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Abstract

The quantitative description of the dynamic behaviour of reacting systems requires
the identification of an appropriate set of kinetic model equations. The selection of the
correct model may pose substantial challenges as there may be a large number of can-
didate kinetic model structures. In this work, a model selection approach is presented
where an Artificial Neural Network classifier is trained for recognising appropriate ki-
netic model structures given the available experimental evidence. The method does
not require the fitting of kinetic parameters and it is well suited when there is a high
number of candidate kinetic mechanisms. The approach is demonstrated on a simu-
lated case study on the selection of a kinetic model for describing the dynamics of a
three-component reacting system in a batch reactor. The sensitivity of the approach
to a change in the experimental design and to a change in the system noise is assessed.

keywords: model selection, model discrimination, identifiability, machine learning,
design of experiment

1 Introduction

Modelling the kinetic behaviour of chemical reactions requires the construction of systems
of differential and algebraic equations potentially involving a high number of state variables
and kinetic parameters. The identification of kinetic models requires i) the selection of an
appropriate functional form for the model equations and ii) the estimation of its kinetic
parameters from experimental data (Bonvin et al., 2016). Both stages may pose significant
challenges to the modeller. More specifically, there may be significant uncertainty on the
relevant reactions occurring in the system and on the most appropriate functional forms for
describing their dynamics. Furthermore, even if an appropriate model structure is selected,
the estimation of its kinetic parameters may be impossible to perform due to identifiability
problems associated to the proposed kinetic model structure (Raue et al., 2009).

A variety of tools for model validation have been proposed in the literature to leverage
modelling and experimental efforts in kinetic modelling studies. Model building procedures
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based on data fitting start with the construction of a number of candidate model structures
(Asprey and Macchietto, 2000). An identifiability analysis is then performed to evaluate
if the parameters involved in the candidate models can be estimated from experimental
data (Cobelli and Di Stefano, 1980; Galvanin et al., 2013). Models which do not pass
the identifiability check are rejected at this stage. It is important to observe that even
the exact model may be rejected if it does not satisfy the identifiability requirement. The
kinetic parameters of the remaining models are then estimated fitting available measurements
(Bard, 1974) and the fitting quality is assessed with a statistical test on the goodness-
of-fit (MacKay, 1992; Silvey, 1975). Information-theoretic approaches for model selection
can be employed to choose the best fitting model penalising unnecessarily complex model
structures (Burnham and Anderson, 2002). Popular criteria for model selection are the
Akaike information criterion (AIC) (Akaike, 1974), which lies its foundations in frequentist
inference, and the Bayesian information criterion (BIC) (Schwarz, 1978). If more than one
model is found adequate to represent the data, one may proceed by designing additional
experiments with the aim of discriminating among the competing model structures (Buzzi-
Ferraris et al., 1990; Olofsson et al., 2019) and then for improving parameter precision
(Franceschini and Macchietto, 2008).

Whenever the selection of a physics-based kinetic model is impractical, e.g. because of
an extremely high number of possible reaction pathways, one may prefer to invest modelling
efforts in the identification of a data driven model. This may be any parametric model, e.g.
a polynomial or a response surface (Box and Draper, 1987), which provides a convenient
representation of the data (Bonvin et al., 2016). The structure of data driven models typi-
cally does not reflect the inner mechanisms of the physical system. Data driven modelling
approaches represent one of the foundational paradigms in machine learning technologies
(Barber, 2011; LeCun et al., 2015). Data driven models and machine learning approaches
have already found successful application in many contexts in chemical engineering (Venkata-
subramanian, 2019), particularly in the fields of materials design (Janet et al., 2018; Hou
et al., 1997), process operations (Lopes et al., 2018; Molga et al., 2006; Petsagkourakis et al.,
2019; Quadros et al., 2005) and fault diagnosis (Zhao et al., 2019).

A class of machine learning models which has recently seen an increase in popularity is the
Artificial Neural Network (ANN) model (Krizhevsky et al., 2012; Russell and Norvig, 2016).
The recent success of ANNs is associated primarily with 1 ) their flexibility in approximating
any nonlinear continuous function (Hornik et al., 1989) 2 ) the development of efficient algo-
rithms for ANN training (Geron, 2017; Hinton et al., 2006) and 3 ) a steady decrease in the
cost of computational power (Russell and Norvig, 2016). In chemical engineering, ANNs have
been applied to address both regression and classification problems (Himmelblau, 2008; Lee
et al., 2018). ANNs were employed for nonlinear system identification (Dua, 2011; Kramer,
1991; Petsagkourakis et al., 2019; Traver et al., 1999), model reduction (Prasad and Be-
quette, 2003) and process control (Bloch and Denoeux, 2003; Hussain and Kershenbaum,
2000). ANN-based classifiers have been used to support drug discovery (Wang et al., 2005),
catalyst design (Goldsmith et al., 2018), reaction prediction (Coley et al., 2019; Kayala and
Baldi, 2012; Wei et al., 2016) and fault detection (Rengaswamy and Venkatasubramanian,
2000; Suewatanakal, 1993). In contrast to physics-based models, the estimation of param-
eters in ANNs typically requires substantial amounts of data. Furthermore, it is extremely
challenging to assign physical significance to the ANNs parameters and accurate extrapola-

2

                  



tion beyond the conditions used for the identification of the ANN is generally not possible.
In this work, a novel framework for the selection of physics-based kinetic models is pro-

posed. In the proposed framework, an ANN-based classifier is trained from in-silico ex-
perimental data with the aim of recognising the most appropriate kinetic model given the
available experimental evidence. It is shown that the approach is effective for discriminating
among rival model structures even when the kinetic models are not structurally identifiable.
In fact, the estimation of kinetic parameters is not required in the procedure.

