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ABSTRACT
Objectives: Gini coefficients have been used to describe the distribution of
Chlamydia trachomatis (CT) infections among individuals with different levels of
sexual activity. The objectives of this study were to investigate Gini coefficients for
different sexually transmitted infections (STIs), and to determine how STI control
interventions might affect the Gini coefficient over time.
Methods:We used population-based data for sexually experienced women from two
British National Surveys of Sexual Attitudes and Lifestyles (Natsal-2: 1999–2001;
Natsal-3: 2010–2012) to calculate Gini coefficients for CT, Mycoplasma genitalium
(MG), and human papillomavirus (HPV) types 6, 11, 16 and 18. We applied
bootstrap methods to assess uncertainty and to compare Gini coefficients for
different STIs. We then used a mathematical model of STI transmission to study how
control interventions affect Gini coefficients.
Results: Gini coefficients for CT and MG were 0.33 (95% CI [0.18–0.49]) and 0.16
(95% CI [0.02–0.36]), respectively. The relatively small coefficient for MG suggests a
longer infectious duration compared with CT. The coefficients for HPV types 6,
11, 16 and 18 ranged from 0.15 to 0.38. During the decade between Natsal-2 and
Natsal-3, the Gini coefficient for CT did not change. The transmission model shows
that higher STI treatment rates are expected to reduce prevalence and increase the
Gini coefficient of STIs. In contrast, increased condom use reduces STI prevalence
but does not affect the Gini coefficient.
Conclusions: Gini coefficients for STIs can help us to understand the distribution of
STIs in the population, according to level of sexual activity, and could be used to
inform STI prevention and treatment strategies.

Subjects Mathematical Biology, Epidemiology, Infectious Diseases, Public Health
Keywords Chlamydia trachomatis, Mycoplasma genitalium, HPV, Sexual behavior, Mathematical
model, Transmission model, Gini coefficient, Lorenz curve

INTRODUCTION
Understanding how sexually transmitted infections (STIs) are distributed among
individuals is important both from a biological and from a public health perspective.
Differences in STI prevalence within a population, between groups with varying levels of
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sexual activity, can provide information about biological and epidemiological
characteristics of the infection. For example, an STI with a long infectious duration, such as
human papillomavirus (HPV), will tend to be spread more evenly across a population
than an STI with a short infectious duration, such as Neisseria gonorrhoeae (NG). This
observation can be explained by the fact that STIs with short infectious durations require a
higher rate of sexual partner change for sustained spread in the population. NG is thus
more concentrated in a small subgroup of individuals with high sexual activity. Such
ideas were initiated in the late 1970s and led to the concept of the “core group” (Hethcote
Herbert & Yorke, 1984). In 1990, Brunham & Plummer (1990) inferred the size of core
groups for various STIs from the biological parameters that describe transmissibility and
infectious duration, and discussed the implications for selecting adequate STI control
strategies.

The Gini coefficient can be used to quantify the degree of concentration of an STI in
a population. Originally introduced for describing inequalities in income distributions
(Gini, 1912), the Gini coefficient provides a general tool to measure the distribution or
imbalance of a disease outcome in relation to an exposure variable or risk factor (Lee,
1997), such as the geographic location or sexual behavior. A Gini coefficient of zero
denotes perfect equality where an infection is equally distributed across a population.
For infections that are concentrated in specific subpopulations, the Gini coefficient can
increase up to a maximal value of one. The Lorenz curve is a visual representation of the
cumulative distribution of a disease when ordered according to the risk factor (Lorenz,
1905). The diagonal line on a Lorenz curve plot denotes perfect equality, for example, every
subpopulation has the same prevalence of an STI.

