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Abstract

Our modern understanding of cosmological structure formation posits that small matter density

fluctuations present in the early Universe, as traced by the cosmic microwave background, grow via

gravitational instability to form extended haloes of dark matter. A theoretical understanding of the

structure, evolution and formation of dark matter haloes is an essential step towards unravelling

the intricate connection between halo and galaxy formation, needed to test our cosmological model

against data from upcoming galaxy surveys.

Physical understanding of the process of dark matter halo formation is made difficult by the

highly non-linear nature of the haloes’ evolution. I describe a new approach to gain physical insight

into cosmological structure formation based on machine learning. This approach combines the

ability of machine learning algorithms to learn non-linear relationships, with techniques that enable

us to physically interpret the learnt mapping. I describe applications of the method, with the aim of

investigating which aspects of the early universe density field impact the later formation of dark

matter haloes. First I present a case where the process of halo formation is turned into a binary

classification problem; the algorithm predicts whether or not dark matter ‘particles’ in the initial

conditions of a simulation will collapse into haloes of a given mass range. Second, I present its

generalization to regression, where the algorithm infers the final mass of the halo to which each

particle will later belong. I show that the initial tidal shear does not play a significant role compared

to the initial density field in establishing final halo masses. Finally, I demonstrate that extending the

framework to deep learning algorithms such as convolutional neural networks allows us to explore

connections between the early universe and late time haloes beyond those studied by existing

analytic approximations of halo collapse.
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Impact Statement

This thesis presents a new approach based on machine learning, aimed at deepening our under-

standing of the formation of dark matter haloes in the Universe. Our goal is to understand what

information is learnt by the machine learning algorithm about the underlying connection between

the early universe and the late-time dark matter haloes in cosmological simulations; this differs

from common approaches where machine learning is utilized as a black-box tool to obtain fast and

automated mappings. Our method led to a re-interpretation of the existing understanding of halo

formation over the last decades, in particular in relation to the role of the tidal shear tensor in

establishing the final mass of dark matter haloes (Chapters 3 & 4). This work achieved academic

impact through two scientific publications, cited by independent researchers around the world, and

over ten professional presentations, including invited talks, at international conferences for broad

and specialized audiences from the cosmology and machine learning communities. Thanks to the

broad applicability of our method, there has been an upsurge of interest in the community to apply

our method to other aspects of dark matter haloes, leading to new international collaborations for

the PhD candidate.

The advances in machine learning presented in this thesis can be directly applied to industrial

and commercial applications of artificial intelligence (AI). One of the key problems faced in the AI

community is the issue of interpretability; without a deeper understanding of how deep learning

algorithms make their predictions, we cannot trust AI tools in scientific, industrial and commercial

applications. Our methods are specifically designed to turn black-box algorithms into interpretable

ones, allowing one to better understand the complex systems these algorithms describe. This is

particularly relevant for convolutional neural networks (Chapter 5), which are used extensively

in industry. In addition to being interpretable, our deep learning architecture allows for broader
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applicability to three-dimensional data sets than conventional architectures applied to 2D images.

Finally, this thesis points toward a new branch of machine learning research known as knowledge

extraction (Chapter 6), where deep learning algorithms are constructed in a manner that allows

for the discovery of fundamental properties of the underlying data sets. This work has initiated

an international collaboration of experts in the fields of brain sciences, computational psychiatry,

crime sciences and physics, as well as Google DeepMind. We expect this collaboration to expedite

progress in the ability of humans to extract knowledge from machine learning algorithms.
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1
Introduction

1.1 The Universe

The field of modern cosmology, studying the origin and evolution of our Universe as a whole,

began with the discovery of the expansion of the Universe in 1929 (Hubble 1929). Thanks to the

exquisite precision of today’s observational data, we are able to test the theoretical predictions

of cosmological models against independent data sets mapping the Universe at different times

throughout its history and on a wide range of scales. Nevertheless, fundamental questions about

the origin, the components and the dynamics of the Universe remain unresolved, making cosmology

an exciting and active area of research.

A fundamental assumption of modern cosmology is the cosmological principle, borrowing from

the Copernican idea that Earth does not occupy a privileged position in space. The cosmological

principle states that on large scales, the Universe is homogeneous, i.e., it looks the same from any

observing position in the Universe, and isotropic, i.e., it looks the same in every direction. A natural

consequence of this is that our observable Universe is assumed to be a representative sample of

the whole and the same laws of physics apply throughout. This simple yet powerful assumption

legitimises the use of observations made from Earth to test cosmological models. Although initially a

mathematical convenience, the cosmological principle has now been empirically confirmed; isotropy

has been established by observations of the cosmic microwave background (CMB, Penzias and

Wilson 1965), whereas large-scale galaxy surveys confirmed that the distribution of matter is

homogeneous at scales larger than ∼ 100 Mpc, up to the largest observable scales of ∼ 600 Mpc

(Davis et al. 1982; Maddox et al. 1990; Percival et al. 2001).
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1.1.1 General relativity

The fundamental theoretical bedrock of modern cosmology is the theory of general relativity1.

Unlike Newtonian theory where gravity is an external force exerted on an object, in general

relativity gravity is a geometric property of spacetime. The properties of any given spacetime can

be mathematically expressed in terms of the metric, which relates coordinate distances to physical

ones. The theory of general relativity connects the metric to the matter and energy content of the

Universe via the Einstein field equations

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν + Λgµν (1.1)

where, on the left-hand-side, Gµν is the Einstein tensor, Rµν and R = gµνRµν are the Ricci tensor

and Ricci scalar respectively, and gµν is the metric tensor. On the right-hand-side, Tµν is the energy-

momentum tensor, G is Newton’s constant and Λ is the so-called cosmological constant. Setting

aside the term involving the cosmological constant, Einstein’s equations tell us that the geometry

of the Universe, described by the Einstein tensor, is determined by its matter and energy content,

described by the energy-momentum tensor. The cosmological constant was originally introduced

by Einstein on the left-hand-side of Eq. (1.1), to allow for a static universe that is stable against

gravitational collapse (Einstein 1917). Once Hubble observationally discovered the expansion of the

Universe, Einstein abandoned the cosmological constant completely, calling it “the biggest blunder

of his life”. Today, the cosmological constant is generally seen on the right-hand-side of Eq. (1.1),

representing a “vacuum energy” of spacetime itself, rather than of the matter content, which also

contributes to the total energy of the Universe.

Under the assumption that the Universe is homogeneous and isotropic on large scales, the

Einstein field equations for an expanding universe are solved by the Friedman-Lemaitre-Robertson-

Walker (FLRW) metric of the form

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.2)

where k is the spatial curvature constant and takes only the discrete values {−1, 0,+1} correspond-

ing to open, flat and closed geometries, respectively. The scale factor a(t) is a convenient parameter

to describe the background expansion (or contraction) of the Universe as a function of time and

conventionally, takes a = 1 today.

1See Dodelson (2003) for a good review of general relativity in the context of cosmology.
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From the FLRW metric alone, one can derive several quantities which are useful for the de-

scription of an expanding universe. The time evolution of the scale factor can be expressed by the

expansion rate of the Universe, also called the Hubble parameter,

H(t) =
1

a

da

dt
. (1.3)

The value of H(t) today, H0, is called the Hubble constant and is usually expressed in terms of the

dimensionless parameter h such that H0 = 100h km s−1 Mpc−1.

A natural consequence of an expanding universe is that photons are redshifted due to space

dilatation. Given that light rays travel on null-geodesics of spacetime i.e., ds2 = 0, the maximum

comoving distance travelled by a photon between time ti and t is given by

χ(t) =

∫ t

ti

dt′

a(t′)
≡ η, (1.4)

where we have additionally defined the conformal time η. This defines a causal horizon, beyond

which particles have not been causally connected since ti. Moreover, the fact that the physical

momentum and energy of photons are inversely proportional to the scale factor leads to the

definition of a cosmological redshift in terms of the observed and emitted wavelengths, λobs ,and

λemit,

λobs

λemit
≡ 1 + z =

aobs

aemit
, (1.5)

thus relating the wavelengths and scale factors at emission and observation times. For the case

where the emission frequency of the photon can be determined (e.g. when the physical process is

known), the redshift can be used as a distance indicator.

We now turn to the right-hand-side of the Einstein field equations (Eq. (1.1)), which involves

the matter and energy content in the Universe. Matter in a homogeneous and isotropic cosmological

background evolves as a perfect fluid, which by definition is completely characterised by its rest

frame mass density ρ and isotropic pressure P , related via an equation of state ρ = wP . The

energy-momentum tensor of a perfect fluid is given by Tµν = diag (−ρ, P, P, P ). Inserting the

FLRW metric and the energy-momentum tensor into Eq. (1.1), one obtains the two Friedmann
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equations,

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (1.6)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (1.7)

which describe the expansion rate and the acceleration of the Universe as a function of its density,

pressure and spatial curvature. Imposing the additional constraint of energy-momentum conserva-

tion, ∇µTµν = 0, the Friedmann equations yield a third relation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (1.8)

The solution to Eq. (1.8) is given by ρ ∝ a−3(1+w) describes the evolution of the energy contents

of the Universe as it expands according to the scale factor a(t). This solution allows us to directly

relate the evolution of the scale factor to the equation of state parameter of a given fluid (when

plugged back into Eqs. 1.6 and 1.7):

a(t) =

 t
2

3(1+w) , if w 6= −1,

eHt, if w = −1.
(1.9)

This result implies that we can describe the expansion of the Universe at any given time given

the equation of state parameter w of the fluid which dominates the total energy density of the

Universe at that time. A radiation-dominated universe has a ∝ t1/2 since relativistic particles have

w = 1/3, whereas matter-domination implies a ∝ t2/3 since w = 0. A cosmological constant with

w = −1 causes a exponential growth of the scale factor, provided H is constant. It is therefore also

useful to express the abundance of any component in the Universe in units of the critical density ρc,

defined as the energy density if the Universe is flat (k = 0),

ρc =
3H2

8πG
. (1.10)

Each component i of density ρi has an associated parameter Ωi ≡ ρ/ρc, such that the Friedmann

equation Eq. (1.6) becomes

Ω(a)− 1 =
k2

H2a2
, (1.11)
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where Ω(a) is the density parameter summing the energy density from all forms of constituents of

the Universe. The various Ωi evolve with time differently, depending on the equation of state of the

component, which in turn will affect the expansion of the Universe. In the following sections, I will

outline the components of the Universe according to our standard model of cosmology and their

resulting effects on the evolution of the Universe.

1.1.2 The energy content

Einstein’s equations explicitly reveal that the dynamics of the Universe are determined by its energy

and matter content. In the current ΛCDM concordance model, the Universe is mainly composed of

four ingredients:

1. Baryonic matter: making up only 5% of the total energy budget today, baryonic matter

includes all atomic nuclei and electrons (even though the latter are leptons), interacting

through gravitational, electromagnetic, strong and weak forces. It is predominantly made of

hydrogen and light elements formed in the early Universe, composing galaxies, stars, planets,

and all living organisms in our Universe.

2. Relativistic species: mainly consisting of relic electromagnetic radiation, the CMB (CMB), and

neutrinos (CνB) produced in the early Universe. These make < 1% of today’s total energy

budget, but play a major role in the formation of structure at small scales.

3. Cold dark matter: the predominant component of the matter sector in the Universe, made

of non-baryonic, pressureless and non-relativistic matter. Although at present its nature

remains unknown, its existence has been confirmed indirectly based on its gravitational

effects on various cosmological and astrophysical observations2: galaxy clusters (Oort 1932;

Zwicky 1933), galaxy rotation curves (Freeman 1970; Rubin and Ford 1970), gravitational

lensing (Massey et al. 2010), where a particular iconic example is the Bullet-Cluster (Clowe

et al. 2006), and finally, the CMB (Planck Collaboration et al. 2018a). The first convincing

observations for the existence of dark matter came in 1970 with the observations of galactic

rotation curves; at the time, one of the leading explanations for the anomalous dynamics

of these objects was the existence of a large population of dim astrophysical objects, known

as massive compact halo objects (MACHOs). CMB observations, however, showed strong

evidence that the dark matter could not be baryonic, excluding all but one MACHO candidate,

2For a good review on the history of dark matter see Bertone and Hooper (2018).

23



the primordial black hole (PBH; Carr and Hawking 1974). Observational constraints on

PBHs today forbid them from accounting for the entirety of dark matter, unless they live near

M ∼ 10−12 M� or 10−15 M� and have a monochromatic mass function3 (see e.g. Sato-Polito

et al. 2019). The simplest way to evade the constraint that dark matter be non-baryonic

is to postulate that dark matter is comprised of a new non-baryonic particle, that interacts

very weakly with the known particles of the Standard Model. A vast array of dark matter

candidates have been proposed over the last decades to explain the existence of dark matter;

the leading candidates have been weakly interacting massive particles (WIMPS; Steigman

and Turner 1985), axions (Peccei and Quinn 1977; Weinberg 1978; Wilczek 1978) and sterile

neutrinos (Dodelson and Widrow 1994).

4. Dark energy: another unknown component responsible for today’s accelerated expansion of

the Universe, which accounts for 69.4% of today’s total energy content of the Universe. Its

evidence came from observations of Type Ia supernovae (Perlmutter et al. 1999; Riess et al.

1998) by comparing their observed luminosity distance to that expected in a dark-matter-

dominated universe and in a dark-energy-dominated one. In ΛCDM, dark energy takes its

simplest form of a cosmological constant Λ with a constant energy density ρΛ and equation of

state w = −1. Although current observations are consistent with this model, taking Λ as the

vacuum energy leads to the notorious cosmological constant problem; theoretical predictions

from quantum field theory disagree with the observed value by 120 orders of magnitude. For

this reason, alternative dark energy models, e.g. one with time-evolving equation of state

w(a) = w0 + (1− a(t))wa, or theories of modified gravity that lead to accelerated expansion

are currently active areas of research in cosmology. See Martin (2012) and Huterer and Shafer

(2018) for recent reviews on dark energy.

1.1.3 Expansion history

There are three key pieces of evidence which support the idea of an expanding universe: the

Hubble-Lemâıtre law on the observed relation between distance and recession velocity of galaxies

(Hubble 1929; Slipher 1915), the observed abundances of light elements in agreement with Big

Bang Nucleosynthesis (BBN) predictions (Alpher et al. 1948), and observations of the CMB (Penzias

and Wilson 1965). The fact that the Universe is expanding directly implies that the Universe

was once smaller, denser and hotter. Fig. 1.1 shows a qualitative illustration of the history of the

3Generally, the allowed fraction of PBH dark matter decreases with increasing the width of the mass function. See Carr
et al. (2017) for constraints on PBH dark matter with an extended mass function.
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Figure 1.1: Outline of the key events in the history of the Universe as a function of time, redshift

and energy scales, together with the cosmological probes used to study the different epochs in

cosmic history. Figure taken from Baumann (2011).

Universe, together with some of the cosmological probes used to study different epochs of cosmic

history.

In the standard cosmological paradigm, the history of the Universe begins with a phase of

accelerated exponential expansion known as inflation, responsible for the homogeneity and isotropy

of our observable Universe on large scales. During this expansion, small quantum fluctuations are

turned into density perturbations of cosmological scales, providing the seeds for the formation of all

cosmic structures in the Universe. At the end of inflation, the inflaton decays to produce all known

particle species in the Standard Model during the epoch of reheating.

At this stage, electromagnetic radiation dominates the energy budget of the Universe, such that

the scale factor grows as a(t) ∝ t1/2 and the expansion is decelerating. The energy contents can be

described by an ionised hot plasma of baryons and radiation tightly coupled together and in thermal

equilibrium. The first particles to decouple from the plasma as the temperature cools are neutrinos,

forming a cosmic neutrino background yet to be detected. As the temperature drops further to a

few MeV when the Universe is several minutes old, Big Bang nucleosynthesis begins, where protons

and neutrons combine to produce higher elements (mainly deuterium, helium and lithium).

At around z ∼ 4800, the mean photon energy density has decreased enough for the energy

density of matter to exceed that of radiation. The Universe enters the so-called matter-dominated
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era; matter perturbations grow linearly with the scale factor and cosmological structures start to

form. At a temperature of about 3000 K, when the Universe was about 380,000 years old, electrons

and protons combine into neutral atoms, while photons are released as a homogeneous background

radiation known as the CMB. At this point, baryons are no longer prevented from clustering due

to photon pressure, but fall into the potential wells created by the dark matter. Perturbations

continue to grow during the dark ages, where the predominant dark matter collapses into halo-like

structures through its own gravitational attraction. Eventually, the highest dark matter overdensities

contain enough neutral hydrogen at sufficiently high densities to form the first stars and galaxies.

Reionization subsequently takes place once the first stars and galaxies have formed, and their

radiation is energetic enough to re-ionize the neutral hydrogen in the surrounding intergalactic

medium. The process of reionization is though to start with ionized bubbles around the strongest

ionizing sources, which slowly grow to fill the Universe with an ionized plasma. This epoch is still

poorly constrained but will soon be refined by measurements of the 21-cm transition, mapping the

distribution of neutral hydrogen at the epoch of reionisation.

After approximately 10 billion years, the Universe’s expansion starts to accelerate as dark energy

overtakes matter and becomes the dominant component in the Universe.

1.2 Seeds of cosmic structures

A universe uniquely defined by an FLRW metric could not have formed the complex large-scale

structure that we observe in our Universe. If the matter distribution was simply homogeneous and

isotropic on all scales, it would remain to be so throughout cosmic history. Instead, galaxy surveys

starting in the 1970s, such as the Lick galaxy catalogue (Seldner et al. 1977), the CfA Redshift

Survey (Davis et al. 1982) and the APM Galaxy Survey (Maddox et al. 1990), revealed that matter is

arranged into a well-defined cosmic web, with galaxies located in filaments and at their intersections,

with huge empty voids surrounding them. Our model of the Universe must therefore allow for

the existence of initial perturbations over an otherwise homogeneous background described by an

FLRW metric, forming the seeds of all cosmic structures. The CMB provides us with the earliest

picture of the inhomogeneous Universe, showing tiny temperature perturbations which trace the

underlying initial density perturbations. In this section, I will discuss how the CMB determines the

initial conditions of structure growth and how the theory of inflation can be used to explain their

origin.
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1.2.1 The cosmic microwave background

At the time of recombination of electrons and protons when the Universe cooled below ∼ 3000 K,

photon decoupling led to the emission of a relic radiation known as the CMB. It was first observed

by Penzias and Wilson (1965) and later identified by Dicke et al. (1965). The existence of this

background radiation provides direct evidence that the Universe was once hot and dense as predicted

by the hot Big Bang theory. The first measurements were made by the FIRAS experiment aboard

the COBE satellite in the 1990s (Mather et al. 1994), which measured its near-perfect blackbody

spectrum with a temperature of 2.7 K. In addition to these, COBE also measured small temperature

fluctuations in the CMB of the order of 1 in 100, 000 (Smoot et al. 1992). With its resolution of

7 degrees on the sky, the COBE satellite could only see the largest angle fluctuations, capturing

information about the initial conditions of the Universe. Subsequent satellite missions such as

WMAP (Bennett et al. 2003) and Planck (Planck Collaboration et al. 2018a) enabled the study of

the temperature fluctuations in the CMB down to angular scales smaller than a tenth of a degree,

and were further complemented by high-resolution ground-based experiments, such as the Atacama

Cosmology Telescope (ACT) (Das et al. 2014) and the South Pole Telescope (SPT) (George et al.

2015). These high-precision measurements led to the establishment of the ΛCDM model, already

coined the “concordance” model by Ostriker and Steinhardt (1995), as the standard model of

cosmology and to an era of precision cosmology, where quantitative predictions about the origin of

structure and the content of matter and energy in the Universe can be tested against observations.

Figure 1.2 shows measurements of the CMB angular power spectra from a variety of different

experiments, compared to the prediction of the ΛCDM model with the Planck best-fit cosmological

parameters (dashed line). The upper panel shows the power spectra of the temperature and E-mode

and B-mode polarization signals, the middle panel the cross-correlation spectrum between T and

E, while the lower panel shows the CMB lensing power spectrum. The data and the model are

in excellent agreement over a wide range of scales. The amplitude and features of the power

spectra contain information about the geometry and composition of the Universe, together with its

dynamics before and after recombination.

Remarkably, observations of the CMB can be described by a spatially-flat ΛCDM model with only

six free paramaters; no evidence is found for extensions of this model that can provide a better fit to

observations (Planck Collaboration et al. 2018a). Two of the six cosmological parameters describe

how the energy density distributed in the three components4 – dark matter, ordinary matter and

4Note that only two parameters are needed under the assumption that the Universe is flat i.e., Ω = 1.
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Figure 1.2: Compilation of measurements of the CMB angular power spectra. The upper panel

shows the power spectra of the temperature and E-mode and B-mode polarization signals, the next

panel the cross-correlation spectrum between T and E, while the lower panel shows the lensing

deflection power spectrum. Different colours correspond to different experiments, and the dashed

line shows the best-fit ΛCDM model to the Planck temperature, polarization, and lensing data.

Figure taken from (Planck Collaboration et al. 2018b).
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dark energy – and are parametrized as Ωch
2 and Ωbh

2. Another two describe the initial conditions

of the Universe: the amplitude As and power-law scale index ns of the primordial curvature power

spectrum from inflation (see Sec. 1.2.2). Finally, the remaining two free parameters relate to the

phase transitions of recombination and reionization: one is the angular size of the sound horizon

at recombination, θ?, and the other is the optical depth, τ , due to Thomson scattering at the time

of reionization. The best-fit values for the cosmological parameters obtained from the final Planck

data release are: dark matter density Ωch
2 = 0.120± 0.001, baryon density Ωbh

2 = 0.0224± 0.0001,

scalar spectral index ns = 0.965 ± 0.004, optical depth τ = 0.054 ± 0.007, angular acoustic scale

100θ∗ = 1.0411± 0.0003 and amplitude ln(1010As) = 3.044± 0.014 at 68 % confidence level.

Assuming the best-fit ΛCDM cosmology, one can then infer late-Universe parameters such as the

Hubble constant H0 = (67.4± 0.5) km/s/Mpc, matter density parameter Ωm = 0.315± 0.007 and

the root-mean-squared (rms) of matter fluctuations in r = 8h−1 Mpc spheres, σ8 = 0.811± 0.006.

The choice of r = 8h−1 Mpc comes from early measurements of the two-point correlation function

from the Lick galaxy catalogue, where the variance of galaxy counts was found to be roughly

unity within a radius of 8h−1 Mpc (Peebles 1980). Perhaps the most interesting of cosmological

parameters at present day is the Hubble constant H0. Direct measurements of H0 from observations

of Type Ia supernovae (SN Ia), based on distances calibrated to Cepheid variables, yield a value

H0 = 74.03 ± 1.42 km/s/Mpc, which is 4.4 σ discrepant with the value inferred by Planck (Riess

et al. 2019). Future measurements from independent data, such as local SN Ia measurements

calibrated to tip of the red giant branch stars (Freedman et al. 2019) and gravitational waves

(Feeney et al. 2019; Soares-Santos et al. 2019), may resolve the tension by revealing whether this

discrepancy indicates new physics beyond ΛCDM or unaccounted systematic uncertainties in the

measurements.

1.2.2 Inflation

The CMB provides us with the earliest possible picture of our Universe, showing that the early

Universe was extremely homogeneous and isotropic (up to ∼ 105 accuracy) on all scales. This

naturally gives rise to the question of what sort of initial conditions lead to such homogeneity and

isotropy. In the standard picture of a hot Big Bang cosmology described by general relativity, the

initial conditions represent a singularity where the theory breaks down and the initial conditions

cannot be imposed. This singularity problem indicates the need of a quantum theory of gravity to

describe the Universe at its creation time.
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A different solution for setting the initial conditions within the context of general relativity

comes with the name of cosmic inflation and was first proposed by Guth (1981) to solve a number of

problems that otherwise arise in the ΛCDM model. Inflation not only provides an elegant solution

to weaknesses in the standard hot Big Bang model but also leads to quantitative (and testable)

predictions for the origin of structure in the Universe. In this section, I will review the problems in

the ΛCDM model which inflation is intended to resolve and its mechanism for the generation of

primordial fluctuations.

The first problem is related to the homogeneity observed in the CMB at scales larger than the

Hubble radius at the time of CMB decoupling. It is known as the horizon problem: regions of the

sky separated by distances larger than the Hubble radius are not in causal contact but nevertheless

appear homogeneous. It is useful to rewrite the comoving horizon η in terms of the comoving

Hubble radius (aH)−1,

η(a) =

∫ a

0

da′

a′
1

a′H(a′)
. (1.12)

The particle horizon represents the scale on which particles have ever been able to interact since

t = 0, whereas the Hubble radius sets the scale of causality at any given time. Inflation resolves the

horizon problem by allowing particles separated by any given scale to have been in causal contact

at some earlier time. This can be achieved if during the inflationary epoch the comoving Hubble

radius decreases with time. At the start of inflation, the Hubble radius was so large that all scales

were well within the horizon and therefore causally interacting. At that time, these regions were

given the necessary initial conditions and the smoothness we observe today in the CMB. During

inflation, scales eventually fell out of contact and re-entered the horizon only at later times during

standard expansion.

The second problem arises from the fact that the Universe is observed to be consistent with a flat

geometry or equivalently, that today’s total energy density in the Universe is very close to the critical

density i.e., Ω ∼ 1. A closer inspection of Eq. (1.11) reveals that the near-flatness observed today

requires the fine-tuning of Ω to an even closer value to 1 in the early universe. This is because the

comoving Hubble radius, (aH)−1, grows with time and hence any deviation from perfect flatness

implies that the quantity |Ω− 1| diverges with time. This fine-tuning problem, also known as the

flatness problem, can be resolved by inflation; if the comoving Hubble radius decreases with time, Ω

naturally tends to 1 at the end of inflation.

