining IVIM-Kurtosis and T2 results significantly improves the 

classification compared to T2 weighted images alone (P=0.08 for Reader 1 and 

P=0.007 for Reader 2).   
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4. Discussion and conclusions 

Characterising lymph nodes in-vivo and noninvasively is of high relevance 

given the importance of lymph node staging in rectal cancer patient treatment 

planning (2). Since lymph node microstructural changes play an important role in 

malignancy (1) and given that diffusion MRI can portray at least some 

microsctructural properties, we hypothesized that dMRI could be used to distinguish 

malignant from benign nodes.  

In the first part of this study, lymph nodes underwent extensive dMRI 

experiments at ultra-high field MRI, leading to a rich and robust dataset, with 

excellent resolution, to which eight different compartment models were fitted. An 

important finding of the pre-clinical study is that models including restriction and 

anisotropy best explain the measured data for both benign and malignant nodes 

(Figure 3), a result in agreement with preliminary data from (48). Spatial variations of 

the diffusion patterns are also observed. Thus, the lymph node capsule exhibited 

higher anisotropy and lower restriction compared with the lymph node parenchyma, 

with the diffusion tensor being the best fitting model. The tensor MD and FA are 

higher in the capsule compared to the parenchyma, as illustrated in Supporting 

Information Figure S4. This probably reflects the inherent capsule composition, 

which is relatively paucicellular (dominant cell being the fusiform fibroblast) and 

extracellular matrix-rich, with long extracellular matrix molecules, predominantly of 

collagen and elastin.  Besides providing a better fit to the data, the higher-order 

models also improved the differentiation between benign and malignant nodes 

(Figure 4), better capturing the microstructural differences. While benign nodes are 

largely comprised of leucocytes, which are predominantly round, small and 

practically devoid of cytoplasm, malignant nodes predominantly contain large and 

goblet shaped malignant cells and exhibit a wide range of malignancy patterns 

including solid infiltration, necrosis and desmoplasia, with or without an associated 

inflammatory infiltrate. This wide range of cellular structure could give rise to high 

diffusion heterogeneity poorly captured by ADC. 

Previous studies characterizing the diffusion properties of ex-vivo lymph 

nodes have mainly employed ADC (48, 58, 59), however, the results have shown 

variable outcome, with a very large spread in ADC values (48), as well as poor 

correlation between in-vivo and ex-vivo lymph nodes (58). Our study is consistent 
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with these findings: the results evidenced a very large spread of ADC even for 

benign nodes (Figure 6). Potential sources for this high variability could include 

variable microstructure, fixation effects, or interactions with internal, susceptibility-

induced fields. Regarding the latter, a large proportion of the lymph nodes analyzed 

in this study have also been imaged using a multi-gradient echo (MGE) acquisition 

(9), whose output (T2*) reflects the field inhomogenity. Similar to ADC, the T2* 

values from (9) also exhibited a large spread in the same benign nodes, however, no 

significant correlations have been found between ADC and T2* values, as illustrated 

in Supporting Information Figure S3. Regarding the effect of fixation duration, 

previous studies have shown variable results depending on the tissue type (59, 

60),(61). In our study, the fixation interval ranged from 2 weeks to 35 weeks (median 

15 weeks), however, the correlation between MD values (or other metrics) and 

fixation period (r=0.33, P=0.09) was not significant. Thus, the preparation cannot 

account for the full variability observed in the benign nodes.  

Another interesting finding of the preclinical aspect of this study is that even 

the best-fitting model – despite its success in characterizing the diffusion signal 

decay and differentiating between malignant/benign nodes – correlates only 

moderately with the histological features. In malignant nodes, the restriction size 

rsphere has similar values to cellular sizes in histology, with an average 

underestimation of 21±32%; however, for benign lymph nodes, the restriction size 

has an average overestimation of 203±110%, with a large spread of values, 

suggesting that the model is not necessarily adequate in benign lymph nodes. The 

highest correlation coefficient was observed between the FA values and the 

intracellular area fraction from histology, suggesting that the packing is somehow 

captured by the FA while the restriction effects fitted by the models average out other 

histological properties which are not directly visible in H&E staining and therefore 

correlate worse with the specific features they aim to represent, such as cell size. 

