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Abstract
Under the ever-increasing capital intensive environment that contemporary process 
industries face, oligopolies begin to form in mature markets where a small num-
ber of companies regulate and serve the customer base. Strategic and operational 
decisions are highly dependent on the firms’ customer portfolio and conventional 
modelling approaches neglect the rational behaviour of the decision makers, with 
regards to the problem of customer allocation, by assuming either static competition 
or a leader-follower structure. In this article, we address the fair customer allocation 
within oligopolies by employing the Nash bargaining approach. The overall prob-
lem is formulated as mixed integer program with linear constraints and a nonlinear 
objective function which is further linearised following a separable programming 
approach. Case studies from the industrial liquid market highlight the importance 
and benefits of the proposed game theoretic approach.

Keywords Game theory · Supply chain optimisation · Oligopoly · Nash 
equilibrium · Customer allocation

List of symbols

Sets
b  Outsourcing tiers
c  Customers
cf(c,f )  Set of existing firm’s customers
cti(c,t,i)  Set of customer’s tanks for product i
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f  Oligopoly firms
i  Liquid products
k  Grid points
t  Customer tanks

Parameters
�f   Negotiation power of firm f
�
f

i
  Short-cut model parameters dependent on the design of the ASU 

plant (–)
�ff ′  Inter-firm swaps premium
�L
b
, �U

b
  Lower and upper bounds of the tiers b for outsourcing product 

demand  (m3)
V
f

LOX
  Upper limit on the volumetric rate flow of liquid oxygen in the 

ASU of firm f  (m3/h)
�
sq

f
  Status quo profit of firm f prior to the fair allocation of the custom-

ers ($)
�̃�fk  Profit of firm f at grid point k ($)
V
f

air
,V

f

air
  Lower and upper limits on the volumetric rate flow of air in the 

ASU of firm f  (m3/h)
V
f

GNILiq
,V

f

GNILiq
  Lower and upper limits on the volumetric rate flow of gaseous 

nitrogen in the liquefier of ASU of firm f  (m3/h)
V
f

GNIPip
,V

f

GNIPip
  Lower and upper limits on the volumetric rate flow of gaseous 

nitrogen send to product pipeline by firm f  (m3/h)
Dict  Product demand of customer c for tank t  (m3)
DCictf   Delivery cost of demand of product i for customer c and tank t 

served by firm f ($)
Ecf   1, if customer c is initially contracted to firm f; 0, otherwise
EPC  Electricity price ($/MWh)
FDCcf   Fixed cost of firm f for dropping customer c ($)
FNCcf   Fixed cost of firm f for acquiring new customer c ($)
MT  Average ASU plant up-time (h)
OCifb  Piecewise constant outsourcing premium cost of tier b ($/m3)
Pictf   Price of product i for customer c and tank t served by firm f ($)
SWCicf ′f   Swap premium cost ($/m3)
Ui  Upper limit on product demand swaps  (m3)
USCictf   Unit service cost of demand of product i for customer c and tank t 

served by firm f ($/m3)
VDCctf   Variable cost of firm f for dropping customer c ($/m3)
VNCctf   Variable cost of firm f for acquiring new customer c ($/m3)

Binary variables
Xcf   1, if customer c is assigned to firm f; 0, otherwise
Yifb  1, if firm i has outsourced production of product i in tier b; 0, 

otherwise
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Continuous variables
Ôictfb  Disaggregated level of outsourcing for demand of product i for 

tank t of customer c  (m3)
�fk  SOS2 variables associated with the piecewise linear approximation 

of the profit of firm f over k grid points (–)
�f   Profit of firm f
Capif   Production capacity for product i of firm f  (m3)
ECf   Total electricity cost of firm f ($)
NCf   Total cost of firm f for acquiring new customers ($)
Oictf   Firm’s outsourcing level for demand of product i for tank t of cus-

tomer c  (m3)
PWf   Electricity power consumed by firm f (KW)
Qictf   Firm’s in-house production for demand of product i for tank t of 

customer c  (m3)
RCf   Total cost of firm f for dropping customers ($)
SCf   Total customer service cost of firm f ($)
SFictff ′  Swap amount of product for demand of product i for tank t of cus-

tomer c between firms f and f′  (m3)
V
f

air
  Volumetric rate flow of air in the ASU of firm f  (m3/h)

V
f

GNILiq
  Volumetric rate flow of gaseous nitrogen in the liquefier of ASU of 

firm f  (m3/h)
V
f

GNIPip
  Volumetric rate flow of gaseous nitrogen send to product pipeline 

by firm f  (m3/h)
V
f

GNIVent
  Volumetric rate flow of gaseous nitrogen ventilated by firm f 

 (m3/h)
V
f

LNIASU
  Volumetric rate flow of liquid nitrogen in the ASU of firm f  (m3/h)

V
f

LOX
  Volumetric rate flow of liquid oxygen in the ASU of firm f  (m3/h)

V
f

NI
  Volumetric rate flow of nitrogen in the ASU of firm f  (m3/h)

1 Introduction

1.1  Motivation

Current socioeconomic trends such as market globalisation, interconnectedness of 
firms and the ever-increasing capital intensive environment begin to lead to a par-
adigm shift on the market structure of process industries. Financial sustainability, 
competition elimination and market share growth are a few reasons that lead busi-
nesses in mature markets to form coalitions leading to oligopolistic market struc-
tures (Ziss 2007; Nagarajan and Sošić 2008). Oligopolies are formed when a limited 
number of companies rule in a particular market offering similar goods and typi-
cal examples from the process industry include the steel, food, pharmaceutical and 
specialty gases sector. Many of the strategic, tactical and operational decisions of 
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industrial companies are directly related to the firms’ customer portfolio ranging 
from future investment planning to satisfying daily demands.

In this paper we study the problem of fair customer allocation in oligopolies for 
the case that new customers appear and provide market share growth opportunity for 
the firms from a decentralised game-theoretic viewpoint. The firms that comprise 
the oligopoly agree to allocate the new customers in a fair manner while at the same 
time they can re-assign existing ones so as to maximise their respective profits. The 
goal of this paper is: (i) to introduce a new approach for the problem of customer 
allocation in oligopolies and (ii) apply game-theoretic concepts to ensure the fair 
optimisation of the market under study.