In general, the key feature of the inflationary epoch is that of a decreasing comoving Hubble
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reheating

Figure 1.3: Illustration of slow-roll inflation; the inflaton slowly rolls along the shallow slope of

the potential whilst φ̇ � V (φ). During that time, local quantum fluctuations δφ(x, t) are also

present around its mean value φ(t). At the end of inflation, the field oscillates around the potential’s

minimum and “reheats” the Universe. Figure taken from Baumann (2011).

radius. This directly implies d2a/dt2 > 0, i.e. an accelerated expansion. For inflation to solve

the horizon problem, the comoving Hubble radius at the start of inflation must also be larger

than the largest scales observable today (today’s comoving Hubble radius). If we assume H is

approximately constant during inflation, the comoving Hubble radius must decrease by at least

28 orders of magnitude, meaning that the scale factor must increase by at least a factor of ∼ e60

(60 e-folds). The accelerated expansion during inflation is usually attributed to a scalar field φ,

known as the inflaton, which can be described by a fluid of negative pressure with an equation of

state w < −1/3. In the simplest inflationary scenario, the inflaton slowly rolls down a near-flat

potential as illustrated in Fig. 1.3 (Albrecht and Steinhardt 1982; Linde 1982); this “slow-roll”

regime can be achieved provided the kinetic energy of the field is much smaller than its potential

energy. Once the kinetic energy becomes comparable to the potential energy, inflation ends and the

field oscillates around the potential’s minimum thus entering the epoch of reheating (see Sec. 1.1.3;

Mukhanov and Chibisov 1981).

Although inflation was first introduced to solve problems within the standard Big Bang model, it
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also provides a theory that explains the origin of the density fluctuations and predicts their power

spectrum. Although the details of the fluctuations depend on the specific inflationary models,

CMB observations provide a stringent test to some of the general features predicted by inflation.

One of these is that the inflaton field has local quantum fluctuations δφ(x, t) around its mean

value φ(t) (Guth and Pi 1982; Linde 1982; Mukhanov and Chibisov 1981; Starobinsky 1982), as

illustrated in Fig. 1.3. These fluctuations translate into a locally different time evolution, where

each patch evolves faster or slower depending on the sign of the fluctuation. This creates local

density perturbations, which become classical as the Hubble volume shrinks and the size of the

perturbations becomes larger than the horizon. The density perturbations are sourced by the

comoving adiabatic curvature perturbations R(x, t), and their amplitude is (almost) unchanged

from the time of horizon crossing. The curvature perturbations are Gaussian and can therefore be

entirely characterized by their (dimensionless) power spectrum

∆2
R(k) =

1

8π2

H2

M2
pl

1

ε

∣∣∣∣∣
k=aH

(1.13)

where Mpl = (8πG)
−1/2 is the Planck mass, ε is a slow-roll parameter which depends on the Hubble

rate and the dimensionless power spectrum is defined as ∆2(k) =
(
k3/(2π)3

)
P (k).

∆2
R(k) is usually parametrised as ∆2

R(k) = As (k/k0)
ns−1, where As is the amplitude, ns is the

scalar spectral index and k0 is an arbitrary pivot scale. The value of the scalar spectral index inferred

by Planck Collaboration et al. (2018a) is ns = 0.9649± 0.004 at 68% confidence level, confirming

the nearly scale-invariant power spectrum predicted by inflation. In particular, the deviation of

ns from unity, which introduces a small scale-dependence in the power spectrum expected from

inflation, has been observationally confirmed to an accuracy of 8.4σ, providing strong evidence for

the slow-roll inflationary paradigm (Planck Collaboration et al. 2018a).

1.3 Cosmological structure formation

Gravitational instability is predominantly responsible for the growth of structure in the Universe.

Initially overdense regions accumulate more and more matter as time evolves, eventually producing

the non-linear structure we observe today. In a ΛCDM universe, structure growth is hierarchical;

smaller objects form first and subsequently merge to form even larger structures. Large-scale

structures mainly originate from perturbations to the dark matter, which will be the focus of this

section. Although in principle these are coupled to all other perturbations, they depend on radiation
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perturbations only indirectly via the gravitational potential. In fact, during the radiation-dominated

era, the potential is determined by radiation perturbations, whereas dark matter perturbations are

influenced by the behaviour of the potential but do not influence the potential themselves. As the

Universe enters the matter-dominated era, matter perturbations will instead drive the evolution of

the potential and grow accordingly. In addition to this, the evolution of cosmological perturbations

at any given time depends on the size of the wavelength modes; super-horizon and sub-horizon

modes i.e., perturbations of size larger or smaller than the Hubble radius, evolve differently.

It is useful to define the density contrast, δ, as

δ =
ρ− ρ̄
ρ̄

, (1.14)

where ρ̄ is the mean density of the Universe at a given redshift. During the expansion of the Universe,

the density contrast is affected by three main factors: amplification due to gravitational instability,

pressure and dissipation (Dodelson 2003). The interplay between gravity and pressure dictates

whether fluctuations grow driven by gravity or oscillate in time if driven by pressure. The critical

scale for which gravity and pressure find equilibrium is known as the Jeans length. In particular, for

an expanding universe, fluctuations below the Jeans’ scale oscillate with decreasing amplitude and

fluctuations above the Jeans scale experience power-law growth. The Jeans length is

λJ = cs(t)

√
π

Gρ̄(t)
, (1.15)

where the sound speed cs(t) and ρ̄(t) both depend on time.

Although structure evolution is predominantly non-linear, the equations describing the evolution

of structure can be linearised if the density fluctuations are small. We can then make use of linear

perturbation theory to find explicit analytical solutions. The initial perturbations were indeed small,

as demonstrated by the smallness of the CMB anisotropies, and therefore the results from linear

theory are relevant to the onset of structure formation.

1.3.1 Linear growth

The correct description of linear-order structure evolution requires general relativistic perturbation

theory. Consider the metric of spacetime as a sum of a homogeneous background metric ḡµν and a
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perturbation δgµν such that

ds2 = (ḡµν + δgµν)dxµdxν , (1.16)

where ḡµν solves Einstein’s equations in a homogeneous universe and δgµν � 1.

In relativistic perturbation theory there is no obvious choice of coordinate system. The problem is

that relativistic perturbation theory contains gauge freedom, meaning that the metric perturbations

are not uniquely defined. Different choices of coordinates or “gauge choices” for the metric imply

the same observable gauge-independent predictions (Ma and Bertschinger 1995). However, this

freedom in coordinate choice leads to fictitious perturbation modes which reflect the gauge choice

used and not real inhomogeneities.

One particularly convenient gauge choice, or gauge-fixing, is known as conformal Newtonian

gauge, which will nicely connect GR to Newtonian theory in the case of scalar perturbations. The

metric in conformal Newtonian gauge takes the form

ds2 = a2(η)
[
(1 + 2Φ)dη2 − (1− 2Ψ)δijdx

idxj
]
, (1.17)

where η is conformal time (as defined in Eq. (1.4)) and the two potentials Ψ and Φ are the two new

degrees of freedom.

As mentioned before, matter in a homogeneous and isotropic universe takes the form of a

perfect fluid, with energy-momentum tensor Tµν = (ρ + P )UµUν − Pgµν and equation of state,

P = wρ. Solving Einstein’s equations using the metric in Eq. (1.17) and a perfect fluid’s energy-

momentum tensor, one finds Ψ = Φ; the evolution of the perturbations are actually affected by a

single Newtonian-like potential. As a result, the equation of structure growth becomes that for a

single potential,

Φ′′ + 3(1 + w)HΦ′ + wk2Φ = 0, (1.18)

where ′ denotes the derivative with respect to conformal time η and we have defined the conformal

Hubble parameter H = a′/a = aH. The evolution of density perturbations are then related to the

potential via Poisson’s equation,5 which in Fourier space takes the form −k2Φ = 4πGa2δρ̄.

In the radiation-dominated era, the Universe is dominated by electromagnetic radiation with

5Technically, Poisson’s equation in GR contains an extra term. However, for density perturbations in the synchronous
gauge the relation between density perturbations and potential simplifies to the Newtonian form of Poisson equation. We
therefore make the assumption δρ = δρsynchronous.
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an equation of state parameter w = 1/3, and the scale factor evolves as a(t) ∝ t1/2. It follows that

H = 1/η and Eq. (1.18) becomes

Φ′′ +
4

η
Φ′ +

k2

3
= 0. (1.19)

The solution to Eq. (1.19) depends on the modes’ wavelength; the gravitational potential is

approximately constant when the modes are outside the horizon, whereas for modes inside the

horizon, the potential oscillates with decreasing amplitude. Using Poisson equations to relate

density perturbations to the potential, we find that the radiation overdensity evolves as δr ∝ η2Φ.

During this time, structure growth is suppressed on sub-horizon scales by the dominant component

(radiation) driving the potential fluctuations. This behaviour is known as the Meszaros effect; the

growing mode of matter fluctuations scales logarithmically such that δm ∝ ln a. On super-horizon

scales instead, matter overdensities trace the behaviour of radiation such that δm ∝ δr ∝ η2. This

has the important consequence that the amplitude of a smaller perturbation will be suppressed by a

factor of (aenter/aeq)2, where aenter is the value of the scale factor at the time when the length scale

of the perturbation is equal to the comoving horizon scale and aeq is the value of the scale factor

at the time of radiation-matter equality, due to the fact that fluctuations grow slower during the

radiation-era if inside the horizon.

In the matter-dominated era, where w = 0 and H = 2/η, the evolution of the potential takes the

form

Φ′′ +
6

η
Φ′ = 0. (1.20)

The growing solution is a constant Φ, meaning that it is frozen at all scales. From this, it follows

that the growing mode of the density contrast grows proportionally to the scale factor such that

δm ∝ a. The perturbations will then stop growing once the Universe enters the Λ-dominated era.

Most of the information in the matter fluctuations in the linear regime can be summarised in a

statistical measure describing the power of fluctuations as a function of scale, namely the matter

power spectrum. The power spectrum is the main cosmological observable of large-volume galaxy

surveys and can be compared to theoretical expectations by assuming that galaxies are biased

tracers of the underlying dark matter distribution. The latter is given by P (k) ∝ T (k)2P0(k), where

T (k) is the transfer function, encapsulating the k-dependence and time-dependence of the evolution

of perturbations from the end of slow-roll inflation to the present day, and P0(k) is the power
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Figure 1.4: Linear matter power spectrum at z = 0 predicted by the ΛCDM model with the Planck

best-fit cosmological parameters, compared to measurements from the CMB (Planck Collaboration

et al. 2018a), galaxy clustering (Oka et al. 2014), the Lyman-alpha forest (Anderson et al. 2014)

and weak lensing cosmic shear (Troxel et al. 2018). The model, fitted to the Planck data, agrees

remarkably well with independent datasets, probing a wide range of spatial scales and different

epochs of cosmic history.

spectrum of primordial fluctuations at the start of the radiation-dominated era.

The linear power spectrum at z = 0 predicted by the ΛCDM model is shown in Fig. 1.4, together

with a compilation of measurements from the CMB (Planck Collaboration et al. 2018a), galaxy

clustering (Oka et al. 2014), the Lyman-alpha forest (Anderson et al. 2014) and weak lensing

cosmic shear (Troxel et al. 2018). The features of the linear power spectrum reflect the behaviour of

matter fluctuations throughout cosmic history. At large scales, the power spectrum is basically given

by the primordial power spectrum P (k) ∝ k, whereas on small scales it is affected by the evolution

of perturbations on sub-horizon scales, i.e. the Meszaros effect, so that P (k) ∝ k−3 ln2(k/keq).

The separation between these two regimes originates from the suppression of the growth of the

perturbations during the radiation-dominated era compared to the matter-dominated one, which
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introduces a distinct length scale into the linear power spectrum and is given by the size of the

horizon at radiation-matter equality. The other significant feature of the matter distribution is

the imprint from acoustic oscillations present in the primordial baryon-photon plasma, known as

baryonic acoustic oscillations (BAO), at the scale of the sound horizon at recombination. This results

into wiggles in the power spectrum at k ∼ 0.04 Mpc−1.

The distribution of matter is not directly observable but can be inferred by tracers of the light

distribution, e.g. galaxies and quasars, which probe the underlying large-scale structure through

their positions, and the magnification and lensing of their light by gravity. Historically, galaxy

surveys enabled detailed reconstructions of the large-scale structure of the Universe. Photometric

surveys measure the spectrum of light only in a few broad band filters and use that to estimate

the redshift. This method allows us to detect a large number of sources over large areas of the sky,

therefore yielding large volumes and high statistical power. Examples of large three-dimensional

galaxy surveys are: the Sloan Digital Sky Survey6 (SDSS), the Dark Energy Survey7 (DES), the

largest galaxy survey to date, and in the future, Euclid8 and the Large Synoptic Survey Telescope 9

(LSST). On the other hand, spectroscopic surveys such as Baryon Oscillation Spectroscopic Survery10

(BOSS) and the Dark Energy Spectroscopic Instrument11 (DESI), measure the full spectra of the

sources, yielding more accurate measurements of redshifts for fewer objects. Fig. 1.4 also shows

the inferred matter distribution inferred from other tracers: the distribution of neutral hydrogen

probed by the absorption lines in quasar spectra of the Lyman-α transition (Ly-α forest; Anderson

et al. 2014) and the weak gravitational lensing of galaxies, whose shapes are distorted and light is

magnified by intervening matter between us and the sources (cosmic shear; Troxel et al. 2018).

The overlap of the different measurements with the theoretical predictions shown in Fig. 1.4

demonstrates the predictive power of the ΛCDM model and the success of the paradigm of structure

formation in the linear regime. At small-scales, the power spectrum is affected by non-linear

gravitational collapse and baryonic physics, which enhance the total power compared to its linear

contribution. In this regime, one must resort to numerical simulations or higher-order perturbation

theory.

6http://www.sdss.org
7http://www.darkenergysurvey.org
8https://www.euclid-ec.org
9http://www.lsst.org/lsst/

10http://www.sdss3.org/surveys/boss.php
11http://desi.lbl.gov
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1.3.2 Non-linear growth

As the density fluctuations become non-linear i.e., δ > 1, linear perturbation theory breaks down.

Modes are no longer independent as they start to couple to each other due to gravity, meaning

that the perturbations’ evolution can no longer be described simply by the growth factor D(a).

Although no fully analytic solution exists, a number of approaches are possible in order to gain

insights into the evolution of dark matter perturbations beyond the linear regime. Higher order

perturbation theory, such as effective theories of large-scale structure, are useful to explain the

quasi-linear regime, δ ∼ 1, whereas idealized approximations can provide useful physical insights

well into the non-linear regime albeit their simplifications.

The evolution of a spherical mass overdensity is a special case of non-linear density evolution

which finds an explicit analytical answer and it is known as the spherical collapse model. This model

is useful in providing qualitative insights into the (much more complicated) process of non-linear

collapse. A large fraction of the dark matter today resides in dark matter haloes; these form the

building block of cosmic large-scale structure and it is within their potential wells that galaxies form.

Therefore, it is vital to develop a physical understanding of their evolution and formation in order

to understand their relation to galaxies and make predictions on the resulting galaxy distribution.

Despite its assumptions and simplifications, the spherical collapse also provides powerful statistical

predictions on the final structure of the Universe from properties of the initial conditions.

1.3.3 Spherical collapse model

The spherical collapse model provides an explicit solution to the non-linear evolution of density12.

The main assumptions which characterize this model are that overdense regions are spherically

symmetric and that spherical shells do not cross as they expand and collapse.

Consider a spherical shell of radius r(t) containing mass M . The equation of motion in an EdS

universe is

∂2r

∂t2
= −GM

r2
. (1.21)

Using the parametric solutions t(θ) = B (θ − sin θ) and r(θ) = A (1− cos θ), one finds the relation

A3/B2 = GM . At t = 0, or θ = 0, the shell starts expanding until it reaches its maximum radius

at θ = π, such that r = rmax = 2A and t = tmax = πB. After that, the shell recollapses to a point

12For a good review on the spherical collapse model see Mo et al. (2010).
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at θ = 2π, or tcoll = 2πB. In reality, the shell will not collapse down to a point but to half of rmax,

called virial radius rvir, forming a virialised dark matter halo. The virial radius is a useful quantity

as it defines a region which is found to describe well the collapsed part of the halo.

At early times, i.e. for small t and small θ, t(θ) can be written as a power series in θ (up to 5th

order), such that

t ≈ B
(
θ − θ +

θ3

6
− θ5

120

)
≈ Bθ3

6

(
1− θ2

20

)
=⇒ θ3 ≈ 6t

B

(
1− θ2

20

)−1

, (1.22)

where we have recovered an expression for θ as a function of t. Equivalently, r(t) can be expanded

as a power series in θ:

r ≈ A
(

1− 1 +
θ2

2
− θ4

24

)
≈ 1

2
(GM)

1/3
(6t)

2/3

[
1− 1

20

(
6t

B

)2/3
]
≡ rEdS −∆r, (1.23)

where we used the expression for θ in Eq. (1.22), the relation A3 = GMB2 and the fact that in an

Einstein-de Sitter (EdS) universe (Ωm = 1),

r = rEdS =
1

2
(GM)1/3(6t)2/3. (1.24)

The assumption of an EdS universe dominated by cold dark matter and without a cosmological

constant is a valid approximation during the matter-dominated era and it is therefore often used to

simplify analytical calculations. Since ρ ∼M/R3, the fractional overdensity of the sphere, compared

to that of EdS, is

δ =
∆ρ

ρ
∼
(
− 3

∆R

R4

)
R3 ∼ −3

∆R

R
=

3

20

(
6t

B

)2/3

. (1.25)

Now that we have an explicit expression for the density contrast as a function of time in Eq.

(1.25), we can follow the evolution of the sphere in the non-linear regime. In particular, for an EdS

universe, the shell reaches its maximum expansion at t = πB. Therefore the density contrast at this

turnover point is given by

δlin =
3

20
(6π)2/3 ' 1.06. (1.26)
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The shell then collapses to r = 0 at t = 2πB and the density contrast predicted by linear theory is

δlin =
3

20
(12π)2/3 ' 1.69. (1.27)

This result tells us that a spherical region of matter collapses at the present epoch when its

linear density contrast exceeds δlin ' 1.69. Consequently, in order for the collapse to happen at a

scale factor a, the linear density contrast must exceed δ0,lin = 1.69/D(a), where D(a) is the growth

factor. In a realistic scenario where a spherical region will only collapse to its virial radius, one

finds that the overdensity of the sphere after virialisation is ρ = 178ρ̄, using the virial theorem

Ekin = −Epot/2 at virial equilibrium. The result in Eq. (1.27) is valid under the assumption of

an EdS universe; for cosmologies with Ωm 6= 1 and a non-zero cosmological constant, the linear

collapse density threshold becomes δlin ≈ 1.69 [Ωm]
0.0055, to better than 1% accuracy (Lahav et al.

1991; Mo et al. 2010). Since the dependence on Ωm is extremely weak, to good approximation

δlin ' 1.69 for all realistic cosmologies.

The spherical collapse model provides useful results despite its strong assumptions, as we will

see in the next sections. This model is far from what happens in reality; haloes do not simply grow

and re-collapse to form virialized objects but rather form hierarchically as a result of continuous

mergers and accretion events. Nevertheless, it carries interesting statistical implications which turn

out to be in qualitative agreement with those found by N -body simulations.

1.3.4 Press-Schechter Formalism

The spherical collapse model provides simple analytic solutions to the equations of structure

evolution. This model can be used to obtain statistical measures on the collapsed haloes, as for

example the abundance of haloes as a function of mass and time, by relating the mass and collapse

time of a halo to the linear density field. This was introduced for the first time by Press and

Schechter (1974) and it is known as Press-Schechter (PS) theory. Press and Schechter (1974) were

also the first to develop a cosmological simulation of structure formation with N -body integrations.

PS theory is based on the assumption that the fraction of volume collapsed in haloes of mass M

is equivalent to the portion of initial density field smoothed on a mass scale M (or, equivalently

radius scale R) which exceeds the density threshold δth. The latter is that derived from the spherical

collapse model at z = 0, δth = δsc ' 1.69. Therefore, by counting the regions where the density

contrast exceeds the density threshold, one can predict the number density of haloes as a function

of mass.
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Consider the linear density field at redshift z smoothed using a top-hat filter function at mass

scale M . Assuming the smoothed density field δM is a Gaussian random field, the probability of the

smoothed linear density field exceeding the density threshold δsc at redshift z is

p>δsc (M, z) =
1√

2πσ(M, z)

∫ ∞
δsc

exp

(
− δ2

M

2σ2(M, z)

)
dδM , (1.28)

where the mass variance is defined as the variance of the smoothed density field, given by

σ2(M, z) =

∫
d3k

(2π)3

∣∣∣W̃M (k)
∣∣∣2 P (k, z), (1.29)

where P (k, z) is the power spectrum and W̃M (k) is the Fourier transform of a spherical top-hat

window function.

According to the PS ansatz, the probability in Eq. (1.28) is equal to the fraction of mass contained

in haloes with mass greater than M . However, as M → 0, then σ(M)→∞ and p>δsc (M, z)→ 1/2.

This would suggest that only half of the mass in the Universe ends up in collapsed objects. However,

underdense regions can be enclosed within larger overdensities, giving them a finite probability

of being within a larger collapsed object. Without a rigorous demonstration, Press and Schechter

(1974) argued that initially underdense regions will eventually be accreted by collapsed objects

and therefore added a “fudge factor” of 2 to their expression in Eq. (1.28). The halo mass function,

defined as the number density of collapsed haloes as a function of mass, is then given by

dn(M, z)

dM
= 2

ρ̄

M

∂p>δsc (M, z)

∂M

=

√
2

π

ρ̄

M2

δsc
σM

exp

(
− δ2

sc

2σ2
M

) ∣∣∣∣d lnσM
d lnM

∣∣∣∣ . (1.30)

An alternative, fully analytic derivation of the halo mass function in Eq. (1.30), which does

not require inserting a fudge factor, was developed by Bond et al. (1991); it is known as the

excursion set formalism, or Extended Press-Schechter (EPS) theory. Bond et al. (1991) argued that

PS theory did not account for the ‘cloud-in-cloud’ effect i.e., smaller-scale underdensities living

within larger-scale overdensities. A region that is locally underdense may still collapse into a halo,

if it resides in a larger scale overdensity. A solution to this problem is found by evaluating the

linear density contrast for a range of smoothing scales. This is known as a particle trajectory in the

excursion set formalism. The fraction of collapsed haloes of mass M is equivalent to the fraction

of trajectories with a first upcrossing of the density threshold barrier δsc at mass scale M . Bond
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Figure 1.5: Comparison of Sheth and Tormen (1999), Jenkins et al. (2001) and Warren et al. (2006)

halo mass functions with predictions from numerical simulations (black dots) at different redshifts.

Figure taken from Grossi et al. (2009).

et al. (1991) derived an analytic expression of the halo mass function using a sharp k-space window

function and recovered the PS halo mass function, including the factor of 2.

Subsequently, Sheth et al. (2001) extended Press-Schechter theory adopting arguments of

ellipsoidal rather than spherical collapse. They wish to describe the evolution of an ellipsoidal

perturbation in terms of three parameters: the initial ellipticity e, the prolateness p and the density

contrast δ. In practice, they first compute the scale factor a at collapse as a function of e and p

for a region with an initial overdensity δ = 0.04215 in an Einstein-de Sitter universe. Since the

linear theory growth factor is proportional to the scale factor in an Einstein-de Sitter model, this

relation can be used to construct δec(e, p). They find that a reasonable approximation can by found

by solving

δec(e, p)

δsc
= 1 + β

[
5
(
e2 ± p2

) δ2
ec(e, p)

δ2
sc

]γ
(1.31)

for δec(e, p). To further simplify Eq. (1.31), they assume the most probable values of e and p in a

Gaussian random field, i.e. p ≈ 0 and e ≈ (σ/δ) /
√

5 for regions with an initial value of δ/σ. As a

result, they obtain an ellipsoidal collapse threshold which depends on the spherical mass variance
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σ(M) and is given by

δec =
√
aδsc

[
1 + β

(
a

δ2
sc

σ2(M)

)−γ]
(1.32)

where a, β and γ are free parameters calibrated to numerical simulations to yield an improved

fit to the halo mass function. Similar to EPS, the fraction of collapsed objects of mass M is given

by the fraction of density trajectories which upcross the ellipsoidal collapse threshold δec at scale

σ(M). This led to the establishment of the Sheth-Tormen model as the accepted theory of ellipsoidal

collapse. In Chapters 3 & 4, we will test the interpretations of extended Press-Schechter and

Sheth-Tormen theories using an independent approach to study halo formation based on machine

learning.

More recently, different parametric functions for the halo mass function were derived to fit even

better the halo abundance predicted by N -body simulations (e.g. Jenkins et al. 2001; Tinker et al.

2008; Warren et al. 2006). These parametric functions typically involve parameters which are

calibrated with numerical simulations, which can vary in their volume and resolution or in their

definition of haloes. Fig. 1.5 shows a comparison between Sheth and Tormen (1999), Jenkins et al.

(2001) and Warren et al. (2006) halo mass functions and the simulation’s predictions (black dots)

at different redshifts.

1.4 Numerical simulations

Although linear perturbation theory can describe the growth of structures within certain limits,

those calculations break down as density fluctuations grow large (i.e., δ > 1) and cannot be

used to explain much of the observational data from galaxy surveys. In fact, today’s structures

probe δ-values from a large dynamic range; from δ ∼ −1 in voids to δ ∼ 107 (or larger) in the

densest regions of galaxies. Therefore, for a complete understanding of how the Universe evolved

from tiny density fluctuations into stars, galaxies and galaxy clusters, one must also follow the

evolution of the density field in the non-linear regime. Starting in the 1970s, it became possible

to tackle this problem using numerical simulations, thanks to advances in computer performance

and the development of sophisticated numerical algorithms. Today, numerical simulations play

a major role in providing the bridge between theory and observation; the simulation gives us a

prediction for the large-scale distribution of matter within the assumed cosmological model which

can be tested against existing observations to assess the validity of the model. An example of a
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Figure 1.6: The galaxy distribution obtained from the SDSS and 2dFGRS spectroscopic redshift

surveys (top and left panels) compared to mock galaxy distributions constructed using semi-analytic

models within the dark matter distribution obtained from the Millennium simulation. Figure taken

from (Springel et al. 2006).

comparison between the distribution of true galaxies observed from redshift surveys and mock

galaxies constructed from the Millennium simulation is shown in Fig. 1.6; the success of numerical

simulations at reproducing the observed large-scale structure is remarkable. The importance of

numerical simulations in modern cosmology led to the establishment of its own new branch of

cosmology, known as computational cosmology. In this section, I will give a general description of

the N -body technique and its implementation by the GADGET-3 code, used in the work presented in

this thesis.