Taken together, the above-mentioned features highlight the simplistic nature 

of tissue modelling in terms of specificity and calls for caution when interpreting the 

model parameters (e.g., the model’s spherical radii assigned to cellular spaces). 

Indeed, several assumptions are made. For example, the models assume non-

exchanging water pools. However, as the diffusion times were varied up to 150ms, 

exchange between compartments cannot be completely ruled out (62, 63), which 

potentially leads to an underestimation of the restriction fraction (50). Another 
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assumption is having the same diffusivity inside and outside the sphere, with time-

dependence originating only from restricted diffusion, which might once again lead to 

bias (46, 64). Nevertheless, this assumption has been successfully applied in the 

past to model various tumour types (33, 37, 40), with fitted parameters showing a 

good correlation with histology features (33, 41).  

It is important to stress that, even if the estimated model parameters do not 

naturally correspond to features visible to histology, the modelling approach 

successfully captured the higher order effects in the signal decay and recovered 

parameters which were useful for lymph node classification, whereas the ADC 

approach was much less sensitive. In the future, more data could be acquired, 

thereby enabling increasingly complex models to be fit to the data, especially if 

single-shot acquisitions would be performed, leading to much more rapid 

acquisitions. Additionally, the sample preparation for ex-vivo scanning could be 

improved in future experiments. In this study some excluded nodes presented with 

poor quality images due to susceptibility artefacts which we related to the 

accumulation of blood degradation products at their cut surface as well as image 

distortions which we retrospectively related to imperfect shimming. We believe 

imaging intact lymph nodes and limiting the amount of surrounding fat by more 

attentive dissection might minimize susceptibility and distortion in future experiments, 

respectively.   

The second part of this study aimed at investigating some of the diffusion 

properties described above for clinical characterization of mesorectal lymph nodes in 

patients with rectal cancer at 1.5T. Given the clinical constraints, modelling 

anisotropy and restriction was not feasible, and perfusion effects had to be 

considered. Nevertheless, higher-order effects, shown to be important in the pre-

clinical study, were accounted for in Kurtosis models. The results show that ADC 

alone does not faithfully distinguish between malignant and benign nodes, whereas 

an increase in the area under the ROC curve was noted for the IVIM-Kurtosis model 

compared with the standard ADC (P=0.19). Moreover, combining IVIM-Kurtosis and 

T2 weighted images provided a significant increase over the standard clinical 

classification based on T2 weighted images alone (P=0.08 for Reader 1 and P<0.01 

for Reader 2). These results show that it is important to disentangle the various 

signal contributions which are reflected in the ADC values in order to better 

characterize and distinguish between node types.  
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The diffusion parameters obtained in this analysis for the ADC, IVIM and 

Kurtosis models, i.e. higher ADC and D and lower D* and K in malignant nodes, are 

consistent with  two recent studies employing IVIM and Kurtosis, respectively, to 

image lymph nodes in patients with rectal cancer (25, 28), however in contradiction 

with the IVIM results from (29), where the diffusivity in the malignant nodes is lower. 

The wide range of ADC and IVIM parameters are likely due to the heterogeneity of 

the lymph nodes as well as possible influences from the acquisition protocol. 

Moreover, in these studies there is no mention of any measures taken to minimize 

susceptibility and movement artifacts, which are common in pelvic MRI and whose 

avoidance was very important in our experiment. 

Indeed, this study utilized state-of-the-art techniques to minimize motion 

artifacts, specifically, patients received a spasmolytic agent to minimize bowel 

movement and a pressure belt was used to minimize artifacts due to respiratory 

motion. Nevertheless, some motion artifacts and partial volume could still be 

detected, especially when considering such small structures as lymph nodes. To 

further reduce the impact of motion on the data analysis, the dMRI parameter 

quantification was performed on ROIs which were slightly translated for each part of 

the acquisition. Motion artifacts then lead to the exclusion of only 4 lymph nodes 

from the analysis, which we consider a good outcome for such MRI-challenging 

structures. 