The remaining of the paper is organised as follows: in Sect. 1.2 a literature review 
on the game theoretic optimisation of supply chain systems is conducted. Section 2 
introduces the problem statement that is addressed in the present work whereas the 
key mathematical developments are detailed in Sect.  3. Next, in Sect.  4 two case 
studies are examined from the industrial liquids market and the key findings are dis-
cussed while conclusions and future research directions are outlined in Sect. 5.

1.2  Literature review

The progressive competition within supply chain systems along with the individual 
objectives and constraints of the supply chain participants have led many researchers 
to study the impact of such decentralisation in the optimal decision making (Papa-
georgiou 2009; Barbosa-Póvoa and Pinto 2018). In contrast to centralised model-
ling approaches, the interdependence of individual decisions, constraints and poten-
tially conflicting objectives of the supply chain participants are explicitly taken into 
account (Shah 2005; Sahay and Ierapetritou 2013). Due to the nature of such sys-
tems, the formalisation of the optimisation problem needs to reflect the hierarchi-
cal structure of the market under study and to this end different methods have been 
employed such as bilevel programming, tailor-made iterative frameworks as well as 
Nash equilibrium methods to name a few.

Sherali and Leleno (1988) studied the existence, characterisation and computa-
tion of a two-stage oligopolistic network and they provided theoretical results that 
should hold for a market equilibrium to exist. The multi-period resource allocation 
problem was treated by Klein et al. (1992) with a lexicographic minimax algorithm 
that the authors proposed. Within the lexicographic minimax methods the concept 
of fairness is closely related to that of Pareto optimality, i.e. the solution returned 
from these methods is Pareto optimal in the sense that no preference by the decision 
maker was taken into account and also the optimal decision vector is non-dominated. 
Lexicographic minimax optimisation has also been applied successfully to location 
problems (Ogryczak 1997) in order to compute fair non-dominated solutions.

Later on, Nash strategies among multi-enterprise supply chains for the fair 
optimisation of transfer prices were proposed by Gjerdrum et al. (2001, 2002). In 
a series of papers, the authors considered the problem of transfer price and inven-
tory optimisation and two different solution approaches were presented. A separable 
programming approach with exact linearisation of bilinear terms and a spatial and 
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binary branch and bound procedure that solved the original MINLP problem as a 
series of MILPs (Gjerdrum et al. 2001).

Levis and Papageorgiou (2007) derived analytical formulae for the Nash equilib-
rium of Bertrand games for the special case of single product duopolies. Apart from 
the analytical formulae, an iterative algorithm for game theoretic price optimisation 
of multi-product competing companies was proposed and allowed the computation 
of the corresponding Nash equilibrium. Erkut et al. (2008) reported a multi-objec-
tive optimisation approach for the solution of the location-allocation problem in 
solid waste management and applied their methodology in a case study from Greece. 
The authors seeked for fair solutions in a Pareto-optimality fashion and devised an 
approach for the iterative solution of the resulting lexicographic minimax problem. 
It is interesting to note that their approach is applicable for either convex or non-
convex decision spaces. Zhao et al. (2010) as well as Cao et al. (2013) studied the 
cooperative game of decentralised supply chain between manufacturer and retailers 
under demand disruptions. In the first study a Nash approach was employed whereas 
in the second the authors followed the Stackelberg approach. In general, the Stackel-
berg approach is employed in cases of hierarchical games with a certain leader and 
a number of followers while such assumption in the Nash setting is not required. 
The construction of Pareto-optimal fair solution in a game theoretic context has been 
proposed by Zamarripa et al. (2012) where the authors computed the pay-off matrix 
of the game through a series of multi-objective MILPs.

Cooperative allocation of cost savings in decentralised supply chains using differ-
ent methods from cooperative game theory was proposed by Lozano et al. (2013). 
Berglund and Kwon (2014), studied the facility location problem of a Stackelberg 
firm in the case of a Cournot-Nash game. The price functions of the different firms 
are modelled via inverse demand correlation while the cost function is convex and 
monotonically increasing with the amount manufactured by each firm. The overall 
problem was formulated as a mixed integer program with variational inequalities 
that enforce the achievement of Nash equilibrium for the competing firms. While 
exhaustive enumeration approaches had been proposed in the past, the authors pro-
posed a heuristic approach that has at its core the simulated annealing paradigm. 
Zhang et  al. (2014) employed the minimax approach for the fair cost distribution 
of homes that belong to a microgrid. Yue and You (2014a) studied a three-echelon 
supply chain system where decisions about its design and operation were made by 
solving a monolithic non-convex MINLP. Their work assumes a single leader, i.e. 
the manufacturer, and multiple followers, i.e suppliers and customers. The authors 
model the interaction between manufacturer and suppliers using the Nash bargaining 
approach while a bilevel formulation is employed to model the arrangements among 
suppliers and customers. The case of capacity planning in a competitive environ-
ment has recently been addressed from Grossmann and co-workers both from a 
bilevel and a trilevel scope (Garcia-Herreros et al. 2016; Florensa et al. 2017). Game 
theoretic optimisation of decentralised supply chains under uncertain environment 
was recently studied by Hjaila et  al. (2017). The authors formulated the problem 
as a non-cooperative, non-zero sum game where apart from the leader/follower set, 
their interactions with third parties were also considered. The Stackelberg approach 
was employed and at the end a set “Pareto solutions” were computed and analysed 
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through the solution of a series of non-convex MINLPs. Key decisions in this work 
were the transfer prices and resource amounts exchanged between the players while 
Monte Carlo simulations were conducted for the evaluation of uncertainty regarding 
a set of product prices and demand. The strategic planning of petroleum refineries 
was recently studied through a game theoretic perspective by Tominac and Mahalec 
(2017). The authors formulated the problem as a potential game where a number of 
refineries engaged in a Cournot oligopoly game and solved the resulting non-convex 
(MI)NLP. Yue and You (2017), proposed a decomposition framework for the solu-
tion of a mixed integer bilevel programming (MIBP) problems with application on 
Stackelberg games for supply chain design and operation. The authors considered 
the discrete, apart from continuous, decisions of the follower and the leader result-
ing in computational difficulties for the solution of a single level optimisation prob-
lem. To circumvent this issue, initially the discrete decisions of the follower are enu-
merated thus allowing for the introduction of the KKT conditions of the follower’s 
problem and then an iterative procedure is employed to avoid complete enumera-
tion. Later on, Liu and Papageorgiou (2018) examined the fair profit allocation of 
an active ingredient supply chain through the solution of a Nash bargaining game 
and lexicographic maximin optimisation. Finally, Gao and You (2019) incorporated 
uncertainty considerations in the game theoretic optimisation of multi-stakeholder 
supply chains.