The goal of computational cosmology is to simulate the evolution of matter from early times,

when density perturbations were small and well-approximated by linear theory, to the present

epoch’s non-linear regime. Most present-day simulations of the dark matter are obtained adopting

the N -body approach, whereas baryonic matter and radiation require hydrodynamical simulations.

In the ΛCDM model, the growth of structure is predominantly driven by the dark matter, interacting

only via gravity. This allows us to study large-scale structure formation using simulations with only
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dark matter particles, without the need to include the complicated (and more uncertain) physics

of the baryon component. Although baryonic effects can have a significant impact on the dark

matter distribution at small scales (e.g. Pontzen and Governato 2012), dark-matter-only simulations

provide a good description of the real Universe on large cosmological scales.

A further aspect of simplicity in cosmological simulations is that the dark matter evolution can be

very well described by Newtonian gravity, without the need for a full general relativistic treatment.

The reason for this is straightforward at scales which are small compared to the comoving horizon

size, as the effect of general relativity is expected to be negligible. However, on scales approaching

the horizon size, GR provides the correct description of gravity and therefore one would expect

clustering properties to be affected by various general relativistic effects. It turns out that for cold

dark matter, additional terms in the equations of motion from GR cancel out. As a result, the

Newtonian potential coincides with that of GR in the conformal Newtonian gauge even on very

large scales (Chisari and Zaldarriaga 2011; Green and Wald 2012), similar to the case of linear

order perturbation theory (see Sec. 1.3.1); Newtonian simulations can be safely used to study

structure formation.

The basic principle of an N -body simulation is that the dark matter is traced by a set of

macroscopic “particles” which interact with each other in a well-defined way (see e.g. Schneider

2006). The term particle refers to the smallest unit in the simulation, not to a fundamental particle

in the particle physics sense; N -body particles are usually many orders of magnitudes heavier than

fundamental particles, single stars, or even galaxies in the case of cosmological volumes. The

particles are embedded in comoving cubes of length L, periodically extended to avoid particles at

the edge of the box being influenced by the effect of the ‘emptiness’ outside the box. The basic

ingredients of an N -body simulation are threefold; the size of the (comoving) volume V = L3, the

number of particles N and the cosmological parameters of the underlying cosmological model. The

latter determine the initial conditions, the expansion history and the mass content of the virtual

universe, whereas the box-size L and particle number N determine the range of accessible scales

probed by the simulation.

The mass of each dark matter particle is given by

mp = ρcritΩm(L/N)3, (1.33)

where ρcrit ∼ 27.8× 1010 h−2 M�Mpc−3. An increased mass resolution is achievable by increasing

the number of particles, which significantly increases the computational cost, and/or by reducing
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the volume, resulting in fewer objects especially at large scales. The key is to find a balance between

computational power and numerical accuracy to resolve the scales of interest.

A collisionless system, such as that of cold dark matter, the equation of motion is dictated by the

total gravitational force on a particle i given by

sFi =
∑
i6=j

GM2
p(rj − ri)(

|rj − ri|2 + ε2
)3/2

, (1.34)

where the j-th particles are all other particles in the simulation such that |rj − ri| > ε, where ε

is an arbitrary small number known as the softening length (Dehnen 2001). The softening length

is introduced to modify the gravitational force at small scales in order for strong particle-particle

collisions not to affect the dynamics of the system. It is usually taken to be the mean separation

between two particles in the box. At scales below the softening scale, the gravitational force is

modified and the simulation cannot be trusted; it therefore sets a spatial resolution limit for the

simulation. The major shortcoming of solving Eq. (1.34) is computational time, which scales as N2

with N representing the number of particles. This makes such ‘brute force’ method unsatisfactory

for cosmology, where we aim to simulate the evolution of N > 106 particles. In Chapters 3, 4 and 5,

we make use of N -body simulations based on the GADGET-3 code (Springel 2005); I will therefore

focus on reviewing its implementation of the gravitational forces.

1.4.1 The GADGET code

Sufficiently accurate algorithms have been developed to make use of approximations, allowing

for much faster evaluation of the gravitational forces. The particle-mesh method (Hockney and

Eastwood 1988) and the Barnes-Hut tree algorithm (Barnes and Hut 1986) are the two most widely

used. GADGET-3 uses a TreePM code, a hybrid algorithm employing different ways of calculating the

forces between particles on large and small scales (Springel 2005; Springel et al. 2001). On large

scales, the force is calculated via the fast Particle-Mesh (PM) method, and on small scales via the

slow but precise Barnes-Hut (BH) tree method.

The PM method obtains the evolution of the system by solving the Poisson equation,

∇2Φ(x, t) = 4πGa2(t) [ρ(x, t)− ρ(t)] . (1.35)

The first step is to compute the density field ρ by placing particles onto a uniform grid, or “mesh”. It

then employs fast Fourier transforms (FFT) to speed up the solution for the potential Φ in Poisson’s
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equation, reducing the computational cost to O(Ngrid logNgrid). The force is then obtained by

computing the gradient of the potential and it is applied to each particle using the same initial grid.

For small particle separations, the numerical accuracy of the PM method quickly degrades. Note

that the Fourier approach implicitly assumes periodic boundary conditions for the computational

domain, exactly as desired for cosmological simulations of structure formation.

The BH tree code is instead used to solve the equations on small scales. It reduces to direct

summation for the contribution of nearby particles, but involves a great simplification in the

evaluation of long-range interaction. It uses a hierarchical tree algorithm that groups particles into

cells called tree nodes. Each node is in turn sub-divided into further sub-nodes (or, leaves), until the

lowest level of the tree is reached, where each leaf contains one or zero particles. In this way, the

force acting on a particle is calculated by summing the partial forces from neighbouring tree nodes

only, instead of requiring N − 1 partial forces per particle as for the direct-summation approach.

Once the forces are computed, the equations of motion are numerically integrated over time using a

leap-frog integration scheme.

1.4.2 Initial conditions

The purpose of initial conditions is to provide a discrete representation of the primordial density

field predicted by the cosmological model, to serve as the starting point of the actual cosmological

simulation. In the simplest inflationary models, the initial density fluctuations can be characterized

by a Gaussian random field, meaning that only the power spectrum P (k) is required to provide a

complete description of its statistical properties. As discussed in Sec. 1.2, this has been observation-

ally confirmed to a high level of precision by measurements of the CMB. The initial density field of

a simulation is therefore given by a realisation of a Gaussian random field with a power spectrum

P (k) scaled by the primordial power spectrum and the transfer function as

P (k) = αknsT 2(k), (1.36)

where ns is the spectral index of the primordial power spectrum, α is a normalisation constant and

T (k) is the transfer function at the starting redshift, typically computed numerically by Boltzmann

solvers such as CAMB (Lewis et al. 2000). The initial conditions are usually set at a high redshift

(typically, z ∼ 100) such that the fluctuations are still in the linear regime but also well inside the

matter dominated era.

In practice, generating the initial conditions involves two main steps. First, the N -body particles
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are distributed on a uniform grid. The particles are then moved slightly away from the grid positions

to create density perturbations. This can be done using the Zel’dovich approximation (Zel’dovich

1970),which relates a particle’s Eulerian position x to its Lagrangian position q via

x(q, t) = q +D(t)f(q), (1.37)

where the displacement field f(q)’s Fourier modes are given by

fk = −i δk
k2

k. (1.38)

As a result, the initial conditions assign an initial position and velocity to each particle given the

initial power spectrum and the cosmological background.

1.4.3 Finding dark matter haloes

At the end of the simulation one is left with a prediction for the large-scale distribution of matter

within the assumed cosmological model; this could in principle be tested against existing obser-

vations in order to assess the validity of the model or to constrain its parameters. It is therefore

useful to develop algorithms which identify dark matter haloes given the matter distribution in the

simulation.

Historically, there have been two major approaches to identify haloes in numerical simulations:

Spherical Overdensity (SO) and Friends-of-Friends (FoF). The first can be categorized as a density

peak locator, whereas the second as a particle collector. Density peak locators identify haloes via

a two step approach: (i) peaks are identified in the matter density field and (ii) spherical shells

about these centres are grown out until the density profile drops below a certain value. The latter is

usually derived from the spherical collapse model. Most of the methods utilising this approach differ

in the way they locate density peaks. Particle collectors instead connect and link particles together

that are closer than a given threshold (either in a 3D configuration or in 6D phase-space). Both

methods usually end with a step where gravitationally unbound particles are removed from the

halo. In Chapters 3, 4 and 5, we make use of SUBFIND (Springel 2005), a FOF algorithm that also

identifies substructures within the parent halo, and the Amiga Halo Finder (AHF, Gill et al. 2004;

Knollmann and Knebe 2009), which employs a recursively refined grid to locate local overdensities

in the density field. The identified density peaks are then treated as centres of prospective haloes

and sub-haloes.
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Fundamental halo properties such as the halo mass are found to agree remarkably well across a

wide range of dark matter halo finders. Recent years have seen increased activity in developing new

algorithms, often using the full phase-space information of the particle distribution, or other more

sophisticated techniques. The advantages of phase-space based techniques only become apparent

when looking for example at substructures (Avila et al. 2014) and in reconstructing merger trees

(Muldrew et al. 2011). For a detailed comparison of different halo finding algorithms, see Knebe

et al. (2011, 2013).

1.5 Outline of the thesis

This thesis is organized as follows. In Chapter 2, I describe the necessary background to the machine

learning methods used in this thesis. I will introduce ensemble methods, specifically random forests

and gradient boosted trees, and convolutional neural networks. Chapters 3 to 5 describe the

developments of a machine learning approach to gain new physical insights into dark matter halo

formation. The approach consists of training a machine learning algorithm to learn the relationship

between the initial conditions and the final dark matter haloes from N -body simulations. In

Chapter 3, I will present the first application of our method; halo formation is turned into a binary

classification framework, where the machine learning algorithm classifies dark matter particles in

an N -body simulation into two classes, depending on whether or not they will form haloes above a

specified mass threshold at z = 0. I will show how this leads to a different interpretation of the role

of the tidal shear field in halo collapse, which differs from existing interpretations based on analytic

approximations. In Chapter 4, the framework is generalized to a regression problem, in order to

investigate haloes across a wider range of final mass. In Chapter 5, I will describe ongoing work

on developing a framework based on convolutional neural networks, able to automatically extract

features relevant to halo formation from the initial conditions density field. By developing tools that

allow for the interpretability of the results from convolutional neural networks, we hope to uncover

new physical relations between the initial conditions and the final dark matter haloes. The latter

is part of future work, discussed in Chapter 6, which focuses on the idea of knowledge extraction

in machine learning applied to cosmological structure formation; we plan to extract information

from the deep learning model regarding the underlying physics driving the formation of large-scale

structures. In Chapter 7, I will outline the conclusions of this thesis.

This thesis contains material from the following two papers, together with ongoing work:

• Machine learning cosmological structure formation. This work was published as Luisa Lucie-
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Smith, Hiranya V. Peiris, Andrew Pontzen, and Michelle Lochner, Monthly Notices of the Royal

Astronomical Society, Volume 479, Issue 3, September 2018, Pages 3405–34146 and was

carried out in collaboration with the named co-authors.

• An interpretable machine learning framework for dark matter halo formation. This work was

published as Luisa Lucie-Smith, Hiranya V. Peiris, and Andrew Pontzen, Monthly Notices of

the Royal Astronomical Society, Volume 490, Issue 1, November 2019, Pages 331–342, and

was carried out in collaboration with the named co-authors.
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2
Method

2.1 Machine learning algorithms

The basic idea behind machine learning algorithms is to identify the relationship between the input

and output data of some set of samples, known as the training set1. Machine learning is usually

employed for problems that are so highly non-linear that they can not be solved using traditional

(analytic or numerical) statistical techniques. The advantage of machine learning is that it can

automatically build a model up to an arbitrary level of complexity. Provided the training set is a

representative sub-sample of the data, the trained model can then be used to make predictions on

new unseen data. Typically, it is difficult for the algorithm to learn patterns in the training set if the

input data is made of noisy and high-dimensional data. Particularly now in the era of “Big Data”,

we are faced with large amounts of high-dimensional data. Feature extraction and feature selection

are two powerful tools which can address these issues by projecting the original high-dimensional

space into a new low-dimensional feature space (feature extraction) and by selecting only a subset

of informative features to construct the algorithm (feature selection) (Li et al. 2016). Both tools

can provide significant improvements in the algorithm’s performance2, as well as requiring lower

computational and memory costs.

The two main categories of machine learning techniques are supervised learning, where the

training set is given by a set of input features and their corresponding label, and unsupervised

learning where the training set consists of features with no corresponding label. Typically supervised

learning is used for classification problems, where the training samples belong to two or more

1For good introductions to the field of machine learning see Abu-Mostafa et al. (2012); Bishop (2006); Hastie et al.
(2005); MacKay (2003); Murphy (2012).

2Note that whilst feature extraction is indispensable for all machine learning algorithms (with the exception of
convolutional neural networks), not all require feature selection; some are robust to a large number of uninformative
features.
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classes, or regression problems, where the output consists of continuous variables. Unsupervised

learning is usually used in clustering problems, where the aim is to group similar samples in the

data. In addition, semi-supervised learning algorithms, which involve a mixture of labelled and

unlabelled training samples, can also be used in problems such as image recognition. I will focus on

supervised learning algorithms, as these are most relevant for this thesis.

All machine learning models are affected by a trade-off in their ability to minimize bias and

variance in the predictions (Geman et al. 1992; Hastie et al. 2005). The bias is the difference

between the average prediction of the model and the correct value we are trying to predict, whereas

the variance is the variability of the model’s prediction for a given correct value (or sample). A

model that under-fits the data generally has a high bias and a low variance, whereas one that

over-fits has a low bias and a high variance. The key is to find the right balance in the complexity of

the model which neither over-fits nor under-fits the data; this trade-off in complexity gives rise to

the trade-off between bias and variance. An understanding of these errors can help with choosing

the appropriate machine learning algorithm for a given problem and to build accurate models.

Early applications of machine learning to astronomy were primarily focused on observational

tasks. One of the first applications involved using neural networks to distinguish galaxies from stars

in photometric catalogues (Bertin 1994; Maehoenen and Hakala 1995; Odewahn et al. 1992). This

method was later incorporated in SExtractor, a widely-used software that classifies sources from

astronomical images (Bertin and Arnouts 1996). Machine learning tools were also found successful

in classifying both stellar spectra (von Hippel et al. 1994) and galaxy spectra (Folkes et al. 1996).

Artificial neural networks were used for the first time as an automated tool for the morphological

classification of galaxies, able to reproduce visual classifications of galaxies made by humans

(Banerji et al. 2010; Lahav et al. 1995; Lahav et al. 1996; Naim et al. 1995; Storrie-Lombardi

et al. 1992). Subsequently, machine learning gained prominence as a successful tool for calculating

photometric redshift using a variety of models, including neural networks (Ball et al. 2004; Firth

et al. 2003), which led to the development of the well-known ANNz code for photometric redshift

estimation (Collister and Lahav 2004), as well as support vector machines (Wadadekar 2005),

decision trees (Carliles et al. 2008) and k-nearest neighbours (Ball et al. 2008). More recently,

machine learning has proved to be a successful tool for a much broader range of applications in

cosmology and astrophysics, and beyond (see e.g. Ball and Brunner (2010); Mehta et al. (2019) for

reviews of machine learning in astronomy). These include a variety of tasks for large-scale structure

analyses (Berger and Stein 2019; Charnock et al. 2019; He et al. 2019; Kodi Ramanah et al. 2019;

Mathuriya et al. 2018; Merten et al. 2019; Modi et al. 2018; Ntampaka et al. 2019; Pan et al. 2019;
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Ravanbakhsh et al. 2016; Zhang et al. 2019), fast automated object identification (Lochner et al.

2016; Moss 2018), gravitational lensing studies (Gupta et al. 2018; Jeffrey et al. 2019; Peel et al.

2019; Schmelzle et al. 2017), gravitational waves (Dreissigacker et al. 2019; Gebhard et al. 2019)

and mass estimates of galaxy clusters (Ntampaka et al. 2015) and the Local Group (McLeod et al.

2017)3. Deep learning is the fastest growing branch of machine learning. Recent advances have led

to models that reach human performance across diverse areas of science, industry and academia,

such as image, sound and text recognition, as well as robotics and game play tasks (Silver et al.

2016). In the context of cosmological simulations, Ravanbakhsh et al. (2016) were the first to apply

deep learning techniques to estimate cosmological parameters from the 3D dark matter distribution

in an N -body simulation. Their work was then extended to different deep learning architectures

(e.g. Mathuriya et al. 2018; Pan et al. 2019) and to estimate cosmological parameters from 3D

simulated galaxy maps (Ntampaka et al. 2019). Other applications of deep learning to cosmological

simulations typically involve learning fast mappings which would otherwise require expensive

N -body simulations, such as the mappings between the Zel’dovich-displaced and the non-linear

density fields (He et al. 2019), the non-linear density field and the halo distribution (Charnock et al.

2019; Kodi Ramanah et al. 2019; Modi et al. 2018) and the dark matter and galaxy distributions

(Zhang et al. 2019).

However, understanding the inner workings of machine learning models, especially in the

context of deep learning, remains a challenge. Often, the best performing models are so complex

that they lack of transparency and are hence considered to be “black-boxes”. On the other hand,

simpler algorithms such as linear regression models are straightforward to interpret as they are

based on simple and smooth relationships between the inputs and outputs, but are limited in

complexity. This leads to an accuracy vs. interpretability trade-off in machine learning (Kuhn

and Johnson 2013); black-box models provide great accuracy but make it hard to understand

what information the algorithm detects, or how the algorithm produces its outputs. Moreover, the

features interact in such a complex and highly non-linear manner, that it is difficult to provide

an estimate of the importance of individual features for the algorithm’s learning. In science, we

require the ability to explain how and why certain predictions are made by a model, thus making

the field of interpretability of machine learning algorithms of primary importance. Developing

techniques to turn “black-box” algorithms into interpretable ones is essential for machine learning

applications to cosmology; ultimately, it will allow us to interpret machine learning results in terms

of the underlying physics.

3For a recent review on future prospects of machine learning in cosmology see Ntampaka et al. (2019).
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One special family of machine learning algorithms that provide excellent accuracy with very

high interpretability are ensemble methods. In this section, I will first review random forests and

gradient boosted trees, the ensemble methods used in Chapter 3 & 4, and then move on to describe

deep convolutional neural networks (CNNs), used in Chapter 5 & 6, for which interpretability is a

challenge.

2.1.1 Decision trees

A decision tree is a supervised learning method which predicts the output of a sample by following

a set of simple decision rules inferred from the features of the data, X (Breiman et al. 1984; Hastie

et al. 2005; Quinlan 1986; Salzberg 1994). A tree is formed by a set of nodes, each with its own

decision rule of the form Xi ≤ n, where Xi is the feature which makes the split and n is some

value of that feature that determines the split between the samples. An illustration of a (shallow)

decision tree is shown in Fig. 2.1. During inference, samples at a node will be split into left and

right nodes according to their value for the feature Xi. This process is repeated for each node of the

tree until one reaches a leaf node, where no more splits are made. The final leaf node returns the

final prediction for all samples that end up in such leaf. In a classification task, this is the probability

of belonging to each class which comes from the fraction of training samples in each class at that

leaf node. In regression, the final prediction is a single value of the (continuous) target variable

given by the average value from the training samples that end up in that leaf node.

Training a decision tree is equivalent to selecting decision rules which optimally partition the

training data. This requires adopting a metric to define the best split. Different metrics exist to

choose the best feature and the best value for that feature at any given node of the tree. We follow

the implementation in scikit-learn (Pedregosa et al. 2011), where the best decision rule is one

that maximizes the decrease in impurity, a measure of the error in the predictions. Mathematically,

this is defined as follows. Consider a node n of a decision tree, where the split made by feature

X divides Nn samples into two subsets of NnL
and NnL

samples in the children nodes nR and nL,

respectively. The splitting feature X is chosen such that it maximizes the impurity decrease ∆p(n),

defined as

∆p(n) = p(n)− NnL

Nn
p(nL)− NnR

Nn
p(nR), (2.1)

where p(n), p(nL) and p(nR) are the impurity measures at node n, nL and nR, respectively. For a
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classification problem, the impurity p can be the Gini index,

pG(n) = 1−
c∑
j=1

sj(n)2, (2.2)

or the Shannon entropy (or, information gain),

pE(n) = −
c∑
j=1

sj(n) log2 sj(n), (2.3)

where sj(n) is the proportion of samples that belong to class j at node n and c is the total number

of classes. Both the Gini index and entropy are zero when the node is pure i.e., when all samples

belong to one class, and are maximum when the samples are evenly distributed in classes. For

regression, the impurity p is usually given by the mean squared error or the mean absolute error.

All machine learning models, including decision trees, have certain parameters that are not

tuned during the algorithm’s learning process but must be manually set a priori. These are called

hyperparameters and need to be optimized for any given training set. Generally, these are parameters

that describe high-level characteristics of the model. Examples of hyperparameters in decision

trees are the maximum depth of the tree, the impurity measure at each node (entropy or Gini

index) and the minimum number of samples at a leaf node. To optimize the hyperparameters,

one possible strategy is to construct grids of values for each hyperparameter, consider all possible

combinations of parameters and choose the setting which performs best on an independent set

of samples, known as the validation set, according to some evaluation metric. The fact that the

choice of hyperparameters is tested on an independent validation, rather than on the training set,

avoids overfitting to the latter. However, the problem with this optimisation process is that one risks

overfitting to the validation set; it possible that the selected hyperparameters are the optimal fit to

the validation set, but do not generalize to independent dataset.

One common approach to minimize overfitting is known as k-fold cross-validation (James et al.

2014; Kohavi 1995; Rao and Fung 2008). Here, each combination of hyperparameters is tested

on a number of validation sets taken, rather than on just one. The training set is divided into k

smaller sets. For each k-fold, k-1 sets are used for training and one is used as a validation set

which measures its performance. This procedure is repeated k times so that each set is used as a

validation set once, where typical values of k are 5 and 10. The hyperparameter combination that

retains the best score on the validation test is then kept by the estimator. One can then check if

this combination is overfitting or not by comparing the performance score of the validation test
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with that of the test set left out of the training process. If the validation set score is larger than the

test set score, then the classifier is overfitting. Otherwise, that setting is the optimal choice for that

given training set.

Given a set of values for the hyperparameters, the training set is divided into k equal-sized sets

where k − 1 sets are used for training and one is used as the validation set. The training/validation

procedure is repeated k times such that each time a different k set is kept aside for validation

and the rest are used for training. Finally, the score for that set of hyperparameters is given by

the average score over the k validation sets. The hyperparameter combination that retains the

highest average score on the validation sets is then kept by the estimator. In summary, the main

benefits of k-fold cross validation are twofold. First, setting aside a subset of the training set

for validation ensures that the hyperparameters of the algorithm do not overfit the training data.

Second, averaging the score over k validation sets also ensures that the hyperparameters do not

overfit any single validation set. Variations of this method for hyperparameter tuning also exist, as

for example randomized grid-search (Bergstra and Bengio 2012) or other model-specific techniques.

Decision trees are often referred to as a “white-box” model, as it is simple to understand their

inner working and and to interpret their predictions. This simplicity comes at the expense of

accuracy; they typically create over-complex trees which provide an excellent fit to the training

data, but do not generalize to new, independent data. Mechanisms such as pruning, setting the

minimum number of samples required at a leaf node or setting the maximum depth of the tree can

partially help to mitigate this problem but are often not enough to fully avoid it. In addition to this,

small variations in the training data lead to completely different tree being generated, leading to a

model with high variance error in the predictions.

A better solution comes from combining a large number of individual decision trees into ensemble

learners. In the following sections, I will introduce ensembles of decision trees and two specific

types of ensembles used in our work; random forests and gradient boosted trees.

2.1.2 Ensembles of decision trees

Since individual trees generally over-fit the training data, they are often combined together to form

a more robust ensemble estimator. The two main approaches to combine decision trees are bagging

(Breiman 1996) and boosting (Freund and Schapire 1996). The two approaches form ensembles

that differ substantially in the trade-off between the models’ ability to minimize bias and variance

in the predictions. Bagging estimators are effective at decreasing variance, but have no effect on the
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X2 <= 0.8564 X3 <= 1.2748

Figure 2.1: An illustration of a decision tree, with nodes filled by decision rules inferred from the

features of the training data. Inference is made on unseen samples by following the decision rules

until they reach a leaf node, where no more splits are being made and the algorithm makes its

prediction.

bias; trees learn independently on bootstrapped training samples and the final prediction of the

ensemble is given by the average over individual trees’ predictions. On the other hand, boosting

can reduce both the bias and the variance contributions to the error in the predictions (Schapire

et al. 1998) by aggregating trees iteratively, in such a way that subsequent trees learn to correct the

mistakes of the previous ones.

Random Forests

Random forests are an ensemble of decision trees which combine trees by means of bagging

(Breiman 2001). They are found to outperform most other popular machine learning algorithms (as

for example Naive Bayes, Support Vector Machines and k-nearest neighbours) for many classific-

ation problems (Caruana and Niculescu-Mizil 2006). We made use of the Python scikit-learn

(Pedregosa et al. 2011) package’s implementation of random forests.

Ensemble methods usually work by combining predictions of several base estimators in order to

improve generalisability over a single estimator (Dietterich 2000a,b). Random forests are formed

by an ensemble of decision trees, each acting in parallel on the data and equally contributing to

the final prediction. The prediction of the ensemble is given by the average of the predictions from
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individual trees. In the case of classification, this is the probability of belonging to each individual

class, whereas for regression it is a single value for the target variable.