The present manuscript is structured as follows. A general overview on the ANN model
is given in Section 2. The proposed ANN-based kinetic model recognition framework is
detailed in Section 3. The framework is demonstrated on a simulated case study, which is
detailed in Section 4. Results are presented and discussed in Section 5.

2 Artificial Neural Network classifier

Artificial Neural Networks are parametric models whose structure is loosely inspired by bi-
ological neural networks. In biological brains, a high number of interacting neural cells
respond to input electrical stimuli by firing (i.e. transmitting) an electrical signal to down-
stream neural cells in the network. First attempts of modelling the logic behaviour of neural
cells led to the development of the single layer perceptron (Rosenblatt, 1962), represented
in Figure 1a. The perceptron is a function which transforms an Nn× 1 input array n of real
values into a scalar output p. In the analogy with the neural cell, the elements of n represent
the signals received from the upstream neurons and p represents the signal transmitted to
the downstream neuron. The single layer perceptron is described by

p = ϕ(wTn + b) (1)

In (1), w is an Nn × 1 array of parameters, b is a bias parameter and ϕ represents an
activation function. Popular choices for the activation function are the rectified linear unit
(ReLU), the sigmoid and the hyperbolic tangent (Russell and Norvig, 2016).

A feedforward ANN can be built by arranging a set of perceptrons into layers where the
output of each layer is fed as input to the following layer in the network. The structure of
a two-layers feedforward ANN is given in Figure 1b, where grey-coloured circles represent
the perceptrons. The last layer in the network is called the output layer, while the previous
layer is a hidden layer.

Let Nh be the number of perceptrons in the hidden layer. The two-layers feedforward
ANN represented in Figure 1b is described by the expression

p = ϕo[W
T
o ϕh(W

T
hn + bh1h) + bo1o] (2)

In (2), p is a Nm×1 array of output values; Wo [Nh×Nm] and Wh [Nn×Nh] are matrices of
network parameters associated with the output layer and with the hidden layer respectively;
scalars bh and bo are bias parameters and 1h [Nh×1] and 1o [Nm×1] are arrays whose entries
are all equal to 1. The functions ϕo and ϕh represent respectively the activation function in
the output layer and the activation function in the hidden layer.
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(a) (b)

Figure 1: (a) Single layer perceptron; (b) Two-layers Feedforward Artificial Neural Network,
i.e. a multilayer perceptron structure. In (b), grey-coloured circles represent the perceptrons.

When the ANN is employed for classification purposes, the aim is to assign a label, i.e. a
categorical variable l ∈ {1, ..., Nm}, to the input array from a set of Nm possible labels. For
such applications, a popular choice for the activation function ϕo in the output layer is the
softmax (Arbib, 2003). The softmax function returns a normalised Nm× 1 output p, whose
elements pk with k = 1, ..., Nm satisfy the condition

∑Nm
k=1 pk = 1. Hence, pk ∀ k = 1, ..., Nm

may be interpreted as a predicted probability that the input belongs to the k-th class. The
label l̂ assigned by the ANN classifier to the input is then computed as the index associated
to the largest element of p.

l̂ = arg max
k
pk (3)

The construction of an ANN-based classifier requires the selection of a structure for the
network, i.e. the selection of the number of hidden layers and the number of perceptrons
per layer (Dua, 2010). Once the structure of the ANN is fixed, the training of the ANN (i.e.
the tuning of the ANN parameters) is performed through a process of regularised regression
(Russell and Norvig, 2016). The training involves the fitting of a dataset of labelled input
arrays Ψ = {(ni, li) ∀ i = 1, ..., Nψ}, where Nψ represents the number of elements in the
dataset. Since the number of parameters involved in an ANN structure is typically large, the
training may require substantial amounts of data. If data are obtained from experiments, the
identification of an ANN may be impractical because of a high requirement for experimental
resources. However, simulated experiments offer an interesting alternative and can be used
for generating in-silico large amounts of data at negligible cost. The possibility of training
ANNs from synthetic data has been demonstrated in several works in the literature (Bates
et al., 2018; Jaderberg et al., 2014; Le et al., 2017; Mnih et al., 2015).

4

                  



3 Kinetic model recognition

We assume that a setup is available for conducting kinetic experiments on a reacting system
of interest. In the setup, u is an Nu × 1 array of manipulated system inputs and y is an
Ny × 1 array of state variables that can be sampled over time. The variable time is denoted
as t. Nm potential model structures are proposed for describing the dynamic behaviour of
the system:

fl(ẋl,xl,u, t,θl) = 0
ŷl = hl(xl)

∀ l = 1, ..., Nm (4)

In (4), quantities appearing with subscript l refer to the l-th candidate model. More
specifically, fl [Nf,l × 1] and hl [Ny × 1] are arrays of model equations characterising the
structure of the l-th kinetic model. xl [Nx,l × 1] and ẋl [Nx,l × 1] are, respectively, an array
of state variables and an array of time derivatives for the state variables involved in the l-th
model. ŷl is the Ny × 1 array of predictions associated to the l-th model for the measurable
system states y. Quantity θl ∈ Θl represents the Nθ,l×1 array of kinetic parameters involved
in the l-th model structure. The aim of the modeller is to select the most appropriate kinetic
model among the Nm candidates.

