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Abstract
It is widely known that deep-water waves aremodulationally unstable and that this can bemodelled by a nonlinear Schrödinger
equation. In this paper, we extend the previous studies of the effect of wind forcing on this instability to water waves in
finite depth and in two horizontal space dimensions. The principal finding is that the instability is enhanced and becomes
super-exponential and that the domain of instability in the modulation wavenumber space is enlarged. Since the outcome of
modulation instability is expected to be the generation of rogue waves, represented within the framework of the nonlinear
Schrödinger equation as a Peregrine breather, we also examine the effect of wind forcing on a Peregrine breather. We find
that the breather amplitude will grow at twice the rate of a linear instability.

1 Introduction

It is now widely known that water waves in deep water
are unstable to long-wave perturbations leading to modu-
lation instability, which can lead to the formation of rogue
waves. Often, this process is modelled by the nonlinear
Schrödinger equation, and then, rogue waves may repre-
sented by Peregrine breathers, see, for instance, Kharif et al.
(2009), Osborne (2010), Grimshaw and Tovbis (2013). In
one horizontal space dimension, water wave packets are rep-
resented by

ζ = εA(X , T ) exp (iθ) + c.c. + · · · , (1)

where θ = kx − ω(k)t, X = ε(x − cgt), T = ε2t . (2)

ω2(k) = g

h
qσ, cg = ωk = ω

2k

{
1 + q

σ
(1 − σ 2)

}
,

q = kh, σ = tanh q. (3)

Here, ζ(x, t) is the surface elevation, and ε � 1 is a small
parameter measuring the wave amplitude. An asymptotic
expansion in which the linear dispersive effects are scaled to
balance the leading order nonlinear effects leads to the non-
linear Schrödinger equation, see Hasimoto and Ono (1972):

i AT + δAXX + μ|A|2A = 0, δ = cgk
2

. (4)
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The coefficient μ of the nonlinear term is given by

μ = −k2ω

4σ 4 (9σ 4 − 10σ 2 + 9)

+ ω3

2σ 3(gh − c2g)
(2σ(3 − σ 2)

+3q(1 − σ 2)2). (5)

Note that thefirst term in (5) is always negative and the second
term in (5) is always positive. In deep water (q → ∞), the
second term vanishes, and the coefficient μ → −2ωk2 < 0.
In general, μ < 0 (> 0) according as q > qc(q < qc),
where qc = 1.363, and with equality between the two terms
occurring at q = qc. There is modulation instability when
μδ > 0, that is, since here δ < 0 when μ < 0 and so q > qc.
The leading order omitted terms in (1) are the O(ε2) second
harmonic and mean flow terms.

Our concern in this paper is with the effect of wind
forcing on modulation instability. Then, the amplitude A
satisfies a forced nonlinear Schrödinger equation, see, for
instance, Leblanc (2007), Touboul et al. (2008), Montalvo
et al. (2013), Brunetti et al. (2014), Slunyaev et al. (2015),
Grimshaw (2018, 2019):

i AT + δAXX + μ|A|2A = i�A, (6)

Wind forcing is represented by the addition to (4) of a lin-
ear growth rate term. The coefficient � depends on the wind
shear profile inter alia, and various expressions can be found
in the literature, the most well known being that originally
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derived byMiles (1957) and subsequently adapted andmodi-
fied in various ways, see, for instance,Miles (1993),Morland
and Saffman (1993), Janssen (2004), Stiassnie et al. (2007),
Sajjadi et al. (2014), Zakharov et al. (2017), Grimshaw
(2018). Our concern here is not with the precise form of
�, but the effect of this term on modulation instability. This
has been examined by Leblanc (2007), Touboul et al. (2008),
Montalvo et al. (2013), Brunetti et al. (2014), Slunyaev et al.
(2015), and Grimshaw (2018) in the one space-dimension
setting for deep-water waves, and recently by Grimshaw
(2019) for deep-water waves in two-space dimensions.

In this paper that is extended to water waves in finite depth
and in two-space dimensions. InSect. 2,wepresent the forced
Benney–Roskes system for the description of nonlinearwater
wave packets forced by wind in two horizontal space dimen-
sions. In Sect. 3.1, we analyse the modulation instability,
and in Sect. 3.2, we examine the effect of wind forcing on a
Peregrine breather. We conclude in Sect. 4.