The power of random forests to reduce variance only manifests when randomness is introduced

in order to reduce correlations between the classifiers within the ensemble. The main elements of

randomness in a random forest are twofold. The first is that each tree of the forest is trained on a

random subset of samples drawn with replacement from the original training set. This is a common

feature amongst all bagging estimators. The second is that the best feature at a node of a single tree

is chosen not out of all features, but out of a sub-set of randomly drawn features. Using feature

bagging reduces correlations between decision trees that can arise when only a few features are

strongly predictive of the final output. A third element of randomness can be introduced by splitting

features randomly rather than using the criteria described above; these are known as extremely

randomized forests. Although individual trees become even weaker estimators, the ensemble

predictive power can be increased as it reduces correlations between trees even further. In general,

a random forest can slightly increase the bias (with respect to the bias of a single non-random tree)

but its variance dramatically decreases due to averaging over the trees; the latter usually more than

compensates for the increase in bias, hence yielding an overall better model.

Similar to decision trees, random forests also have hyperparameters that need to be optimized

using cross-validation methods. These include all hyperparameters of decision trees, as well as the

number of trees in the forest and the fraction of features to randomly draw at each node when

looking for the best split.

Gradient boosted trees

Gradient boosted trees are a boosting ensemble of decision trees (Freund and Schapire 1997;

Friedman 2001, 2002). The main difference with random forests is that trees are added one at a

time to the ensemble, such that each new tree acts to correct errors made by the existing ensemble.

This is in contrast to bagging, where the contribution of all predictors is weighted equally in the

bagged ensemble. The basic idea of gradient boosted trees is to combine the idea of boosting and

gradient descent optimization to construct the ensemble. The performance of gradient boosted

trees can be expressed in terms of the loss function; the aim of the algorithm is to minimize the

loss evaluated for the training data by adopting a gradient-descent optimization procedure. At each

step, the algorithm computes the gradient of the loss function with respect to the predicted value of

the ensemble and adds trees that move the loss in the direction of the gradient. In practice, this
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requires a clever way of mapping gradients to decision trees.

Mathematically, this can be described as follows. At any given iteration m in the gradient boosted

tree, a new decision tree fm(x) is added to the existing ensemble Fm−1(x) such that the prediction

for a given training sample i, Fm(xi), is updated as

Fm(xi) = Fm−1(xi) + fm(xi), (2.4)

where xi is the input vector for that training sample. An illustration of the iterative addition of

decision tree learners in order to construct a gradient boosted tree is shown in Fig. 2.2. The accuracy

of the gradient boosted tree is quantified by the loss function, measuring how well the model’s

learnt parameters fit the data. The aim is to build a sequence of M trees which minimizes the loss

function between the target value y and the predicted one ŷ = FM (x). Gradient boosted trees solve

this minimization problem using gradient-descent optimization. The parameters of a decision tree,

consisting of both the decision rules and the target variable for that tree, are chosen to point in the

direction of the negative gradient of the loss function with respect to the ensemble’s predictions. As

an example, consider a regression task with the loss function to be the mean squared error between

the target value y and the prediction ŷ. At iteration m, the loss function L is given by the mean

squared error between the target value y and the current prediction ŷ = Fm−1(x) for N training

samples,

L(y, Fm−1) =

N∑
i

(yi − Fm−1(xi))
2

2
. (2.5)

The negative gradient of the loss function with respect to the predictive model for each training

sample i is given by

ri = −∂L(y, Fm−1)

∂Fm−1

∣∣∣∣∣
i

= yi − Fm−1 (xi) . (2.6)

Therefore, when choosing the mean squared error as the loss function, the decision tree at iteration

m is trained to predict the residuals r of the current predictions with respect to the true target

values. This procedure is repeated until adding further trees does not yield further changes in

the loss. Gradient boosted trees are flexible enough to minimize any loss function, as long as it is

differentiable.
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Decision Tree

f1(x) f2(x) f3(x)

…

+ + + …

Figure 2.2: An illustration of a gradient boosted tree, where new decision trees are iteratively added

to the existing ensemble following a gradient-descent optimization procedure. Re-adapted from

https://bigml.com.

2.1.3 Feature importances

Ensembles of decision trees provide an excellent trade-off between interpretability and accuracy. In

addition to the predictive power of ensembles of trees, they also allow for interpretability of their

learning procedure. This can be achieved using a metric known as feature importances (Louppe

et al. 2013) to measure the relevance of each input feature in training the algorithm to predict

the correct output. This is a crucial aspect of our machine learning application; it will allow us to

extract physical knowledge from the machine learning results.

The importance of the j-th feature Xj from a single tree t of the ensemble is given by

Impt (Xj) =
∑

n∈{n is split on featureXj}

Nn
Nt

[
p− NnR

Nn
pR −

NnL

Nn
pL

]
, (2.7)

where Nt, Nn, NnR
, NnL

are the total number of samples in the tree t, at the node n, at the

right-child node nR and at the left-child node nL, respectively. The sum in the equation is over all

n nodes where the feature Xj makes the split. The impurity p is given by the choice of splitting

criterion, which in our case is the mean squared error. The final importance of feature Xj given by
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the ensemble of T trees is the normalized sum over the importances from all trees,

Imp(Xj) =

∑T
t=1 Impt (Xj)∑J
j=1 Imp (Xj)

. (2.8)

2.2 Deep learning algorithms

Neural networks are a machine learning model inspired by the way biological neural networks

process information in the human brain (Nielsen 2015). Deep neural networks have a long history

(Bishop 1995), but the notion of deep learning was introduced in the 2000s when large artificial

neural networks were used for Boltzmann machines (Hinton et al. 2006; Salakhutdinov and Hinton

2009). The word deep refers to the hierarchical structure in neural networks, where many stacks

(or, layers) of neurons are placed between the inputs and the outputs (Bengio 2009; Goodfellow

et al. 2016). The outputs of the first layer become the inputs of the second layer, and so on through

each layer in the network until the final output (Deng and Yu 2014). The output from each layer is

distinctly different and more abstract than the original input data; this level of increasing abstraction

introduced by each layer makes deep learning algorithms more difficult to understand than standard

machine learning algorithms.

Deep learning networks quickly demonstrated their success compared to shallow machine

learning algorithms. The first examples of this came from two deep learning implementations,

the first being AlexNet (Krizhevsky et al. 2012), which reduced the error on the ImageNet Large

Scale Visual Recognition Challenge by 12%, and the second ResNet, which also achieved dramatic

improvement over existing methods with an error of 3.57% (He et al. 2015). Since then, deep

neural networks have become the standard technique of many image and speech recognition tasks

(see e.g. Mehta et al. (2019) for a review). Neural networks also form the backbone of CNNs

(Lecun and Bengio 1995), which are the main focus of Chaper 5. We first give an overview of neural

networks and then describe in detail the workings of CNNs.

2.2.1 Neural networks

The fundamental unit of a feed-forward neural network is a neuron, which takes scalar inputs,

performs first a linear transformation and then a non-linear one, and finally outputs a real number.

The linear transformation takes the form of a dot product with a set of neuron-specific weights and
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an additional bias, as

zi = wT
i · x + bi, (2.9)

where zi is the output, x is the input, wi are the weights of the i-th neuron and bi is the bias. A

non-linear transformation is then applied to zi, of the form ai = σ(zi), where σ is given by some

choice of non-linear function. Historically, common choices of non-linearities included step-functions

(perceptrons), sigmoids and the hyperbolic tangent. More recently, it has become more common to

use rectified linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear

units (ELUs), as they are found to outperform other choices in a variety of tasks (Nwankpa et al.

2018). The output ai(x) serves as input to the next layer, and so on, until one reaches the output

layer. Typically, a neural network is organized by stacking a number of “hidden” layers in between

the input and output layers, thus forming a deep neural network as shown in Fig. 2.3. Each hidden

layer is in turn made up of a large number of neurons; the power of neural networks stems from

how neurons are connected to each other. Since all neurons of neighbouring layers are connected

to each other, the layers are also known fully-connected layers.

In summary, the deep neural network can be thought of as a complicated non-linear transforma-

tion of the inputs x into an output y that depends on the weights and biases of all the neurons in the

input, hidden, and output layers. The predictive power of neural networks expresses itself in the

universal approximation theorem, which states that a neural network with a single hidden layer can

approximate any continuous, multi-input/multi-output function with arbitrary accuracy (Nielsen

2015). However, the more complicated a function, the more hidden units (and free parameters) are

needed to approximate it (at fixed accuracy). Hence, the applicability of the approximation theorem

to practical situations is limited by computational power, training data availability and other factors.

The basic principles of training a neural network are somewhat similar to those of gradient

boosted trees; one specifies a loss function and then updates the parameters, in this case the weights

and biases, using gradient descent optimization. First, information is propagated through the

network in a feed-forward fashion i.e., forward layer-by-layer through the network from the inputs

to the outputs. Unlike gradient boosted trees, the optimization of the parameters requires a more

complicated procedure, known as backpropagation (Rumelhart et al. 1986), due to the large number

of weights and biases in the different hidden layers and the complexity of deep neural networks. At

its core, backpropagation is simply the ordinary chain rule for partial differentiation applied to solve

the gradient of the loss with respect to the weights and biases. The term backpropagation comes
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Figure 2.3: An illustration of a deep neural network with an input layer, three hidden

layers and an output layer. Figure re-adapted from https://www.wandb.com/articles/

fundamentals-of-neural-networks.

from the fact that in computing the gradients one moves back from the outputs to each hidden layer,

until reaching the input layer. Forward and backward passes of the neural network is typically done

many times, where each pass is known as an epoch. At each epoch, new updates to the weights

are being made in the direction of the negative gradient of the loss with respect to the weights.

The convergence of the neural network can be tested by tracking the loss function as a function

of number of epochs; once the loss does not change with increasing number of epochs, then the

algorithm has reached convergence.

2.2.2 Deep convolutional neural networks

Neural networks fail to exploit spatial structure in input data such as images. A n×n image must be

reshaped into a one-dimensional vector of size n2 in order to train neural networks, which therefore

neglects spatial information about the image. This issue required the design of a new class of neural

network architectures, namely convolutional neural networks (CNNs), that account for locality in

the input data (Lecun and Bengio 1995; LeCun et al. 2015).

CNNs are one of the most powerful techniques at present, yielding breakthrough results in image

recognition (He et al. 2015; Krizhevsky et al. 2012; Simonyan and Zisserman 2014; Szegedy et al.
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2014), natural language processing (Clark et al. 2018; Devlin et al. 2018; Jozefowicz et al. 2016),

object detection (Diba et al. 2017; Ouyang et al. 2016), reinforcement learning, and many other

fields. In Chapter 5, we will train a CNN to learn dark matter halo formation from cosmological

simulations.

Architecture

Convolutional neural networks are defined as a feed-forward neural network with the addition of at

least one convolutional layer prior to the fully-connected layers. In the context of a convolutional

neural network, a convolution is a linear operation that involves a dot product between a set

of weights and the input summed by a bias term, similar to a traditional neural network. The

difference is that the weights are in a two-dimensional matrix, called a convolutional kernel (or,

filter), as CNNs were designed to work on images. CNNs are not just limited to 2-D images but can

be generalized to volumetric data, or any n-dimensional data, simply by adopting three-dimensional,

or n-dimensional, convolutional kernels. In Chapter 5, we will make use of 3-D CNNs to learn from

volumetric N -body simulations. For simplicity, I will describe convolutions assuming the inputs are

two-dimensional images but the same arguments apply to higher-dimensional data. The size k of

the k × k filter is usually much smaller than the size of the input data, where typical values of k are

3, 4, and 5. The filter is then shifted systematically to each filter-sized patch of the input data, left to

right, top to bottom. Crucially, the weights of the filter remain the same as the filter is applied to

different parts of the input image. Therefore, if a given filter is designed to detect a specific type of

feature in the input, it will discover that feature anywhere in the image. This capability is commonly

referred to as translation invariance and is a powerful property when interested in whether a certain

feature is present, independent of where it is located in the input. This is one of the main reasons

why convolutional neural networks are particularly suited for images.

The output from a single multiplication of the filter with the input is a single value, but as the

filter is applied to different patches of the image, the end result is a two-dimensional matrix called a

feature map. Each pixel in the feature map indicates the strength of the detected feature in different

regions of the input image. Typically, a convolutional layer is composed of several feature maps,

each constructed using a different convolutional filter, so that multiple features can be extracted

from the image in a single convolutional layer. Similar to fully connected layers, each value in the

feature maps is passed through a non-linear activation function, as for example a ReLU (Nair and

Hinton 2010).
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The size of a feature map is controlled by three hyperparameters that have to be set prior to

training: the number of convolutional filters, the stride, and amount of zero-padding. The number

of convolutional filters determines the number of features to be learnt at any given layer. The

stride is the number of pixels by which to slide the filter across the image when performing the

convolution. For example, if the stride is one, the filter is moved one pixel at a time across the

image, whereas if the stride is two, the filter slides over two pixels at a time. With zero-padding,

one pads the image with zeros around the border in order to center the filter on elements at the

edge of the image. With appropriate zero padding around the image, and sliding the convolution

filter with a stride of 1, the output map will be of the same size as the input. Instead, one can

decide to reduce the size of the output map by two by choosing a stride of 2. A detailed review of

the arithmetic of convolutional layers can be found in Dumoulin and Visin (2016).

Convolutional layers are often followed by pooling layers, which reduce the dimensionality of a

feature map by taking the average (average-pooling) or the maximum value (max-pooling) in small,

usually 2× 2, regions of the feature maps. They act separately on each feature map, meaning that

from a set of N feature maps when obtains the same number of N pooled maps. The effect of the

pooling layer is to produce lower-resolution feature maps, which are less sensitive to small changes

in the position of the feature in the image compared to the higher-resolution feature maps returned

by the convolutional layer. This property is commonly referred to as local translation invariance.

Moreover, it is common to add a batch-normalization layer (Ioffe and Szegedy 2015), which

normalizes the inputs of a batch by first subtracting the batch mean and dividing by the batch

standard deviation and then rescaling and shifting the normalized values using two parameters

γ and β, which are learnt during backpropagation. This layer is usually placed in between the

convolutional layer and the non-linear activation function. Its success is usually attributed to the

fact that it reduces the negative impact of changes in the distribution of layer inputs caused by

updates to the network parameters in the preceding layers. This effect is known as internal covariate

shift. However, the exact reasons for its effectiveness are still a matter of debate (Santurkar et al.

2018).

Choosing the exact network architecture is often problem-specific, thus requiring extensive

numerical experimentation and intuition. More complicated architectures may be better at capturing

complex correlations in the data and learning relevant patterns, but may also lead to overfitting

by fitting spurious patterns of the training data. There have also been numerous works that move

beyond the simple deep, feed-forward neural network architectures, which for example incorporate

“skip connections” that allow information to directly propagate to a hidden or output layer, bypassing
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intermediate ones (He et al. 2015). By adding skip connections, the network avoids training for the

layers that are not useful and that do not add value in overall accuracy. This idea is particularly

helpful in cases where adding more layers to a deep learning model leads to a higher training error.

Training

Similar to regular deep neural networks, convolutional neural networks are trained for a number of

epochs, each consisting of a forward pass, where the input passes through the network and reaches

the output layer, and a backward pass, where gradients are backpropagated and all the weights in

the convolutional layers are updated according to the negative gradient of the loss function. The

updates are usually suppressed by multiplying the gradients by a small number α, known as the

learning rate, which takes values between 0 and 1. The learning rate controls how quickly the model

descends towards the minimum of the loss and is one of the most important hyperparameters in the

network. If the learning rate is set too low, training will progress very slowly towards the minimum,

as only tiny updates are made to the weights each time. If the learning rate is set too high, it can

cause drastic changes to the weights, leading to divergent behaviour in the loss function.

The training data can be divided into one or more subsets, called batches, which are forward-

and backward- propagated through the network independently. In this way, weights are updated

after each batch. The size of the batches is a hyperparameter which must be set prior to training. If

all training samples are contained in a single batch rather than sub-divided into multiple batches,

the learning algorithm is called batch gradient descent. If instead each batch consists of a single

sample or a subset of the training data, the learning algorithm is called stochastic gradient descent or

mini-batch gradient descent, respectively. One epoch is therefore made of N forward and backward

passes for each of the N batches.

Deep convolutional neural networks contain a large number of hyperparameters to be set before

training, making their tuning a challenging task. These involve architecture-specific parameters,

such as the number of layers (including convolutional, pooling, batch-normalization and fully-

connected layers), the number of epochs, the gradient descent optimizer, the learning rate and

the choice of loss function, as well as layer-specific parameters. For convolutional layers, these

include the size of the kernels, the choice of non-linear activation function, the amount of stride

and zero-padding; for pooling layers, the amount of down-sampling and the type of pooling (max

or average); for fully-connected layers, the number of neurons and the choice of non-linearity.

The large number of hyperparameters to tune in convolutional neural networks makes a fully
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grid-based optimization search infeasible. Most of these choices require a large number of numerical

trial-and-error stages, which can be done in a systematic way to explore the sensitivity of the

learning to the various parameters and the degeneracies between the parameters.

Representation learning

One important and powerful aspect of deep learning algorithms lies in its ability to learn relevant

features from the raw data, a task known as representation learning. This is in contrast to most of the

other machine learning algorithms, such as random forests or gradient boosted trees, which require

pre-processing the data into a selected set of features used for training. The hierarchical structure

of deep learning models is thought to be crucial to their ability to represent complex features. For

example, in convolutional neural networks, the first layers learn local low-level features, as for

example edges in images, which are then combined by subsequent layers of the network into more

global, higher-level features (Le et al. 2011). This is because each pixel in a convolutional layer is

only a function of the k × k pixels in the previous layer that are contained inside the k × k kernel of

the convolutional filter. Since typically k ∈ {3, 5, 7}, the algorithm will only learn local features. As

more convolutional layers are stacked on top of each other, the region of the input that any given

pixel is a function of increases. The size of this region at any specific layer is called receptive field

of the layer. The receptive field increases layer-by-layer making each layer sensitive to features at

increasingly larger scales. In this way, both local and global information propagate through the

network.

Knowledge extraction

Going back to the accuracy vs. interpretability trade-off, deep CNNs provide the most striking

example of extremely high accuracy and low interpretability. Model interpretability is currently

lacking for CNNs (see e.g. Zhang and Zhu 2018 for a review on the topic of interpretability in deep

learning); there is very little insight into the internal operation of these complex models, or how

they achieve such good performance. The feature maps generated by each convolutional layer in the

network, show patterns in the data which are hard to relate to human-interpretable quantities. In

addition to this, the complex network of inter-connected neurons of the CNN also makes it difficult

to quantify how individual features then map onto the resulting predictions. The building blocks of

interpretability can be summarized in terms of understanding (i) the functionality of the different

hidden layers, (ii) the relationship and interconnection between neurons and (iii) how features are
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assembled throughout the network up to the final prediction (Olah et al. 2018).

The machine learning community has tried to answer such questions by developing tools based

on feature visualization (Olah et al. 2017; Springenberg et al. 2014; Zeiler and Fergus 2014),

attribution (Fong and Vedaldi 2017; Selvaraju et al. 2016; Simonyan et al. 2013; Zhou et al. 2015),

and dimensionality reduction (van der Maaten and Hinton 2008). Feature visualization tools usually

project a model’s learnt feature map back to the pixel space using a technique called deconvolution.

The aim is to provide insight into what types of features deep neural networks are learning at

specific layers in the model. However, due to the large number of feature maps in the network,

these methods are usually only applied to few, low-level feature maps in the first layers and so

can only provide limited insight. Moreover, qualitative evaluation of such maps can be difficult

to turn into quantitative statements about the learnt features. The most common approach for

attribution techniques is a saliency map, a colormap that highlights pixels of the input image that

most caused the output classification (Selvaraju et al. 2016; Zhou et al. 2015). These methods

are also limited in that they do not take into account correlations between pixels, or that they

only display pixels of the input that are relevant to a single class. Finally, dimensionality reduction

methods such as t-SNE have been used (not only for neural networks) to reduce the dimensionality

of high-dimensional features into lower dimensions, while trying to preserve the characteristics

of the data. Machine learning interpretability is an active area of research, and we expect further

improvements in existing and novel interpretation techniques in the future.

A deeper understanding of powerful machine learning algorithms directly ties to the potential

for knowledge extraction. In physics, this means extracting the underlying physics of a given problem

from the machine learning results. We outline future work on knowledge extraction in Chapter 6,

where we plan to modify the convolutional neural network architecture used in Chapter 5 to one

from which it is possible to extract physical knowledge of cosmological structure formation.
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3
Machine learning dark matter halo formation: a binary

classification framework

3.1 Abstract

We train a machine learning algorithm to learn cosmological structure formation from N-body

simulations. The algorithm infers the relationship between the initial conditions and the final

dark matter haloes, without the need to introduce approximate halo collapse models. We gain

insights into the physics driving halo formation by evaluating the predictive performance of the

algorithm when provided with different types of information about the local environment around

dark matter particles. The algorithm learns to predict whether or not dark matter particles will end

up in haloes of a given mass range, based on spherical overdensities. We show that the resulting

predictions match those of spherical collapse approximations such as extended Press-Schechter

theory. Additional information on the shape of the local gravitational potential is not able to improve

halo collapse predictions; the linear density field contains sufficient information for the algorithm

to also reproduce ellipsoidal collapse predictions based on the Sheth-Tormen model. We investigate

the algorithm’s performance in terms of halo mass and radial position and perform blind analyses

on independent initial conditions realisations to demonstrate the generality of our results.

3.2 Introduction

Dark matter haloes are the fundamental building blocks of cosmic large-scale structure, and galaxies

form by condensing in their cores. Understanding the structure, evolution and formation of dark

matter haloes is therefore an essential step towards understanding how galaxies form and ultimately,

to test cosmological models. However, this is a difficult problem due to the highly non-linear
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nature of the haloes’ dynamics. Dark matter haloes originate from random perturbations seeded in

the early Universe and grow via mass accretion and mergers with smaller structures throughout

their assembly history. N-body simulations provide the only practical tool to compute non-linear

gravitational effects starting from an initial random field (e.g. Kuhlen et al. 2012; Springel 2005;

Springel et al. 2001).

As discussed in Chapter 1, analytic approximations of structure formation yield useful physical

interpretations of these detailed numerical studies. Generally, analytic techniques assume dark mat-

ter collapse occurs once the smoothed linear density contrast exceeds a threshold value. Combined

with excursion set theory, this ansatz provides a tool to analytically predict the final halo mass of an

initially overdense region. This can be used to infer useful quantitites such as the abundance of dark

matter haloes in the Universe, or the halo mass function, based on properties of a Gaussian random

field alone (Bond and Myers 1996; Bond et al. 1991; Press and Schechter 1974). The halo mass

function is the quantity most often used to assess the accuracy of different analytic frameworks

against numerical simulations. The original form of the halo mass function proposed by Press

and Schechter (1974), although qualitatively correct, is known to underestimate the abundance

of the most massive haloes, and overestimate the abundance of the less massive ones. The need

for precision mass functions led to modifications of the original halo mass function in the form

of parametric functions calibrated with cosmological simulations (Jenkins et al. 2001; Reed et al.

2003; Tinker et al. 2008). Pure analytic extensions of the excursion set ansatz have also been

constructed which yield better agreement with numerical simulations (Borzyszkowski et al. 2014;

Farahi and Benson 2013; Maggiore and Riotto 2010; Paranjape and Sheth 2012; Sheth et al. 2001).

In particular, one widely-used generalization of the Press-Schechter formalism is the peak-patch

theory (Bond and Myers 1996), which combines the excursion set picture of Bond et al. (1991) and

the ‘peaks‘ picture of Bardeen et al. (1986). Given these successful predictions, the excursion set

description has become an accepted physical interpretation of the process of structure formation

itself.

We present a machine learning approach to learn cosmological structure formation directly from

N-body simulations. The machine learning algorithm is trained to learn the relationship between

the initial conditions and final halo population that results from non-linear evolution. Using the

resulting initial conditions-to-haloes mapping, we aim to provide new physical insights into the

process of dark matter halo formation, and compare with existing interpretations gained from

widely investigated analytic frameworks. In contrast to existing analytic theories, our approach does

not require prior assumptions about the physical process of halo collapse; the haloes’ non-linear
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dynamics is learnt directly from N-body simulations rather than approximated by an excursion set

model in the presence of a collapse threshold.

We provide the machine learning algorithm with a set of informative properties about the

dark matter particles extracted from the initial conditions. Machine learning algorithms are

sufficiently flexible to include a wide range of initial conditions properties which may contain

relevant information about halo formation, without changing the training process of the algorithm.

We choose these properties to be aspects of the initial density field in the local surroundings of

the dark matter particles’ initial position. By quantifying their impact on the learning accuracy

of the algorithm, we can investigate which aspects of the early universe density field contain

relevant information on the formation of dark matter haloes. The trained initial conditions-to-haloes

mapping can then also be used to predict the mapping for new initial conditions, without the need

to run a further simulation.

The highly non-linear nature of dark matter evolution makes it a problem well-suited to machine

learning. Machine learning is a highly efficient and powerful tool to learn relationships that are

difficult to solve analytically or numerically using standard statistical techniques (Witten et al.

2016). In the context of structure formation, machine learning techniques have also been shown

to be effective, for example, in learning the relationship between dark and baryonic matter from

semi-analytic models (Agarwal et al. 2018; Kamdar et al. 2016; Nadler et al. 2018).

We choose random forests (Breiman 2001; Breiman et al. 1984; see Sec. 2.1.2), a popular

algorithm which has been shown to outperform other classifiers in many problems (Caruana and

Niculescu-Mizil 2006; Douglas et al. 2011; Lochner et al. 2016; Niculescu-Mizil and Caruana 2005).

Random forests also lend themselves to physical interpretation, as they provide measures that allows

the user to infer which of the inputs are predominantly responsible for the learning outcomes of the

algorithm. Random forests are ensembles of decision trees, each following a set of simple decision

rules to predict the class of a sample (Ball and Brunner 2010). The prediction of the random forest

is given by the average of the probabilistic predictions of the individual trees, where the variance of

the forest predictions is greatly reduced compared to that of a single tree.

To apply this approach, we must turn the process of dark matter evolution into a supervised

classification problem. We chose to focus on the simplest case of a binary classification task to

illustrate the approach and allow for a cleaner understanding of the physics behind the learning

process of the algorithm. We distinguish between dark matter particles which end up in haloes of

mass above a threshold, and those which belong either to lower mass haloes or to no halo at all.