Several groups have used Gini coefficients and Lorenz curves to describe how
Chlamydia trachomatis (CT), NG, syphilis or herpes are distributed across different
geographical regions in Canada (Elliott et al., 2002), the UK (Monteiro, Lacey & Merrick,
2005) and the US (Kerani et al., 2005; Chesson et al., 2010a, 2010b). These findings
have helped to summarize inequalities in STI distributions, assess the suitability of
geographically targeted interventions, and provide insights into the epidemic phases of the
STIs over time. Chen, Ghani & Edmunds (2009) were the first to apply the concept of
Gini coefficients in mathematical transmission models. They proposed a metapopulation
modeling framework that better captures the sociogeographic epidemiology of NG and
compared the resulting Gini coefficients with empirical estimates.

The way in which modifiable factors, such as sexual activity and STI control
interventions affect the Gini coefficient has been less-well studied. Previously, we described
the distribution of CT infections among individuals with different sexual activity using
Lorenz curves and Gini coefficients to calibrate dynamic transmission models (Althaus
et al., 2012b). We used data from the second British Survey of Sexual Attitudes and
Lifestyles (Natsal-2, 1999–2001) (Fenton et al., 2001), which included CT test results
(samples were later tested for HPV Johnson et al. (2012)). The most recent survey
(Natsal-3, 2010–2012) also provides information on HPV and Mycoplasma genitalium
(MG) positivity and offers a unique opportunity to study relationships between sexual
behavior and STI prevalence (Sonnenberg et al., 2013, 2015; Tanton et al., 2017).
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This study had two objectives. First, we wanted to estimate and compare the Gini
coefficients for different STIs and over time using data from two Natsal surveys. Second,
we used a mathematical transmission model to obtain general insights into how Gini
coefficients are expected to change as a result of STI control interventions.

METHODS
Data
Natsal-3 is a population-based probability sample survey of sexual attitudes and lifestyles
conducted in Britain (England, Scotland and Wales) and carried out from 2010 to 2012
(Erens et al., 2013;Mercer et al., 2013). The sample consists of 15,162 women and men aged
16–74 years. A subsample of participants aged 16–44 years who reported at least one sexual
partner over their lifetime were asked to provide urine samples, resulting in laboratory
confirmed STI test results from 2,665 women and 1,885 men (Sonnenberg et al., 2013).
Urine was tested for the presence of CT, MG, type-specific HPV, NG and HIV antibodies.
To compare Gini coefficients for CT over time, we also used data from the Natsal-2 survey,
which was carried out in 1999–2001 (Johnson et al., 2001). This survey includes 11,161
women and men aged 16–44 years. Urine samples for ligase chain reaction testing for
CT were available for a subset of 2,055 and 1,474 sexually active women and men aged
18–44 years (Fenton et al., 2001). Unless otherwise stated, we used the subpopulations that
provided urine samples for our analysis from both surveys. Sexual behavior and urine
sample data were individually weighted to adjust for unequal selection probabilities and to
correct for the age, gender and regional profiles in the survey sample. For simplicity, we did
not include same-sex contacts for the sexual behavior variables because only 2.2% of
the population reported a new same-sex partner during time period covered by Natsal-3.
The full datasets of both surveys are available from the UK Data Archive at the University
of Essex (http://data-archive.ac.uk).

Statistical analysis
We used Lorenz curves to plot the cumulative proportion of specific STI infections (yi) as a
function of the cumulative proportion of the population (xi), after population sub-groups i
(i = 1, 2, …, n) have been ranked according to their level of sexual activity. The Gini
coefficient is defined as the area between the line of equality and the Lorenz curve over the
total area below the line of equality:

G ¼ 1�
Xn

i¼1

ðxi � xi�1Þ yi þ yi�1ð Þ;

where x0 ¼ y0 ¼ 0 and xn ¼ yn ¼ 1.
We derived Lorenz curves and estimated Gini coefficients for CT, MG and HPV