A model selection approach is proposed in this work where an ANN-based classifier is used
to recognise the most appropriate kinetic model based on available experimental evidence.
The framework is given in Figure 2. The procedure starts from the definition of a library of
possible kinetic model as in (4) and an experimental design, which defines the conditions for
the collection of N samples of y in the experimental design space Φ. It is also assumed that
the measurement error present in the system is fully characterised as uncorrelated Gaussian
noise.

Let ϕj ∈ Φ ∀ 1, ..., N be the experimental conditions for the j-th designed sample.
The designed experiments are conducted on the available experimental setup leading to the
collection of the samples yj with j = 1, ..., N . The procedure then involves the identification

of an ANN-based classifier for assigning the most appropriate model class l̂ ∈ {1, ..., Nm} to
the array of experimental data n = [yT1 , ...,y

T
N ]T .

The identification of the classifier is performed in two stages:

1. In-silico data generation stage. Samples are generated in-silico by integrating the
candidate model equations at the conditions defined by the chosen experimental design.
For each model structure l (∀ l = 1, ..., Nm), the in-silico experimental campaign is
repeated multiple times using different values for the parameters θl ∈ Θl. A labelled
dataset Ψ is then built from the simulated samples where the data generated in each
simulated campaign are labelled with the model structure l used to generate the data.

2. ANN construction and identification stage. The labelled dataset is used for the con-
struction, training, validation and testing of an ANN-based classifier. The aim at this
stage is to make the ANN learn about the physical system by using experimental data
generated in-silico.
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Figure 2: Proposed ANN-based approach for kinetic model recognition. In the framework,
an ANN-based classifier is trained from in-silico experimental data for selecting the most
appropriate kinetic model based on the available experimental evidence.

In the following subsections, the aforementioned steps in the procedure are further de-
tailed. The steps are demonstrated on a simulated case study in Section 4 on a three-
components reaction conducted in a batch reactor.

3.1 In-silico data generation

A labelled dataset Ψ is constructed from experimental data generated in-silico as in (5). In
Ψ, the elements in the generic labelled array ni [N ·Ny×1] represent simulated measurements,
which are obtained by integrating the equations of the kinetic model l = li.

Ψ = {(ni, li) ∀ i = 1, ..., Nψ s.t. li ∈ {1, ..., Nm}} (5)

Dataset Ψ shall be built including a comparable number of elements for each model
structure l = 1, ..., Nm. In (6), the generic labelled array ni is defined as the sum of two
contributions: 1 ) a prediction for the array of experimental data n̂i [N · Ny × 1] and 2 ) a
random function ε [N ·Ny × 1].

ni = n̂i + ε(n̂i) ∀ i = 1, ..., Nψ (6)

The prediction term n̂i is defined as

n̂Ti = [ŷl(ϕ1,θl)
T , ..., ŷl(ϕN ,θl)

T ]θl=U(Θl),l=li

∀ i = 1, ..., Nψ

(7)
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In (7), predictions for the N samples are computed from the li-th kinetic model using a
random value for its kinetic parameters θli . The parameter value is set equal to a random
function U(·), which returns a realisation of a multivariate uniform distribution defined over
its argument. More specifically, the function U(Θl) returns a random parameter set from the
feasible parameter domain Θl. A uniform distribution is employed to avoid the introduction
of bias on the possible values of the model parameters.

The random function ε is introduced in (6) to simulate measurement noise and it should
be chosen to represent the level of noise in the physical system. In this work measurement
errors are assumed to be uncorrelated and normal with zero mean. However, different noise
models are considered to take into account both a constant noise variance and a noise variance
proportional to the measured value. The noise model is defined as

ε(n̂i) ∼ N (0,Σ(n̂i)) (8)

In (8), N (0,Σ) is a multivariate normal distribution with mean zero and covariance Σ
[N · Ny × N · Ny]. The covariance Σ is a diagonal matrix whose diagonal elements are
computed as the sum of a term proportional to the predicted data and a constant term. The
jk-th element of Σ, namely σjk, is defined as

σjk =

{
σ2
r · 1

100
· n̂i,j + σ2

c if j = k
0 if j 6= k

∀ j, k (9)

In (9), n̂i,j represents the j-th element in n̂i. Scalar quantities σr and σc are user-defined
parameters that respectively quantify the contribution of relative and constant variance to
the total noise variance.

3.2 ANN construction and identification

Initially the dataset is split into three subsets: i) a training set Ψtraining; ii) a validation
set Ψvalidation; iii) a test set Ψtest. Typically the dataset is split in the subsets following
the 60-20-20 rule (Geron, 2017). The accuracy of ANN-based classifiers in representing a
labelled dataset is quantified with the categorical cross entropy (Russell and Norvig, 2016).
The parameters of the ANN are estimated with the aim of minimising the cross entropy
on the training set Ψtraining. The cross entropy on the validation set Ψvalidation is monitored
during the regression to support the detection of overfitting (Geron, 2017). The accuracy on
the validation set is also used to perform cross-validation and select among different ANN
structures (Geron, 2017). More specifically, the structure of the ANN associated to the
highest validation accuracy at the end of the training process is selected as the optimal ANN
structure.

When the network is identified, the accuracy is evaluated on the test set Ψtest. This
provides an unbiased quantification of the ANN accuracy on the classification of unseen
data, i.e. data not used in the training process nor in the ANN structure selection process.
The test accuracy is defined as the percentage of correctly labelled elements in the test set
as in (10).