2 Forced Benney–Roskes equation

When the effects of modulation in the transverse y-direction
are taken into account, the wave amplitude is given by
A(X ,Y , T ), where Y = εy. The forced nonlinear Schrödi-
nger equation (6) is then replaced by a forcedBenney–Roskes
system:

i AT + δAXX + δ1AYY + μ|A|2A + QA = i�A, (7)

αQXX + QYY + β(|A|2)YY = 0, (8)

where δ1 = cg
2k

, α = 1 − c2g
gh

. (9)

Here, Q is an induced mean flow term. The coefficients
μ, δ,� are those defined in (6) and the coefficient β is given
by

(gh − c2g)β = −2ω3

σ 2

(
1 + cg

2c
(1 − σ 2)

)2
. (10)

In the deep-water limit q → ∞. β → 0. Q → 0 and the
system (7, 8) reduces to the forced two-dimensional non-
linear Schrödimger equation studied by Grimshaw (2019).
In the absence of forcing, this system (7, 8) was derived
by Benney and Roskes (1969), see also Davey and Stewart-
son (1974), Djordjevic and Redekopp (1977), and the review
by Grimshaw (2007). Here, we have added a forcing term by
analogy with the forced nonlinear Schrödimger equation (6).
The system (7, 8) is not integrable in general, but can be
shown to reduce to an integrable Davey–Stewartson system
in the shallow-water limit q → 0 and in the absence of the
forcing term. The coefficients δ < 0, δ1 > 0, β < 0 and
α > 0, so that the equation for A is “hyperbolic”, but that for

Q is “elliptic”. In addition, when we recall that μ < 0(> 0)
according as q > qc (< qc), qc = 1.363 we see that the
equation for A is focussing for “x” and defocussing for “y”
when q > qc, but is defocussing for “x” and focussing for
“y” when q < qc.

The nonlinear and dispersive terms in (6) are not sufficient
to control the exponential growth of a localised wave packet,
since

d

dT

∫ ∞

−∞

∫ ∞

−∞
|A|2dXdY = 2�

∫ ∞

−∞

∫ ∞

−∞
|A|2dXdY .

(11)

Furthermore, the modulation instability, present when μδ >

0 (as for deep-water waves) in the absence of wind, is
enhanced in the presence of wind, see Leblanc (2007),
Touboul et al. (2008), Montalvo et al. (2013), Brunetti
et al. (2014), Slunyaev et al. (2015), Grimshaw (2018)
for the one-dimensional case and‘Grimshaw (2019) for the
two-dimensional case in deep water. Here, we extend that
analysis to the two-dimensional case in finite depth using the
Benney–Roskes system (7, 8). By analogy with the analysis
of Grimshaw (2019), we make the transformations:

A = B exp (�T ), Q = R exp (2�T ),

s = exp (2�T ) − 1

2�
, (12)

Then, the system (7, 8) becomes

i Bs + δFBXX + δ1FBYY + μ|B|2B + RB = 0, (13)

αRXX + RYY + β(|B|2)YY = 0, (14)

where F = 1

1 + 2�s
= exp (−2�T ). (15)

In this transformed system, the energy expression (11)
becomes a conservation law:

d

dT

∫ ∞

−∞

∫ ∞

−∞
|B|2dXdY = 0. (16)

3 Modulation instability

3.1 Linearised analysis

The transformed system (13, 14) has the “plane wave” solu-
tion:

B = B0 exp (iμ|B0|2s), R = 0. (17)

In the absence of wind forcing, this is just the usual Stokes
wave. Modulation instability is then found by putting B =
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B0(1+b) exp (iμ|B0|2s) into (13, 14) and linearizing in b, R,
so that

ibs + λFbXX + σ FbYY + μ|B0|2(b + b∗) + R = 0.

(18)

αRXX + RYY + β|B0|2(b + b∗)YY = 0. (19)

Then,weputb = (p(s)+iq(s)) cos (K X + LY ),where p, q
are real-valued, and likewise R = r(s) cos (K X + LY ), so
that

ps − MFq = 0,

qs + MFp − 2μ|B0|2 p + r = 0.