2  Problem statement

We study the problem of fair customer allocation in existing oligopolies. It is 
assumed that the firms which form the oligopoly are rational and that a firm has 
estimates of the other firms’ information . The fair customer allocation problem is 
formulated as a static MINLP following the Nash bargaining approach so as to com-
pute the resulting firm profits in the equilibrium along with the assignment of the 
customers. The MINLP model is then linearised into an MILP using a separable 
programming approach. Concisely, the problem statement has as follows:

Given:

• Customer portfolio including existing and new customers
• Average customer demand per demand tank and liquid product
• Delivery cost to the customer’s demand tank from firm
• Customer acquisition/forfeit variable and fixed costs
• Third-party production outsourcing costs and tiers
• Product demand swap costs between firms
• Liquid products production capacities of the firms
• Product prices per customer and firm
• Cost of electricity
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Compute:

• Optimal customer assignment to the firms
• Optimal production levels of the firms
• Optimal product demand outsourcing levels for the firms
• Optimal product demand swap levels for the firms

So as to:

• Maximise fairly the firms’ profit

As shown by Fig. 1, each company has an existing set of customers (and their 
tanks) that they serve and each customer is served by only one company. In the 
next section, we introduce the mathematical model for the fair customer alloca-
tion in such oligopolistic markets with emphasis on the industrial liquids industry.

3  Mathematical developments

In this section, first the model formulation for the customer allocation in oligopo-
lies is presented and next the game-theoretic framework for its fair optimisation 
is introduced. The nomenclature of the mathematical developments is provided at 
the end of the article. The key assumptions in the present work are summarised 
as follows: (i) firms will participate in the game only if they can achieve greater 

Company A 

Company C

Company B

Fig. 1  Conceptual representation of an oligopoly comprised by three companies that serve a number of 
customer tanks
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profit than their current one, (ii) deterministic production and service cost, (iii) 
customer demands are given as their deterministic average values, (iv) firms 
should serve all customers and (v) decentralised decision making.

3.1  Model formulation

3.1.1  Customer assignment and demand satisfaction

Customers can only be assigned to one firm which should satisfy their entire product 
demand. To model this, Eq. (1) is employed and the binary variable Xcf  indicates the 
assignment of customer c to firm f.

The customer’s (c) tank demand (t) for product (i) of each firm (f) can be satisfied 
either by (i) in-house production ( Qictf  ), (ii) product swaps with competitor ( SFictf ′f  ) 
or (iii) product acquisition from spot-market ( Oictf  ) as illustrated in Fig. 2.

This is modelled using Eq. (2). The in-house production levels ( Qictf  ) and amount 
of production swaps to other firms ( SFictff ′ ) are restricted by the firm’s plant capacity 
as shown by Eq. (3).

Note that the in-house capacity for each of the products ( Capif  ) will be dictated by 
the short cut model that is introduced next.

3.1.2  Plant production short‑cut model

Air separation plants are energy intensive and utilise air as raw material in order to pro-
duce gaseous nitrogen ( GNI ), gaseous oxygen ( GOX ) as well as liquid nitrogen ( LNI ), 
oxygen ( LOX ) and argon ( LAR ) among others. Even though the main focus of the 

(1)
∑

f

Xcf = 1 ∀c

(2)Qictf +
∑

f �≠f

SFictf �f + Oictf = DictXcf ∀i, c, t ∈ cti, f

(3)Qictf +
∑

f �≠f

SFictff � ≤ Capif ∀i, c, t ∈ cti, f

Fig. 2  Demand satisfaction 
mechanisms

Company f' 

Company f 

Spot-market 
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present work is regarded with the liquid products, the underlying characteristics of the 
air separation unit (ASU) directly affect the production capacity of the firm so as to 
satisfy customer demand. In order to incorporate the production capacity and electricity 
consumption considerations, we employ a surrogate model that captures the interde-
pendence of manufacturing the different liquid products as well as the energy required. 
The general form of the model is given by Eqs. (4)–(5).

where PWf  is the electricity power consumed and Vf

air
,V

f

GNI
,V

f

LNI
,V

f

LOX
 , Vf

GOX
 , Vf

LAR
 

stand for the volumetric flows of the air and the different gaseous and liquid prod-
ucts. A graphical representation of the main flows that are tracked using the short-
cut model, in which no gaseous oxygen is produced, is given by Fig. 3 whereas the 
key equations are summarised below.

(4)PWf = f (V
f

air
,V

f

GNI
,V

f

LNI
,V

f

GOX
,V

f

LOX
,V

f

LAR
) ∀f

(5)g(V
f

air
,V

f

GNI
,V

f

LNI
,V

f

GOX
,V

f

LOX
,V

f

LAR
) ≤ 0 ∀f

(6)V
f

NI
= �

f

1
V
f

air
∀f

(7)V
f

LNIASU
+ V

f

LNI
= �

f

2
V
f

GNILiq
∀f

(8)V
f

LNIASU
= �

f

3
V
f

LOX
∀f

(9)V
f

GNIVent
= V

f

NI
+ V

f

LNIASU
− V

f

GNIPip
− V

f

GNILiq
∀f

(10)V
f

GNIPip
≤ V

f

GNIPip
≤ V

f

GNIPip
∀f

(11)V
f

GNILiq
≤ V

f

GNILiq
≤ V

f

GNILiq
∀f

Fig. 3  Main component flows 
tracked by the short-cut ASU 
model

Vair

VGNI
Pip

VGNI
Vent

VLOX

VGNI
Liq

VLNI
ASU VLNI

Air Separation Unit

Liquefier

VLAR
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Equation (6) models the amount of nitrogen in air that is recoverable as a product. 
Equations  (7)–(9) are mass balances of the ASU, liquefier and pipeline, respec-
tively. The lower ( Vf

GNIPip
 ) and upper ( V

f

GNIPip
 ) levels on the flow of gaseous nitrogen 

through the pipelines of the plant are established by Eq. (10); similar bounds for the 
flow of gaseous nitrogen in the liquefier, air in the ASU and output of liquid oxygen 
is are given by Eqs. (11)–(13). Finally, for the calculation of liquid argon (LAR) pro-
duction, it is assumed that the quantity can be calculated as a proportion ( �f

4
 ) of the 

argon recoverable from the volume of the air processed as shown by Eq. (14). Notice 
that parameters �f

i
∀i = 1, 2, 3, 4 are dependent on the plant design of each firm (f).

