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Abstract. In this paper, we introduce multi-task learning (MTL) to
data harmonization (DH); where we aim to harmonize images across dif-
ferent acquisition platforms and sites. This allows us to integrate informa-
tion from multiple acquisitions and improve the predictive performance
and learning efficiency of the harmonization model. Specifically, we in-
troduce the Multi Stage Prediction (MSP) Network, a MTL framework
that incorporates neural networks of potentially disparate architectures,
trained for different individual acquisition platforms, into a larger archi-
tecture that is refined in unison. The MSP utilizes high-level features
of single networks for individual tasks, as inputs of additional neural
networks to inform the final prediction, therefore exploiting redundancy
across tasks to make the most of limited training data. We validate our
methods on a dMRI harmonization challenge dataset, where we predict
three modern platform types, from one obtained from an old scanner.
We show how MTL architectures, such as the MSP, produce around
20% improvement of patch-based mean-squared error over current state-
of-the-art methods and that our MSP outperforms off-the-shelf MTL
networks. Our code is available [1].

Keywords: Data Harmonization, Deep Learning, Diffusion Magnetic
Resonance Imaging, Multi-Task Learning, Transfer Learning.

1 Introduction

Lack of standardization amongst imaging acquisitions is a long-standing prob-
lem, that confounds large scale multi-centre imaging studies. DH aims to remove
differences arising from specifics of scanner, centre or acquisition protocol and
increase the power of group studies. The problem aligns with the wider issue of
estimating, from an image obtained from a particular subject and scanner, the
image that would have been obtained from the same subject on another scan-
ner. Various recent studies, such as Image Quality Transfer [2,3,4] and Modality
Transfer [5], present solutions to this problem that may be repurposed for DH.

Current approaches used in practice, such as [6,7], generally register all im-
ages to a common template and align the mean and variances of image in-
tensities from each platform (i.e. centre, scanner, and/or acquisition protocol),
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either voxelwise, regionally, or of whole images. Recently, deep learning has
shown much promise, e.g. in the Multi-Shell Data Harmonization Challenge
(MUSHAC) [8,9,10], outperforming statistical approaches. Methods to date in-
clude the Convolutional Neural Network with Rotationally Invariant Spherical
Harmonics (CNN-RISH) [11] – a 5-layer CNN that harmonizes dMRI from 3T
to 7T; the Deeper Image Quality Transfer Network (DIQT) [4] – an extension
of the FCSNet [8], which holds state-of-the-art results in dMRI super-resolution
and the Spherical Harmonic Residual Network (SHResNet) [12] – A 7-layer CNN
that processes different spherical harmonic (SH) coefficients separately. A com-
mon feature of all these methods is that they use a separate single CNN to
estimate the target images from those of each individual platforms.

Multi-scanner or multi-centre studies often acquire traveling heads (TH) – a
small number of subjects specifically scanned at each site, to support DH learn-
ing mappings from scanner to scanner. These learned mappings then transform
other subjects to a common representation. However, acquiring TH data is ex-
pensive and typically the number of subjects is small (rarely more than 10).
Therefore, single-network deep learning approaches easily overfit [4,12] and fail
to exploit the synergy between multiple, often strongly related, prediction tasks.

MTL potentially offers a powerful solution to the paucity of training data
in DH, by allowing the model to integrate information from acquisitions from
multiple platforms. In contrast to single-network approaches, it exploits com-
monalities and differences across multiple tasks (in our case, predicting different
acquisitions) to improve the predictive power of neural networks. Furthermore
by incorporating predictions and loss functions into a single network, MTL ap-
proaches acquire additional regularisation [13]. There are a variety of existing
approaches that cascade over multiple predictions of varying resolutions, that
might be adapted to a MTL approach in DH. Examples include the Convolu-
tional Pose Machine Networks (CPM) [14] comprising a sequential architecture of
CNNs, to provide increasing refined estimates and the Holistically-Nested Edge
Detection Network (HNED) [15] – a single-stream deep network with multiple
side outputs to perform multi-scale and multi-level feature learning. However,
these approaches process tasks sequentially, whilst the distinct tasks in DH dif-
fer in terms of resolution, contrast and noise patterns, with no simple notion of
ordering. Furthermore it is unclear as to what might be the optimal subnetworks
for such a larger network.