Test Accuracy =
|{i ∈ {1, ..., Nψ} s.t. (ni, li) ∈ Ψtest ∧ l̂i = li}|
|{i ∈ {1, ..., Nψ} s.t. (ni, li) ∈ Ψtest}|

· 100% (10)
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In (10), l̂i and li are respectively the predicted and the actual model structure for the
i-th input in the dataset Ψ; the symbol | · | denotes the cardinality operator. The accuracy
on the test set is presented by means of a Nm ×Nm table Γ, namely a confusion matrix. In
this manuscript, the jk-th element of Γ, i.e. γjk, is defined as

γjk =
|{i ∈ {1, ..., Nψ} s.t. (ni, li) ∈ Ψtest ∧ li = j ∧ l̂i = k}|
|{i ∈ {1, ..., Nψ} s.t. (ni, li) ∈ Ψtest ∧ li = j}| (11)

In (11), γjk represents the ratio between the number of class j elements in the test set
Ψtest that are classified as class k elements and the number of class j elements in Ψtest.
When no misclassification occurs, matrix Γ is the Nm×Nm identity matrix. As an example,
a confusion matrix is reported in Figure 3 assuming Nm = 3 candidate kinetic models. In
the given example, 85% of model type 1 in the test set are correctly classified while 5% are
misclassified as type 2 and 10% as type 3; 96% of model type 2 in the test set are correctly
classified while 4% are misclassified as type 1; 100% of model type 3 in the test set are
classified correctly.

Under the assumption that the noise model implemented in ε is representative of the mea-
surement noise in the system, the test accuracy and the confusion matrix can be interpreted
as indexes of ANN reliability on the classification of real system data. A dense confusion
matrix Γ indicates that the ANN is not reliable and that models are not distinguishable
given the level of system noise and the selected experimental design. The ANN is considered
reliable if Γ tends to the identity matrix, i.e. most/all extra-diagonal elements in Γ are null
or close to zero. A reliable ANN may be employed to recognise the most appropriate kinetic
model from unlabelled data collected in kinetic experiments.

If the confusion matrix is non-diagonal for any choice of the experimental design, this may
highlight the presence of structural distinguishability issues in the kinetic model structures
(Walter and Pronzato, 1997). As an example, it may happen that an extra-diagonal element
γjk is nearly equal to the corresponding diagonal element γjj on the same row (i.e. γjk ' γjj
for some j and k 6= j). This highlights that model j and model k may produce coincident
predictions. In different words, models j and k may be equivalent representations of the
phenomenon and a reformulation of their model structures may be required.

4 Case study

The procedure described in Section 3 is demonstrated in this section on a simulated case
study to demonstrate that ANN classifiers can successfully be employed to recognise kinetic
model structures from experimental data. The performance of the proposed framework is
evaluated at variable experimental conditions and different levels of measurement noise in
the system.

4.1 Reacting system

The considered chemical system is a three-component reacting mixture, where chemical
species are denoted as A, B and C. The concentration of the components in the mixture is
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Figure 3: Example of confusion matrix with Nm = 3 kinetic model structures.

denoted as Ci [mol m−3] ∀ i ∈ {A,B,C}. The reaction network involves Nr = 3 reactions as
shown in (12), where rj [mol m−3 s−1] with j = 1, ..., Nr denote the reaction rates.

A
r1−→ B; A

r2−→ C; B
r3−→ C (12)

The experiments are assumed to be conducted in a perfectly mixed and isothermal batch
reactor. A sample is constituted by a set of measured concentration for all the components in
the mixture, i.e. y = [CA, CB, CC]T . Initial concentrations in the experiments are assumed
to be fixed, i.e. CA(0) = 100 mol m−3, CB(0) = 0 mol m−3, CC(0) = 0 mol m−3. The
experimental conditions that can be controlled for the collection of a sample are 1 ) the
temperature T [K] in the range 573 - 673 K and 2 ) the sampling time ts [s] in the range
100.0 - 300.0 s. These constitute independent directions in the experimental design space
Φ = {(T, t) s.t. 573 K ≤ T ≤ 673 K ∧ 100.0 s ≤ ts ≤ 300.0 s}. It is also assumed that
for all conditions in the experimental design space, the observed conversion of reactant A,
i.e. XA, is between 0.05 and 0.95 and that the selectivity with respect to product B and C,
i.e. SB and SC respectively, is always above 0.05. Constraints on conversion and selectivity
are assumed for preventing the system from exhibiting a limit-case behaviour, e.g. cases in
which A does not react or cases in which the system tends to the single-reaction behaviour
and only B or C is produced. Such constraints represent prior knowledge on the system
kinetics and will be employed to bound the feasible parameter domains of the candidate
models.

4.2 Candidate kinetic models

The system is described by the general set of equations

dCi
dt

=
Nr∑

j=1

νijrj ∀ i ∈ {A,B,C} (13)
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In (13), νij is the stoichiometric coefficient associated to the i-th component in the j-th
reaction. Nonetheless, there is uncertainty on which is the appropriate functional form for
the reaction rate terms rj with j = 1, ..., Nr. A set of Nm = 8 candidate kinetic models is
assumed. The possible functional forms for the rates in the Nm model structures are reported
in Table 1. Kinetic models l = 1, ..., 4 assume a series kinetic mechanism while models
l = 5, ..., 8 assume a parallel kinetic mechanism. kj ∀ j = 1, ..., Nr represent Arrhenius-type
rate constants and are given by

kj = Aje
−Ea,j

RT ∀ j = 1, ..., Nr (14)

where Aj ∀j = 1, ..., Nr are the pre-exponential factors and Ea,j [J mol−1 K−1] ∀j = 1, ..., Nr

represent activation energies. The parameters involved in the kinetic model structures are
θl = [A1, A2, A3, Ea,1, Ea,2, Ea,3] ∀ l = 1, ..., Nm.