3.1.3  Spot market product acquisition

Product acquisition from spot market is allowed at higher costs. To model this, the pos-
itive variable  Oictf is introduced to express the quantity of product i that is acquired 
from spot market by firm f. Acquiring product amounts from the spot market incurs in 
general higher costs to the firm and it is assumed that the relevant costing mechanism 
follows a piecewise constant paradigm as shown by Fig. 4. We assume (b) different, not 
necessarily continuous tiers, and each tier has its respective lower and upper bounds 
( �L

b
, �U

b
 ) in terms of spot market capacities along with the corresponding spot market 

premium costs ( OCicftb ). Mathematically this is modelled using SOS1 integer formula-
tion as shown by Eqs. (15)–(18). The positive variable Ôictfb is employed to model the 
disaggregated counterpart, per tier, of Oictf .

(12)V
f

air
≤ V

f

air
≤ V

f

air
∀f

(13)V
f

LOX
≤ V

f

LOX
∀f

(14)V
f

LAR
= �

f

4
V
f

air
∀f

Fig. 4  Spot market product 
acquisition piecewise constant 
modelling
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Equation (15) is employed to dissaggregate the overall outsource amount into dif-
ferent tiers and the lower and upper bounds of each tier are given by Eq. (16). Equa-
tion (17) is a logic constraint which implies that customer demand can be acquired 
by the spot market only if the customer is currently served by the firm and finally 
Eq. (18) defines that at most one tier can be selected for spot market acquisition of 
product demand for each product type (i) and firm (f).

3.1.4  Inter‑firm swap agreements

Another way for a firm to satisfy customer demand that exceeds its current in-house 
capacity, is to hold a swap agreement with another firm. In contrast to acquiring 
products from the spot-market, the firms which swap product demand hold a bilat-
eral contract with specified terms and conditions on the amount of products and cost 
mechanisms. It is assumed that there exists an upper bound ( Ui ) on the amount of 
product demand that can be swapped ( SFictff ′ ) as shown by Eq. (19). Furthermore, 
a firm cannot request to swap customer demand unless the related customer is 
assigned to them as indicated by Eq. (20).

We also assume that there is a condition on the swapping agreement that requires 
the two companies to swap products of equal amount as shown by Eq. (21).

(15)Oictf =
∑

b

Ôictfb ∀i, c, t ∈ cti, f

(16)𝛾L
b
Yifb ≤

∑

c,t∈cti

Ôictfb ≤ 𝛾U
b
Yifb ∀i, f , b

(17)
∑

b

Ôictfb ≤ DictXcf ∀i, c, t ∈ cti, f

(18)
∑

b

Yifb ≤ 1 ∀i, f

(19)
∑

c,t∈cti,f �≠f

SFictff � ≤ Ui ∀i, f

(20)SFictff � ≤ DictXcf � ∀i, c, t ∈ cti, f , f � ≠ f

(21)
∑

i,c,t∈cti

SFictff � =
∑

i,c,t∈cti

SFictf �f ∀f , f ≠ f �
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3.1.5  Customer service cost

The customer service cost ( SCf  ) accounts for the different demand satisfaction mecha-
nisms under consideration. Firstly the unit service cost of serving a specific customer 
tank ( USCicf  ) is calculated as USCictf =

DCictf

Demict

 , where DCictf  is the average delivery cost 
of firm f for serving customer’s c tank t. The first term as shown by Eq. (22) reflects the 
monthly average delivery cost for the case of in-house production. The second term 
reflects the cost incurred by the swaps, where a swap premium is involved ( SWCiff ′ ) and 
is assumed to involve �f �f−times higher costs, depending on the inter-firms contracts 
established, for the firm compared to the in-house production and delivery as shown by 
Eq. (23). The last term of Eq. (22) reflects the cost of spot market product acquisition, 
where similarly to the swap’s cost, a spot market premium is considered depending on 
the related tier. Each tier is associated with a different premium  (UOCb).

3.1.6  Customer acquisition cost

The customers that are not served by any company provide market share growth oppor-
tunity. On top of that, if a customer is dropped by a company, it can be acquired by the 
competitors. In order to acquire new customers, companies have to pay a fixed ( FNCcf  ) 
and a variable cost ( VNCctf  ) to cover expenses related to the installation and mainte-
nance of the new tanks. Eq. (25) is employed to model the overall cost of acquiring new 
customers.

Notice that in Eq. (25), only the customers that are not already served by the firm 
are considered using the set Cf  which is the set of firms’ existing customers. This is 
achieved by excluding the customers that belong to the set Cf  from the related sum-
mations in Eq. (25).

3.1.7  Customer forfeit cost

A firm is allowed to forfeit a customer it already serves but this results in a fixed, 
( FDCcf  ), and a variable penalty, ( VDCctf  ). The variable penalty is dependent and 

(22)

SCf =
∑

i,c,t∈cit

USCictf Qictf +
∑

i,c,t∈cit,f �¬f

SWCicf �f SFictf �f

+
∑

i,c,t∈cit,b

OCicfbÔictfb ∀f

(23)SWCicf �f =�f �f USCicf ∀i, c, f � ≠ f

(24)OCicfb =UOCb(USCicf + UPCi) ∀i, c, f , b

(25)NCf =
∑

c∉Cf

FNCcf Xcf +
∑

i,c,t∈cti∧∉Cf

VNCctf Dict ∀f
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proportional to the demand of the customer and the overall cost of dropping a customer 
for a company is given Eq. (26).