In this paper, we introduce a new MSP architecture designed to exploit, for
the first time, MTL in DH. The MSP draws on sub-network structures from
[14,15], but cascades across various estimation tasks, rather than assuming they
are sequentially structured. This avoids both duplicating features and allows us
to use redundancy across tasks to make the most of limited training data. Fur-
thermore the MSP allows us to incorporate pre-trained state-of-the art networks
into a MTL framework, letting us explicitly use high-level features of multiple
predictions, as network inputs to inform the final prediction.

We utilize the recent MUSHAC [8] data to evaluate various strategies. The
specific task is to predict acquisitions of both low and high quality from differ-
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Fig. 1. We illustrate creating the MSP from three single networks, with input, target
platforms 0, 1 and other platforms 2, 3. i) Three trained neural networks Ni, i = 1, 2, 3
separately predict patches ŷi i = 1, 2, 3, from input patch x. ii) The MSP. We take
N2,N3 and select their last features zi i = 2, 3 as inputs to additional respective
neural networks N21,N31. The first-stage predictions are ŷ1

i i = 1, 2, 3, the second-
stage prediction, a linear combination of ŷ1

1 ,N21(z2),N31(z3), is ŷ2
1 .

ent scanners, from data from the same subjects acquired on an ageing scanner.
We compare performance of the state of the art, i.e. various single network ap-
proaches, with MTL frameworks, including the MSP, where the best performing
single networks inform construction of a particular MSP architecture. The MSP
outperforms both single networks and simple off-the-shelf MTL approaches. We
expect this initial demonstration to motivate wider development and usage of
MTL strategies for DH, therefore we release our implementation in [1].

2 Methods

In this section we outline the general DH problem with THs and setting from
MUSHAC [8] with which we validate our methods. Then we construct the MSP.

In the typical DH setting, THs provide image data sets Iij i = 0, ..., P − 1 j =
1, ..., N for each of N subjects imaged on each of P platforms (a scanner and
imaging protocol combination). The challenge is to construct mappings MiT i =
0, ..., P − 1 from images acquired on platform i to the corresponding image ac-
quired on some target platform T ∈ {0, ..., P − 1}.

MUSHAC [8,9,10] tests the ability to predict multiple high quality targets
(modern platforms) from a single low-quality input (an old out-of-date platform)
thus concentrating on the most challenging aspect of DH. With the same notation



4 Stefano B. Blumberg et al.

as before, we predict images Iij i = 1, ..., P − 1 j = 1, ..., N from I0j j = 1, .., N .
When predicting acquisitions from platform T ∈ {1, ..., P −1}, current state-

of-the-art deep learning approaches extract patch pairs {(x(k), yT (k)), ...} from
respective I0j , ITj j = 1, ..., N . These approaches train a neural network NT on
these patches, where for input patch x we denote the neural network’s estimate
(also denoted as prediction) of yT as ŷT i.e. ŷT = NT (x) and the loss is calcu-
lated as L(ŷT , yT ). This process is repeated for different T . In this paper we use
CNN-RISH [11], DIQT [4], SHResNet [12] to represent this class of technique.

In figure-1 we contrast the MSP architecture that we propose, with the single
network approach. The MSP integrates information from multiple platforms and
utilizes high-level features from individual networks, to inform the final predic-
tion with additional neural networks. In training we use the set of corresponding
patches {(x(k), y1(k), ..., yT (k), ...), ...} from all images. We first take the pre-
trained networks Ni i = 1, ..., P−1 as the state-of-the-art single-networks, which
may have different architectures, that have already been optimized. We denote
for input patch x, the predictions of these networks as the first-stage prediction
of the MSP: ŷ1i = Ni(x) i = 1, ...T . For networks Ni i 6= T , we denote its last
feature map as zi. We then create the new networks NiT i 6= T , each taking input
zi, where NiT informs the final prediction of platform T with information from
platform i 6= T . The second-stage prediction of the MSP, is a linear combination
of network outputs of NiT (zi) i 6= T , with the fist-stage prediction ŷ1T :