This defines two classes; the former set of particles belongs to the IN haloes class while the latter
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forms the OUT haloes class. The machine learning algorithm is trained to predict whether the dark

matter particles in the initial conditions will end up in IN class haloes or in the OUT class at z = 0.

The training is performed on an existing N-body simulation where we already know the associated

halo for each particle (if any).

The predictive accuracy of the algorithm crucially depends on the choice of features extracted

from the initial conditions and used as input to the machine learning algorithm. We first train the

random forest with the initial linear density field as features and subsequently add information on

the tidal shear field. We are able to quantify the physical relevance of such properties in the halo

collapse process, based on their respective impact on the classification performance of the random

forest. Our results demonstrate the utility of machine learning in gaining insights into the physics

of structure formation, as well as providing a fast and efficient classification tool.

This chapter is organized as follows. We present an overview of the classification pipeline

and describe how we extract features from the linear density field and train the machine learning

algorithm in Sec. 4.3. In Sec. 3.4 we interpret the classification output and present our results in

Sec. 3.5. We then extend the feature set to include the tidal shear field in Sec. 3.6 and discuss

the resulting implications. We study the algorithm’s performance as a function of halo properties

in Sec. 3.7. We perform two blind tests of our pipeline on independent simulations in Sec. 3.8,

demonstrating the generality of our results, and finally conclude in Sec. 4.8.

3.3 Method

We trained and tested the random forest with an existing dark-matter-only simulation produced

with P-GADGET-3 (Springel 2005; Springel et al. 2001) and a WMAP5 ΛCDM cosmological model

(Dunkley et al. 2009); ΩΛ = 0.721, Ωm = 0.279, Ωb = 0.045, σ8 = 0.817, h = 0.701, ns = 0.96. The

comoving softening length of the simulation is ε = 25.6 kpc. The simulations evolve 2563 dark-

matter particles, each of mass Mparticle = 8.24× 108 M�, in a box of comoving size L = 50 h−1Mpc

from z = 99 to z = 0.1

The haloes were identified using the SUBFIND halo finder (Springel et al. 2001), a friends-of-

friends method with a linking length of 0.2, with the additional requirement that particles in a halo

be gravitationally bound. While SUBFIND also identifies substructure within haloes, we consider the

entire set of bound particles to make up a halo and do not subdivide them further. The simulation

1We make use of the Python package pynbody (Pontzen et al. 2013) to analyse the information contained in the
simulation snapshots.
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Figure 3.1: An illustration of our binary classification framework. We extract features from the

initial conditions of an N -body simulation, describing properties of the local environment around

each dark matter particle. Based on these inputs, the machine learning algorithm is trained to

predict whether a dark matter particle ends up in the IN haloes class or the OUT haloes class at

z = 0, as defined in the text.

contains 18, 801 haloes at z = 0, ranging from masses of ∼ 109 M� to ∼ 1014 M�.

We used the the final snapshot (z = 0) to label each particle with its corresponding class. At

z = 0, we split the dark matter particles between two classes; IN haloes and OUT haloes. We

chose the IN class to contain all particles in haloes of mass M ≥ 1.8 × 1012 M� at z = 0 (401

haloes), and the OUT class to contain all remaining particles, including those in haloes of mass

M < 1.8× 1012 M� and those that do not belong to any halo.2 This choice was made in order to

split the haloes into the two classes at an intermediate scale within the mass range probed by the

simulation. Our pipeline allows the selection of any mass threshold which would ultimately allow

us to extend the binary classification to a multi-class one.

2The mass scale M = 1.8 × 1012 M� corresponds to the mass of a particular halo of the simulation and was chosen as
the class boundary for convenience.
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Each particle, with its associated class label, was traced back to the initial conditions (z = 99)

where we extracted features to be used as input for the random forest as described below. The

random forest was trained based on these input features and the known output class for a training

subset of particles. We tested the algorithm using the remaining dark matter particles, where the

random forest’s class prediction was compared to their respective true class label. The robustness of

the algorithm was tested further on independent N-body simulations (Sec. 3.8). An illustration of

the binary classification framework is shown in Fig. 3.1.

3.3.1 Density Field Features

Most machine learning algorithms, including random forests, require a feature extraction process

to extract key properties of the dark matter particles. The classification performance crucially

depends on whether or not the chosen features provide meaningful information to allow for a clean

separation between the IN and OUT classes.

We extracted machine learning features from the linear density field. This choice was motivated

by the work of Press and Schechter (1974) (PS) who developed a model to predict the (comoving)

number density of dark-matter haloes as a function of mass based on properties of the linear density

field. The ansatz is that a Lagrangian patch will collapse to form a halo of mass M at redshift z if

its smoothed linear density contrast exceeds a critical value δc(z). An improved theoretical footing

for PS theory was developed by Bond et al. (1991) based on the excursion-set formalism, known

as extended Press-Schechter (EPS). The crucial assumption is that the final halo mass corresponds

to the matter enclosed in the largest possible spherical region with density contrast δL = δc. This

method yields a halo mass function qualitatively consistent with numerical simulations, suggesting

that a useful mapping between Lagrangian regions and final collapsed haloes can be obtained from

spherical overdensities. This motivates our choice of machine learning features from the initial

linear density field as follows.

We smoothed the density contrast δ(x) = [ρ(x)− ρ̄] /ρ̄, where ρ̄ is the mean matter density of

the universe, on a smoothing scale R,

δ(x;R) =

∫
δ (x′)WTH (x− x′;R) d3x′, (3.1)

74



where WTH(x, R) is a real space top-hat window function

WTH(x, R) =


3

4πR3
for |x| ≤ R,

0 for |x| > R.

(3.2)

The convolution (4.3) was carried out in Fourier space, which naturally accounts for the

periodicity of simulations. A window function W (x, R) of characteristic radius R corresponds to a

mass scale Msmoothing = ρ̄V (R), where in the case of a top-hat window function VTH(R) = 4/3πR3.

The feature for machine learning then consists of the density contrast smoothed with a top-hat

window function of mass scale Msmoothing (or, smoothing scale R) centred on the particle’s position

in the initial conditions.

We repeated the smoothing for 50 mass scales evenly spaced in logM within the range allowed

by the volume and resolution of the simulation box i.e., 3× 1010 ≤ Msmoothing/M� ≤ 1× 1015,

yielding a set of 50 features per particle. When adopting a smaller number of smoothing mass

scales, e.g. 20 or 30 bins, we found a decrease in the performance of the algorithm. On the other

hand, we found that using a larger number of smoothing scales did not yield improvement in the

classification performance, meaning that 50 smoothing scales were sufficient to capture the relevant

information carried by the density field.

In the context of excursion set theory, the density contrast of a particle as a function of smoothing

scale is known as a density trajectory. Fig. 3.2 shows examples of density trajectories of particles

belonging to the true IN and OUT classes. The trajectories describe whether particles are found

in overdense or underdense regions as a function of increasing mass scale. As one approaches the

largest mass scales probed by the simulation box, the trajectories start to converge to δ(x,∞) = 0,

where the density coincides with the mean density of the Universe. The ensemble of trajectories

constitutes the full feature set we used to first train then test the random forest.

3.3.2 Training the random forest

We make use of the random forest implementation in the SCIKIT-LEARN (Pedregosa et al. 2011)

Python package. The random forest was trained using a set of 50,000 randomly selected particles

from the simulation, each carrying its own set of density features and corresponding IN or OUT

class label. The size of the training set was chosen to form a subset of particles representative of the

full simulation box. To test for representativeness, we checked the performance of the algorithm

for training sets of different sizes and found no improvement for training sets larger than 50,000
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Figure 3.2: Examples of density trajectories corrresponding to particles belonging to the IN and

OUT classes. The linear density field is smoothed with a real space top-hat filter centred on each

particle’s initial position. We calculate the smoothed overdensity δ as the smoothing mass scale M

is increased.

particles. Therefore, we concluded that 50,000 randomly selected particles are sufficient to form

a training set representative of the full simulation box. The remaining particles in the simulation

were used as a test set; the trained random forest predicts the class label of the particles in the

test set, which is then compared to the particles’ true labels to assess the algorithm’s performance.

Note also that random forests are robust to correlated features (Breiman 2001), meaning that the

high correlation present in our density features does not affect the predictive performance of the

algorithm.

Like most machine learning algorithms, random forests have hyperparameters which need to be

optimized for a given training set. These include the number of trees and the maximum depth of

the forest, the maximum number of particles at the end node of a tree and the size of the subset

of features to select at a node split. We used a grid search algorithm combined with k-fold cross

validation (Kohavi 1995) to optimize the random forest’s hyperparameters, as described in more

details in Sec. 2.1.1. In k-fold cross validation, the training set is divided into k equally sized sets

where k − 1 sets are used for training and one is used as a validation set, on which the algorithm is
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Table 3.1: Confusion matrix for two classes: Positives and Negatives. We use this to quantify the

performance of the machine learning algorithm, where the positives are particles of the IN class

and the negatives are particles of the OUT class.

True Class

P N

Predicted
Class

P True Positive (TP) False Positive (FP)

N False Negative (FN) True Negative (TN)

tested. This procedure is repeated k times so that each set is used as a validation set once. For each

validation set we evaluate a score based on a chosen scoring metric (here we use the area under the

Receiver Operating Characteristic curve, see Sec. 3.4) and average scores over all k validation sets

to obtain the final score of a training set. Here, we performed a five-fold cross validation for all

combinations of hyperparameters and retained the combination which achieved the best score.

3.4 Interpreting the classification output

A random forest (like most machine learning algorithms) outputs a probabilistic measure of

belonging to a class for every particle. For practical use this must be mapped onto a concrete class

for each particle. Many approaches exist for such a mapping. For example, Leclercq et al. (2015)

proposed a Bayesian decision theory approach, motivated by game theory, to classify the cosmic

web into different structure types. We choose to consider different probability thresholds at which

a particle is considered to belong to a class. A high probability threshold will contain a very pure

sample of particles but also will be incomplete. As the probability threshold decreases, one allows

for a more complete set of particles at the expense of including misclassified ones.

Once the probability-to-class mapping is established, we quantify the performance of the

algorithm making use of a confusion matrix for binary classification problems as shown in Table 3.1.

Throughout this analysis we always take the positives to be particles of the IN class and negatives

to be particles of the OUT class. The perfect classifier consists of true positives and true negatives

only. A more realistic classifier will include a number of incorrectly classified particles: misclassified

positives fall in the false negative category, yielding a loss of completeness, and misclassified negatives

fall in the false positive category, yielding an increase in contamination. We measure the true positive

rate (TPR), the ratio between the number of particles correctly classified as positives and the total
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number of positives in the data set,

TPR =
TP

TP + FN
, (3.3)

and the false positive rate (FPR), the ratio between the number of particles incorrectly classified as

positives and the total number of negatives in the data set,

FPR =
FP

FP + TN
. (3.4)

Receiver Operating Characteristic (ROC) curves (Fawcett 2006; Green and Swets 1966; Hilden

1991) are a tool to graphically represent the balance between completeness and contamination at

various probability thresholds. A ROC curve compares the true positive rate to the false positive

rate as a function of decreasing probability threshold. As one lowers the probability threshold, one

allows for a more complete set of IN particles (increase in true positive rate) at the expense of a

larger contamination of misclassified particles (increase in false positive rate). The area under the

curve (AUC) of a ROC curve is a useful quantity to compare classifiers. The perfect classifier would

have an AUC of 1, whereas a random assignment of classes would obtain an AUC of 0.5. Typically,

algorithms are considered to be performing well if AUC ≥ 0.8.

We use ROC curves and AUCs to evaluate and compare the performance of the random forest

for different feature sets (Sec. 3.5 & 3.6), different halo mass and radial position ranges (Sec. 3.7)

and different simulations (Sec. 3.8).

3.5 Density field Classification

Figure 3.3 shows the ROC curve for the density feature set resulting from classifying all particles in

the simulation that were not used for training the random forest. The random forest achieves an

AUC score of 0.876.

In order to assess whether machine learning can learn as much as human-constructed models,

we wish to compare its performance to existing theories. In particular, the EPS formalism motivated

our choice of density features and has been demonstrated to infer approximately correct number

densities of collapsed haloes from a Gaussian random field (Bond et al. 1991). Although EPS is

commonly used to predict the dark matter halo mass function, we make use of it to predict an

independent set of class labels for the test set particles and compare their accuracy to that of the
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Figure 3.3: ROC curves for the density feature set and the combined shear and density feature set.

The machine learning algorithm is able to learn the information contained in the density trajectories

to match the EPS prediction. The ST prediction represents an extension of standard excursion set

developed by Sheth and Tormen (1999), which adopts a moving collapse barrier motivated by tidal

shear effects. The comparison between the two ROC curves shows little improvement in the test set

classification once information on the shear field is added. The ST analytic prediction also does

not provide an overall improvement compared to the EPS prediction; the false positive rate (or,

contamination) decreases at the expense of decreasing the true positive rate (or, completeness).

The machine learning algorithm is able to recover the ST analytic prediction when presented with

information on the density field alone by altering the probability threshold.

machine learning predictions.

Following EPS, the fraction of haloes of mass M is equivalent to the fraction of density tra-

jectories with a first upcrossing of the density threshold barrier δth at mass scale M . We take

the density threshold to be the spherical collapse threshold adopted by Bond et al. (1991):

δth(z) = (D(z)/D(0)) δsc, where δsc ≈ 1.686. The predicted halo mass of each particle is given by

the smoothing mass scale of the particle’s first upcrossing. We then assign to each particle an IN or

OUT label depending on whether its predicted halo mass falls in the mass range of the IN or OUT

class. We emphasize that the labels inferred from the EPS framework are independent from the

predictions of the random forest.
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Figure 3.4: The importance ranking of the density features, shown as a function of their smoothing

mass scales. The most relevant information in the training of the random forest comes from the

density contrast smoothed at mass scales 1012 – 1013 M� scales, within the mass range of the IN

class haloes. The largest halo mass in the simulation is marked by a grey line.

We plot in Fig. 3.3 the resulting true positive rate and false positive rate inferred from the EPS

predicted labels and find that the EPS prediction lies on the ROC curve of the random forest. In

other words, the random forest is able to ‘learn’ EPS and the EPS results correspond to a ∼ 42%

probability threshold on the ROC curve. Machine learning adds the flexibility to trade contamination

for completeness along the ROC curve as we vary the probability threshold. Instead, EPS results in

a single point in true positive rate-false positive rate space since it gives a single prediction for each

particle rather than a probability associated with a class.

3.5.1 Physical Interpretation

The algorithm’s performance depends on whether or not the input features contain relevant

information to separate particles between classes. For example, the ideal feature would split a set

of particles into two pure sets, each containing only particles of one class. By contrast, irrelevant

features are not able to distinguish between classes, yielding a poor class separation in the two

resulting sets. Therefore, we can determine which features contain the most information in mapping

particles into the correct halo mass range, based on their ability to separate classes when training

the random forest.
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There are many metrics designed to measure the relevance of the inputs to a machine learning

algorithm; here we use feature importances (Louppe et al. 2013). The importance of a feature X is

a weighted sum of the impurity decrease3 at all nodes t where the feature is used, averaged over all

trees T in the forest:

Imp(X) =
1

NT

∑
T

∑
t∈T

p(t)∆i(t), (3.5)

where NT is the number of trees, p(t) is the fraction of particles reaching node t and ∆i(t) is the

impurity decrease, i.e. the difference in entropy between the parent node and the child nodes. See

Sec. 2.1.3 for further details, where feature importances were introduced.

We calculate the relative importances in the density feature set to find the most relevant features

in distinguishing between the IN and OUT classes. Fig. 3.4 shows the relative importance of each

density feature as a function of its smoothing mass scale. The importances are normalized such that

the sum of all importances is 1 and the errors are computed by training the random forest multiple

times, each with a randomly drawn set of training particles. The largest halo mass in the simulation

is marked by a grey line. We find that most of the information lies in mass ranges of 1012 – 1013 M�,

just above the boundary between the IN and OUT classes.

3.6 Adding the tidal shear tensor

Peaks in Gaussian random fields are inherently triaxial (Bardeen et al. 1986; Doroshkevich 1970).

Therefore, extensions of the standard spherical model were made in order to incorporate the

dynamics of ellipsoidal collapse. The impact of the tidal shear on properties of collapsed regions has

been extensively studied (Bond and Myers 1996; Lin et al. 1965; Sheth and Tormen 1999; Sheth

et al. 2001). Sheth and Tormen (1999) (ST) have studied how ellipsoidal collapse modifies the

mass function of dark matter haloes in the excursion set formalism. Spheres are distorted into an

ellipsoid due to tidal shear effects and the collapse time of a halo therefore depends explicitly on

the ellipticity and prolateness of the tidal shear field.

We extended the original density feature set to incorporate additional information on the local

tidal shear field around particles. We studied the impact on the halo classification performance and

quantified the shear’s relevance in the training process via the feature importances. The advantage

3We use Shannon entropy to measure the impurity at a node iE(t) = −
c∑

i=1
p(j, t) log2 p(j, t), where p(j, t) is the

proportion of particles that belong to class j at node t and c is the total number of classes.
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of studying tidal shear effects with machine learning is that these can be straightforwardly translated

into features and used as input to the same machine learning algorithm. On the other hand, analytic

models usually require incorporating approximations to the tidal shear within the excursion set

formalism. In general, any potentially relevant physical property can be added in the form of a

feature without adding complexity to the algorithm.

We will first describe how we constructed features from the tidal shear field, then present the

classification results of the full density and shear feature sets.

3.6.1 Tidal shear features

The deformation tensor is given by the Hessian of the gravitational potential

Dij =
∂2Φ

∂xi∂xj
, (3.6)

where Φ(x) is the peculiar gravitational potential at position x and is related to the density contrast

via Poisson’s equation ∇2Φ = δ.

The ordered eigenvalues of Dij , λ1 ≥ λ2 ≥ λ3, can be re-parametrized in terms of the ellipticity,

e, and prolateness, p (Bond and Myers 1996):

e =
λ1 − λ3

2δ
, (3.7)

p =
λ1 − 2λ2 + λ3

2δ
, (3.8)

where λ1 + λ2 + λ3 = δ and δ is the smoothed overdensity used as a density feature. In order to

minimize redundancy between the features, we removed the density dependence from the ellipticity

and prolateness. We computed the eigenvalues of the traceless deformation tensor, known as the

tidal shear tensor, ti = λi − δ/3, now satisfying t1 + t2 + t3 = 0. The ellipticity and prolateness in

terms of the traceless eigenvalues ti take the form

et = t1 − t3, (3.9)

pt = 3 (t1 + t3) . (3.10)

For each particle we assigned two new features et and pt evaluated at each smoothing mass

scale. Therefore, the original 50–dimensional feature set of density contrasts was augmented to

a 150–dimensional feature set given by the density contrast, ellipticity and prolateness. To test
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Figure 3.5: Relative importance of the density features (upper panel), ellipticity features (middle

panel) and prolateness features (lower panel) in the full shear and density feature set. The density

features are more relevant than the ellipticity and prolateness features. This confirms that the shear

field adds little information in distinguishing whether particles will collapse in haloes of mass above

the class boundary mass scale or not, compared with the density field.

the robustness of random forests to a high-dimensional feature space, we used PCA to reduce the

150–dimensional feature set to a 10–dimensional space retaining 98% of the information contained

in the original feature set. We found identical predictive performance, meaning that random forests

are robust to a 150–dimensional feature set.

3.6.2 Results

The ROC curve of the density and shear feature set is overplotted in Fig. 3.3. We find that adding

information on the tidal shear tensor shows little improvement compared to the case of the density-

only feature set. We find an improvement of only 2% in the AUC of the ROC curve. Fig. 3.5

demonstrates the low impact of the shear features in the classification process. The three panels

show the relative importance in the training process of the random forest of the density, ellipticity

and prolateness features as a function of smoothing mass scales. The most relevant features are the

density contrasts smoothed on mass scales in the range 1012 – 1013 M�, similar to what was found

in the case of the density-only feature set (Fig. 3.4). The distributions of the density importances

in the two feature sets are consistent despite minor variations in the peak and variance of the
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distributions. The changes are due to the change in the range of hyperparameters when increasing

the dimensionality of the feature set from 50 to 150 features. The ellipticity and prolateness have

low feature importance scores confirming that the information they contain is irrelevant to the

training process of the machine learning algorithm compared with that of the density field.

As with the density feature set, we can compare the machine learning predictions to existing

analytic predictions based on the same set of properties of the initial conditions. The ST formalism

provides a prescription to predict the final halo mass of a particle based on the density field and the

shear field, which we can use to compare to the machine learning output.

ST accounts for the effect of the shear field in the context of the excursion set formalism by

adopting a moving collapse barrier rather than the spherical collapse barrier adopted by Bond et al.

(1991). The ST collapse barrier b(z) varies as a function of the mass variance σ2(M) and is given by

b(z) =
√
aδsc(z)

[
1 +

(
β
σ2(M)

aδ2
sc(z)

)γ]
, (3.11)

where δsc(0) ≈ 1.686, the parameters β = 0.485 and γ = 0.615 incorporate an approximation

to ellipsoidal dynamics, and a = 0.707 is a normalisation constant. These values are the best-fit

parameters found in Sheth and Tormen (1999). The predicted halo mass of each particle follows the

excursion-set framework as for the EPS case; the largest mass scale at which the particle’s trajectory

up-crosses the collapse barrier in Eq. (3.11) gives the predicted halo mass.

The triangle labelled “ST prediction” in Fig. 3.3 shows the true and false positive rates predicted

by ST. In our study, the ST formalism does not yield an absolute improvement to EPS theory;

the false positive rate decreases at the expense of a decrease in the true positive rate. Therefore

ST predicts a less contaminated but more incomplete set of IN class particles compared to EPS,

corresponding to a probability threshold of 73% on the ROC curve. We find that the random forest

is able to reproduce the ST result with both the density-only feature set and the shear and density

feature set. This shows that there is sufficient information in the density field for the random forest

to match the analytic ST prediction.

Overall, we find that shear effects do not contain additional physical information to improve the

classification output of the random forest. The learning process of the algorithm is predominantly

driven by the local overdensity around dark matter particles and unaffected by the surrounding

tidal shear. The analytic ST prediction, interpreted as an improvement to standard EPS due to the

inclusion of tidal shear effects, can be reproduced by the random forest when trained on the density

field only. In conclusion, these results show that the physical processes leading to dark matter halo
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formation for our choice of mass scale splitting the two classes are insensitive to tidal shear effects

in the initial conditions.

3.7 Classification dependence on halo mass and radial position

We now investigate how properties of particles such as the position within a halo and the halo mass

affect the accuracy of classification when the algorithm is trained on density features only. To do

this we split the test particles into categories based on their radial and halo mass properties to study

their respective classification performance.

First, we subdivided particles of the IN class into three mass ranges: particles in cluster-sized

haloes (1× 1014 ≤Mhalo/M� ≤ 4× 1014), particles in group-sized haloes (1× 1013 ≤Mhalo/M� <

1× 1014) and particles in galaxy-sized haloes (1.2× 1012 ≤Mhalo/M� < 1× 1013). We combined

each of these subsets in turn with all the OUT particles to form three distinct test sets.

The ROC curves for the three mass range categories of haloes are shown in the right panel of Fig.

3.6, where the ROC curve of the full original test set is shown for comparison (dashed line). We find

that particles in cluster-sized haloes reach an AUC of 0.913, whilst particles in group-sized haloes

and galaxy-sized haloes are increasingly more difficult to classify. We overplotted the ST (triangles)

and EPS (dots) predictions for each halo mass category of particles, again showing results consistent

with those of the machine learning algorithm.

It is likely that the decrease in performance as a function of halo mass is a result of the choice of

mass scale used to split haloes into classes, M = 1.8×1012 M�. This was a necessary step in order to

define the two classes of the binary classification problem. Haloes of mass just above and below the

IN/OUT mass boundary belong to different classes although they originate from Lagrangian regions

with similar properties reflecting their similarity in mass. Therefore, the closer haloes of different

classes are in mass, the harder it is for the random forest to distinguish whether their particles

belong to one class or the other. Fig. 3.7 further demonstrates that haloes of mass approaching the

IN/OUT mass boundary from above and below contain a larger fraction of misclassified particles. In

the upper (lower) panel, we show the false positive (negative) rate i.e., the ratio of misclassified

OUT (IN) particles over all particles contained in each halo mass bin, for 4 different probability

thresholds. The true halo mass of each particle is shown on the horizontal axis in terms of its

distance from the IN/OUT mass boundary. We find that the false positive and negative rates increase

for particles in haloes of mass approaching the IN/OUT mass boundary.

We next investigated possible correlations between the particles’ position within the haloes and
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Figure 3.6: Left panel: The IN class particles are split into inner (r/rvir ≤ 0.3), mid (0.3 < r/rvir ≤
0.6) and outer (0.6 < r/rvir ≤ 1) radial ranges according to their distance from the centre of

the halo. The ROC curves for each category show that the classification performance improves

for particles closer to the halo’s centre of mass. Right panel: The IN class particles are split into

cluster-sized (1× 1014 ≤ Mhalo/M� ≤ 4× 1014), group-sized (1× 1013 ≤ Mhalo/M� < 1× 1014)

and galaxy-sized (1.2× 1012 ≤Mhalo/M� < 1× 1013) haloes and the ROC curves show the random

forest’s performance in classifying each category. Particles in higher mass haloes are increasingly

better classified by the random forest. The ROC curve of the full test set of particles is shown as

a dashed line in both panels for comparison. The EPS and ST predictions, labelled by dots and

triangles respectively, are also overplotted for each halo mass and radial position category.

the random forest’s classification performance. Here, we subdivided particles of the true IN class

into three radial ranges, subject to their radial position in the halo with respect to the halo’s virial

radius rvir. We defined particles in the inner radial range (r/rvir ≤ 0.3), particles in the mid radial

range (0.3 < r/rvir ≤ 0.6) and particles in the outer radial range (0.6 < r/rvir ≤ 1). Similar to the

mass range study, each subset of haloes was combined with all the OUT class particles from the

original set to form three distinct sets.