3.1.8  Power consumption cost

The operation of ASU plants is an energy intensive process and the electricity costs 
involved are significant. Their calculation is based on Eq. (27).

where EPC is the average electricity unit price, MT is the average operating uptime 
of the ASU plant.

3.1.9  Profit calculation

The profit of each firm f is calculated as the difference between the revenue and the 
total costs incurred by the customers’ activity. The revenue is calculated as the selling 
price of product i multiplied by the resulting product demand from customers served by 
each firm. The profit �f  for each firm f is given by Eq. (28).

3.2  Nash game‑theoretic solution

The structure of the market, information availability and outlook of the players on 
cooperativeness are critical parameters within a game-theoretic setting. The Nash 
bargaining approach was introduced by Nash (1951) for the case of two-person game 
with fixed disagreement payoffs and was generalised to the n-person case (Nash 1951; 
Harsanyi and Selten 1972). Within this framework, the players have defined objective 
functions which constitute the game’s payoff vector. The payoff space is assumed to be 
compact so that a finite solution exists and it is convex for the solution payoffs to be 
unique. From a game theoretic perspective a game is governed by a number of axioms 
and these are: (i) individual rationality, (ii) Pareto optimality, (iii) symmetry, (iv) lin-
ear invariance and (v) independence of irrelevant alternatives. This full set of axioms 
results in a unique solution which is commonly referred to as the Nash Equilibrium. 
Mathematically, the axiom of individual rationality can be expressed as follows: given 
a status quo point that refers to player’s payoff under disagreement, i.e. the case that no 
game is established, each player will enter the game only if they can achieve a payoff 
greater than this point. In the problem under study, this means that a firm will agree on 
entering the game and its resulting equilibrium solution only if they can achieve profit 
greater than their current one ( �sq ) as shown by Eq. (29)

(26)RCf =
∑

c∈Cf

FDCcf (Ecf − Xcf ) +
∑

c∈Cf

VDCctf

∑

i

Dict ⋅ (Ecf − Xcf ) ∀f

(27)ECf = EPC ⋅MT ⋅ PWf ∀f

(28)�f =
∑

i,c,t∈cit

Pictf ⋅ DictXcf − SCf − RCf − NCf − ECf ∀f
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For the problem of interest the status quo profits of each firm are computed by fix-
ing the assignment of existing customers and assume that no new customers can be 
taken by any firm. With this given status quo, the Nash equilibrium of the game is 
computed as the maximum value of the Nash product which is given by Eq. (30) and 
can be visualised, for a two-firm game, by Fig. 5.

The parameter �f  represents the negotiation power of each firm f and the sum-
mation of the negotiation power over all the firms equals to 1. By manipulating the 
value of the parameter �f  it is possible to investigate scenarios when the players have 
an advantage over the other competitors. For example, in the case of a duopoly, set-
ting the the negotiation power of a player close to 1 and the other player’s close to 
zero, emulates a leader-follower setting.

The Nash bargaining approach is inherently nonlinear and nonconvex due to its 
objective function, i.e. Eq.  (30) which can result in computationally demanding 
problems. In order to alleviate the related computational complexity, Gjerdrum et al. 
(2001) proposed a separable programming approach so as to linearise approximately 
the Nash product. Initially, the logarithmic transformation is applied on Eq.  (30) 
resulting in Eq. (31).

Equation  (31) is still nonlinear but now the objective function is strictly concave. 
Hence, it can be approximated via the piecewise linear function �̃� over a number of 
k grid points as shown by Eq. (32).

(29)�f ≥ �
sq

f
∀f

(30)� = �f (�f − �
sq

f
)�f

(31)� = ln� =
∑

f

�f ln(�f − �
sq

f
)

Fig. 5  Conceptual representa-
tion of the Nash bargaining 
solution for the case of duopoly 
with firms A and B

πΒ

πΑ

πΒ
sq

πA
sq
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where the parameter �̃�fk stands for the profit of firm f at grid point k and �fk is a 
SOS2 variable Williams (2013) which implies that only two adjacent grid points 
take nonzero values and satisfy Eq.  (33). Effectively, following this approach one 
discretises the strictly concave function over the number of grid points and the true 
solution can approximated as the convex combination two adjacent grid points over 
a line segment. Increasing the number of grid points, results in finer discretisation 
and thus error reduction with the number of grid points increasing until sufficient 
accuracy is achieved. The profit of each company can be calculated by Eq. (34).

Overall, the proposed mathematical model comprises of Eqs. (1)–(29) and is for-
mulated as an MINLP with objective function Eq. (30) and as an MILP by substi-
tuting Eq.  (30) with Eqs.  (32)–(33). In the next section, the proposed approach is 
employed for two cases studies involving a duopoly and an oligopoly. In order to 
further compare the value of the game theoretic solution, we compare it with two 
alternative centralised formulations, namely Naive (I) & Naive (II). The Naive (I) 
formulation maximises the overall profit of the market as shown by Eq.  (35) sub-
ject to Eqs. (1)–(28). The Naive (II) formulation also maximises the overall market 
profit, i.e. Eq. (35), subject to Eqs. (1)–(28) but also imposes that each player should 
achieve a resulting profit at least as high as its current status quo, i.e. Eq.  (29). 
Notice that the Naive formulations, indicate the centralised decision-making setting, 
where a single decision-maker optimises the supply chain problem under study by 
optimising the overall profit. An overview of the proposed mathematical models is 
given in Table 1

 

(32)�̃� =
∑

f

∑

k

𝛼f ln(�̃�fk − 𝜋
sq

f
)𝜆fk

(33)
∑

k

�fk = 1 ∀f

(34)𝜋f =
∑

k

�̃�fk𝜆fk ∀f

(35)� =
∑

f

�f

Table 1  Scope and 
mathematical formulations of 
the proposed mathematical 
models

Formulation Scope

Nash model MINLP: Eqs. (1)–(30), MILP: 
Eqs. (1)–(29), (32)–(33)

Decentralised

Naive model (I) MILP: Eqs. (1)–(28), (35) Centralised
Naive model (II) MILP: Eqs. (1)- (29), (35) Centralised
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4  Case studies

To demonstrate the proposed modelling and solution framework, we present two 
case studies on the fair customer allocation in industrial liquid oligopolistic markets. 
Firstly, the case of a duopoly is examined to illustrate the efficiency of the proposed 
framework and results from the sensitivity analysis with regards to the firms’ nego-
tiation power are presented. Next, the case of an oligopoly comprised by three firms 
is investigated. All the computations were performed using a Dell workstation with 
IntelⓇ  CoreTM i7-5600 CPU @ 2.60 GHz and 16.00 GB RAM. The implementation 
and computations were executed using GAMS 25.1.2 (Rosenthal 2012). CPLEX 
12.8 was used for solving the MILP while BARON 18.5.8 (Tawarmalani and Sahin-
idis 2005) for the global solution of the single-level MINLP problem.

