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Abstract. MR images scanned at low magnetic field (< 1T) have lower
resolution in the slice direction and lower contrast, due to a relatively
small signal-to-noise ratio (SNR) than those from high field (typically
1.5T and 3T). We adapt the recent idea of Image Quality Transfer (IQT)
to enhance very low-field structural images aiming to estimate the res-
olution, spatial coverage, and contrast of high-field images. Analogous
to many learning-based image enhancement techniques, IQT generates
training data from high-field scans alone by simulating low-field images
through a pre-defined decimation model. However, the ground truth dec-
imation model is not well-known in practice, and lack of its specification
can bias the trained model, aggravating performance on the real low-field
scans. In this paper we propose a probabilistic decimation simulator to
improve robustness of model training. It is used to generate and augment
various low-field images whose parameters are random variables and sam-
pled from an empirical distribution related to tissue-specific SNR on a
0.36T scanner. The probabilistic decimation simulator is model-agnostic,
that is, it can be used with any super-resolution networks. Furthermore
we propose a variant of U-Net architecture to improve its learning per-
formance. We show promising qualitative results from clinical low-field
images confirming the strong efficacy of IQT in an important new appli-
cation area: epilepsy diagnosis in sub-Saharan Africa where only low-field
scanners are normally available.

1 Introduction

Magnetic Resonance Imaging (MRI) is now ubiquitous in neurology with a strong
trend towards the use of high-field scanners, with 1.5T and 3T being the cur-
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Coronal View Axial View

High-field Low-field High-field Low-field

Fig. 1. High-field vs low-field MR scans: (a-b) Resolution change on coronal plane; (c-d)
Contrast change on axial plane. Data sources: (a, c) 3T MRI from Human Connectome
Project [2]; (b, d) 0.36T MRI acquired from University College Hospital, Ibadan.

rent clinical standard. However, low-field MRI scanners, less than 1T, are still
common in low and middle income countries (LMICs), due to limited funds
and frequent power outages. Low-field scanners suffer from lower signal-to-noise
ratio (SNR) than high field at equivalent spatial resolution. To counteract the
SNR reduction, practitioners commonly acquire images with non-adjacent thick
slices to reduce the acquisition time and cross-talk artifacts in brain MRI sce-
nario [1]. This leads to resolution reduction in the slice direction compared with
the in-plane resolution and a loss of information due to gaps between slices;
see Fig. 1(a-b). Moreover, the contrast between grey matter (GM) and white
matter (WM) may be worse than in high field even at equivalent SNR and
spatial resolution as illustrated in Fig. 1(c-d).

In this study, we aim to learn an image-translation mapping from low field
to high field to perform super-resolution and contrast enhancement. In the lit-
erature, mathematical models have been proposed to describe the variation of
MRI signal with the magnetic field [3,4], but such models are simplistic and
do not include all effects on the final images, such as variability in the acqui-
sition process. Furthermore, the reconstruction of missing information between
the acquired slices is severely ill-posed, which hinders the practical capability
of producing high-field like images. Several approaches in the literature aim to
solve related problems. Bahrami et al [5] proposed a multi-level Canonical Cor-
relation Analysis for estimating 7T from 3T images using paired training data.
Wolterink et al [6] used the idea of cycle consistency to leverage the abundance
of unpaired training sets and learn to synthesise CT from MRI. This approach is,
however, known to be susceptible to hallucinations and may introduce spurious
features in the output images [7].

Image Quality Transfer (IQT) is a machine learning framework used to en-
hance low-quality clinical data to the abundant neurological information in high-
quality images. Most implementations of IQT simulate low quality data from
high quality providing matched-paired for training. In [8,9,10,11] for instance,
the corresponding low-field data are synthesised by downsampling and matching
voxel-wise intensities coming from prior or empirical knowledge about actual
low-field data. However, the trained model strongly depends on the accuracy of
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low-field synthesis. To improve model generalisability, the prediction of a trained
model should be built on unseen test data with less dependency of simulation.