In kinetic models l = 1, ..., 4, the rate constant k2 is multiplied by zero. Therefore, the
predicted concentration profiles are insensitive to a change in the kinetic parameters A2 and
Ea,2. Analogously to models l = 1, ..., 4, in models l = 5, ..., 8 the kinetic constant k3 is
multiplied by zero and concentrations predictions are insensitive to a change in A3 and Ea,3.
Therefore, none of the candidate models satisfies the requirement of structural identifiability
(Cobelli and Di Stefano, 1980; Raue et al., 2009).

The feasible parameter domain for each kinetic model l = 1, ..., Nm is defined as the set
of real values such that: i) pre-exponential factors and activation energies lie between lower
and upper physical bounds; ii) the predicted conversion of reactant A is between 0.05 and
0.95 at all conditions in the experimental design space; iii) the predicted selectivity towards
components B and C is above 0.05 at all conditions in the design space. Mathematically, this
is described by the set of constraints in the form (15), where symbols X̂i,l and Ŝi,l represent
model l predictions for conversion and selectivity for the i-th component in the mixture.

Θl = {θl ∈ RNθ,l s.t. 100 ≤ Aj ≤ 200 ∀ j = 1, ..., Nr ∧
45 ≤ Ea,j ≤ 90 ∀ j = 1, ..., Nr ∧
0.05 ≤ X̂A,l ≤ 0.95 ∀ϕ ∈ Φ ∧
0.05 ≤ ŜB,l ∀ϕ ∈ Φ ∧
0.05 ≤ ŜC,l ∀ϕ ∈ Φ }

∀l = 1, ..., Nm

(15)

Prior knowledge on conversion and selectivity is included in the definition of the param-
eter domains primarily to generate datasets for ANN training using parameter values that
are in agreement with the known physical constraints on the system behaviour.

4.3 Methods

An algorithm reflecting the framework illustrated in Section 3 was implemented in Python
3.5 (Python Core Team, 2018). The aim in this case study is to assess the classification
capabilities of ANNs in recognising the most appropriate kinetic model from experimental
data. Different cases are proposed to assess the sensitivity of the ANN accuracy to the choice
of the experimental design and to the measurement noise in the system.
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Table 1: Candidate functional forms for the reaction rates. Kinetic models l = 1, ..., 4 assume
a series mechanism while models with l = 5, ..., 8 assume a parallel mechanism.

series parallel

Label 1 2 3 4 5 6 7 8

r1 k1 · CA k1 · CA k1 · C2
A k1 · C2

A k1 · CA k1 · CA k1 · C2
A k1 · C2

A

r2 k2 · 0 k2 · 0 k2 · 0 k2 · 0 k2 · CA k2 · C2
A k2 · CA k2 · C2

A

r3 k3 · CB k3 · C2
B k3 · CB k3 · C2

B k3 · 0 k3 · 0 k3 · 0 k3 · 0

• Case 1. A full factorial experiment design is assumed with three levels for the temper-
ature T = {573, 623, 673} K and three levels for the sampling time ts = {100, 200, 300}
s. Hence, the design consists of N = 9 samples of y, i.e. N · Ny = 27 concentration
measurements. The measurement noise in the system is assumed to be characterised
by σr = 2.0 and σc = 0.04.

• Case 2. A factorial design with three levels for the temperature T = {573, 623, 673}
K and one level for the sampling time ts = {300} s is considered. The measurement
noise is the same as in case 1 with σr = 2.0 and σc = 0.04.

• Case 3. The same design as in case 1 is adopted but assuming a higher measurement
noise, characterised by σr = 5.0 and σc = 10.0.

In all cases, a dataset Ψ is constructed with Nψ = 1000 labelled elements. The dataset
Ψ is split including 600 elements in the training set, 200 elements in the validation set and
200 elements in the test set. The Python library Keras 2.2.4 is used for the implementation
and training of the ANN classifiers (Chollet et al., 2015). The Adam algorithm (Kingma and
Ba, 2014) is employed for the training of the ANNs setting a dropout regularisation of 10%
(Geron, 2017). A two-layer ANN structure is adopted in all cases where the Rectified Linear
Unit (ReLU) activation function is used in the hidden layer (Geron, 2017). The number
of perceptrons in the hidden layer, i.e. Nh, is optimised though grid search over the range
1− 400 (Geron, 2017). Data are mean-centred and normalised before being fed to the ANN
by using the function StandardScaler implemented in the Python library scikit-learn 0.20.1
(Pedregosa et al., 2011).

The classification capabilities of the ANN-based classifier are measured in terms of ac-
curacy in predicting the unseen data in the test set Ψtest. The test accuracy is evaluated
according to (10). The confusion matrix, whose elements are evaluated according to (11), is
also reported for each of the aforementioned cases.

5 Results

The number of nodes in the hidden layer of the ANN is optimised through grid search. The
accuracy of the ANN in representing the validation set is reported in Figure 4 as a function

11

                  



of the number of hidden nodes for all the cases considered in the study. In each case, the
smallest number of hidden neurons associated with the highest validation accuracy is selected
as the optimal number of neurons in the hidden layer.