For the customers that have monthly demand between 0 and 14,000 m3 the var-
iable cost of acquisition is VNCctf  , for customers that have demand levels between 
14,000 and 28,000 m3 is 2 × VNCctf  and for the customers that demand more than 
28,000 m3 the variable cost of acquisition is 2.5 × VNCctf  . The fixed acquisition 
cost is assumed to be FNCcf  while the fixed forfeit cost is FDCcf = 2 × FNCcf  . 
The variable dropping cost for each customer ( VDCctf  ), depending on the total 
customer’s demand, is assumed to be 2%, 5% and 10% of their unit service cost.

4.1  Liquid market duopoly

In this case study, the fair customer allocation in a duopoly was considered. Each 
customer can be served by a number of storage tanks and places orders for LOX 
and LNI- there is no LAR demand. Initially, firm A serves 44 customers and firm 
B 38 customers while there exist 16 new customers that provide opportunity for 
market share growth.
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Fig. 6  Production envelopes for the two firms of the duopoly case study
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The companies can acquire products from spot market and the tiers 
considered herein are (i) [0–50,000  m3], (ii) [51,000–450,000  m3], (iii) 
[460,000–7,500,000  m3] with related spot market premiums ( UOCb ) being 1.6, 
1.4 and 1.3. The average plant up-time is considered to be 672 h per month while 
the unit electricity cost is 40 $/MWh. The production envelopes of the two firms 
can be envisaged in Fig. 6 where the values have been normalised. Fig. 7 illus-
trates the market product demand as it is currently covered by firms A and B 
along with the one resulting from the new customers.

First, the model is run with fixed customer assignment decisions and no new cus-
tomers are allowed to be allocated so as to compute the status quo profits of the 
firms. The market share of each company is computed as the percentage of the firm’s 
profit with respect to the overall profit generated by the market. Firm A holds 63.1% 
of the market share while Firm B 36.9%, based solely on the customers served.

4.1.1  Nash equilibrium results

With the status quo profits computed, the game-theoretic model is subsequently 
solved both as an MINLP and MILP and the related results are compared. The 
MINLP model comprises of 2,669 equations, 4,003 continuous variables and 208 
binary variables and is solved to global optimality using BARON 18.5.8 within 62.5 
CPU (s). The Nash equilibrium results in a 7.3% profit increase for firm A while 
firm’s B profit is increased by 34.2% compared to their status quo values and a 
55/45% market share allocation for the two firms respectively. Acquisition of new 
customers is one of the two main causes for the profit increase while the other one is 
the reallocation of existing customers among the firms which leads to reduction in 
distribution costs.

The importance of the game theoretic solution is further underlined when com-
pared to the naive approach where one would seek maximisation of the overall profit 
generated by the two firms regardless of the decentralised structure of the market. 
Such a “naive approach”, results in significant market share reductions for firm A 
down to 50.6% while firm’s B market share is increased to 49.4%. However such 
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Fig. 7  Product demand for LOX and LNI among firm A and B and the demand placed by new and exist-
ing customers
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case is not realisable since it benefits greatly the weak player of the game who 
increases their profit by 72% when firm A achieves merely 3.2% profit increase in 
this case. A graphical illustration of the aforementioned results is given in Fig. 8.

An interesting insight with regards to the effect of negotiation power and the 
game theoretic solution on the overall profit generated by the duopoly is given by 
Fig. 8. The highest overall profit is achieved when the decentralised nature of the 
market is completely neglected and the naive optimisation is employed. The biggest 
impact on the overall profit is attributed the negotiation power of the firm with the 
highest market share before the game, in this case firm A. As indicated by the graph 
in Fig. 8, when A is assumed to be the follower, i.e. when its negotiation power is 
assumed to be negligible ( �A = 0 ), the profit approaches the one computed by the 
naive approach and it is the second highest.

On the other hand, when firm A is the leader, i.e. its negotiation power is assumed 
to be absolute, the overall profit is the lowest as it completely disregards the syner-
gies that can be exploited by the collaboration between the two companies of the 
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Fig. 8  Impact of negotiation power and game theoretic solution on the overall profit generated by the 
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duopoly through the exploitation of inter-firm swaps. The Nash approach provides 
the third highest overall profit, a reflection of the trade-off between the decentralised 
decision making in the duopoly and the fair profit generation.

Considering the costs incurred by the customer demand a comparative analysis 
was conducted for the Nash equilibrium and the solution computed by the naive 
approach. As shown in Fig.  9, following the naive approach the different firms 
do not forfeit any of their customers while on the Nash equilibrium both firms do 
with firm’s B forfeit costs being twice as high as firm’s A. Higher utilisation of 
the inter-firm swap agreements is achieved in the Nash equilibrium which subse-
quently reduces the absolute value of power consumption cost for firm A. Finally, 
only firm A acquires products from the spot market in both cases and following 
the Nash approach the related costs are 37% higher compared to the naive. With 
regards to customer allocation in the Nash equilibrium, firm A forfeits 13 of its 
customers which are acquired by firm B while firm B forfeits 5 customers and 
that are acquired by firm A. As shown in Table  2, 5 of the new customers are 
acquired by firm A and 11 by firm B. The resulting overall customer allocation 
is 47 for firm A and 51 for firm B. It is interesting to note that on the equilib-
rium even though firm A acquires fewer customers than firm B, its new custom-
ers provide higher profit margin compared to the ones forfeited. Next, the MILP 
model was solved for varying numbers of grid points so as to quantify the trade-
off between computational savings and approximation error in comparison to the 
MINLP model. Table 3 summarises the key results for four different levels of dis-
cretisation. In the beginning, 10 grid points were employed for the piecewise lin-
ear approximation of the Nash objective; the model comprised of 2673 equations, 
4013 continuous variables and 208 binary variables with a considerable approx-
imation error of 3.6%. As indicated in Table  3, increasing the number of grid 
points improves significantly the quality of the approximation without resolving 
in extensive computational times. More precisely, the MILP model with 100 grid 
points computes in 0.75s a solution almost identical to the global optimum of the 
original MINLP model with an approximation error of 0.054%.