In this paper, we build on the IQT framework to construct a mapping that
estimates high-field images from the matched low-field inputs. The paired data,
particularly in large numbers, are hard to acquire in one area due to the rare
availability of high-field scanners in LMICs and low-field scanners in high income
countries (HICs). Our key technical contribution is to propose a probabilistic
decimation (downsampling) model to improve robustness of IQT training and
to enhance images from low-field scanners. More specifically, low-field data gen-
eration comes from a probabilistic model which comprises random tissue-specific
intensity statistics (e.g. SNR) and probabilistic semantic segmentation. We as-
sume that an a priori distribution related to the tissue-specific SNR is available.
The segmentation mask estimated by Statistical Parametric Mapping [12] is also
probabilistic in terms of the tissue type. Therefore for one high-field subject, we
can simultaneously generate the corresponding multiple low-field data and form
the paired training data, a novel way of performing data augmentation. We then
learn the low-field-to-high-field transformation by adapting the U-Net architec-
ture [13] with a super-resolution module, a “bottleneck block”, extending its
depth to enable it to capture more global features of image contrast.

2 Methods

2.1 Formulation

Let a 3D low-field input patch x of size w×h×d be corrupted by smoothing, low
contrast, and random noise. It is randomly cropped from the original low-field
MR volume denoted by X. Our aim is to reconstruct the sub-voxel information in
the slice thickness direction and to attain the high SNR and contrast transferring
to the corresponding high-field output patch y of size w×h×kd, where k is an up-
sampling rate. Then we assemble all output patches into a high-field MR volume
denoted by Y . The relationship between x and y is modelled by a degradation
process of image quality, described by a function S such that

x = S(y,α) + ε, (1)

where α denotes a vector of SNR components corresponding to prior knowledge
of WM and GM in the low-field input volume, i.e. α = (SNRWM

X , SNRGMX ). It
is randomly sampled from the Gaussian distribution N (µ, Σ) where µ is a mean
vector and Σ is a covariance matrix. ε denoting background noise has a Gaussian
distributionN (0, σ2

BG). Section 2.2 will specify the formulation and algorithm for
modelling S. We then employ deep learning, specifically a convolutional neural
network, to estimate the inverse mapping S†.

We use a given M -paired training set TM = {(xi, yi)}Mi=1 with a fixed α to
train our convolutional neural networks over all sampled patches from all MR
volumes. We optimise the network parameters θ by minimising the average of
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the pixel-wise mean squared error (MSE) denoted by ‖ · ‖22 over all training sets:

θ∗ = arg min
θ

1

M

M∑
i=1

‖S†θ(xi)− yi‖
2
2. (2)

2.2 Probabilistic Decimation Simulator

Equation (1) enables us to produce additional training data by randomly sam-
pling the coefficient α from an a priori distribution, forming the so-called proba-
bilistic decimation simulator. It translates the voxel-wise low-field SNRs, related
to the sampled α and the tissue category, to the high-field image and down-
samples with a factor of k. We use this simulator to generate N low-field patches
for each high-field patch yi and form a new training set TM,N = {(xij , yi)|i =
1, · · · ,M, j = 1, · · · , N}. Henceforth, the new model is trained on the augmented
set TM,N with the following expression:

θ∗ = arg min
θ

1

MN

M∑
i=1

N∑
j=1

‖S†θ(xij)− yi‖
2
2. (3)

We develop Alg. 1 for implementing the probabilistic decimation simulator
for neural images. We transform high-field images Y (v) to synthetic low-field im-
ages denoted by X̂(v) for any voxel coordinate v by adapting the SNR in WM
and GM to the values obtained in our reference low-field dataset. We assume
that SNRs of WM and GM have a 2D Gaussian distribution and the background
noise in the low-field or the high-field images has a 1D Gaussian distribution with
a zero mean and a standard deviation of σX or σY , respectively. We also assume
σX � σY since the random noise in high field is negligible. The simulation pro-
cedure starts with the skull-stripped Y (v) with isotropic voxels of length ez. We
then down-sample along the slice thickness direction (vertical, or z-direction).