types 6, 11, 16 and 18. We focused on these four HPV genotypes because they are present
in the widely used quadrivalent vaccine and are frequently considered in dynamic
transmission models (Brisson et al., 2016). We did not include NG and HIV in our analysis
because of the small numbers of positive tests. We used the number of new opposite-sex
partners in the last year as the exposure variable summarizing sexual activity because of
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its strong association with STI prevalence (Althaus et al., 2012b), and frequent use to
parameterize dynamic transmission models (Althaus et al., 2012a). Owing to the
larger sample size for female respondents and a potential bias resulting from lower
test sensitivity to detect HPV infections in male urine (Sonnenberg et al., 2013), we
focused our analysis on women and provide a separate analysis for men as Supplemental
Information. We constructed bootstrap confidence intervals (CIs) for the Gini coefficients
and point-wise bootstrap confidence bands for the Lorenz curves by sampling with
replacement (Kerani et al., 2005; Chesson et al., 2010a, 2010b; Davison & Hinkley, 1997).
We calculated the 2.5th and 97.5th percentiles from 1,000 bootstrapped Gini coefficients
and Lorenz curves.

Transmission model
We adapted a previously described mathematical model of STI transmission (Althaus
et al., 2015) to investigate how changes in infectious duration and transmissibility affect the
prevalence and the Gini coefficient of an STI in a simulated population. We stratified
the population according to sexual activity (Hethcote Herbert & Yorke, 1984; Garnett &
Anderson, 1993), that is, we assumed n different sexual activity classes with 0, 1, 2,…, n−1
new opposite-sex partners per year. For simplicity, we assumed that sexual activity and the
natural history and transmission of the infection are the same in women and men.
The susceptible-infected-susceptible transmission dynamics can be described by the
following ordinary differential equation:

dyi
dt

¼ m
Xn

j¼1

xjyj þ bci 1� yið Þ
Xn

j¼1

rijyj � gyi � myi;

where yi is the proportion of individuals in sexual activity class i who are infected, and xi is
the proportion of all individuals who belong to sexual activity class i. The first and last
term of the equation describe how individuals can change their sexual activity class at rate
m and be redistributed to either the same or another sexual activity class proportional to the
size of sexual activity classes (Althaus et al., 2015; Fingerhuth et al., 2016). The middle
terms describe the process of transmission and the clearance of infection at rate γ.
Susceptible individuals 1 − yi have an average of ci new opposite-sex partners per year. β is
the per partnership transmission probability and yj is the probability that a partner in
sexual activity class j is infected. ρij represents the elements of the sexual mixing matrix
(Garnett et al., 1999)

rij ¼ edij þ ð1� eÞ cjxjXn

l¼1
clxl

;

where δij denotes the Kronecker delta (it is equal to 1 if i = j and to 0 otherwise).
The proportion of individuals in sexual activity classes xi with ci ∈ 0, 1, 2,…, n − 1 new

opposite-sex partners per year were based on Natsal-2. All data for 18–44 year old women
and men were pooled and weighted. Since the transmission model is primarily used for
illustrative purposes, we did not include changes in sexual behavior, between Natsal-2 and
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Natsal-3, which were small (Mercer et al., 2013). We set m = 1 per year as described
previously (Althaus et al., 2015; Fingerhuth et al., 2016), and set ∈ = 0, that is, we assumed
random proportional mixing between different sexual activity classes (Garnett et al., 1999).
We then chose a particular combination of the infectious duration (1/γ) and the per
partnership transmission probability (β) and ran the model into endemic equilibrium.
We recorded the simulated STI prevalence and computed the Gini coefficient as described
above, that is, by calculating the cumulative proportion of infections as a function of the
cumulative proportion of the population, ranked by sexual activity i. We repeated this
process for various combinations of the infectious duration and the per partnership
transmission probability, which allowed us to map between the (unobservable) model
parameters and the simulated (observable) summary measures prevalence and Gini
coefficient.