Nr + 2βL2|B0|2 p = 0.

M = δK 2 + δ1L
2, N = αK 2 + L2.

(20)

Eliminating q, r yields

{ ps
F

}
s
+ (MF − 2ν|B0|2)Mp = 0, ν = μ + βL2

N
.

(21)

When there is no wind forcing, so that � = 0, then F =
1 and this yields the well-known criterion for modulation
instability, namely, that M(M − 2ν|B0|2) < 0. If further
L = 0, ν = μ and this yields modulation instability for
μδ > 0. Since here, δ < 0, there is instability only forμ < 0,
that is for deep-waterwavesq > qc,with baseband instability
in the range 0 < K 2 < 2μ|B0|2/δ. Then, when L �= 0, the
instability band in the K−L plane separates from K = 0 and
extends to infinity, see Benney and Roskes (1969). Instability
now occurs for all q, but as q decreases, the instability band
narrows, and is essentially unrealisable for q < 0.5.

When wind forcing is present � > 0, and then, F
decreases from 1 to 0, as s increases from 0 to ∞ when
also T increases from 0 to ∞. Although now, the gen-
eral solution of (21) can be obtained in terms of modified
Bessel functions of imaginary order, see Leblanc (2007),
qualitatively, it is clear that exponential growth and hence
instability will arise when MF − 2ν|B0|2)M < 0, In par-
ticular, as T → ∞. s → ∞, F → 0 and we expect
instability for just νM > 0, independent of |B0|. That is,
the dispersive term in the usual modulation instability cri-
terion has been suppressed, and the outcome is that found
by Hayes (1973) using Whitham modulation theory for non-
linear waves. In this limit, s → ∞, p ∼ F1/2 exp (F−1/2),
 = |2Mν|1/2/δ. Even taking account of the cancellation of
the factor τ−1/2 with the pre-factor exp (�T ) in (12), we see
that the modulation growth rate is now super-exponential. As
noted by Grimshaw (2019), in the deep-water limit q → ∞,
when β → 0, ν < 0, the criterion νM > 0 for instabil-
ity becomes the quarter space K 2 > 2L2. In general, in

finite depth, the instability zones are either δK 2 + δ1L2 < 0
combined with μαK 2 + (β + μ)L2 < 0, or the converse,
δK 2 + δ1L2 > 0 combined with μαK 2 + (β + μ)L2 > 0.
In deep water q > qc = 1.363, μ < 0 and noting that
β > 0 it follows that then, ν < 0 for all K .L , and then,
the instability region is the quarter plane K 2 > δ1L2/|δ|.
However, in shallow water, q < qc = 1.363, μ > 0 and
it can be shown that μ + β < 0, and therefore, the insta-
bility region has two boundaries δK 2 + δ1L2 = 0 and
μαK 2 + (β + μ)L2 = 0, with instability in the segment
between these boundaries, see Benney and Roskes (1969),
Hayes (1973). The two boundaries coincide when q = 0.38,
Except for this exceptional value, there is instability for all
q, but in an increasingly narrow segment as q decreases.

3.2 Nonlinear development

In general, the development of a modulation instability into
the nonlinear regime requires numerical simulations of the
full Benney–Roskes system (13, 14) which is not integrable.
We shall not attempt numerical simulation here, but some
comments and preliminary analysis are presented. In one
horizontal space dimension, it is known that modulation
instability in the absence of wind forcing can lead to the gen-
eration of a Peregrine breather, see, for instance, Kharif et al.
(2009), Osborne (2010), Grimshaw and Tovbis (2013). Fur-
thermore, it is conjectured that again, in one horizontal space
dimension, the occurrence of rogue waves, represented by
breathers, is linked to baseband instability, that is, the domain
in modulation wavenumber space, where instability occurs
should include the origin K = 0, see, for instance,Chowet al.
(2019). That is satisfied here in deep water when q > qc, but
fails in shallow water q < qc, suggesting that then the occur-
rence of rogue waves is inhibited. It is not known whether
a similar outcome is to be expected when the instability is
triggered with a wavenumber (K , L), L �= 0, and there is
wind forcing. This is especially the case in one horizontal
space dimension, as then there is no modulation instability
at all, but even although instability persists in two horizontal
space dimensions, the instability domain is a segment in the
K–L plane, and contracts to zero at the origin.