A 1D Gaussian filter hσ(z) = 1
σ
√

2π
e−z

2/(2σ2) is applied to the high-field images

along the z-direction, where the σ is linked to a full-width at half maximum
(FWHM): FWHM = 2

√
2 ln 2σ. The FWHM of the Gaussian filter is set to the

slice thickness, or in terms of σ: σ = kez/
√

8 ln 2. Then the distance between
slices is set to be larger than this slice thickness, emulating the gap between
slices. The slices of the original image falling in the gaps have virtually no effect
on the signal in the simulated image, similar to what happens in real acqui-
sitions. The high-field images Y (v) are first segmented into tissue categories
j = WM,GM, others (denoted by M j(v)) using the unified segmentation algo-
rithm in Statistical Parametric Mapping [12]. In this algorithm, the mask M j(v)
corresponds to the probability that each voxel v belongs to the tissue category
j. SNR of the high-field image with respect to the tissue category j is defined
as:

SNRjY =

∑
vM

j(v)Y (v)

σY
∑

vM
j(v)

. (4)
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Algorithm 1 Probabilistic Decimation Simulator for low-field Image

Input: high-field Images Y (v), masks M j(v) for j = WM,GM, others, downsampling
scale k ∈ N, background noise levels σX and σY , low-field SNR distribution N (µ, Σ).

1: Y↓k(v) = Y↓k(ṽ, v′) =
∑
v′′ Y (ṽ, kv′− v′′)hσ(v′′); . Downsample on v′′ component.

2: Y j↓k(v) = M j(v)Y↓k(v); . Apply masks.

3: SNRjY =
∑

v Y
j
↓k(v)/

(
σY
∑

vM
j(v)

)
; . Compute SNRs for high field.

4: (SNRWM
X , SNRGMX ) ∼ N (µ, Σ); . Sample SNRs for low field.

5: lj =

{
SNRjX/SNR

j
Y , j = WM,GM,

1, others;
. Evaluate ratio of image intensity.

6: X̂(v) =
∑
j∈{WM,GM,others} l

jY j↓k(v); . Transfer contrast.

7: X̂ε(v) = X̂(v) + ε(v) where ε(v) ∼ N (0, σ2
X). . Add noise.

Output: Noisy synthetic low-field image X̂σ(v).

This allows us to evaluate ratios of low-field-to-high-field image intensity for both
WM and GM; see Step 5. We then re-scale the high-field images with the ratios
of image intensity according to tissue category, which results in the synthetic
low-field images X̂(v). We finally add Gaussian white noise to X̂(v), with a
standard deviation of σX .

2.3 Deep Learning Framework

The classical 3D isotropic U-Net [14] maps two identical-size cubes serving as
input and output through the encoder-decoder framework. Each level, defined
as a collection of operations in between two shape deformations, for a typical
U-Net consists of several convolutional layers together with a pooling layer. The
activation from each level in the encoder is concatenated to the input features to
the same level in the decoder, enabling the network to integrate both local and
global image features. U-Net uses the “same” zero-padding technique so that
feature sizes keep invariant during convolution.

In this work, we extend the U-Net architecture into mapping input and out-
put patches differing with up-scaling factor k in the slice direction. Considering
the case of k = 4 illustrated in Fig. 2, this anisotropic U-Net first partially
down-samples the first two dimensions until the down-scaling features become
isotropic and thereafter conducts isotropic down- and up-sampling. To achieve
this, we define the following two operations:

Bottleneck Block. To incorporate a super-resolution transformation into
U-Net, we propose a bottleneck block used to connect corresponding levels of the
contracting and expanding paths, as shown in Fig. 2(b). The design is inspired
by bottleneck block in ResNet [15] and FSRCNN [16]. The bottleneck block
BB(b, u) has three hyperparameters: the input filter f , the number of shrinking
layers b and the up-sampling scaling factor u. It shrinks half of the filters on
consecutive 3×3×3 convolutional layers between two endpoint convolutions with
a kernel size of 1×1×1. All convolution layers are activated by Rectified Linear
Unit (ReLU) with Batch Normalization (BN). The skip connection enables the
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(a) Anisotropic U-Net Architecture.
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Fig. 2. (a) The diagram of anisotropic U-Net (example for the up-scaling factor of
k = 4). The operations, (b) Bottleneck Block BB(b, u) with f filters and (c) Residual
Core RC(b) with f filters, are detailed. The round boxes correspond to the different
operations illustrated in the bottom right of (a). The number of output channels,
abbreviated as “Ch”, and the kernel size are denoted on top and bottom of the
boxes. The arrows represent transfer of data with its corresponding shape highlighted.

training of deeper networks [15]. Resolution change is efficiently carried out by
a transpose convolution, or deconvolution, with the same kernel and stride of
(1, 1, u).