The designed samples in case 1 are plotted in Figure 5a. In case 1, a maximum validation
accuracy was achieved with a two-layer ANN with Nh = 100. A test accuracy of 98.0% was
achieved on the classification of 200 unseen kinetic models in the test set. The confusion
matrix Γ related to case 1 is proposed in Figure 5b. As one can see from Figure 5b, no
misclassification occurred in relation to kinetic models 1, 3, 4, 5, 6 and 8, i.e. the diagonal
elements associated to the aforementioned models are equal to 1. A fraction of kinetic models
2 and 7 was misclassified in case 1. More specifically, 4% of model 2 instances in the test set
were misclassified as model 1 and 14% of model 7 were misclassified as model 8.

The three samples designed in case 2 are plotted in Figure 6a. An optimal number of
hidden nodes Nh = 400 was selected in this case and the achieved test accuracy was 75%.
The corresponding confusion matrix is shown in Figure 6b. One can see that the confusion
matrix is denser than in case 1, i.e. more extra-diagonal elements differ from zero. From
Figure 6, it can be appreciated that only the diagonal element γ33 is equal to 1. In different
words, all model 3 elements in the test set are correctly classified by the ANN while a certain
degree of misclassification is observed for the other model classes. In particular, element γ67

in the confusion matrix in Figure 6 is equal to 0.62. Hence, 62% of model 6 elements in the
test set were misclassified as model 7.

In case 3, the same experimental design considered in case 1 is assumed and it is shown
in Figure 7a. An optimised number Nh = 220 of hidden nodes was selected through grid
search in case 3. The high system noise assumed in case 3 has a negative impact on the
test accuracy, which reduces to 64.5%. As one can see from the confusion matrix shown in
Figure 7b, a certain degree of misclassification is present for all model classes, i.e. none of
the diagonal elements in Γ is equal to 1.

Table 2: Summary of results for the considered cases. The test accuracy is measured on the
classification of 200 unseen arrays of data.

Case Case Hidden Test
number description nodes Nh Accuracy

1 base case 100 98.0%
2 reduced samples 400 75.0%
3 increased noise 220 64.5%

5.1 Results discussion

The results obtained in the three cases are summarised in Table 2. From Table 2, one can see
that either a reduction in the number of designed samples or an increase in the system noise
contribute to a reduction of the test accuracy. Some degree of misclassification was present
in all cases, i.e. some extra-diagonal elements in the confusion matrices are different from
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Figure 4: Accuracy of a two-layers ANN in representing the validation set as a function of
the number of neurons in the hidden layer Nh. The validation accuracy is reported for the
three cases considered in this study.

(a) (b)

Figure 5: Case 1: (a) Adopted experiment design; (b) Confusion matrix Γ. In Case 1, the
system noise is characterised by a σr = 2.0 and σc = 0.04. A test accuracy of 98.0% was
achieved by the ANN classifier in Case 1.

zero (see Figure 5b, Figure 6b and Figure 7b). Nonetheless, it is observed that the confusion
matrix in all cases is block diagonal, where the bottom-left and the top-right blocks are
equal to the 4 × 4 null matrix. This observed patterns in the confusion matrix Γ indicate
that models with l = 1, 2, 3, 4 are never misclassified as models with l = 5, 6, 7, 8 and vice-
versa. In different words, the ANN classifiers never confound series with parallel reaction
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(a) (b)

Figure 6: Case 2: (a) Considered experiment design; (b) Confusion matrix Γ. In Case 2,
the system noise is characterised by a σr = 2.0 and σc = 0.04. A test accuracy of 75.0% was
achieved in Case 2.

(a) (b)

Figure 7: Case 3: (a) Adopted experiment design; (b) Confusion matrix Γ. In Case 3, the
system noise is higher with respect to the noise in Case 1 and in Case 2 and it is characterised
by σr = 5.0 and σc = 10.0. A test accuracy of 64.5% was achieved by the ANN classifier in
Case 3.

mechanisms and vice-versa.
The highest test accuracy, i.e. 98.0%, was achieved in case 1 where the largest number of

designed samples was assumed and a low level of system noise was present. Nonetheless, as
one can see from Figure 5b, a fraction of kinetic models 2 was misclassified as model 1 and
some model 7 elements were classified as model 8. The output p = [p1, ..., p8] of the softmax
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function, computed as in (2), is reported in Table 3 for the misclassified instances. For all
the misclassified elements in the test set (indicated in Table 3 as α, β, γ and δ), the softmax
output associated to the actual model type is comparable in magnitude to the largest p,
which determines the predicted model type. As an example, element α in Table 3 is a model
2 element that is misclassified as model 1 with p1 = 0.48 and p2 = 0.42. Hence, a high score
is assigned also to the actual model class, indicating that the ANN cannot distinguish the
predicted and the actual model given the chosen experimental design and noise level in the
system.

A principal component analysis (PCA) (Jackson, 2003) is presented in this section to
further diagnose the reason for the misclassification in case 1. A multivariate latent variable
model was used to visualise the 200 labelled inputs in the test set. Since in case 1 each
labelled input is a 27 × 1 array of measurements, the multivariate model includes 27 prin-
cipal components. The first and the second principal component, selected for visualisation
purposes, account for 83.7% of the variance in the test set.

The scores in the latent space are shown in Figure 8 as circle-shaped symbols. More
specifically, in Figure 8, hollow circles represent correctly classified models in the test set
and solid dots represent the misclassified instances. Arrows in the centre of Figure 8 repre-
sent the projections of the 27 directions of the original input space on the two-dimensional
latent space. As one can see from Figure 8, the 27 directions appear as clustered in three
distinct groups. More specifically, the clustered directions are associated to measurements of
component A (left), measurements of B (bottom-right) and measurements of C (top-right).