ŷ2T = (1− α)ŷ1T +
α

P − 1
(
∑
i6=T

NiT (zi) + ŷ1T ) α ∈ [0, 1]. (1)

We train the whole MSP in unison, using supervised loss functions calculated at
both stage predictions: L(ŷ1i , yi), L(ŷ2T , yT ) i = 1, ..., P − 1, which are backprop-
agated through the network. For α ∈ [0, 1], we manually increase α from 0 to 1
during training, to combine pre-trained NT with the untrained NiT as in [16].

We provide an example of the MSP in figure-1 for P = 4, T = 1 and code [1].

3 Experiments and Results

In this section we present an overview of our MUSHAC dMRI hamonization
dataset [8]. We describe how to process the raw data to produce patches for our
supervised neural network approach. We then illustrate how MTL approaches,
such as the MSP, produce improved results over state-of-the-art methods.

Harmonization Data Data are obtained from the MUSHAC [8]. 10 healthy
volunteers were scanned on three different scanners, an ageing 3T General Elec-
tric Excite-HDx scanner (max. gradient 40 mT/m), a modern but standard 3T
Siemens Prisma scanner (max. gradient 80 mT/m) and a state-of-the-art bespoke
3T Siemens Connectom scanner (max. gradient 300 mT/m). dMRI images were
acquired for b = 1200 s/mm2 with two different manufacturer quality protocols:
a standard (st) protocol – with voxel side 2.4 mm, 30 directions per b-value, TE
= 89 ms from all scanners; a state-of-the-art (sa) protocol on the Connectom –
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Fig. 2. Example of the normalized and direction-averaged dMRI image obtained from
the same subject’s brain using different acquisitions (st and sa) and different MRI
scanners (GE, Prisma, Connectom).

with voxel size 1.2 mm, 60 directions per b-value, TE = 68 ms. Note we excluded
the sa protocol of the Prisma scanner, due to severe mis-alignments. For sa pro-
tocol, multiband-acquisition and stronger gradients shortened TE and improved
both spatial and angular resolution per unit time. Additional b=0 s/mm2 im-
ages were acquired with TE and/or TR matching between protocols, as well as
structural MPRAGEs for each scanner. The data were corrected for EPI and
eddy-current distortions, subject motion and gradient non-linearity, as well as
co-registered together as in [8]. In addition, brain masks excluding the skull and
background were provided for each subject and each acquisition. The dataset
size is representative of typical TH data-sets, where it is difficult to transport a
large number of subjects from different centres and obtain multiple scans. See
figure-2 for a visualisation.

Processing and Training Raw data were pre-processed to extract signal fea-
tures by SH deconvolution – variants of this technique are used as input-output
common to the challenge and our comparison networks [4,11,12]. We employed
[17,18] where the 28 coefficients of the 6th order real-and-symmetric SH decon-
volution were estimated from the normalized raw signal considered as separate
channels of our data. We first normalized the data, on each acquisition, per
channel, to be mean 0 and standard deviation 1.

Neural-network data-harmonisation transformations work patch-by-patch on
an input image. Each voxel within the brain mask of the input acquisition de-
fines a patch with that voxel at the centre. The corresponding target patch comes
from the corresponding location in the target image. For this paper we utilised
input patch size as 113, with target patch size 113, 193, depending on the target
resolution. We then separated the patches into 90%, 10% training, test set.