Residual Core. To have more convolutional layers on each level, the residual
core that is a revision of residual element in [17] is introduced in Fig. 2(c). This
is a combination of several sequential 3× 3× 3 convolutional layers, followed by
ReLU and BN layers, skip connected with an 1× 1× 1 fully convolutional layer.
Then the output is attained before ReLU and BN again. Utilizing the consecutive
convolutional layers enlarges each receptive field on each level. Moreover, the
appended skip connection is able to avoid the vanishing gradient problem in
neural networks with gradient-based learning methods.

3 Experiments

3.1 Implementation Details

Datasets. High-resolution axial T1-weighted images were obtained from the
publicly available Human Connectome Project (HCP) dataset [2], acquired on a
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3T Siemens Connectome scanner with an isotropic voxel size of 0.7 × 0.7 × 0.7
mm3. To investigate sensitivity of the proposed U-Net, we trained it on two
training sets with two up-scaling factors of k = 4 or 8. Specifically, the slice
thickness/gap is 2.1 mm/0.7 mm for k = 4, and 4.2 mm/1.4 mm for k = 8. As a
reference for low field, T1-weighted images were acquired on a 0.36T MagSense
360 MRI System scanner with a non-isotropic voxel size of 0.9× 0.9× 7.2 mm3

including 6.0 mm slice thickness and 1.2 mm gaps. The distribution of white
matter and grey matter SNRs in the low field was acquired from 28 image data
from children with epilepsy in University College Hospital, Ibadan, whose ages
are within a range from 2 to 15 years.

IQT Pipeline. In the training stage, we randomly selected 30 subjects with
skull-stripping from HCP dataset and employed them to synthesise the low-field
images using Alg. 1 based on a priori variable SNRs. Regarding patch extraction,
we cropped the low-field patches with the step size of 8, 16, and 16/k along x-,
y-, and z-directions, respectively. We also cropped the high-field patches with the
same volume and position as the corresponding low-field patches. The low-field
and high-field patch sizes were 32× 32× (32/k) and 32× 32× 32, respectively.
Then the patches capturing 80% background voxels were excluded from a patch
library.

We examined if overfitting occurred with a validation set and judged the
performance of the trained neural network with an evaluation set. We split all 30
subjects into 12, 3, and 15 for training, validation, and evaluation sets. Moreover,
we investigated the image quality by calculating the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [18]. We employed a two-
tailed Wilcoxon signed-rank test to determine the statistical significance of the
performance difference between two comparing methods.

Neural Networks. We conducted an ablation study on the proposed U-Net,
denoted by ANISO U-Net(b), in the case of b = 2 or 3 for shrinking layers in
the bottleneck block. We evaluated our networks against the 3D cubic B-spline
interpolation and several existing U-Net baselines equivalently switching off the
corresponding blocks, i.e. bottleneck block and residual core, in ANISO U-Net.
One is an isotropic 3D U-Net (ISO U-Net) [14] implemented with 5 levels and 3
convolutional layers per level. The input of ISO U-Net is isotropically interpo-
lated using cubic B-splines. The other one is 3D-SRU-Net [13] that up-samples
each level output on the contraction path before concatenation. It contained 3
levels for the down-sampling scale k = 4 and 4 levels for k = 8. We unified hyper-
parameters of the three U-Nets as follows. Number of filters on the first level
was 16 with the number of filters doubling at each subsequent level. All U-Nets
were implemented in Python using Keras library [19] with Tensorflow backend.
They were calculated on a Nvidia GTX 1080 Ti GPU. Training used ADAM [20]
as the optimizer with a starting learning rate of 10−3 and a decay of 10−6. We
initialized the parameters with Glorot normal initializer [21]. The batchsize was
32 and the loss function is the pixel-wise mean squared error (MSE). All the
experiments started converging after about 30 epochs and we employed early
stopping after 5 epochs of no improvement on the validation set.
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Table 1. The performance of the proposed model on up-scaling factors k = 4 or 8. The
mean and standard deviation of PSNR and the mean SSIM (MSSIM) are calculated
over 15 evaluation subjects. For each case, we show the best performance over an
ensemble of 5 trained models. Bold font denotes the best mean or standard deviation.
The asterisk ∗ denotes p-value< 0.01 compared with the rest methods.