The left panel of Fig. 3.6 shows the ROC curves for the three radial categories, together with that

of the original test set again shown for comparison (dashed line). Particles in the innermost regions

of haloes are the best classified by the random forest, achieving an AUC of 0.937 which is greater

than that obtained when classifying all particles in the simulation. The classification performance of

the random forest decreases as we move from the halo’s centre-of-mass towards the virial radius.

We first tested whether the decrease in performance when classifying particles of the outer radial

range was due to under-representativeness in the training set. Indeed, if the training particles of

the outer radial range are not representative of the entire simulation, the classifier’s performance
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Figure 3.7: Fraction of misclassified particles in haloes of each mass bin range, where the halo mass

bins are labelled as a function of their distance from the IN/OUT boundary mass scale. The upper

(lower) panel shows the fraction of misclassified OUT (IN) particles i.e., the false positive (negative)

rate in each mass bin. We consider four distinct probability thresholds for assigning a particle’s

(IN or OUT) class, where higher thresholds imply lower contamination. The misclassification rate

increases as the true mass approaches the classification boundary for all choices of the completeness-

to-contamination trade-off.

on the outer radial range test set would be strongly affected. To test this, we re-trained the machine

learning algorithm with a training set containing equal number of particles for each radial range

category. We found identical ROC curves and AUCs as in the left panel of Fig. 3.6, therefore

excluding the possibility that the higher misclassification rate of outer radial range particles is due

to non-representativeness in the training set.

One other possible reason may be that particles living in outer regions of haloes are more likely

to have been affected by late-time halo mergers, tidal stripping or accretion events. Therefore,

the final halo mass prediction for such particles is the result of a more complicated dynamical

history involving these late-time effects. Conversely, particles near the halo’s centre-of-mass are

less sensitive to the halo’s assembly history and their final halo mass prediction correlates more

strongly with the local overdensity in the initial conditions. This hypothesis could be verified by
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adding features sensitive to the particles’ dynamical history (for instance a particle’s initial distance

to the nearest density peak) and testing whether this information improves the classification of

particles located at the boundary of the halo’s virial region. In addition to this, the further particles

are from the centre of haloes, the closer they are to the boundary between the IN and OUT classes,

where particles are harder to classify for the machine learning algorithm. This also translates into a

larger uncertainty in the halo mass prediction for particles at the edge of haloes compared to those

in the innermost regions of haloes. As a result, the overall uncertainty in the halo mass predictions

of centre-of-mass particles is smaller than for particles in the outskirts of haloes. This result is also

consistent with excursion set predictions, where ST demonstrated that centre-of-mass particles

provide a better estimate of the final halo mass compared to inferences made from the full ensemble

of particles in the simulation. To confirm this, we overplotted the EPS (dots) and ST (triangles)

predictions for the three radial test sets in the left panel of Fig. 3.6, demonstrating that analytic

formalisms also perform increasingly well for particles that are close to the halo’s centre-of-mass.

The machine learning algorithm again shows its ability to match the excursion set predictions at

fixed probability thresholds for each radial range category.

For completeness, we also explored the misclassification rate of OUT particles that do not belong

to any halo. We find that overall these particles have very low misclassification rates compared to

particles in haloes. For example, if we consider probability thresholds of 70%, 60%, 50% and 40% to

assign particles to the IN class (as in the upper panel of Fig. 3.7), the fraction of misclassified over

all particles that don’t belong to haloes is 2.45%, 4.3%, 6.58% and 10.11%, respectively. Therefore,

the OUT particles predicted by the random forest form a highly pure and complete set.

In conclusion, we find that the best classified categories of particles are those which are further

away from the classification boundary, both in terms of mass and radius: particles in the most

massive and least massive haloes in the simulation; particles in the innermost regions of haloes;

and those furthest away in voids. We further tested whether the addition of the tidal shear

information could improve the classification performance of poorly classified particles, such as those

in the outskirts of haloes and in galaxy-sized haloes. We find no significant improvement in the

classification performance of such particles, other than the 2% improvement found for the whole

ensemble and reflected in each mass and radial category.
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Figure 3.8: We perform a blind test of the trained machine learning algorithm on two independent

N-body simulations; a different realisation of the WMAP5 cosmology used in the training simulation,

and a realisation of a Planck cosmological model. The ROC curves are consistent in all three

simulations for both the density feature set and the density and shear feature set, with differences

in the AUCs of order ∼ 1%. The EPS and ST predictions in each simulation match the machine

learning performance at different probability thresholds, such that the ST formalism always predicts

a less contaminated but more incomplete set of IN particles. These blind tests demonstrate the

robustness of the results from a machine learning algorithm trained on one simulation, and applied

to different realisations of the same cosmology or realisations of different cosmologies.

3.8 Blind tests on independent simulations

Up to this point we have trained and tested the machine learning algorithm on a single dark-matter-

only simulation. To test whether the machine learning algorithm trained on one simulation also

gives robust results for different N-body simulations without re-training, we performed blind tests
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of our pipeline on two independent simulations from the one used for training.

The first independent test simulation (W-Test) is a different realisation of the same WMAP5

ΛCDM cosmology adopted in the training simulation, for a box of also same size and resolution (see

Sec. 4.3). The second independent test simulation (P-Test) is a realisation of a different cosmological

model, a Planck ΛCDM cosmology4(Planck Collaboration et al. 2016) in a box of comoving size

L = 50 Mpc containing N = 5123 particles. Moreover, in the P-Test simulation we identify haloes at

z = 0 using the Amiga Halo Finder (AHF) (Gill et al. 2004; Knollmann and Knebe 2009), instead

of the SUBFIND halo finder used in both the training simulation and the W-Test simulation. This

allows us to simultaneously test the sensitivity of the machine learning algorithm to the choice of

halo finder. For each test simulation, we extracted the input features from the initial conditions and

used the pre-trained machine learning algorithm to predict the class labels of the simulations’ dark

matter particles.

In Fig. 3.8 we compare the performance of the machine learning algorithm for the independent

W-Test and P-Test simulations with that of the test set of particles in the training simulation. The

upper panel shows the ROC curves obtained from predictions based on the density features only,

whilst the lower panel shows the case of density and shear features. The machine learning algorithm

produces consistent ROC curves in all three simulations for both feature sets. The P-Test simulation

yields a difference in AUC with the training simulation of 0.2% for the density-only feature set and

1.1% for the density and shear feature set. For the W-Test simulation, the AUC difference with

the training simulation is of 1.3% for the density-only feature set and 1.6% for the density and

shear feature set. Such differences between the test and training simulations are consistent with

uncertainties in the AUC due to statistical noise.

The EPS and ST predicted labels are calculated from the first upcrossings of each simulation’s

respective particles’ trajectories. In all three simulations, the machine learning algorithm is able

to match the analytic predictions at different probability thresholds, such that the ST formalism

consistently predicts a less contaminated but more incomplete set of IN class particles. For the

W-Test simulation, the EPS and ST predictions match the machine learning predictions at probability

thresholds of 41.5% and 74.5% respectively, differing only slightly to the 42.8% and 74.7% probability

thresholds of the training simulation. For the P-Test simulation, the match to the EPS and ST

predictions is found at the lower probability thresholds of 40% and 56%, respectively. This is

because the change in cosmological parameters in the Planck simulation results in a slightly lower

EPS collapse barrier and a significantly lower ST collapse barrier compared to those in a WMAP5

4The cosmological parameters are ΩΛ = 0.6914, Ωm = 0.3086, Ωb = 0.045, σ8 = 0.831, h = 0.6727, ns = 0.96.
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cosmological setting. Therefore, trajectories in the P-Test simulation upcross the collapse barriers

at larger smoothing mass scales, resulting in more complete but also less pure sets of predicted

IN particles. The change in completeness and contamination is such that both the ST and EPS

predictions still match the machine learning ROC curves of the P-Test simulation, but for lower

probability thresholds than the WMAP5 simulations.

We conclude that the mapping learnt by the algorithm on one simulation can be generalized to

different simulations based on the same or different cosmological parameters, without the need for

re-training, and that the results are insensitive to simulation settings.

3.9 Conclusions

We have presented a machine learning approach to investigate the physics of dark matter halo

formation. We trained the algorithm on N-body simulations, from which it learns to predict whether

regions of an initial density field later collapse into haloes of a given mass range. This generated a

mapping between the initial conditions and final haloes that would result from non-linear evolution,

without the need to adopt halo collapse approximations. Our approach provided new physical

insight into halo collapse, in particular in understanding which aspects of the initial linear density

field contain relevant information on the formation of dark matter haloes.

We provided the algorithm with a set of properties describing the local environment around

dark matter particles. By studying the performance of the algorithm in response to different inputs,

insights can be gained into the physics relevant to dark matter halo formation. When the algorithm

was trained on spherical overdensities from the linear density field, we found that it matched

predictions based on EPS theory. When providing the algorithm with additional information on the

tidal shear field (motivated by ellipsoidal collapse approximations), the classification performance of

the machine learning was not enhanced. We showed that, for the mass threshold considered in our

classification problem, the Sheth-Tormen ellipsoidal collapse model can be recovered from spherical

overdensities alone, with predictions that differ from those of EPS theory only in the completeness-to-

contamination trade-off. By performing blind analyses of our pipeline, we confirmed the generality of

our results for independent initial conditions realisations and variations in cosmological parameters.

We conclude that the linear density field contains sufficient information to predict the formation of

dark matter haloes at the accuracy of existing spherical and ellipsoidal collapse analytic frameworks.

Therefore, the fact that the ST halo mass function improves the EPS halo mass function may not be

due to the addition of tidal shear information, but rather some other physical effects captured by
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calibrating the free parameters in the halo mass function to the simulations.

While the focus of this paper has been on the density field and tidal shear field, any additional

property of interest can be extracted from the initial conditions and used as input to the same

machine learning algorithm. This allows for straightforward extensions of this work to investigate

which additional physics in the early universe contributes to the formation of dark matter haloes.

One other natural extension is to turn the binary classification problem presented in this chapter

into multi-class classification or regression problems. This will be the focus of Chapter 4.
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4
Machine learning dark matter halo formation: a

regression framework

4.1 Abstract

We present a generalization of our recently proposed machine learning framework, aiming to provide

new physical insights into dark matter halo formation. We investigate the impact of the initial density

and tidal shear fields on the formation of haloes over the mass range 11.4 ≤ log(M/M�) ≤ 13.4.

The algorithm is trained on an N-body simulation to infer the final mass of the halo to which each

dark matter particle will later belong. We then quantify the difference in the predictive accuracy

between machine learning models using a metric based on the Kullback-Leibler divergence. We first

train the algorithm with information about the density contrast in the particles’ local environment.

The addition of tidal shear information does not yield an improved halo collapse model over one

based on density information alone; the difference in their predictive performance is consistent with

the statistical uncertainty of the density-only based model. This result is confirmed as we verify the

ability of the initial conditions-to-halo mass mapping learnt from one simulation to generalize to

independent simulations. Our work illustrates the broader potential of developing interpretable

machine learning frameworks to gain physical understanding of non-linear large-scale structure

formation.

4.2 Introduction

The evolution of dark matter haloes is determined by a series of complex, non-linear physical

processes involving smooth mass accretion and violent mergers with smaller structures. For decades,

N-body simulations have been used to model the non-linear evolution of haloes (e.g. Springel et al.
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2005). Alongside these, simpler approximate analytic models of halo collapse can provide qualitative

understanding of the results of numerical simulations. For example, extended Press-Schechter (EPS)

theory and Sheth-Tormen (ST) theory are two widely accepted analytic frameworks used to infer

statistical properties of dark matter haloes starting from an initial Gaussian random field. EPS

theory is based on the assumption that halo collapse occurs spherically, once the smoothed linear

density contrast exceeds a certain threshold (Bond et al. 1991; Press and Schechter 1974). The

ST formalism is an extension of EPS theory to an ellipsoidal collapse model which accounts for

the effect of tidal shear forces around initial peaks (Bond and Myers 1996; Doroshkevich 1970).

These models require restrictive assumptions about the physical process of halo collapse; the haloes’

non-linear evolution is approximated as spherical and ellipsoidal respectively, and formulated using

excursion set theory.

Machine learning provides a tool that is well suited to modelling cosmological structure forma-

tion, given its ability to learn non-linear relationships. In fact, machine learning tools have already

proved useful in the context of structure formation in, for example, distinguishing between cosmo-

logical models (Merten et al. 2019) or constructing mock dark matter halo catalogues (Berger and

Stein 2019). However, understanding the inner workings of machine learning models remains a

challenge. Developing tools to turn “black-box” algorithms into interpretable ones is essential for

machine learning applications to physics problems; it will allow us to interpret results in terms of

the underlying physics.

In Chapter 3, we proposed a machine learning approach which aims to provide new physical

insights into the physics of the early universe responsible for halo collapse. A machine learning

algorithm is trained to learn the relationship between the early universe and late-time haloes from

N-body simulations. Unlike existing analytic theories, our machine learning approach does not

require modelling halo collapse with an excursion set theory; the haloes’ non-linear dynamics is

learnt directly from N-body simulations. The algorithm’s learning is based on properties of the linear

initial condition fields surrounding each dark matter particle. Machine learning algorithms are

sufficiently flexible to include a wide range of properties of the initial conditions which may contain

relevant information about halo formation, without changing the training process of the algorithm.

By comparing the predictive performance of the algorithm when provided with different types of

inputs, one can gain insights into which aspects of the early universe impact the later formation of

dark matter haloes.

In Chapter 3, we focused on the simplest case of a binary classification problem; the algorithm

classified dark matter particles into two classes, depending on whether or not they will form

94



haloes above a specified mass threshold at z = 0. Contrary to existing interpretations of the Sheth-

Tormen ellipsoidal collapse model, we found that the tidal shear field does not contain additional

information over that contained in the density field about whether haloes will form above and

below a mass threshold Mth = 1.8 × 1012 M�. However, these conclusions were limited to this

single mass threshold.

The aim of this work is to extend our machine learning framework to investigate haloes across a

wider range of final mass. In practice, we train a machine learning algorithm to predict the value of

the final mass of the halo to which each particle will belong. This is now a regression problem since

the algorithm’s prediction consists of a continuous variable, rather than a class label. We compare

the halo mass predictions resulting from two machine learning models, trained on different sets

of inputs: one on information about the initial linear density field only, and the other on both

density and tidal shear information. The inputs to the algorithm, known as features in machine

learning terms, are the same as those adopted in Chapter 3. We are able to quantify the relevance

of the information contained in the tidal shear relative to that in the density field by comparing the

predictions resulting from one model with the other. In this work, we mainly focus on the formation

of haloes at z = 0, but also verify that our conclusions hold for haloes at higher redshifts.

The chapter is organized as follows. We describe the method in Sec. 4.3, starting with an

overview of the pipeline. We then introduce the machine learning algorithm adopted in this work

and describe its training and testing procedure. We present the halo mass predictions in Sec. 4.4,

including a study of the algorithm’s performance as a function of halo properties. We introduce a

metric to make a quantitative comparison of machine learning models in Sec. 4.5. We further test

the generality of our results on independent simulations in Sec. 4.7, and finally conclude in Sec. 4.8.

4.3 Method

In this paper we made use of six dark-matter-only simulations produced with P-GADGET-3 (Springel

2005; Springel et al. 2001) and a WMAP5 ΛCDM cosmological model1 (Dunkley et al. 2009).

Adopting an updated set of cosmological parameters (e.g. from Planck Collaboration et al. 2018a)

is not necessary for the purpose of this work. We call the simulations sim-#, where # ∈ [1, 6].

Each simulation is based on a different realization of a Gaussian random field drawn from the

initial power spectrum of density fluctuations. All simulations consist of a box of comoving size

1The cosmological parameters are ΩΛ = 0.721, Ωm = 0.279, Ωb = 0.045, σ8 = 0.817, h = 0.701 and ns = 0.96.
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L = 50 h−1Mpc and N = 2563 dark-matter particles evolving from z = 99 to z = 0.2

Dark matter haloes were identified at z = 0 using the SUBFIND halo finder (Springel et al.

2001), a friends-of-friends method with a linking length of 0.2, with the additional requirement

that particles in a halo be gravitationally bound. We took the entire set of bound particles that

make up a halo and did not consider substructure within haloes. The resolution and volume of the

simulation limit the resulting range of halo masses; the lowest mass halo has M = 2.6× 1010 M�

and the highest mass one M = 4.1× 1014 M�.

To train and test the machine learning algorithm, we first established the link between the initial

and final state of each dark matter particle in the simulations. We used the final snapshots (z = 0)

to label each particle with the logarithmic mass of the halo to which that particle belongs. Particles

that do not collapse into haloes make up ∼ 50% of all particles in the simulations, implying a strong

class imbalance between particles not in resolved haloes and those spread across haloes of different

mass scales. Training the algorithm to learn such an imbalanced mapping strongly degraded the

accuracy of the predictions for particles within resolved haloes. Since our goal is to derive insight

into resolved physics, we chose to restrict our analysis to the subset of particles that collapse into

resolved haloes at z = 0. Out of these, each particle, with its logarithmic halo mass label, was then

traced back to the initial conditions where we extracted features to be used as input to the machine

learning algorithm.

The algorithm was trained and tested independently on the six different simulations. This

yielded six different machine learning models of the same underlying mapping, allowing us to

estimate the statistical significance of our results. For each simulation, the algorithm was trained

based on the input features to logarithmic halo mass mapping of a training subset of particles. The

remaining dark matter particles in the simulation were then used to test the algorithm’s predictions

against their respective true logarithmic halo mass. We will initially present the results from sim-1,

but we will draw the final conclusions based on the results from all six simulations.

4.3.1 Gradient Boosted Trees

We used gradient boosted trees (Freund and Schapire 1997; Friedman 2001, 2002), a machine

learning algorithm combining multiple regression decision trees into a single estimator. A regression

decision tree is a model for predicting the value of a continuous target variable by following a

simple set of decision rules inferred from the input features. Since individual trees generally over-fit

2We made use of the Python package pynbody (Pontzen et al. 2013) to analyse the information contained in the
simulation snapshots.
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the training data, they are often combined together to form a more robust ensemble estimator.

There are two main approaches to combine decision trees; bagging and boosting. Bagging estimators

are effective at decreasing variance, but have no effect on the bias. Instead, boosting can reduce

both the bias and the variance contributions to the error in the predictions (Schapire et al. 1998) by

means of its iterative aggregation of trees. We chose to use boosting estimators, as the bias and

variance of the predictions in our dataset both contribute to the predictive error.

The principles of gradient boosted trees were discussed in detail in Sec. 2.1.2. At its core,

gradient boosted trees work by combining boosting with gradient-descent optimization. Trees are

added iteratively to the ensemble according to the negative gradient of the loss function with respect

to the ensemble’s predictions. Effectively, subsequent trees correct for the mistakes made by the

previous trees in the ensemble.

In addition to the predictive power of this algorithm, gradient boosted trees also allow for very

high interpretability of their learning procedure. This is a common feature amongst ensembles of

decision trees. We made use of the feature importances metric (Louppe et al. 2013; see Sec. 2.1.2)

to measure the relevance of each input feature in training the algorithm to predict the correct target

variable. This is a crucial aspect of our framework; it allows us to determine which features are

most informative in mapping particles to the correct final halo masses. The importance of the j-th

feature Xj from a single tree t of the ensemble is given by

Impt (Xj) =
∑

n∈{n is split on featureXj}

Nn
Nt

[
p− NnR

Nn
pR −

NnL

Nn
pL

]
(4.1)

where Nt, Nn, NnR
, NnL

are the total number of samples in the tree t, at the node n, at the

right-child node nR and at the left-child node nL, respectively. The sum in the equation is over all

n nodes where the feature Xj makes the split. The impurity p is given by the choice of splitting

criterion, which in our case is the mean squared error. The final importance of feature Xj given by

the ensemble of T trees is the normalized sum over the importances from all trees,

Imp(Xj) =

∑T
t=1 Impt (Xj)∑J
j=1 Imp (Xj)

. (4.2)

We used the LightGBM (Ke et al. 2017) implementation of gradient boosted trees released by

Microsoft.
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4.3.2 Machine learning Features

A feature extraction step is required amongst most machine learning algorithms, including gradient

boosted trees, to extract key properties of the dark matter particles and use them as input to the

algorithm. Following Chapter 3, we used two properties of the linear density field in the local

environment around dark matter particles: the overdensity and the tidal shear computed within

spheres of different mass scales centred at each dark matter particle’s initial position. These choices

were motivated by existing analytic frameworks which provide models to predict the final mass of

a halo based on similar properties of the linear density field. EPS theory argues that a spherical

patch will collapse to form a halo at redshift z if its average linear density contrast δL(z) exceeds a

critical value δc(z), hence motivating our choice of spherical overdensities. The final mass of the

halo corresponds to the matter enclosed in the largest possible spherical region with density contrast

δL = δc. The ST framework motivated our choice of tidal shear information. In their approach, the

collapse time of a halo depends explicitly on the ellipticity and prolateness of the tidal shear field,

as well as on spherical overdensities. Using these properties as machine learning features will allow

us to compare the predictions to those from analytic theories based on the same input properties

and test the interpretation of these models.

We now briefly discuss how the machine learning features were constructed from the density

and tidal shear fields, referring the reader to Chapter 3 for further details. We smoothed the

density contrast δ(x) = [ρ(x)− ρm] /ρm, where ρm is the mean matter density of the universe, on a

smoothing scale R,

δ(x;R) =

∫
δ (x′)WTH (x− x′;R) d3x′, (4.3)

where WTH(x− x′, R) is a real space top-hat window function which takes the form

WTH(x− x′, R) =


3

4πR3
for |x− x′| ≤ R,

0 for |x− x′| > R.

(4.4)

We repeated the smoothing for 50 smoothing mass scales (which are related to the smooth-

ing scales R via Msmoothing = 4/3πρmR
3), evenly spaced in logM within the range 3× 1010 ≤

Msmoothing/M� ≤ 1× 1015.

From each smoothed density contrast field δ(x, R), we computed the peculiar gravitational
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potential Φ(x) via Poisson’s equation ∇2Φ = δ and the tidal shear tensor,

Tαβ =

[
∂2

∂xα∂xβ
− 1

3
δαβ∇2

]
Φ. (4.5)

We assigned two shear features to each dark matter particle, the ellipticity et and prolateness pt,

following the definition of Bond and Myers (1996)3,

et = t1 − t3, (4.6)

pt = 3 (t1 + t3) . (4.7)

where t1 and t3 are two of the ordered eigenvalues of the tidal shear tensor (the third is not

independent since t1 + t2 + t3 = 0). The second term on the right hand side of Eq. 4.5 removes the

density field from the tidal shear tensor since ∇2Φ = δ, implying minimal redundancy between the

information contained in the density features and that of the shear features.

In summary, we constructed two feature sets; the 50-dimensional density feature set made of

spherical overdensities, and the 150-dimensional density and shear feature set made of spherical

overdensities, ellipticity and prolateness features. By comparing the predictive performance of the

algorithm when trained on the two feature sets, we were able to test whether the addition of tidal

shear information yields an improvement in predicting the formation of the final haloes.

4.3.3 Training a gradient boosted tree

For training the gradient boosted trees, we randomly selected 500,000 particles from those that

collapse into haloes at z = 0, each carrying its own set of features and final halo mass label.

No improvement in the machine learning predictions was found as we increased the size of the

training set to more than 500,000 particles, implying that this was sufficient to yield a training set

representative of the whole simulation. Note that the training set is ten times larger than that used

in Chapter 3; the need for a larger training set is expected due to the higher number of degrees of

freedom in a regression setup compared to a binary classification one. The remaining particles in

the simulation were used as a test set; the gradient boosted trees were trained to predict the final

mass of the halo in which each test set particle will end up. The predictions were then compared to

the particles’ true halo masses to assess the algorithm’s performance.

Gradient boosted trees have hyperparameters which must be set prior to training, and which
3We use the eigenvalues of the tidal shear tensor to define the ellipticity and prolateness, rather than those of the

deformation tensor like in Bond and Myers (1996).
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need to be optimized for any given machine learning problem. The main hyperparameters to

optimize are the number of trees in the ensemble, a gradient regularization parameter and the

maximum depth and number of leaf nodes in a tree. A popular approach for hyperparameter

optimization is to grid-search over a specified subset of hyperparameters and select the optimal

ones using k-fold cross validation (Kohavi 1995). A disadvantage of this implementation of the

method is that training and validation sets are randomly selected subsets of the same training data.

Therefore, this procedure is insensitive to noise present in the training data, as this will be shared

amongst both training and validation sets. In our problem, constructing validation and training

sets from the same simulation may lead to overfitting the training simulation and as a result, the

learned map would fail to generalize to different simulations.

To prevent this, we constructed validation sets from the dark matter particles of a different

simulation to the one used for training. All simulations were trained using 5 validation sets from

sim-2, except for sim-2 which used the same number of validation sets from sim-1. Each set consists

of 50, 000 randomly chosen particles. The hyperparameter optimization procedure then followed the

standard 5-fold cross validation approach of choosing the set of hyperparameters best performing

on the validation data.

4.3.4 The test set particles

In each simulation, the trained gradient boosted trees can be used to predict the final halo mass of

all particles in the simulation in the test set. However, we restricted our analysis to a subset of test

set particles satisfying two criteria.

First, we found that gradient boosted trees make biased predictions when the true halo mass

is near the limits of the mass range probed by the simulation. The predicted masses of particles

in the lowest mass haloes are overestimated and those of particles in the highest mass haloes are

underestimated. The closer the true halo mass to the hard cut-offs in mass, the larger the bias

in the predicted masses. Since we did not want to base our analysis on predictions affected by

algorithm-specific biases, we imposed a criterion to exclude dark matter particles whose predictions

are dominated by this bias.

The second criterion excludes all particles that belong to the few haloes found in the simulation

at the high mass end. The reason for this will become apparent in Sec. 4.5, when we compare the

predicted and true number of particles within bins of halo mass. At the high mass end, there are

only a few haloes and therefore a few discrete masses in the training set. Therefore, we adopted
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a second criterion that excludes particles with an associated mass label in the range where the

shot noise in the expected number of haloes within bins of logarithmic mass is higher than a given

threshold.