Our implementation used PyTorch with Python, with a minibatch size of 12,
ADAM optimizer, learning rate starting at 1E − 4 and decaying by

√
2 per 15

or 25 epochs, for a minimum of 50 total epochs [1].
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Model Network Type prisma st connectom st connectom sa

DIQT [4] Single Network 76 (±12) 59 (±14) 463 (± 123)
CNN-RISH [11] Single Network 78 (±11) 63 (±7) 532 (± 144)
SHResNet [12] Single Network 70 (±11) 54 (±7) 524 (± 112)

CPM [14] MTL 67 (±12) 48 (±16) 417 (±102)
HNED [15] MTL 71 (±12) 52 (±14) 406 (±98)
MSP (Ours) MTL 59 (±10) 43 (±9) 374 (±112)

Table 1. Mean (std), of 278 patch MSEs. We compare state-of-the-art single-network
approaches, with MTL approaches, for three target platforms.

Comparison We evaluate our approach via the tasks in MUSHAC [8]: to pre-
dict images from more modern platforms prisma st, connectom st, connectom sa,
from an older platform ge st (see figure-2). Our evaluation was performed on a
local scale, as in [8], we calculate the mean-squared-error (MSE) on the SH space.
This metric is not based on the raw dMRI and encompasses all key aspects of
the diffusion signal (anistropy, mean diffusivity, principle orientation).

We select three baselines, representing state-of-the-art approaches [9,10], that
predict each acquisition using separate neural networks: CNN-RISH [11], DIQT
[4], SHResNet [12]. We also consider simple MTL sub-networks from CPM [14],
HNED [15], illustrated in the supplementary material, which were formulated
for different tasks and inspired the MSP. The super-resolution networks replaced
a standard 3D convolution with a deconvolution / strided convolution layer, the
connection networks are a stack of two 3D convolutions. We then constructed
the MSP by combining the best single-network approaches (bold in table-1).

Table-1 shows that MTL in general improves with respect to the single-
network approaches, for all three target platforms. We use the Wilcoxon signed-
rank test, a non-parametric statistical test, confirming that for all predicted
platforms the differences in error scores are statistically significant, as p values
obtained are all less than 10−5, after Bonferroni correction.

Figure-3 shows qualitative results revealing differences in results from DIQT
and MSP for connectom sa, on a subject excluded from the training set. Im-
provements from MSP over DIQT are subtle but visible on both the SH and
direction-encoded colour maps, e.g. MSP reduces errors directly underneath the
left ventricle. Quantitatively in that figure, MSP improves the global SH MSE
by 5% and the global direction-encoded colour MSE by 11%.

4 Conclusion and Future Work

In this paper we demonstrated how MTL approaches such as the MSP, increase
the predictive power of deep learning in DH and improve over state-of-the-art
single network approaches.

There are many potential directions of future work. Here we test just one
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Fig. 3. A qualitative comparison of the DIQT – a single-network prediction, with our
MSP network, compared to the Ground Truth (GT). a) Comparison with the GT. The
maps show the average of the first 6 SH coefficients. Quantitative maps of the MSE are
also displayed in the second row. b) Comparison with the reference GT. The maps show
the colour-coded fractional anisotropy (FA) from diffusion tensor imaging computed
using FSL [19]. Quantitative maps of the MSE are also displayed in the second row.
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MSP architecture, but many variations of deeper structures with more sophisti-
cated connections between tasks are possible. For example, the MSP chooses zi
to be the the deepest feature of NiT , in future work we could experiment with
connecting different layers.

One key problem in evaluating DH performance is residual misalignment of
input and output images. This can mask strong performance when using sim-
ple global comparison metrics. It may be useful to devise alternative evaluation
metrics that are robust to misalignment, or by moving away from direct image
evaluation and analyzing downstream processes.

In this paper, we demonstrated the MSP via a diffusion MRI data set. How-
ever the same architecture extends naturally to harmonizing data between mul-
tiple different modalities, within or beyond MRI.
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Supplementary Material

Fig. 4. An illustration of two MTL approaches that inspired the MSP, with input,
target platform 0,1 and other platforms 2,3. The input patch is x, the prediction patch
of platform j is ŷj . i) Denoted as CPM is from [14] ii) Denoted as HNED is from [15].


	Multi-Stage Prediction Networks for Data Harmonization