Method
k = 4 k = 8

PSNR (dB) MSSIM PSNR (dB) MSSIM

Cubic B-spline 20.689± 2.540∗ 0.692± 0.0384∗ 18.974± 2.535∗ 0.567± 0.0471∗

ISO U-Net 30.798± 2.573 0.916± 0.0227∗ 27.073± 2.469 0.846± 0.0278
3D-SRU-Net 30.764± 2.638 0.922± 0.0191 27.275± 2.542 0.847± 0.0290

ANISO U-Net(2) 31.045± 2.654∗ 0.923± 0.0197 27.346± 2.517 0.852± 0.0280∗

ANISO U-Net(3) 30.918± 2.639 0.921± 0.0199∗ 27.054± 2.544 0.847± 0.0282

Input Cubic ISO 3D-SRU-Net ANISO ANISO Ground
U-Net U-Net(2) U-Net(3) Truth

C
o
ro

n
a
l

S
a
g
it

ta
l

Fig. 3. Visualization of U-Net reconstructions with the up-scaling factor k = 8.

3.2 Evaluation on Fixed SNR Data Sets

We evaluated the ability of the proposed U-Net in an ideal case where the SNR-
related coefficient α = (SNRWM

X , SNRGMX ) in Eq. (1) is deterministic. We fixed
the SNRWM

X and SNRGMX as 61 and 53, respectively, in the IQT pipeline by
reconstructing images in the evaluation set at Step 4 in Algorithm 1. Table 1
shows that our model, ANISO U-Net(2), achieved the best performance in terms
of the average PSNR and SSIM, and especially, significantly outperformed the
others in terms of PSNR at k = 4 and the mean SSIM (MSSIM) at k = 8. The
reconstruction degraded as the up-scaling factor increased. Figure 3 shows the
U-Net reconstructions on coronal and sagittal planes. Qualitatively we observed
clear recovery of high resolution information and enhancement of contrast. The
reconstructed images from all networks nicely highlighted features visible in the
ground truth images that were obscured in the low quality input. The quantita-
tive results in Table 1 show little difference among the U-Net outputs but they
might not be able to reflect subtle qualitative differences. The zoomed patches
in Fig. 3 highlight differences more clearly and we believe ANISO U-Net(2) ap-
proximates the ground truth most closely and with the least artefacts as shown
in the ANISO U-Net(3) result of Fig. 3. Delicately selecting hyper-parameters
can avoid overfitting, and hence can mitigate the artifacts.
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3.3 Evaluation on Variable SNR Data Sets

We evaluated the performance of several deep learning architectures includ-
ing the proposed anisotropic U-Net with variable-SNR low-field data. SNRWM

X

and SNRGMX are now sampled from a two-dimensional Gaussian distribution
N (µ,Σ) where the coefficients are:

µ = (64.50, 54.14) Σ =

(
78.47, 71.50
71.50, 73.91

)
.

The simulator shown in Alg. 1 randomly generated N low-field input images
with different SNR for the chosen 15 training subjects in the HCP data set.
We trained the deep learning models on the dataset with the augmenting factor
N = 1, 2, 4 and 8. We randomly selected 12.5% patches for training in each
overlap patch library. For each neural network, an ensemble of 5 models were
trained in terms of different augmented dataset.

Table 2 shows the mean and standard deviation of PSNR and MSSIM over
15 test subjects in terms of the augmented datasets and deep learning architec-
tures. As a result, probabilistic decimation model was generally able to produce
more stable reconstruction than the deterministic model if the unseen test data
were also generated from the variable SNR. Both accuracy and robustness corre-
sponding to mean and standard deviation of MSSIM improved in various degree
as the number of generated low-field image samples increased, and in addition,
the performances for the two methods were statistically significant in terms of
N = 8 at k = 8. Regarding PSNR, the performance upgraded after augmen-
tation but the robustness reflected by the standard deviation did not improve
correspondingly. In addition, we observed that PSNR and MSSIM at k = 4 only
slightly improve when the augmenting factor N became larger, which means the
improvement of performance arising from augmentation gradually reached an
upper bound.