We further used the transmission model to investigate how two hypothetical CT control
interventions affect infection prevalence and the Gini coefficient. First, we calibrated
the infectious duration and the per partnership transmission probability such that the
simulated CT prevalence and Gini coefficient correspond to the estimates from Natsal-2
(1/γ = 1.75 years, β = 19%). Second, we simulated the expected changes in prevalence
and the Gini coefficient as a result of (a) an increase in CT screening coverage aiming to
detect asymptomatic CT cases, and (b) the effects of an educational campaign that leads to
a change in sexual behavior and/or an increase in condom use. We assumed that the
first intervention would reduce the overall infectious duration by 10%. For the second
intervention, we assumed a 10% reduction in the product of the per partnership
transmission probability (β) and the number of opposite-sex partners (ci). Note that these
hypothetical interventions do not necessarily predict the quantitative effects of real-world
interventions; instead, they provide a qualitative picture of how prevalence and Gini
coefficients are expected to change.

Data analyses and model simulations were performed in the R software environment
for statistical computing (R Core Team, 2016). All code files are available on GitHub
(https://github.com/calthaus/gini).

RESULTS
Lorenz curves and Gini coefficients
The Lorenz curves for MG and HPV types 6, 11 and 16 are closer to the diagonal line than
the Lorenz curves for CT and HPV 18 (Fig. 1A). This indicates that CT and HPV-18 in
women are more strongly associated with the number of new opposite-sex partners in
the last year than MG and the other type-specific HPV. The Gini coefficients mirror this
observation and are higher for CT (0.33) and HPV 18 (0.38) than for MG and the different
HPV types (≤0.22) (Table 1). However, the bootstrapped confidence intervals for the
Lorenz curves are wide (Fig. 1B), resulting in considerable uncertainty in the estimated
Gini coefficients. The Lorenz curves for CT for the two survey periods of Natsal-2
(1999–2001) and Natsal-3 (2010–2012) are similar (Fig. 1C) with a Gini coefficient in
Natsal-2 of 0.30 (95% CI [0.12–0.50]) and in Natsal-3 of 0.33 (95% CI [0.18–0.49]).
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Figure 1 Lorenz curves representing the cumulative proportion of STI infections in women as a
function of the cumulative proportion of the population, after population sub-groups have been
ranked by the number of new opposite-sex partners in the last year. (A) Lorenz curves for different
STIs. Data: Natsal-3. (B) Uncertainty around Lorenz curve for CT. The blue areas represent point-wise
50% (dark blue) and 95% (light blue) confidence bands. Data: Natsal-3. (C) Comparison of Lorenz curves
for CT between Natsal-2 (dashed line) and Natsal-3 (solid line). In all graphs, the diagonal line (black
dotted line) denotes perfect equality, that is, an equal dispersion of the infection across population
sub-groups. Full-size DOI: 10.7717/peerj.8434/fig-1
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We used the transmission model to perform a mapping between model parameters and
the simulated STI prevalence and Gini coefficient. Within the parameter ranges that
are representative for the considered STIs, we found a close to linear relationship between
the Gini coefficient, infection prevalence, infectious duration and per partnership
transmissibility (Fig. 2A, dashed grid). STIs with a short infectious duration (e.g., 1 year)
require frequent sexual partner changes (i.e., a high number of opposite-sex partners)
and are therefore characterized by a high Gini coefficient. Longer infectious durations
increase prevalence, facilitate STI transmission between individuals with a low number
of opposite-sex partners, and consequently decrease the Gini coefficient. Interestingly,
different values for the per partnership transmission probability only influence prevalence
but do not affect the Gini coefficient. These insights from the transmission model
potentially allow the inference of biological parameters for the different STIs in Natsal-3

Table 1 Estimated Gini coefficients for different sexually transmitted infections in women.

Infection Gini coefficient 95% Confidence interval (CI)

Chlamydia trachomatis 0.33 0.18–0.49

Mycoplasma genitalium 0.16 0.02–0.36

HPV 6 0.22 0.02–0.43

HPV 11 0.17 0.04–0.31

HPV 16 0.15 0.04–0.27

HPV 18 0.38 0.10–0.64
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Figure 2 Relationship between Gini coefficient, STI prevalence, infectious duration and transmissibility. (A) Gini coefficients and STI pre-
valence for women in Natsal-3 (colored dots). Modelled values for different combinations of the infectious duration and the per partnership
transmission probability are projected on the graph (dashed grid). (B) Expected impact of control measures on Gini coefficients and prevalence of
female CT between Natsal-2 and Natsal-3. The black arrows denote a 10% reduction in the per partnership transmission probability (horizontal
arrows) or the infectious duration (diagonal arrows). Full-size DOI: 10.7717/peerj.8434/fig-2
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(Fig. 2A, colored dots). Although the confidence intervals and the associated uncertainty
are large, CT and HPV 18 seem to be consistent with an infectious duration between 1 and
2 years. MG and the other HPV types are consistent with longer infectious durations.