The misclassified elements on the bottom-right in Figure 8, i.e. β, γ and δ, represent
model 7 elements that were classified as model 8. In the misclassified model 7 input arrays,
the concentration of B is dominant in the samples, in fact the points lie in the bottom-right
part of the latent variable space. Hence, in the misclassified model 7 instances, reaction
A→ B is much faster than reaction A→ C, i.e. r1 � r2, and the system tends to the single
reaction behaviour. As one can see from Table 1, the difference between the structures of
model 7 and model 8 is in the functional form of r2. Thus, when r1 � r2, model 7 and model
8 tend to become indistinguishable. In these limit conditions, the chosen experiment design
may not be optimal for allowing a clear discrimination between the structures of model 7
and model 8.

The misclassified element on the left in Figure 8, i.e. α, represents a model 2 element
that was misclassified as a model 1. Element α is aligned to the directions accounting for the
measurements of A in the samples. This misclassified element represents a limit case where
the concentration of A in the samples is high and it is associated to a model 2 instance where
both reaction A→ B and B→ C are slow. Also in this case misclassification occurs at limit
conditions and the selected experiment design may not be appropriate for discriminating
between type 1 and type 2 kinetic model structures.

In addition to the previous diagnosis, one shall also observe that the misclassified elements
in Figure 8 lie on the outer limit in the distribution of the input arrays. Neural networks are
data driven models whose predictive capabilities are as good as the data used for their
identification. The information available in the training data may not be sufficient for
identifying an ANN capable to accurately classify limit cases. Nonetheless, it is observed
that the identification of a robust ANN-based classifier for kinetic model selection relies i)
on the selection of an appropriate experimental design ii) on the presence of low system

15

                  



noise and iii) on the construction of a comprehensive in-silico training set.

6 Final remarks

In the presented case study, the number of parameters involved in the ANN-based classifiers
is substantially higher than the number of parameters involved in the candidate kinetic
models. Nonetheless, it is observed that the structure of the feed-forward ANN allows for
the employment of efficient training algorithms for regularised regression, e.g. the Adam,
AdaGrad and RMSProp (Geron, 2017). Conversely, the estimation of parameters in kinetic
models represents a case specific problem that may pose substantial challenges to numerical
routines for parameter estimation even in the presence of a small number of kinetic constants.

One shall also observe that the ANN-based classifier selects as plausible any model for
which a feasible parameter set exists such that it could have generated the experimental
observations. In contrast to other inference methods, e.g. model selection approaches based
on Bayesian inference (Barber, 2011), the ANN does not penalise models involving irrelevant
parameters. Nevertheless, the proposed framework represents an effective complementary
tool to standard model discrimination criteria as it decouples the problem of model selection
from the problems of identifiability associated with the candidate kinetic models. After
a preliminary model selection is performed through an ANN-based approach, the scientist
may focus on addressing only the identifiability problems associated with the plausible model
structures. It is then possible to apply standard inference techniques, e.g. the Akaike or the
Bayesian information criterion (Burnham and Anderson, 2002), to select the best available
model penalising unnecessary complexity.

In the cases presented in this study, both the dataset generation step and the neural
network identification step required only a few seconds of CPU time. It is recognised that
the computational burden associated with the ANN identification and validation process will
increase in the presence of a higher number of candidate models. Especially if models involve
a substantial number of kinetic parameters, the in-silico data generation stage in the pro-
cedure may require the construction of a labelled dataset Ψ involving a substantial number
Nψ of labelled arrays to effectively cover high-dimensional parameter domains. Nonetheless,
it is also observed that if the experimental design and the library of possible kinetic models
are fixed, the illustrated procedure for ANN construction and identification must be per-
formed only once. In fact, under such circumstance, the trained ANN can be employed to
classify experimental data obtained from multiple reacting systems without repeating the
ANN identification process.

The experimental designs considered in the case study were not optimised with the aim
of discriminating among rival kinetic models. The integration in the proposed procedure of
a step of optimal design of experiments for model discrimination will be the main objective
of future research activities. As in standard frameworks for model discrimination (Buzzi-
Ferraris et al., 1990), it is also expected that the discriminant power of optimally designed
experiments and, consequently, the achievable ANN accuracy for a given experimental design
is influenced by 1 ) the explorable experimental design space (i.e. the degrees of freedom
available to control the system), 2 ) the observable state variables of the system, 3 ) the
number of candidate kinetic models and 4 ) the prior knowledge on the feasible parameter
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domains associated with the candidate models. Assessing the sensitivity of the ANN accuracy
to a change in the aforementioned factors will also be object of future research.

Table 3: Case 1: Actual model class and Softmax output associated to the misclassified
instances in the test set. Outputs marked with an asterisk indicate the highest score, which
determines the predicted model type.

Misclassified Actual Softmax output

instance model type p1 p2 p3 p4 p5 p6 p7 p8

α 2 0.48* 0.42 0.06 0.03 0.01 0.00 0.00 0.00
β 7 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.51*
γ 7 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.52*
δ 7 0.00 0.00 0.01 0.00 0.00 0.00 0.49 0.50*

7 Conclusion

In this work, a novel model selection framework is proposed where an Artificial Neural Net-
work (ANN) is trained for selecting the most appropriate kinetic model given the available
experimental data. The procedure starts with the formulation of a set of candidate model
structures and the definition of an experimental design. The ANN is trained using experimen-
tal data generated in-silico. A dataset for ANN identification is constructed by simulating
the designed experiments with all the candidate kinetic models, varying the values of their
kinetic constants. In each simulated experiment, the values for the kinetic parameters are
drawn from a distribution defined on the feasible parameter domain (i.e. the range of param-
eters that is compatible with the physical knowledge available on the system). Experiments
are simulated a number of times to construct a sufficiently large dataset which covers all the
possible kinetic model structures and the range of possible values for the kinetic constants.
The dataset is then used for training an ANN-based classifier with the aim of matching the
experimental data with the model structure used to generate the data.