3.4 Test on Patient Data

We tested our IQT approach on the data from a 10-year-old epilepsy patient
who has two cortical-subcortical cystic lesions with surrounding edema on low-
field T1-weighted images at the GM-WM junction of the parietal lobes. In this
case, we used IQT with ANISO U-Net(2) trained on the HCP dataset with
the augmenting factor N = 1 and the up-scaling factor of k = 4. Figure 4
shows the axial and coronal results enhanced from the low-field T1-weighted
image of the patient. The IQT approach improved the GM-WM contrast globally,
and significantly enhanced the resolution in coronal and sagittal planes. The
enhanced image strongly highlights the two lesions in this patient which are
very subtle on the input T1-weighted image. In this particular patient, the lesions
were clearly visible on the original T2-weighted image, which validates that IQT
highlights the lesions in the correct locations, as Fig. 4(c) shows. However, in
general not all lesions are clearly visible on any MRI sequence, especially at
low field, and Fig. 4 highlights the potential of our algorithms to reveal subtle
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Table 2. The performance of probabilistic decimation simulation for augmentation
with a factor of N . The mean and standard deviation of PSNR and MSSIM are calcu-
lated over 15 evaluation subjects. We show the best performance over an ensemble of
5 trained models. The “const” at N samples/subject column means that the models
were trained on the fixed SNR data sets as described in Section 3.2. Bold font denotes
the best mean or standard deviation. The asterisk ∗ denotes p-value< 0.01 compared
with the other augmentation factors.

Method
N samples k = 4 k = 8
/subject PSNR (dB) MSSIM PSNR (dB) MSSIM

3D-SR
U-Net

“const” 27.214± 3.030 0.871± 0.0332 24.687± 2.464 0.758± 0.0371
1 27.988± 2.445 0.861± 0.0286 23.777± 2.693 0.757± 0.0401
2 29.453± 2.585 0.901± 0.0240∗ 25.513± 2.711∗ 0.799± 0.0366∗

4 30.257± 2.647 0.918± 0.0201 26.025± 2.587 0.816± 0.0339∗

8 29.958± 2.541 0.911± 0.0203 26.391± 2.621 0.832± 0.0316∗

ANISO
U-Net(2)

“const” 27.311± 3.522 0.870± 0.0338 24.754± 2.367 0.769± 0.0341
1 28.664± 2.552 0.890± 0.0240 23.418± 2.322 0.757± 0.0345∗

2 29.216± 2.308 0.893± 0.0248 25.862± 2.617∗ 0.803± 0.0343
4 30.248± 2.565 0.916± 0.0195 26.231± 2.613 0.807± 0.0381
8 30.344± 2.421 0.914± 0.0188 27.053± 2.398 0.843± 0.0330∗

lesions enhancing diagnosis and potentially enabling effective treatment via clear
localisation.

4 Discussion and Conclusion

In this work, we present an IQT approach to enhance low-field MRIs aiming
to match resolution as well as contrast of high-field images. We introduce the
anisotropic U-Net characterised by a deeper hierarchy and super resolving con-
nections between input and output layers. We propose the probabilistic decima-
tion simulator by synthesising multiple low-field images with respect to distinct
grey-white matter SNR sampled from an a priori distribution. We demonstrate
that the proposed method improves the robustness on the unseen test data of
variable SNR at the evaluation stage. We validate our proposed U-Net on the
evaluation dataset and the results potentially show generalisability to the actual
clinical low-field images.

This work offers several avenues for future improvement and application.
Here the metrics (MSSIM and PSNR) used for quantitative assessment reflect
the performance on only synthetic images. This demonstrates efficacy, but eval-
uation on a sizeable data set of clinical images and clinical significance from
radiologists are essential for further translation. Therefore, additional qualita-
tive evaluation by radiologist ratings and, ultimately, demonstration of improved
decision making is essential to confirm impact of the approach. Nevertheless, we
believe our methods have great potential to identify subtle lesions in epilepsy and
other neurological conditions and thus to improve patient outcomes in LMICs
in the future.
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Fig. 4. The IQT prediction on the low-field epileptic patient data for (a-c) axial plane
and (d-f) coronal plane. (a) and (d): Low-field T1-weighted input with cubic B-spline
interpolation; (b) and (e): IQT-enhanced T1-weighted output using ANISO U-Net(2);
(c) and (f): low-field T2-weighted image as a reference of ground truth. Two sub-
centimeter parenchymal cystic lesions at the GM-WM junction of the parietal lobes
are pointed out by the red and the yellow arrows. They are barely visible in (a) and (d)
but greatly enhanced in (b) and (e). (c) and (f), not involved in the IQT experiment,
verified their location in an independent acquisition.
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