In practice, these two criteria were implemented as follows. Let us denote M i
predicted and M i

true

as the predicted and true halo mass of the i-th particle, respectively4. We split the true halo masses

of all test particles in k evenly-spaced intervals of logarithmic mass. In each bin, we computed the

bias bk and variance σ2
k defined as

bk =
1

Jk

Jk∑
j=1

[
M j
k,predicted −M

j
k,true

]
, (4.8)

σ2
k =

1

Jk

Jk∑
j=1

∣∣∣M j
k,predicted −M

j

k,predicted

∣∣∣2. (4.9)

where M j
k,predicted and M j

k,true are the predicted and true halo mass of particle j, M
j

k,predicted is

the mean of the predicted halo masses and Jk is the total number of particles in the k-th bin. This

yielded our first criterion; we excluded from the analysis all particles in bins where b2k ≥ σ2
k.

For the second criterion, we first computed the expected number of haloes in each mass bin k,

Nk,

Nk = V

∫ Mk+1

Mk

dn

dM ′
dM ′ (4.10)

where V is the volume of the box and dn
dM is the number of haloes of mass M per unit volume per

unit interval in M . The latter can be parametrized by the universal functional form

dn

dM
= f(σ)

ρm
M

d lnσ−1

dM
, (4.11)

where ρm is the cosmic mean matter density and σ2(M) is the mass variance of the linear density

field smoothed with a top-hat window function on scale R(M). We adopted the function f(σ) pre-

dicted by Sheth and Tormen (1999) as it provides a good enough approximation of our simulation’s

mass function at z = 0 and is given by

f(σ) = A

√
2a

π

[
1 +

(
σ2

aδ2
c

)p]
δc
σ

exp

[
− aδ

2
c

2σ2

]
, (4.12)

where A = 0.3222, a = 0.707, p = 0.3 and δc = 1.686. Finally, our second criterion imposed that all

4Note that the predicted halo masses were computed without excluding any particles from the training set.
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Figure 4.1: All particles in haloes, which were not used for training, were split into k halo mass

intervals of width ∆ log(M/M�) = 0.2. We excluded from the analysis particles within the k-th

mass bins where either of the following criteria are satisfied: (1) the bias in the predictions exceeds

the variance i.e., b2k > σ2
k, (2) the theoretical number of haloes is smaller than a given threshold

i.e., 1/
√
Nk,haloes > 0.3. Criterion (1) is set to exclude particles in mass bins near the mass limits

imposed by the simulation, where the gradient boosted tree makes biased predictions. Criterion (2)

is set to exclude mass ranges with small number of haloes. As a result, the particles used for the

analysis in all simulations are those in haloes in range 11.4 ≤ log(M/M�) ≤ 13.4.

particles with halo mass label within mass bins where the expected Poisson noise in Nk exceeds

30% i.e., 1/
√
Nk > 0.3, were excluded from the analysis.

In summary, the subset of particles from the test set which we retained for our analysis is given

by those particles belonging to haloes in k mass bins where the conditions 1/
√
Nk ≤ 0.3 and b2k < σ2

k

are simultaneously satisfied. Both criteria are subject to the choice of bin width defining the k bins;

we chose ∆ log(M/M�) = 0.2.5 The criteria were applied to all simulations, for the same choice

of bin width. In all simulations, this implied that we retained particles in haloes of mass within

the range 11.4 ≤ log(M/M�) ≤ 13.4 for our analysis. Fig. 4.1 shows the sim-1 distribution of test

set particles in haloes per logarithmic mass intervals, where the shaded regions indicate the mass

5The width is chosen in order to be left with at least ten logarithmic mass bins, after applying the criteria.
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Figure 4.2: Distributions (and their medians) obtained with the predicted halo masses of particles

within bins of width ∆ log(M/M�) = 0.2, defined by their true logarithmic halo mass. The

distributions are in the form of violin plots i.e., box plots whose shapes indicate the distribution of

mass values. Within each bin, we compare the distributions predicted by the two machine learning

models; one based on density features alone and the other based on both density and shear features.

These are near-identical, meaning that there is no qualitative improvement resulting from providing

the algorithm with additional information about the tidal shear field.

ranges excluded from the analysis.

4.4 Halo mass predictions

Figure 4.2 compares the machine learning predictions with the true halo masses of the test set

particles in sim-1. We show the distributions obtained with the predicted halo masses of particles

within bins defined by their true logarithmic halo mass. These are shown as violin plots i.e.,

box plots whose shapes indicate the distribution of mass values. The dots represent the medians

of the predicted distributions as a function of the medians within each true mass interval. We

compare the distributions resulting from two distinct machine learning models; one trained on the

density feature set and the other on the density and shear feature set. We find near-to-identical
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Figure 4.3: Feature importances for density (upper panel), ellipticity (middle panel) and prolateness

(lower panel) as a function of the top-hat window function smoothing mass scale, when the gradient

boosted trees are trained on the shear and density feature set. The ellipticity and prolateness

features have very low importance scores, meaning that they are irrelevant compared to the density

features during the training process of the algorithm. The density features are most relevant at high

smoothing mass scales. This confirms that the shear field contains very little useful information

compared to spherical overdensities.

predicted distributions and overlapping medians across the full mass range of haloes. We measure

the fractional change in the bias and variance (as defined in Eq. (4.8) & (4.9)) of the distributions

returned by the density+shear model relative to those of the density-only model for each mass bin;

we find an average change of 8% in the variance and < 1% in the bias. The change in variance

is common amongst all mass bins and is driven by changes in the overall width of the predicted

distributions. We conclude that the addition of tidal shear does not provide major qualitative changes

to the predicted final mass of haloes in the range 11.4 ≤ log(M/M�) ≤ 13.4, thus generalizing the

conclusions of Chapter 3 to regression over this mass range.

We now quantify which features contain the most relevant information on final halo masses, by

calculating feature importances (see Sec 4.3.1) in the density+shear model. Fig. 4.3 shows that

spherical overdensities on smoothing scales 1013 ≤ Msmoothing/M� ≤ 1014 are most informative
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for predicting the mass of haloes in the range 11.4 ≤ log(M/M�) ≤ 13.4. The importances of the

density features in the density-only model also have a peak and a spread at similar smoothing mass

scales. The low importance of the shear features indicates that these have very little impact on the

training process of the algorithm. This confirms that information about the tidal shear is not useful

compared to that of spherical overdensities.

We now show that this result also holds when the algorithm is trained to infer the formation of

haloes at higher redshifts. Fig. 4.4 shows the density and shear feature importances, for the case

of training the algorithm to predict the mass of the halo to which each dark matter particle will

belong at z = 2.1. Similar to the z = 0 case, the ellipticity and prolateness features have negligible

importance scores, meaning that the tidal shear field contains no additional relevant information

over that contained in the density features about the formation of haloes at early times. The density

feature importances peak at smaller smoothing mass scales, i.e. 1012 . Msmoothing/M� . 1013,

directly reflecting the fact that larger scales are still linear at z = 2.1 and consequently, haloes of

mass M & 4× 1013 M� have not yet formed.

To ensure our results capture at least as much information in the features as existing approxima-

tions, we validate the z = 0 machine learning models against existing analytic approximations. We

compare the accuracy of the machine learning predictions against those of analytic theories which

also provide final halo mass predictions based on the same initial conditions information. We expect

the machine learning algorithm to perform (at least) as well as analytic models. If this was not

the case, it would indicate that the features contain relevant information which the algorithm fails

to learn, which would in turn invalidate our conclusions. The results are shown in Appendix A.1;

analytic and machine learning based models yield qualitatively comparable predictions, but with

smaller scatter in the predictions of the machine learning model.

4.4.1 Dependence on radial positions

We next investigated the dependence of the predictions on the radial position of particles inside

haloes. This analysis was done separately for three different mass ranges of haloes. We first

sub-divided particles into three equally-spaced mass ranges based on the mass of their host halo:

particles in low-mass haloes (11.42 ≤ log(M/M�) < 12.08), particles in mid-mass haloes (12.08 ≤

log(M/M� < 12.75) and particles in high-mass haloes (12.75 ≤ log(M/M� ≤ 13.4). For each halo

mass range, we further split the particles into three categories based on their radial position with

respect to the halo’s virial radius rvir: particles in the innermost region of a halo (r/rvir ≤ 0.1), those
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Figure 4.4: Feature importances for density (upper panel), ellipticity (middle panel) and prolateness

(lower panel) as a function of the top-hat window function smoothing mass scale, for the case

where the algorithm is trained to predict the mass of the halo to which each dark matter particle

will belong at z = 2.1. Similar to the z = 0 case, the ellipticity and prolateness features have very

little impact on the training process of the algorithm and the most relevant information is contained

within the density features. The peak of the density feature importances shifts towards smaller

smoothing scales, as a result of larger scales still being in the linear regime at z = 2.1.

in a shell of mid radial range (0.4 ≤ r/rvir ≤ 0.6) and those in the outskirts of haloes (r/rvir > 0.8).

Figure 4.5 shows the distributions of log(Mpredicted/Mtrue) values of particles in each radial

category predicted by the machine learning algorithm based on the density features. The three

panels show the predictions of particles in low-mass (left), mid-mass (center) and high-mass (right)

haloes. For low-mass haloes, the comparison between the distributions of the three radial categories

shows very little difference, indicating that the machine learning algorithm predicts the final halo

mass irrespective of their final position inside the haloes. On the other hand, we find a clear

improvement in the predictions for particles in the innermost regions of mid-mass and high-mass

haloes. The variance of the inner particles’ predictions decreases by 35% and 45% for mid-mass and

high-mass haloes respectively, compared to the variance of the mid-radial particles’ predictions. In

high mass haloes, we also note a reduction in the bias of the distributions as one approaches the
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Figure 4.5: Distributions of log(Mpredicted/Mtrue) values for particles of different categories based

on their radial position inside haloes. The panels show the distributions for particles in low-mass

haloes (left), 11.42 ≤ log(M/M�) < 12.08, mid-mass haloes (center) ,12.08 ≤ log(M/M� < 12.75,

and high-mass (right) haloes, 12.75 ≤ log(M/M� ≤ 13.4. The predictions of particles in low-mass

haloes are uncorrelated with the particles’ radial position inside the halo. For mid-mass and high-

mass haloes, particles in the innermost regions of haloes are those with highest accuracy in their

predicted halo masses, compared to mid-radial and outskirts particles. The density-and-shear model

produces similar distributions to those returned by the density-only model in all radius and mass

bins.

haloes’ central region; the medians of the log(Mpredicted/Mtrue) distributions are −0.0006, −0.2527

and −0.4101 for inner, mid and outer radial categories, respectively. The density and shear model

produces similar distributions to those returned by the density-only model.

The correlation between the accuracy of the predictions and the radial positions of particles

inside their haloes is present in high mass haloes but not within low-mass ones. One possible

reason for this may be the inherent difference in their assembly history. Low-mass haloes tend to

accrete most of their mass at early times, whilst more massive haloes show substantial late-time

mass accumulation (Wechsler et al. 2002). As high mass haloes are thought to undergo a larger

number of merger events (Fakhouri et al. 2010; Genel et al. 2009), the haloes may be characterized

by a more complicated assembly history. In particular, particles in the outskirts of these haloes will

be those that are particularly affected by late-time mergers, thus making it more difficult for the

machine learning algorithm to infer their final halo mass based on their initial state.
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4.5 A metric for machine learning model comparison

Up to this point, we have made conclusions based on visual comparisons between the predictions

based on the density feature set and the density and shear one. Qualitatively, we find that the

addition of tidal shear information does not yield major changes in the halo mass predictions

across the whole mass range considered here. However, we require a quantitative measure of the

comparison to assert whether the tidal shear contains any information that allows for a better

description of halo collapse, even if minimal.

To our knowledge, there exists no metric used in machine learning regression problems suitable

for judging whether one machine learning model is preferred over another. Some of the most

popular metrics used to quantify the quality of the predictions are the mean absolute error, the

mean squared error or the coefficient of determination (r2). These are summary statistics which

provide a measure of the magnitude of the predictive error, but have no principled statistical basis

and are therefore not helpful for model comparison. As one cannot construct a likelihood function

from a single generative model for making predictions, we seek a metric which is (i) based on a

motivated statistic and (ii) independent from the loss function optimized by the algorithm during

training.

We now describe the construction of a metric which allows us to evaluate and compare the

performance of machine learning models based on different feature sets. Given a set of particles

and their associated halo mass labels, one can compute the number density of particles in haloes as

a function of halo mass. Although the number density of particles is directly related to the number

density of haloes, the resulting halo mass function cannot be meaningfully compared to existing

theoretical halo mass functions due to the small range of halo masses probed by our simulations.

Therefore, we choose to work with the particle number density as it is more directly related to the

machine learning predictions and to the purpose of our work. The particles’ ground truth halo mass

labels yield a true number density distribution, ntrue, and those predicted by the machine learning

algorithm yield a predicted number density distribution, nML. By comparing the two distributions,

we can assess how well the machine learning approximation matches the ground truth given by

the simulation. To address this question, the performance of the algorithm can be measured in

terms of a difference between two distributions. In order to quantify this, we adopt the widely used

Kullback-Leibler (KL) divergence (Kullback and Leibler 1951).

The KL divergence is a measure rooted in information theory of the difference between two

probability distributions. In general, the KL divergence of distribution Q from P , DKL(P ‖ Q),
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describes the loss of information when Q is used to approximate the reference distribution P . This is

not a symmetric function, as the information content in Q about P is not equivalent to information

content in P about Q. Since we are interested in assessing how well the machine-learnt distribution

describes the true distribution in the simulation, we consider the KL divergence DKL(ntrue ‖ nML).

If ntrue(logM) and nML(logM) are continuous density distributions, the KL divergence takes the

form

DKL(ntrue ‖ nML) =

∫ Mmax

Mmin

ntrue(logM) ln

[
ntrue(logM)

nML(logM)

]
d logM, (4.13)

whereMmin andMmax are given by the minimum and maximum values of logM where ntruth(logM) 6=

0. It is a non-negative quantity and takes the value DKL(ntrue ‖ nML) = 0 if and only if the two

distributions are identical i.e., ntrue(logM) = nML(logM).

The KL divergence yields a machine learning model comparison metric: given two models based

on different input features, the difference in the KL divergences of each model’s prediction from the

ground truth is a quantitative measure of the difference in the amount of information contained in

one feature set over the other about final halo mass. The difference in the KL divergence for the two

models is computed for each of the six simulations, allowing us to quantify its statistical significance.

Our choice of metric will capture some, but not all, differences between the predictions of different

models.

4.5.1 Kernel density estimation

To compute the KL divergence in Eq. (4.13), ntrue(logM) and nML(logM) must be in the form of

continuous probability density distributions. Given the set of true and predicted mass labels of the

test set particles, we can straightforwardly obtain discrete distributions for the number density of

particles in haloes within bins of logarithmic mass. To then turn these into continuous ones, we

adopted a smoothing procedure known as kernel density estimation (KDE, Rosenblatt 1956). A KDE

is a non-parametric approach to estimate the probability density distribution from a discrete set of

samples. Each data point is replaced with a kernel of a set width and the density estimator is given

by the sum over all kernels.

For the case of the true number density, its kernel density estimate was computed from the set
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Figure 4.6: The distribution of test-set particles as a function of the logarithmic mass of the halo to

which they belong at z = 0. The distribution is smoothed using a kernel density estimation method,

where the bandwidth is optimized using cross-validation. The upper and lower limits of the binned

distribution are given by log(M/M�) = 11.4 and log(M/M�) = 13.4, respectively.

of N ground truth logarithmic halo masses, {logM i
true}N1 , and is given by

ntrue(logM) =
1

N

N∑
i=1

K

(
logM − logM i

true

b

)
, (4.14)

where K is the kernel, which we take to be a Gaussian of the form K(x) ∝ exp(−x2/2), and b is

a smoothing parameter known as the bandwidth, which determines the width of the kernel. The

bandwidth is a free parameter which strongly influences the resulting estimate. If the bandwidth is

too small, the density estimate will be undersmoothed and fit too closely the small-scale structure of

the simulation’s distribution. If the bandwidth is too large, the density estimate will be oversmoothed

meaning that it will wash out important features of the underlying structure.

We optimized the bandwidth following a 5-fold cross validation procedure, similar to the one

used to optimize the machine learning hyperparameters (see Sec. 4.3.3). For a set of bandwidth

values, the KDE was fitted on the simulation’s true number density distribution and validated on the

distribution of an independent simulation with a different initial conditions realization. To avoid
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Figure 4.7: Predicted distribution of the sim-1 test particles as a function of logarithmic halo mass

for the two machine learning models, one trained with density features and the other trained on

density and shear features. The ground truth distribution is also shown for comparison. We compute

the KL divergence of each model’s distribution with respect to the ground truth in order to quantify

and compare the model’s ability to approximate the true distribution. The density and shear model

yields a small improvement of 0.0029 in the KL divergence compared to the density-only model.

undersmoothing, we split the range of logM covered by the distribution into ten sub-intervals of

width ∆ log(M/M�) = 0.2 and used different mass intervals to fit and validate the KDE; every other

mass bin is used for fitting and the remaining bins for validating6. We retained the value of the

bandwidth giving the highest total log-likelihood for the validation set.

We smoothed each simulation’s own ground truth number density of particles. For validation,

all simulations used the ground truth distribution of sim-2, except for sim-2 which used the ground

truth of sim-1. All six simulations returned an optimal bandwidth b = 0.23. The resulting kernel

density estimate for sim-1 is shown in Fig. 4.6, together with its discrete version for comparison. We

then constructed density estimates from the mass values predicted by the two machine learning

models, using a KDE of the same bandwidth as for the ground truth distribution. Fig. 4.7 shows the

comparison between the continuous number densities of particles in haloes based on the ground

6Note that this is the same binwidth we adopted in Sec. 4.3.4. This choice was made to yield at least ten mass intervals
for analysis, as this is the number of bins required to carry out this bandwidth optimization procedure.
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truth and the two machine learning models. Finally, we computed the KL divergence (as in Eq. 4.13)

for the two machine learning models with respect to the ground truth in all six simulations.

4.5.2 Comparing KL divergences from different simulations

The final step consists of comparing the KL divergences returned by the different simulations

to estimate the statistical significance of our results. To do this, we first tested the validity of

comparing KL divergences across different simulations. In general, a comparison between two KL

divergences has a clear meaning only if they measure differences with respect to the same reference

distribution. Here, the reference distributions are different; the KL divergences we wish to compare

are computed with respect to each simulation’s own true number density of particles in haloes. We

checked whether the ground truth distributions from different realizations are similar enough for

the comparison between KL divergences to be valid. We computed DKL(ntrue−1 ‖ ntrue−#), which

we denote as T for simplicity, to find the difference between each simulation’s own ground truth

distribution and that of sim-1. The values of the KL divergences are reported in the last column of

Table 4.1. We find that T is at least five times smaller than any DKL(ntrue ‖ nML). Therefore, the

ground truth distributions are similar enough to validate the use of the KL divergence metric in the

following.

4.6 Results

We present our results in Table 4.1. The first three columns show the values of DKL(ntrue ‖ ndensity),

DKL(ntrue ‖ ndensity+shear) and the difference between the two,DKL(ntrue ‖ ndensity)−DKL(ntrue ‖ ndensity+shear)

for all six simulations. We call these D, S and DS respectively, to simplify the notation. For each

column X, we also compute the mean over the six realizations, X, the sample standard deviation,

δX, and the standard error on the mean, δX = δX/
√
N , where N = 6 simulations.

The values of DS indicate the change in the KL divergence as we add information about the tidal

shear in all six simulations. We measured the statistical significance of the deviation of DS from 0

given its standard error δDS. We find an improvement in the KL divergence (at the 4–sigma level)

provided by the addition of shear information relative to a model based on density information

alone. We quantify the practical utility of such an improvement by comparing the value of DS

with δD, the scatter in the density-only model. We find that the improvement provided by shear

information is equivalent to a 0.5–sigma deviation from the mean KL divergence of the density-only
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Table 4.1: KL divergences of a model’s predicted number density of particles in haloes as a function

of halo mass with respect to the ground truth distribution. Results for the density-only model

(D) and density and shear model (S) of all six simulations are given in the first two numerical

columns. The difference in KL divergence between the two models (DS) is shown in the third

column. The algorithm was trained on each simulation independently and tested on the remaining

dark matter particles in that simulation not used for training. The next three columns report the

KL divergences obtained with predictions made by a machine learning algorithm trained on sim-1

and validated on sim-2. The trained algorithm is tested on sim-3, -4, -5, -6 and the results are

shown for the density-only model (DG), density and shear model (SG) and the difference between

the two (DSG). The last column shows the KL divergence of each simulation’s own ground truth

distribution and that of sim-1, DKL(ntrue−1 ‖ ntrue−#), used to validate the comparison between KL

divergences of different simulations. For all columns, the last three rows show the mean, X, the

sample standard deviation, δX, and the standard error on the mean, δX = δX/
√
N .

Sim D S DS DG SG DSG T

1 0.0284 0.0255 0.0029 - - - -

2 0.043 0.0371 0.0059 - - - 0.0038

3 0.0419 0.0401 0.0018 0.0597 0.0616 -0.0019 0.0055

4 0.0413 0.038 0.0032 0.0488 0.055 -0.0062 0.0045

5 0.0387 0.0286 0.0101 0.0519 0.0577 -0.0058 0.0127

6 0.0188 0.0136 0.0052 0.0361 0.0361 0 0.0027

X 0.0353 0.0305 0.0049 0.0491 0.0526 -0.0035 0.0058

δX 0.004 0.0041 0.0012 0.0049 0.0057 0.0015 0.0018

δX 0.0097 0.0101 0.003 0.0098 0.0113 0.003 0.0039
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model. Therefore, we conclude that the improvement provided by the tidal shear is not large enough

to yield a useful alternative model to one based on density information alone. These conclusions

are consistent with the results of the feature importance analysis in Sec. 4.4.

4.7 A test of generalizability

The results presented above are valid for the case where the dark matter particles that make up the

training set and the test set come from the same simulation. To test the robustness of our results,

we verified the ability of the machine learning algorithm trained on one simulation to generalize to

independent simulations based on different initial conditions realizations. In particular, we tested

whether our main results about the significance and the utility of the improvement provided by

tidal shear information still holds when generalizing to independent simulations.

We used the machine learning algorithm trained on sim-1 and tested it on all dark matter particles

in sim-3, -4, -5, -6, which are independent from the training process of sim-1. Since the dark matter

particles in sim-2 form the validation sets used during training, we excluded the latter from this ana-

lysis. As before, we computed the KL divergences DKL(ntrue ‖ ndensity), DKL(ntrue ‖ ndensity+shear)

and the difference between the two, DKL(ntrue ‖ ndensity)−DKL(ntrue ‖ ndensity+shear); the values

of these quantities for the four independent test simulations are reported in the fourth, fifth and

sixth columns of Table 4.1. This time we call these DG, SG and DSG respectively, to distinguish

them from the previous case where the test set and training set are constructed from the same

simulation.

First, we tested the generalisability of each machine learning model individually. For the density

feature set, the mean KL divergence computed from the independent test sets (DG) is consistent

(at the 2.2–sigma level) with that found when training and testing on the same simulation (D),

meaning that the model learnt on one simulation can indeed generalize to independent simulations.

This confirms that the machine learning algorithm was able to learn the underlying physics relating

the initial conditions to the final haloes. On the other hand, the model based on density and shear

features shows evidence of poor generalisability, as the KL divergences SG and S are in tension at

the 3.2–sigma level.

We then moved on to test the generalisability of our results regarding the improvement provided

by the addition of tidal shear information. We find that the difference in the KL divergence of the

two models (DSG) is in significant tension (at the 4.3–sigma level) with that found when testing on

the same simulation used for training (DS). Moreover, as DSG was a negative value, the addition
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of tidal shear information now yields a marginal loss in performance, rather than an improvement.

These discrepancies provide some evidence that the algorithm trained on density and shear

features overfits the simulation during training. This naturally yields better predictions when testing

the algorithm on the simulation used for training compared to testing on independent simulations.

Consequently, the addition of tidal shear information yields an improvement or a loss in performance

compared to the density-only model, depending on whether the algorithm is tested on the same or

a different simulation to that used for training. In spite of this, the level of overfitting in the density

and shear model is small; for both cases, the change in KL divergence between the two models (DS,

or DSG) is consistent with the scatter in the density-only model (δD, or δDG).

In summary, the algorithm trained on density information has learnt the physical connection

between the initial conditions and the final haloes, as it is able to generalize to independent

realizations of the initial density field. On the other hand, the improvement in the KL divergence

provided by the addition of tidal shear features is lost when applying the trained algorithm to

independent simulations. Therefore the improvement from including shear features in the machine

learning process, which was anyway small, does not imply any physical connection. This strengthens

our conclusion that there is no identifiable physical information pertinent to the final halo mass in

the tidal shear field.

These conclusions were made by testing the algorithm on independent realizations with fixed

cosmological parameters. The parameters of the ΛCDM model are so tightly constrained from

current observations (e.g. Planck Collaboration et al. 2018a), that the formation of haloes must

proceed in a similar way at the mass scales investigated in our analysis. Therefore, we expect

no significant change in our results when adopting simulations based on different choices of

cosmological parameters. Moreover, we expect similar results for the mass range considered in this

analysis for observationally-allowed cosmological models which suppress small-scale power; in such

models halo abundances differ from ΛCDM only below M ∼ 1011 M�.

Our results for the halo mass range 11.4 ≤ log(M/M�) ≤ 13.4 are also expected to hold for

simulations of different box sizes or resolutions. In particular, a simulation with larger box size

or higher resolution yields the possibility of extracting additional features at larger or smaller

smoothing scales, respectively. Since the feature importances (Fig. 4.3) show that the most relevant

information is contained within features on smoothing scales 1013 ≤ Msmoothing/M� ≤ 1014, the

results do not change when the simulation contains additional small- or large-scale information.

Similarly, our results should hold for simulations of smaller box sizes and/or lower resolutions, as

long as those scales which carry the most relevant information are resolved.
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4.8 Conclusions

We have presented a generalization of the work in Chapter 3, which explored the impact of different

initial linear fields on the formation of dark matter haloes above or below a single mass threshold.

In this paper, we investigated a wider mass range of dark matter haloes and their sensitivity to the

initial density and tidal shear fields.