STI control interventions
We used the transmission model to examine how two hypothetical control interventions
for CT affect the Gini coefficient and infection prevalence. First, we assumed that the
increase in CT screening between the two survey periods of Natsal-2 (1999–2001) and
Natsal-3 (2010–2012) through the National Chlamydia Screening Program in England
(Chandra et al., 2017) has resulted in a reduction in the overall infectious duration.
The transmission model predicts that this would result in an increase of the Gini
coefficient with a concurrent drop in prevalence (Fig. 2B). In contrast, the point estimates
of the Gini coefficient and prevalence both show a slight, albeit no statistically significant
increase between Natsal-2 and Natsal-3. The expected changes in prevalence and Gini
coefficient might be relatively small, however, and may remain within the 95% CIs of
the point estimates. Second, we simulated the effects of a decrease in the number of
opposite-sex partners and/or an increase in condom. Such a behavior change would be
expected to reduce the prevalence of CT without affecting the Gini coefficient.

DISCUSSION
Building upon earlier work (Althaus et al., 2012b), we constructed Lorenz curves and
estimated Gini coefficients in women to investigate how different STIs are distributed
according to sexual activity. Gini coefficients for CT and HPV 18 appear to be higher than
for MG and HPV 6, 11 and 16. We found no evidence that the Gini coefficient for CT
changed between the two survey periods of Natsal-2 and Natsal-3. Using a mathematical
model of STI transmission, we found that a CT screening intervention should reduce
prevalence and increase the Gini coefficient, whilst condom use reduced prevalence but did
not affect the Gini coefficient.

A main strength of this study was the availability of Natsal-2 and Natsal-3, two very
large data sets that measure both STI positivity and self-reported sexual behavior in
probability samples of the British general population. These comprehensive data sets allow
comparison between different STIs and over time. Calculating infection prevalence and
Gini coefficients is straightforward if suitable data are available. In contrast, obtaining
biological parameters that determine the transmission dynamics, such as the infectious
duration or the transmission probability, are notoriously difficult to obtain (Althaus et al.,
2010, Althaus, Heijne & Low, 2012). In this study, we used a mathematical model of STI
transmission with a detailed description of different sexual activity classes (Althaus et al.,
2015) to explore the relationship between Gini coefficient, infection prevalence, infectious
duration and transmissibility.