One limitation of this clinical study is the relatively small number of patients 

(N=10) and the fact that half of malignant lymph nodes (7/14) originate from only one 

patient. Nevertheless, this effect was accounted for in the statistical model. Another 

limitation is related to the diffusion times and b-values clinically achievable. Although, 

the pre-clinical results revealed that models with restriction and anisotropy best 

explain the diffusion properties of the tissue, such models were too complex to be 

fitted to the clinical data, which was constrained to measurements in three 

orthogonal directions averaged directly on the scanner and similar diffusion times for 

the different b-values. With the current imaging resolution, it was not feasible to 

assess the heterogeneity of diffusion parameters in the lymph nodes, with some 

nodes consisting only of a few voxels. Moreover, partial volume and motion effects, 

as well as different contrast between b0 and diffusion weighted images makes image 

registration a very difficult problem, thus the analysis was performed at ROI level 

which is more robust, but does not inform on parameter heterogeneity.  Recent 
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technical improvements in clinical scanners (slew rate, gradient strength, 3T field 

strength) would enable future studies to acquire dMRI measurements with multiple 

directions and diffusion times with a reasonable scan duration, which is required to 

characterize restriction and anisotropy in the tissue, as well as higher resolution 

images which could better inform about tissue heterogeneity. Nevertheless, these 

diffusion properties and their heterogeneity are to some extent reflected in the 

higher-order kurtosis models. Although the ex-vivo and clinical studies cannot be 

directly compared as they include different patients, drastically different field 

strengths and image resolution as well as different diffusion acquisitions and models, 

in both cases the results show that models which include higher order diffusion 

effects provide the best differentiation between benign and malignant nodes. 

Moreover, these approaches show a similar performance for the clinical data and ex-

vivo data, when considering parameters averaged over the entire node. 

 To conclude, this work shows the potential of higher order dMRI models to 

characterize and differentiate benign from malignant lymph nodes in rectal cancer 

patients, both ex-vivo at ultrahigh field and in-vivo at 1.5T, paving the way for future 

oncologic studies on lymph node staging. 
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Tables: 

a)                                          Pre-clinical scan parameters 

Parameter  

Echo time (ms) 6.5 

Repetition time (ms) 2800 

Slice Thickness (mm) 0.7 

In-plane resolution (mm2) 0.14 x 0.14 

Matrix size 70 x 70 

Bandwidth (kHz) 34.722 

Gradient duration (ms) 1 

# Gradient directions 6 

B values (s/mm2) 0, 500, 1000 0, 1500, 2000 

Signal averages 1 2 

Diffusion time (ms) 5, 10, 20, 40, 70, 100, 150 10, 20, 30, 50 

Mixing time (ms) 2.2, 7.2, 17.2, 37.2, 67.2, 97.2, 147,2 7.2, 17.2, 27.2, 47.2 

   

b)  Clinical scan parameters 

Parameter Small b values Medium b values High b values 

Echo time (ms) 65 65 65 

Repetition time (ms) 3550 3755 9561 

Flip angle 90 90 90 

Slice thickness (mm) 5 5 5 

Gap (mm) 0 0 0 

Matrix 128x126 128x126 128x126 

Field-of-view (mm) 320x320 320x320 320x320 

In-plane resolution (mm2) 2.5x2.5 2.5x2.5 2.5x2.5 

Signal averages 1 1 2 

EPI factor 63 63 63 

Bandwidth (kHz) 29.1 21.7 21.7 

dB/dt (T/s) 91.5 41.2 41.2 

Acquisition Duration 2min26s 2min34s 15min09s 

Fat suppression SPAIR SPAIR SPAIR 

Halfscan factor 0.696 0.696 0.667 

B values 0, 50, 100, 200 0, 500, 1000 0, 1500, 2000, 2500 

Gradient duration (ms) 15 16.6 16.9 

Diffusion time (ms) 35.7 32.5 32.8 

Table 1. Imaging parameters for a) pre-clinical dMRI acquisition at 16.4T with stimulated 

echo preparation and line-by-line readout and b) clinical dMRI acquisition at 1.5T with spin-

echo preparation and multi-shot EPI readout. 
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 ADC IVIM Kurtosis IVIM - Kurtosis 

 
D 

(ms/μm2) 

f D 

(ms/μm2) 

D*  

(ms/μm2) 