The approach was demonstrated on a simulated case study on the selection of a kinetic
model for a three-component reaction performed in a batch reactor. A number of candidate
models were assumed both for series and parallel kinetic mechanisms. An optimised two-
layer ANN achieved a 98% accuracy on the classification of unseen data (i.e. data not
used in the training process). It was shown that the performance of ANN classifiers on the
model recognition task relies on an appropriate experimental design and on the presence of
contained measurement noise in the system. In the presented case study, a reduction in the
number of designed samples or an increase in the system noise resulted in a reduction of the
accuracy. Nonetheless, in all the cases the ANNs were able to distinguish between a series
and a parallel kinetic mechanism.

The proposed model selection approach does not require the fitting of kinetic param-
eters. Therefore, it is well-suited for selecting a kinetic model even when available model
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Figure 8: Case 1: projection of 200 27× 1 labelled input arrays in the test set on the latent
space defined by the two main principal components. Arrows represent the projection of the
27 original dimensions on the two-dimensional latent variable space. Hollow circles represent
the scores for the correctly classified elements in the test set while solid dots represent the
scores for the misclassified elements.
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structures are affected by identifiability issues (i.e. when parameters in the candidate models
cannot be estimated through regression because of a low sensitivity of model responses to
a parameter change and/or an extreme parameter correlation). The primary objective of
future works is to include an optimal design of experiment step in the proposed framework
and test the approach on the recognition of kinetic models from real experimental data.
The proposed framework will also be validated in the presence of more complex candidate
kinetic mechanisms and broader reaction networks. Further extensions of the work will also
focus on improving the robustness of the ANN classifiers in handling non-ideal scenarios. In
particular, novelty detection approaches (Markou and Singh, 2003a,b) will be included in the
framework to handle situations where none of the candidate kinetic models is appropriate
and/or the coupling of two or more postulated reaction mechanisms is required to model the
system behaviour.
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Symbols used

Latin symbols

Aj pre-exponential factor for the j-th reaction
b bias parameter in single layer perceptron
bh bias parameter in the hidden layer of the ANN
bo bias parameter in the output layer of the ANN
Ci concentration of species i
Ea,j activation energy for the j-th reaction
kj kinetic constant of the j-th reaction
l categorical variable
li label associated to the i-th element in Ψ

l̂i label prediction for the i-th element in Ψ
n̂i,j j-th element in n̂i
N number of available samples
Nf,l number of functions in the l-th kinetic model
Nh number of neurons in the hidden layer of the ANN
Nm number of candidate kinetic models
Nn number of elements in ANN input array n
Nr number of chemical reactions
Nu number of independent inputs in the system
Nx,l number of state variables in the l-th kinetic model
Ny number of output variables in the system
Nθ,l number of parameters in the l-th kinetic model
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Nψ number of instances in the labelled dataset Ψ
p output of single layer perceptron
pk k-th element in the ANN output p
rj rate of the j-th reaction
R ideal gas constant
t time
ts set of sampling times
T temperature
U random function
Si selectivity of i-th species in the mixture

Ŝi,l model l prediction for the selectivity of species i
Xi conversion of i-th species in the mixture

X̂i,l model l prediction for the conversion of species i

Greek symbols

α, β, ... misclassified instances in Ψtest

γjk jk-th element in Γ
Θl feasible parameter space associated to model l
νij stoichiometric coefficient of the i-th species in the j-th reaction
σjk jk-th element of Σ
σc constant noise variance parameter
σr relative noise variance parameter
ϕh activation function in the hidden layer of the ANN
ϕo activation function in the output layer of the ANN
Φ experimental design space for a sample y
Ψ dataset of labelled input arrays
Ψtest dataset for ANN testing
Ψtraining dataset for ANN training
Ψvalidation dataset for ANN validation

Matrices and vectors

0 null column array [v.u.]
1h array whose entries are all equal to 1 [Nh × 1]
1o array whose entries are all equal to 1 [Nm × 1]
fl array of functions [Nf , l × 1]
hl array of functions [Ny × 1]
n ANN inputs [Nn × 1]
ni i-th labelled input in Ψ [N ·Ny × 1]
n̂i model li predictions for the experimental data [N ·Ny × 1]
p output of ANN classifier [Nm × 1]
u independent control variables (model inputs) [Nu × 1]
w array of perceptron parameters [Nn × 1]

20

                  



Wh parameter matrix associated to the hidden layer in the ANN [Nn ×Nh]
Wo parameter matrix associated to the output layer in the ANN [Nn ×Nh]
xl state variables in model l [Nx,l × 1]
ẋl time derivative for state variables in model l [Nx,l × 1]
y sample - array of measured system outputs [Ny × 1]
yi i-th sample [Ny × 1]
ŷl model l prediction for the system outputs [Ny × 1]
Γ confusion matrix associated to the ANN classifier [Nm ×Nm]
ε random array [N ·Ny × 1]
θl array of parameters in model l [Nθ,l × 1]
Σ covariance matrix associated to n [N ·Ny ×N ·Ny]
ϕj experimental conditions associated to sample yj [v.u.]

Acronyms

ANN Artificial Neural Network
PCA Principal Components Analysis
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