There are several limitations to this study. First, despite the large overall sizes of the two
Natsal surveys, the relatively low prevalence of STIs in the general population (Fenton
et al., 2001; Johnson et al., 2012; Sonnenberg et al., 2013, 2015) resulted in relatively large
uncertainties in the Lorenz curves and the corresponding Gini coefficients, particularly for
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males (see Supplemental Information). Owing to the small sample sizes, we pooled
data over all age groups and restricted our analyses to the whole survey population.
Investigating sex- or age-specific differences in Gini coefficients would certainly be
interesting but is currently not feasible. Second, the limited sample size did not allow us
to calculate Gini coefficients for NG and HIV, which have a very low prevalence, and
arguably high Gini coefficient (Sonnenberg et al., 2013). Third, the comparison of
prevalence and Gini coefficients of CT between Natsal-2 and Natsal-3 should also be
treated with caution. The two surveys used different laboratory tests and were not powered
to detect changes in CT prevalence (Sonnenberg et al., 2013). Fourth, we defined the
exposure variable as the number of new opposite-sex partners in the last year. Using other
exposure variables for our analysis would obviously affect the Lorenz curves and the Gini
coefficients, but would not necessarily be applicable for the mapping between model
parameters and the summary measures. Fifth, mathematical modeling necessarily involves
several assumptions and simplifications. As in the data analysis, we did not stratify the
population according to age, assumed the sexual behavior in women and men to be the
same, and considered the general population of those reporting sex with opposite-sex
partners as a whole. Changes in sexual behavior between Natsal-2 and Natsal-3 were
minimal (Mercer et al., 2013), so we did not take these into account. We assumed fully
proportional mixing which typically results in the best description of infection prevalence
in different sexual activity classes in models with a constant per partnership transmission
probability (Althaus et al., 2012a, 2015; Garnett et al., 1999). We also did not consider
sex-specific differences in the infectious duration and the transmissibility of the various
STIs, which might limit the application of Gini coefficients for the inference of these
parameters. Further, we assumed that individuals who clear an infection can become
reinfected, although CT and type-specific HPV infections might confer temporal
immunity (Brunham & Rey-Ladino, 2005; Bogaards et al., 2010). Together, these modeling
assumptions highlight that the insights from our conceptual transmission model are
primarily qualitative and that quantitative results should be treated with caution.

The calculated Gini coefficients and prevalence of CT and HPV 18 in women in
Natsal-3 suggest an infectious duration of 1–2 years, which is in good agreement with
previous estimates (Althaus et al., 2010; Insinga et al., 2007; Johnson, Elfström & Edmunds,
2012; Price et al., 2013). Our mapping indicates that the infectious durations for the other
high-risk HPV type 16 and low-risk HPV types 6 and 11 could be longer than 2 years.
This interpretation would contrast with previous studies that estimate similar infectious
durations for HPV-16 and HPV-18 (Insinga et al., 2007; Johnson, Elfström & Edmunds,
2012), and shorter infectious durations of less than a year for HPV 6 and 11 (Insinga et al.,
2007). The discrepancy could be a result of ignoring the effects of temporal immunity to
reinfection. The infectious duration for the other bacterial STI, MG, seems to be longer
than for CT. There is considerable uncertainty regarding the infectious duration of
MG. One analysis, which used data from a study of female students in London (UK),
estimated the mean infectious duration at 15 months (Smieszek & White, 2016), which
is in the same range as CT. The per partnership transmission probability is a highly
model-dependent parameter and depends on the type of sexual partnerships that are
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considered. It is maybe not surprising that our mapping, which suggests relatively low per
partnership transmission probabilities of 10–25%, is not consistent with estimates from
other modeling studies (Althaus, Heijne & Low, 2012; Bogaards et al., 2010).

Our findings allowed us to interpret differences in Gini coefficients and changes over
time for different STIs, illustrating that Gini coefficients can serve beyond their original role
as simple statistical measures of exposure-outcome associations. We found that changes in
the transmission probability only influence infection prevalence. This means that while
decreasing the transmission probability (e.g., through increased condom use) decreases the
overall burden of an STI, it does not affect how an STI is distributed among individuals
with different sexual activity. Hence, the target groups for future control interventions
should remain the same. In contrast, we showed that changes in the infectious duration
(e.g., through increased testing and treatment uptake) affects both the prevalence and Gini
coefficient of an STI. A stronger concentration of the infections among individuals
with increased sexual activity would require a change in the target groups for control
interventions. A prerequisite for this newly proposed use of Gini coefficients for STIs will
be the availability of large data sets with a sufficiently high infection prevalence. These
could either be population-based surveys or smaller cohorts that focus on individuals with
an increased risk of acquiring STIs, such as men who have sex with men.

CONCLUSION
In summary, our study illustrates that the Gini coefficient for measuring the distribution of
an STI among individuals with different sexual activity represents a simple proxy measure,
which combines epidemiological and behavioral data. Estimating Gini coefficients for
the general population or particular sub-populations, in combination with mathematical
modeling, has the potential to make inference of biological parameters that determine STI
transmission and to assess the impact of control measures.
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