Although in general the further exploration of this seems
to require numerical simulations, this will not be attempted
here. Instead we exploit a reduction to a one-dimensional
nonlinear Schrödinger equation, achieved by seeking solu-
tions which depend only on s, ξ = K X + LY , where the
wavenumbers K , L are chosen to correspond to amodulation
instability. The outcome is a nonlinear Schrödinger equation:

i Bs + MFBξξ + ν|B|2B = 0, (22)

where F(s) is defined by (15), and M, ν are defined
by (20, 21). Indeed, the modulation instability analysis in
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Sect. 3.1 could be obtained directly from (22). Then, the
unforcedversionof (22)when F = 1has aPeregrine breather
solution, suggesting that an instability confined to the ξ -
direction can lead to the formation of a Peregrine breather.
If we assume that � � 1, so that F(s) is slowly varying,
then locally, the Peregrine breather solution of (22) is given
by, Peregrine (1983)

BPB = α

{
−1 + 4(1 + 2iνS)

1 + 2α2νξ2(MF)−1 + 4ν2S2

}
exp (iνS),

S =
∫ s

0
α2ds. (23)

Here, we have assumed that Mν > 0 and α(s) are an ampli-
tude parameter which we allow to vary slowly with s. When
F = 1,α is a constant, and this is the usual Peregrine breather.
Here, it evolves slowly, as s increases and F decreases.
The determination of how α(s) varies requires sophisticated
asymptotic analysis. Instead, an indication of the likely out-
come is to make judicious use of the energy conservation
law (16), which indicates from simple scaling arguments that
α2(F1/2/α) is a constant. Thus, we find that αF1/2 = α0,
where α0 is the constant amplitude at s = 0, F = 1. Note
that then S = α2

0(s + �s2) and that the spatial width in
the ξ -direction does not change. Hence, as s increases, the
breather amplitude increases as F−1/2 or as exp (�T ). After
taking account of the transformation form A to B in (12),
this is super-exponential growth, and is exactly twice that for
a linearised instability. A similar outcome was found for the
envelope soliton solution of (22) by Grimshaw (2019).

4 Discussion

The main outcomes of this analysis are that wind forc-
ing enhances modulation instability, which becomes super-
exponential, and that the domain of instability in the modu-
lation wavenumber space is enlarged. The super-exponential
behaviour has been previously noted for deep-water waves
in one space dimension, see Leblanc (2007), Touboul et al.
(2008), Montalvo et al. (2013), Brunetti et al. (2014), Slun-
yaev et al. (2015), Grimshaw (2018), and the extension
here is to be expected. The enlargement of the domain in
the modulation wavenumber space was noted by Grimshaw
(2019) for deep-water waves, and again, the extension here
to finite depth is to be expected. In addition, significantly, in
two horizontal space dimensions, the domain of modulation
instability occurs for all q = kh and there is no cutoff at
q = qc = 1.363, although for q < qc, the domain of insta-
bility shrinks and becomes very narrow for q < 0.5 making
the occurrence of modulation instability unlikely.

The outcome of modulation instability is expected to be
the generation of rogue waves, which can be represented

within the framework of the nonlinear Schrd̈inger equation
by Peregrine breathers. Hence, we examined here the effect
of wind forcing on a Peregrine breather and find that the
amplitude increases exponentially at twice the rate of a linear
instability. However, we caution that this result is obtained
in a one-dimensional horizontal space setting and further
studies are needed to examine this in a two-dimensional
horizontal space setting. This would seem to require numer-
ical simulations of the forced Benney–Roskes system (7, 8),
or (13, 14), or indeed the Zakharov equations, or the full
Euler equations, all well beyond the scope of this paper.
However, we note that the prediction of the present the-
ory that the regime for modulation instability is extended
in the two-dimensional K–L plane is consistent with the
two-dimensional nonlinear wave interactions which form the
basis of the Zakharov equations, and are seen in labora-
tory and field experiments, see the recent reviews by Shemer
(2018), Zakharov (2018), for instance.
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