In addition to the error related to the objective function, the Hamming distance 
between the approximate and the global MINLP solution was computed. The 
Hamming distance is an information theory based similarity criterion that meas-
ures the minimum number of substitutions for two binary arrays to be identical 
(Norouzi et al. 2012). In our case, the binary arrays compared were the optimal 
allocation binary array ( Xc,f  ) between the approximate and the global solution. 
As the number of grid points (k) increases the hamming distance is reduced and 

Table 2  Customer allocation 
and flows between firms on 
the Nash equilibrium for the 
duopoly case study

Acquired by Firm A Acquired 
by Firm B

New customers 5 11
Forfeited by Firm A – 13
Forfeited by Firm B 5 –
Total customers 41 57
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notice that in the case of k=100 even though the overall difference in customer 
allocation between the two firms is 1, the corresponding Hamming distance is 
3 meaning that two more customers have been assigned differently. Finally, we 
implement the Branch and Refine (B&R) algorithm proposed by Bergamini et al. 
(2008) through which the global optimisation of the logarithmic objective func-
tion can be achieved via successive outer approximations (Yue and You 2014b). 
We initiate the algorithm with two grid-points and then grid is propagated using 
the bisection method. The algorithm converges in 2.84s with 9 iterations and a 
total of 11 grid points are used as shown in Fig. 10. The interested readers can 
find more details on the specifics of the algorithm in the works of Bergamini et al. 
(2008) and Yue and You (2014b). 
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Fig. 10  Branch and Refine algorithm’s convergence for the liquid market duopoly. The upper bound 
is derived by solving the outer approximation MILP of the original problem while the lower bound is 
updated by evaluating the original nonlinear objective function on the solution space of the MILP

Table 3  Comparison of the MILP and MINLP model results

a Solved to global optimality using BARON 18.5.8 (Tawarmalani and Sahinidis 2005)
b Solved with the Branch & Refine Algorithm using the bisection grid-propagation (Bergamini et  al. 
2008; Yue and You 2014b)

Model Grid points (k) Error 
(

|�̃�−𝛹 |

𝛹
%

)

CPU (s) Market share 
(Firm A/B %)

Customers 
(Firm A/B)

Ham-
ming 
Distance

MILP 5 12.99 0.29 59.8/40.2 37/61 24
MILP 25 0.656 0.39 54.1/45.9 46/52 24
MILP 50 0.08 0.43 54.8/45.2 42/56 15
MILP 100 0.054 0.75 54.8/45.2 40/58 3
MILP 300 0.021 1.23 54.8/45.2 41/57 –
B&Rb 11 0.015 2.84 54.8/45.2 41/57 –
MINLPa – – 62.3 54.8/45.2 41/57 –
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4.1.2  Negotiation power sensitivity analysis

As mentioned in the Sect. 3.2, the Nash bargaining approach can facilitate the case 
where the different players have unequal negotiation power by adjusting the param-
eter �f  so as to indicate the hierarchy of the market. In order to evaluate the effect 
of the negotiation power on the resulting Nash equilibrium sensitivity analysis was 
conducted with varying the negotiation power of each player from 0 to 1.

Figure  11 illustrates the effect of the negotiation power of each firm on their 
resulting market share at the Nash equilibrium. An interesting observation is that 
when firm B has negotiation power greater than 0.8, i.e. when firm B is strongly 
the leader, its market share approaches the one computed by the naive approach. 
The general trend as expected indicates that the bigger negotiation power a firm has 
the better market share it can achieve at the Nash equilibrium. In the case study 
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Fig. 12  Sensitivity analysis 
results on the customer alloca-
tion among the duopoly firms 
for varying negotiation power 
(MINLP model results)
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examined however, firm A achieves consistently to hold more market share com-
pared to firm B even in the cases that it has little to none negotiation power. This can 
be attributed to its advantageous position at the status quo before the game.

Similar trends were observed with regards to the effect of the negotiation power 
on the equilibrium customer allocation among the firms and this can be envisioned 
by Fig.  12. However, the absolute number that a firm serves can be a misleading 
indicator of the firm’s market position and this can be observed for instance when 
firm A is assumed to have 0.7 negotiation power while firm B 0.3 with the resulting 
customer allocation being 38 and 60 respectively. Comparing this with the firms’ 
market share one can see that even though firm B serves more customers than firm 
A its market share is considerably less (45%) and this is related to the customer’s 
profit margin that each firm serves.

4.2  Liquid market oligopoly

In the present case study the fair customer allocation among 3 different firms was 
examined. A total of 81 customers were considered with 119 storage tanks and 
demand for LOX, LNI and LAR of whom 13 are new. Initially, firm A serves 21 
customers, firm B 17 and firm C 30. In the status quo, before the allocation of the 
new customers, 56% of the market share is held by firm C while firms A and B 
hold 24% and 20% respectively. Moreover, firm B is assumed to have an on-site cus-
tomer with GNI demand. The operational envelopes of the firms can be envisaged in 
Fig. 13. The operational envelopes in this case study can provide some insights with 
regards to the firms’ participation in the game. For instance, Firm A has rather con-
strained production flexibility which may hinder its negotiation potential while the 
same can be speculated for firm B which despite having the nominally bigger opera-
tional envelope, has an onsite customer which constraints its operational flexibility.

First, the Nash model of the case study was formulated so as compute the result-
ing equilibrium. The MINLP model consists of 1,990 equations, 2,815 continu-
ous variables and 270 binary variables and is solved to global optimality in 116.65 
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CPU(s). On the Nash equilibrium, the profit increase is 71.4%, 83.4% and 24.9% for 
firms A, B and C respectively while related market share percentages are 27%, 25% 
and 48%. Compared to their status quo values, as shown in Fig. 14, it is seen that 
the Nash approach benefits the firms proportionally and allows for firm B to achieve 
higher improvement in its resulting market share due to its considerably higher pro-
duction capability. Notice that the change in the market shares of the firms between 
the status quo and the other model formulations is due to the increase of the overall 
supply chain profit due to the entry of new customers. At the status quo, no new cus-
tomers are assigned to the firms and firm C holds 55% of the market. After the status 
quo, new customers are allowed to be allocated among the firms and that leads to 
firm C holding 48% in the Nash equilibrium while still making more profit that its 
status quo due to the newly added customers.