D 

(ms/μm2) 

k D 

(ms/μm2) 

f D*  

(ms/μm2) 

k 

Benign 
0.96 ± 

0.34 

0.16 ± 

0.12 

0.70 ± 

0.28 

12.9 ± 

10.9 

1.12 ± 

0.39 

1.14 ± 

0.34 

0.80 ± 

0.30 

0.15 ± 

0.13 

13.7 ± 

11 

1.09 ± 

0.62 

Malignant 
1.08 ± 

0.36 

0.13 ± 

0.15 

0.85 ± 

0.39 

8.0 ± 

7.5 

1.27 ± 

0.42 

0.94 ± 

0.27 

1.02 ± 

0.41 

0.11 ± 

0.13 

10.1 ± 

8.2 

0.88 ± 

0.49 

p-value 0.26 0.66 0.11 0.074 0.22 0.12 0.030 0.32 0.24 0.32 

Table 2 Parameter values for benign and malignant nodes given by the ADC, IVIM, Kurtosis 

and IVIM-Kurtosis models applied to clinical data. 
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Figures: 

 

 

Figure 1 a) Model ranking for benign (left) and malignant (right) lymph nodes. The 

models are fitted voxelwise and the grey scale reflects the frequency with which a model 

occupies a certain rank. Thus, the model on top provides the best fit in most of voxels, while 

the model on the bottom provides the worst fit in most of voxels. The models are roughly 

ordered according to how many times they provide a certain rank, from best (top) to worst 

(bottom). b) Maps showing the best fitting model in each voxel of a benign (left) and 

malignant (right) node. 
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  Figure 2 Example of voxelwise model fitting for a) Tensor and b) ZeppelinSphere 

models in a benign and a malignant node. The different symbols show different gradient 

directions, and the colour encodes different diffusion times. The red line shows the model fit 

to the data.  
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Figure 3 a) Parameter maps derived from the ZeppelinSphere model (Di, FA, fsphere 

and Rsphere) for a benign and malignant lymph node. b) Di, FA, fsphere and Rsphere comparison 

for benign and malignant nodes.    

  

 

Figure 4 ROC curves for the Ball, Kurtosis, Tensor and ZeppelinSphere model when 

including for each model parameter the a) median values and b) median values and IQR. 
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Figure 5 Example of corresponding ROIs between MRI and histology for a) benign 

node and b) malignant nodes. Comparison of histology features between benign and 

malignant nodes: c) cellularity, d) average cell area, e) average nuclear area and f) cell area 

fraction. 
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Figure 6 Correlation between MRI derived model parameters and histology features 

for the a) Tensor model and b) ZeppelinSphere model. Only parameters with significant 

correlations with r> 0.3 are depicted. For the Rsphere parameter we also show the correlation 

with the estimated cell radius from histology, which is calculated from the average cell area 

assuming a circular shape. Different marker colours represent different node types. Benign 

nodes are depicted in red, while malignant nodes are depicted in different colours depending 

on their malignancy pattern (D – desmoplastic; DI – desmoplastic with inflammation; C - 

cellular N – necrotic; NI – necrotic with inflammation). The following correlation strengths are 

assumed based on the values of the correlation coefficient r: <0.3 = negligible; 0.3 to 0.5 = 

weak; 0.5 to 0.7 = moderate; 0.7 to 0.9 = strong; 0.9 to 1.00 = very strong (63). 
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Figure 7 a)-b) Diffusion weighted images of a benign and a malignant lymph node, 

respectively, with full FOV b0 images and details of the lymph node ROI delineation for three 

b-values (0, 1000 and 2500 s/mm2). c) Average signal decay for benign and malignant 

lymph nodes as a function of b-value. 

 

 

Figure 8 a) Estimated parameter values of the various diffusion model for benign and 

malignant lymph nodes (Kurtosis and IVIM on the top row; ADC and IVIM-Kurtosis on the 

bottom row). b) ROC curves for the ADC, IVIM, Kurtosis and IVIM-Kurtosis models. c) ROC 
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curves for the IVIM-Kurtosis model, as well as for the node classification provided by two 

different radiologists. This ROC curve is evaluated on a subset of 56 nodes. 

 

Supporting Information Table S1 Description of the diffusion models fitted to the 

pre-clinical ex-vivo data including model name, equation, number of fitted parameters and 

the range of parameter values. 

 

 