Next, in this case study two variants of the naive approach, where the objective is 
to maximise the overall profit of the market, were examined. In the naive approach 
(I) each player neglects their status quo profits while in the second case (naive 
approach (II)) each player requires their resulting profit to be increased with regards 
to their status quo values. As indicated by Fig. 14, the naive approach (I) benefits 
greatly the weaker firm (B) while the strongest firm (C) loses a significant amount 
of its profit. This instance is unrealistic as no firm would engage in a game where 
it will lose their profit for the sake of market equality. From an operational point of 
view, firm B before the game utilises only 15% of its LOX capacity and 50% of its 
LNI capacity capabilities while firm A is on average at 70% production capacity and 
firm C 60%. Following the naive approach (I) firm A reaches capacity bound on its 
LOX production capability while due its advantageous position, firm B manages to 
reach 55.5% of its LOX and 65% of its LNI production capacity.

A more realistic, yet still not realisable, market allocation is given by the naive 
approach (II) where again firms A and C even though having a slight increase in 
their profit (11.4% for firm A and 0.01% for firm C) their market share is decreased. 
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It is worth mentioning that in this instance the overall profit increase for firm B was 
233.9%, a clear indicator of the lack of fairness in profit allocation.

Comparing even further the Nash solution to the second variant of the naive 
approach, no significant changes are found on the power consumption costs for 
the different firms. On the other hand the overall allocation of the acquisition and 
forfeit costs are different reflecting the customer allocation shift among the two 
approaches. The allocation of the different costs among the three firms is shown 
in Fig. 15. In both of the cases, no firm resorts to spot market acquisition while 
on the Nash equilibrium the overall power consumption costs are 0.4% lower 
compared to the naive (II) approach. In terms of overall costs, the Nash approach 
inflicts 3% higher costs on the market compared to the naive (II) approach. The 
final allocation of the customers between the three firms is given in Table 4. Firm 
A gains 5 customers from firm C, 1 from firm B and 5 new customers. Firm B 
gains 4 new customers and 1 from firm C while firm C gains 5 from firm A, 2 
from firm B and 4 new customers. On the Nash equilibrium, thus, firm A serves 
27 customers, firm B 19 and firm C 35.
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Fig. 15  Cost breakdown for the oligopoly case study following following the Nash and naive (II) 
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Table 4  Customer allocation 
and flows between firms on 
the Nash equilibrium for the 
oligopoly case study

Acquired by 
Firm A

Acquired by 
Firm B

Acquired 
by Firm C

New customers 5 4 4
Forfeited by Firm A – – 5
Forfeited by Firm B 1 – 2
Forfeited by Firm C 5 1 1
Total customers 27 19 35
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Figure 16 provides an in-depth insight of the financial motivation on the cus-
tomer allocation between the firms that comprise the oligopoly. As shown by 
Fig.  16 the general trend indicates that customers are allocated, following the 
Nash approach, to the firms for whom they provide the highest profit margin. The 
curved arrows indicate re-assignment of existing customers from their status quo 
firm to their Nash equilibrium firm while the star signed bars indicate the alloca-
tion of new customers to the firms. When customers are re-assigned to different 
firms they tend to be allocated to firms that provide better profit margin with the 
exception when the new company is the one with the majority of market share, 
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Fig. 16  Normalised customer margin allocation for the different firms on the Nash equilibrium for new 
customers ( ⋆ ) and customers that were re-assigned ( ↶ ∕ ↷)
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Fig. 17  Sensitivity analysis results of varying operational flexibility of Firm’s B and its Nash equilibrium 
market share
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e.g. customers c2 and c5. The re-allocation of customer c16 is another example 
that highlights the value of game theoretic solution since it is assigned to firm A 
for which higher profit can be achieved compared to the negative margin for the 
case of firm C.

Finally, the effect of operational flexibility on a firm’s resulting market share 
at the Nash equilibrium was examined. As shown by Fig. 17, the flexibility of the 
firm’s liquifier loading requirements appears to have significant negative impact 
on the firm’s resulting market share. The firm’s liquifier loading requirements was 
altered by manipulating the parameter Vf

GNILiq
 as shown by Eq.  (11). As indicated 

by Fig. 13, firm B in the nominal case has the biggest production flexibility com-
pared to the other two firms. By increasing the minimum load of the liquifier its 
production envelope reduces and thus its ability to achieve high market share on the 
equilibrium is reduced. The gas product demand commitments of the firm have an 
inverse proportional impact on the market share since their reduction allows the firm 
to achieve improved market share due to increased flexibility. More specifically, by 
decreasing the GNI demand by 20% the firm achieves 5% higher market share com-
pared to the nominal case.

5  Concluding remarks

Considering explicitly the decentralised nature of contemporary supply chain sys-
tems when optimal strategic decisions are sought is of great importance. In this 
paper the problem of fair customer allocation in oligopolies was addressed with 
emphasis on the industrial liquid markets. A novel single-period mathemati-
cal model was introduced for the problem under study and in order to address the 
fairness considerations the Nash bargaining was proposed. The nonlinear nature 
of the Nash approach resulted in the model formulation as an MINLP for which 
globally optimal solutions were computed. A separable programming approach was 
also discussed for its approximate solution as an MILP with considerable compu-
tational savings. As shown by the case studies examined the MILP model solution 
asymptotically converges to the global solution of the MINLP as the number of 
points increases. The results indicate the computation of more realistic solutions that 
account for market power dynamics when the Nash approach is employed in com-
parison to a centralised naive profit maximisation of the entire system. Future work 
aims at the extension of the model to the multi-period case in order to account for 
capacity expansion considerations and the impact of customer contract design on the 
fair allocation as well as the exploration of uncertainty considerations through the 
proposed MILP formulation.
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