We find that the tidal shear field does not contain additional information over that already

contained in the linear density field about the formation of dark matter haloes in the mass range

11.4 ≤ log(M/M�) ≤ 13.4. We quantified this using a machine learning regression framework,

showing that the results are physically interpretable and generalisable to independent realizations

of the initial density field. Interpretability is achieved by comparing machine learning models

based on different input properties of the initial conditions; the addition of tidal shear information

yields a halo collapse model whose predictions are statistically consistent with those of a model

based on density information alone, according to a metric based on the Kullback-Leibler divergence.

By measuring the feature importances of the different inputs during the training process of the

algorithm, we can establish a complementary measure of which physical aspects contain the

most information about halo collapse. This analysis confirms that our machine learning approach

suggests little role for the tidal shear field in establishing final halo masses. This result holds also

for the case of predicting the mass of haloes at z = 2.1. Generalisability is verified by applying

the machine learning algorithm trained on one simulation to independent simulations based on

different realizations of the initial density field. This allows us to confirm the ability of the machine

learning algorithm to learn physical connections between the initial conditions and the final dark

matter haloes.

In future work, we also plan to consider the relation between the initial conditions and other

cosmic web structures, such as sheets, filaments and voids. The machine learning framework used

in this work was carefully constructed for the purpose of studying halo formation. This involved

choosing (i) suitable volume and resolution for the N-body simulations, that yield a representative

set of halos for training, (ii) features motivated by existing analytic theories of halo collapse and

(iii) performance metrics that reflected different science questions about halo formation specifically.

All these choices must be revisited when applying our machine learning approach to other cosmic

web structures. Moreover, factors which did not impact our results on halo formation may become

important for other structures, as for example the choice of “ground truth” definition for voids and

filaments. Therefore, although our machine learning framework can be applied to any cosmic web
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structure, studying the formation of voids and filaments goes beyond the scope of this thesis and

will be subject of future work.

Our work demonstrates the utility of machine learning techniques to gain physical understanding

of large-scale structure formation. The strength of this approach lies in its ability to establish a

physical interpretation of the machine learning results. In future work, we also plan to extend our

framework to develop interpretable deep learning algorithms, aiming to learn directly from the

initial density field which physical aspects are most relevant to cosmological structure formation,

beyond spherical overdensities and tidal shear forces.
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5
A deep learning model for dark matter halo formation

5.1 Abstract

We develop a deep learning framework, based on 3D convolutional neural networks (CNNs), which

maps the initial conditions density field to the final dark matter halo masses, trained on N -body

simulations. We compare the performance of the deep learning algorithm to that of machine

learning models whose predictions are based only on spherically-averaged overdensity features.

Despite the fact that the inputs provided to the CNN contain all the information needed to fully

describe the initial conditions of the Universe, the predictions returned by the CNN are consistent

with those returned by machine learning algorithms trained on spherical overdensities alone. This

result may suggest that the features learnt by the CNN from the initial conditions to infer halo

masses at z = 0 resemble those of spherically-averaged overdensities. This work presents the first

step towards our broader goal of utilizing machine learning for knowledge extraction: we aim to gain

new physical understanding of halo formation by extracting information from the deep learning

model regarding the underlying physics of halo collapse.

5.2 Introduction

An outstanding problem in cosmology is to understand the complex evolution of the Universe from

its near-uniform early state to the present-day clustered distribution of matter. Dark matter haloes

grow over time via gravitational instability, starting from small random perturbations present in the

linear density field at early times. The non-linear nature of gravitational evolution makes it difficult

to understand how the linear initial conditions map onto the present-day large-scale structure.

Previous studies have provided a qualitative understanding of halo formation by using simple
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analytic models that require restrictive assumptions about the physical processes involved, such as

spherical or ellipsoidal collapse, and are implemented in the context of excursion set theories (Bond

and Myers 1996; Bond et al. 1991; Doroshkevich 1970; Press and Schechter 1974).

In Chapters 3 & 4, we proposed a novel approach based on machine learning to gain new

insights into physical aspects of the early universe responsible for halo collapse, without the need

to introduce approximate halo collapse models. The approach consists of training a machine

learning algorithm to learn the relationship between the early universe and late-time halo masses

directly from numerical simulations. The learning of the algorithm is based on a set of inputs,

known as features, describing specific physical aspects about the linear density field in the initial

conditions. Our choice of inputs was motivated by existing analytic approximations of halo collapse;

we provided the algorithm with spherical overdensities (motivated by spherical collapse theories)

and tidal shear information (motivated by ellipsoidal collapse theories) in the local environment

surrounding each dark matter particle in the initial conditions. Contrary to existing interpretations

of the Sheth-Tormen ellipsoidal collapse model, we found that the addition of tidal shear information

was unable to yield an improved model of halo collapse compared to a model based on density

information alone (Lucie-Smith et al. 2018, 2019). This approach is limited by the need for feature

extraction, a step required by most standard machine learning algorithms; in order to propose a

set of informative features, we must rely on our current understanding of halo formation based on

simplified and incomplete analytic approximations of halo collapse.

In this Chapter, we extend our approach to a deep learning framework based on convolutional

neural networks (CNNs; Bengio 2009; LeCun et al. 2015). Convolutional neural networks are a

special family of deep learning algorithms, capable of extracting meaningful and spatially-local

information directly from the raw data. Therefore, we can train a CNN to learn about halo formation

directly from the initial density field, without the need to manually extract features from the initial

conditions. We train a CNN to predict the mass of the halo to which each dark matter particle

belongs at z = 0. The input is given by the 3D initial density field sampled within a box, centred

on the particle’s initial position. As explained in detail in Chapter 2, most CNN models follow a

similar architecture, made of two main components: a feature extraction part and a predictive part.

The feature extraction part consists of a series of convolutional layers, in which the algorithm learns

to extract important features from the input data. The input data is repeatedly convolved with

different kernels (or, filters), each designed to detect a specific type of feature present in the input.

Convolutional layers are stacked onto each other by using the output of one layer as the input to

the next layer. This hierarchical structure of deep learning models enables the network to learn
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complex features. The idea is that the first layers learn local low-level features, which are then

combined by subsequent layers into more global, higher-level features (Le et al. 2011). The second

component of the CNN is the predictive part; the features assembled in the convolutional layers

are combined to return the final output via fully-connected layers. Fully-connected layers are made

of neurons, each returning a single output by applying a non-linear function to a weighted sum of

the inputs. The ability of CNNs to generate features makes them an attractive proposition to gain

new insights into non-linear structure formation; they can learn directly from the initial conditions

which physical aspects are most useful to predict final halo masses. On the other hand, presenting a

machine learning algorithm with a pre-defined set of properties carrying physical meaning has the

advantage of being easily interpretable. As discussed in Chapter 2, interpretability in deep learning

remains a challenge and is an active area of research in the machine learning community (see e.g.

Olah et al. 2018).

Although CNNs are generally applied to two-dimensional images, we employ CNNs with three-

dimensional kernels that can be applied to the 3D initial density field of the N -body simulation.

Applications of CNNs to three-dimensional data are very recent and mostly limited to 3D medical

image segmentation in the machine learning community (e.g. Kamnitsas et al. 2015). In cosmology,

3D CNNs were first applied to N -body simulations in Ravanbakhsh et al. (2016) to estimate

cosmological parameters from the 3D dark matter distribution. This work was extended to different

deep learning frameworks for a similar purpose (e.g. Mathuriya et al. 2018; Pan et al. 2019) and to

estimate the parameters from 3D simulated galaxy maps (Ntampaka et al. 2019). CNNs have also

been employed to learn mappings which require expensive N -body simulations; these include that

between the Zel’dovich-displaced and the non-linear density fields (He et al. 2019), the non-linear

density field and the halo distribution (Charnock et al. 2019; Kodi Ramanah et al. 2019; Modi

et al. 2018) and the dark matter and galaxy distributions (Zhang et al. 2019). Moreover, CNNs

have also proved useful for classifying objects in simulations, such as filaments and walls at z = 0

(Aragon-Calvo 2019) or protohaloes in the initial conditions (Berger and Stein 2019).

The overall goal of our work is to use deep learning for knowledge extraction i.e., to extract

information about the physics driving the formation of dark matter haloes from the deep learning

results. To do this, we require a deep learning framework that allows for the interpretability of its

learning; for example, in understanding the features assembled by the convolutional layers and how

these map onto the final predictions. In Chapter 6, we will describe how we plan to address the

problem of model interpretability by using variational auto-encoders (VAEs) to reduce the 3D initial

density field into a lower-dimensional representation known as latent variables. The latent variables
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will be used as input to a feed-forward neural network, trained to predict the mass of the final

dark matter haloes. The latent variables provide us with an automatically generated set of features,

containing all the relevant information about the initial conditions, which can be interpreted in

relation to physical aspects of the initial density field that impact the formation of late-time haloes.

In this Chapter, we present the first step towards this goal. We start with a network architecture

based on CNNs alone, without any VAE component, trained to infer final halo masses starting from

the 3D initial density field.

This chapter is organized as follows. We describe the method in Sec. 5.3, starting with an

overview of the pipeline. We then describe how we prepare the simulation data into machine

learning inputs and outputs, and outline the training and testing procedure of the neural network

algorithm. We present the halo mass predictions in Sec. 5.4, in the context of a binary classification

task and of a regression one. We further test the robustness of our network in a simpler setting in

Sec. 5.5, where the algorithm is trained starting from the non-linear density field at z = 0. We draw

the final conclusions in Sec. 5.6 and outline future steps of this work.

5.3 Method

We start with a brief outline of our deep learning pipeline. A more detailed description of each step

is provided in the next sections (Sec. 5.3.1 to 5.3.4).

The first step in any machine learning problem involves the collection and preparation of the

training data. We generated the training data from existing dark-matter-only N -body simulations

(see Sec. 5.3.1). The final snapshot of the simulation was used to label each dark matter particle

with its ground truth target variable, whereas the initial conditions were used to extract the machine

learning inputs associated with each particle. The details of the machine learning inputs and outputs

used in this work are described in Sec. 5.3.2. The dark matter particles in the simulations, each

with its input and ground truth label, form the set of samples used to train, validate and test the

deep learning model.

The next step is choosing the architecture of the deep learning model. This involves choosing

the specific sequence of layers in the CNN and the values of the hyperparameters that determine the

workings of such layers. We refer the reader to Chapter 2 for an in-depth description of the different

layers in a CNN, including their purpose and their hyperparameters. In Sec. 5.3.3 we outline the

choices adopted in this work. The architecture was revisited by testing the response of the CNN to

changes in various hyperparameters on a validation set of dark matter particles. Finally, the choices
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that returned the lowest score in the validation loss were retained in the final model.

Training a deep neural network model is the most challenging part of the pipeline. First, one

specifies a loss function, which measures the error in the predictions returned by the network

compared to their ground truth labels. Training involves adjusting the parameters of the CNN

to minimize the loss function, yielding predictions as close as possible to their respective ground

truth. The optimization of the parameters is done via backpropagation, which is simply the ordinary

chain rule for partial differentiation applied to solve the gradient of the loss with respect to the

parameters. The training proceeds for a number of epochs, each consisting of a number of forward

passes, where the input passes through the network and reaches the output layer, and backward

passes, in which the parameters of the network are updated to minimize the loss function evaluated

for the training data. The training data is generally not provided to the CNN all at once. Instead,

the training samples are split into sub-sets, called batches, which are forward- and backward-

propagated through the network independently. Each time a batch is fed-forward through the

network, the weights are updated in the backward pass according to gradient of the loss evaluated

for that batch. One epoch of training is completed once all batches have been seen once by the

network. At the start of a new epoch, the ordering of the batches is usually shuffled to avoid the

algorithm from memorizing patterns in the batch ordering.

5.3.1 Simulations

As training data, we made use of six dark-matter-only simulations produced with P-GADGET-3

(Springel 2005; Springel et al. 2001) and a WMAP5 ΛCDM cosmological model; the cosmological

parameters are given by ΩΛ = 0.721, Ωm = 0.279, Ωb = 0.045, σ8 = 0.817, h = 0.701 and ns = 0.96

(Dunkley et al. 2009). The simulations are denoted as sim-#, where # ∈ [1, 6]. Each simulation is

based on a different realization of a Gaussian random field drawn from the initial power spectrum

of density fluctuations. All simulations consist of a box of comoving size L = 50 h−1Mpc and

N = 2563 dark-matter particles evolving from z = 99 to z = 01. The simulations are the same as

those used in Chapters 3 & 4.

Dark matter haloes were identified at z = 0 using the SUBFIND halo finder (Springel et al.

2001), a friends-of-friends method with a linking length of 0.2, with the additional requirement that

particles in a halo be gravitationally bound. We consider the entire set of bound particles that make

up a halo and do not account for substructure within haloes. The resolution and volume of the

1We made use of the Python package PYNBODY (Pontzen et al. 2013) to analyse the information contained in the
simulation snapshots.
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simulation limit the resulting range of halo masses; the lowest-mass halo has M = 2.6× 1010 M�

and the highest M = 4.1× 1014 M�.

5.3.2 Machine learning inputs and outputs

To train and test the algorithm, we used the final snapshot (z = 0) to label each dark matter particle

with its ground truth. Since our goal is to derive insight into the formation of haloes, we restricted

our analysis to the subset of particles that collapse into resolved haloes at z = 0. The ground

truth output of each dark matter particle is given by the logarithmic mass of the halo to which the

particle belongs at z = 0. Each particle, with its logarithmic halo mass label, was then traced back

to its position in the initial conditions (z = 99) where we extracted the inputs to the deep learning

algorithm.

The input for each dark matter particle is given by the initial density field sampled in a 3-D

box of comoving length Lbox = 10 Mpch−1 and resolution N = 513, centred on that particle’s

initial position. The resolution is ultimately limited by memory consumption; the highest resolution

achieved with present-day hardware is N = 1283 in Mathuriya et al. (2018). The size of the sub-box

should be large enough to capture large-scale information that is relevant to the algorithm to learn

the initial conditions-to-halo mass mapping. In Chapter 4, we trained a gradient boosted tree to

learn about halo formation given the density field smoothed on different mass scales; we found

that the algorithm was able to learn relevant information from the smoothed density field up to a

scale of Msmoothing ∼ 1014M�. Therefore, we chose the size of a box such that it encloses a total

mass of M ∼ 1014M�, yielding a box length Lbox = 10 Mpch−1. The resolution was chosen such

that the length of each voxel, lvoxel, is the same as the initial grid spacing in the simulation i.e.,

lvoxel = 0.2 Mpch−1 (comoving). We assigned a value for the initial density field to each voxel in

the 3-D box as follows. We took the local density estimate for each dark matter particle computed

by PYNBODY (Pontzen et al. 2013), using the 32 nearest-neighbour particles. Since particles in the

initial conditions are (to a good approximation) displaced onto a grid, we assigned to each voxel

the density estimate of the particle within that voxel. The final density contrast is then given by

δ = ρ/ρ− 1, where ρ is the mean matter density of the Universe.

The density field constructed in this way is a very good approximation of the raw density field

realization of the simulation. The initial 3D position and velocity of the dark matter particles in

the simulation are computed from the density field via the Zel’dovich approximation. Therefore,

we expect the density field that we provide as input to the CNN to contain the full 6D phase space

123



information about the dark matter particles in the initial conditions. However, we plan to test the

response of the algorithm when presented with fields other than the density in future work.

In summary, starting from the initial density contrast in a 3-D volume of comoving length

Lbox = 10 Mpch−1 centred on a dark matter particle’s initial position, the algorithm is trained to

predict the mass of the halo to which that particle will belong at z = 0. In principle, one could use

the entire initial conditions box (centred at the relevant particle’s position) rather than a sub-box

of Lbox = 10 Mpch−1; however, since we do not expect relevant information to be contained at

scales larger than the size of the chosen sub-box, we gain in computational speed without loss in

performance by adopting a smaller-sized box.

Finally, we calculated the mean and standard deviation of voxel values across all input boxes in

the training set, and rescaled all inputs to the network in the training, validation, and test sets by

these values to mean 0 and standard deviation 1 before training. A similar rescaling to mean 0 and

standard deviation 1 was applied to all outputs, based on the the mean and standard deviation of

output values in the training set. In general, CNNs are sensitive to the scale and the dynamic range

of inputs and outputs. For example, since the parameters of the network are usually given by small

numbers, CNNs do not perform well when mapping inputs with small dynamic range to outputs

with large dynamic range, and vice versa. Unscaled input variables can result in large weight values

which usually imply an unstable learning process, while unscaled target variables can result in

large loss gradient values during backpropagation which also typically leads to unstable learning.

By contrast, models based on decision trees, such as the random forest and the gradient boosted

trees used in Chapters 3 & 4, do not require rescaling; they work by splitting features around the

median value and are therefore insensitive to the actual scales of the input features. We applied

the same rescaling to inputs and outputs in order to fix the two to the same dynamic range. The

specific choice of rescaling to mean 0 and standard deviation 1 was made as it returned the best

performance compared to rescaling to the ranges [−1, 1] or [0, 1].

5.3.3 The architecture: convolutional neural networks

We used a 3D deep CNN which takes as input the initial density field in a 3D cube centred on the

dark matter particle’s initial position and returns the halo mass associated to that particle. In this

section, we first briefly introduce the fundamental elements of our 3D CNN model and then describe

the details of the architecture adopted in this work. We refer the reader to Chapter 2 for a more

general discussion on CNNs, including the role, the workings and the parameters of the different
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layers as well as the principles of the training process.

Our CNN model is composed of four main ingredients:

• Convolutional layers: they extract meaningful features from the input data by performing

convolutions between the input and several kernels. The end product of each convolution is a

feature map, indicating the strength and location of the feature detected by that kernel (see

Chapter 2 for details on convolutions in CNNs). Typically, a non-linear activation function is

then applied to every feature map. The convolutions were applied to our input 3D cubes using

three-dimensional kernels; the main restriction when applying CNNs to 3D data (compared

to 2D data) is the increase in memory consumption. However, this can be alleviated by

restricting the number of filters in the first convolutional layers. Each kernel consists of a

3D array of values, known as weights, which are first randomly initialized and subsequently

updated during the training process of the CNN. Convolutional layers also carry a number of

non-trainable hyperparameters which control the way convolutions are performed and that

must be set prior to training. These include the size of the kernels, which is typically set to be

small (e.g. 3× 3× 3 or 5× 5× 5) in order to detect low-level local features across different

regions of the input volume. Low-level local features are then combined into high-level global

features by adding several convolutional layers to the model. Additional hyperparameters

are: the number of kernels, which dictates the number of individual features detected by the

CNN in a single convolutional layer, the stride i.e., the number of pixels by which to slide the

kernel across the input when performing the convolution, and the amount of zero-padding

i.e., whether to pad the input boxes with zeros around the borders so that the kernels can be

centred on elements at the edge of the box.

• Batch-normalization layers: they normalize the inputs of each batch by (i) subtracting the

batch mean and dividing by the batch standard deviation and (ii) rescaling and shifting

the normalized values by two parameters γ and β, which are learnt during training. Batch-

normalization layers do not contain hyperparameters.

• Pooling layers: they decrease the resolution of the feature maps by taking the average (average-

pooling) or the maximum value (max-pooling) in small regions of the feature maps. The

size of the pooling region is the only hyperparameter in this layer, which does not contain

trainable parameters.

• Fully-connected layers: they connect every neuron in one layer to every neuron in adjacent
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Figure 5.1: The deep learning architecture adopted in this work. The input is given by the initial

density field in a 3D cube centred on a dark matter particle’s initial position. The purple layer

represents a convolutional layer, followed by batch-normalization (B.N.), a leaky ReLU non-linear

activation function and a layer of average pooling. Above each purple step are shown the number

of kernels × the size of the kernel. The blue layers are fully-connected layers with 20% dropout.

Above each blue step are shown the number of neurons in each fully-connected layer. The output is

given by the mass of the dark matter halo to which the dark matter particle will belong at z = 0.

layers. Each neuron follows y = σ(w ∗ x + b), where x are the inputs, y is the output, σ is the

non-linear activation function and w, b are trainable parameters known as weights and biases.

To reduce the likelihood of overfitting in these layers, it is common to adopt a regularization

technique known as dropout, where a set of randomly drawn neurons are ignored (i.e. not

updated) at each epoch of training.

Our architecture is illustrated in Fig. 5.1. It consists of 3 convolutional layers, each followed

by batch-normalization and pooling layers, and 3 fully-connected layers. The convolutions were

performed with 8, 16, and 32 kernels for the first, second and third convolutional layer respectively,

with a stride of 1 in all layers and no zero-padding. In principle, the choice of no zero-padding

implies throwing away information at the edges of the box, as the convolutional kernels are never

centred on those voxels. This could in principle imply that the algorithm is not learning the

large-scale information. However, we tested that including zero-padding does not result in any

improvement in the loss score of the validation set. This may therefore suggest that large-scale

information is nevertheless captured by the algorithm in the way the feature maps of previous

layers are combined in subsequent layers. The initial weights of the kernels were drawn from

a Gaussian distribution of mean 0 and standard deviation 0.05, except that values more than
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two standard deviations from the mean were discarded and redrawn. This is the recommended

initializer for neural network weights and filters. The filters have size 3× 3× 3 in all convolutional

layers, meaning that the first layer learns features on scales of 0.6 Mpch−1. As more convolutional

layers are stacked on top of each other, the algorithm becomes sensitive to features at increasing

scales. In this way, both local and global information are able to propagate through the network.

The batch-normalization layers are placed immediately after the convolutional layers, in order to

normalize the feature maps within each batch, before applying the non-linear activation function.

We used a leaky rectified linear unit (LeakyReLU; Nair and Hinton 2010) activation applied to each

value in the (normalized) feature maps, defined as

f(x) =


x for x ≥ 0,

α× x for x < 0,

(5.1)

with α = 0.03. A leaky ReLU activation, with α of order 10−2, is a common choice that has proved

successful in many deep learning applications (see e.g. Nwankpa et al. 2018). The feature maps

are then fed to average-pooling layers, which reduce their dimensionality by taking the average of

2× 2× 2 non-overlapping regions of the feature maps.

After the third loop of convolutional, batch-normalization and pooling layers, the output is

flattened into a one-dimensional vector and fed to a series of 3 fully-connected layers, each made of

256 and 128 and 1 neuron, respectively. The non-linear activation function of the first two layers is

the same ReLU activation (Eq. (5.1)) as that used in the convolutional layers, whereas the last layer

has a linear activation in order for the output to represent halo mass. The weights and biases were

initialized using the same truncated Gaussian distribution used for the filters of the convolutional

layers. The dropout, in which 20% of neurons in the fully-connected layers are ignored during

training, is adopted in both the first two layers.

We caution that we have not explored a full grid of hyperparameters for model optimization. The

final architecture described in this section was that returning the best performance i.e., the lowest

loss score on the validation set after convergence, amongst many, but not all, alternative models with

different choices of architecture-specific and layer-specific hyperparameters. For example, we tested

whether adding complexity to the model could improve the CNN’s performance, but found that the

model overfitted the training data as we added more convolutional layers and/or fully-connected

layers to the architecture. We investigated the change in the validation loss in response to the

following modifications: removing the batch-normalization layers; varying the amount of dropout
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to values of 0, 0.1 and 0.5; adding one or two convolutional layers and/or fully-connected layers;

doubling the number of filters at each convolutional layer; adding zero-padding; changing the

convolutional kernel size to 43 or 23; changing the weight initializers to Gaussian distribution of

mean 0 and standard deviation 0.1. In all cases, we found that the final loss score either increased or

showed no change compared to that of the architecture retained in this work. The largest number

of trials were spent on finding the right balance between batch size, learning rate and number of

epochs. We tested initial learning rate values of 10−2, 10−3 and 10−4, together with batch sizes

of 40, 80 and 160; we found that the algorithm converged with the least number of epochs (80)

with an initial learning rate of 10−4 and a batch size of 80. Further hyperparameter exploration,

including changes to the optimizer, the addition of skip-connections and other variations in the

convolutional and fully connected layers, are part of ongoing work.

5.3.4 Training the deep learning algorithms

The algorithm is trained on 80,000 particles consisting of 20, 000 dark matter particles from each of

four simulations based on different initial conditions realizations. As we will show in more detail

in Sec. 5.4.1, we found no improvement in the performance of the algorithm as we added to the

training set an additional 20,000 particles from another independent simulation, implying that four

simulations were sufficient to yield a training set representative of the initial conditions-to-haloes

mapping. The training set was sub-divided into 1000 batches, each made of 80 dark matter particles.

In Sec. 5.4.1, we will test the perfomance of the CNN against different approaches to sub-divide the

particles in the training set into batches of 80 particles each.

Training was done using the AMSGrad optimizer (J. Reddi et al. 2018), a variant of the widely

used Adam optimizer (Kingma and Ba 2014), with an initial learning rate of 0.0001 which is

exponentially decreased with number of epochs. The number of trained parameters in the network

is ∼ 500, 000. The loss function was chosen to be the mean squared error. The network was

considered to have converged and training was stopped once the validation error did not improve

for ten consecutive epochs. Networks were trained on a single NVIDIA V100 GPU, using Keras with

a TensorFlow backend, for ∼ 10 hours and 80 epochs.

Validation was performed on the dark matter particles from one independent simulation based

on a different realization of the initial density field to those used for training. Although the validation

set does not directly enter the training process of the algorithm, it is indirectly used to test the

response of the algorithm to changes in the architecture. The performance of the algorithm was
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tested on dark matter particles from a different independent simulation. Testing on independent

realizations ensures that the algorithm is not overfitting patterns specific to the simulations used for

training, but rather physical connections between the initial conditions and the final haloes which

are generalizable to any realization of the initial density field.

5.4 Halo mass predictions from the initial density field

In Sec. 5.3, we described the main steps of our deep learning pipeline by which particles in the

initial conditions are mapped onto the final mass of the halo to which they belong at z = 0. Before

implementing this, we tested the pipeline on a simpler setting of a binary classification problem,

similar to that of Chapter 3. A convolutional neural network is trained to predict whether a given

dark matter particle will later belong to a halo above or below a single mass threshold. In Sec. 5.4.1,

we first outline the small changes in the data preparation and the model architecture between the

binary classification and the regression setups. We then describe the validation process and how

we test the robustness of the algorithm against different ways of splitting the training data into

batches. We then present our results and compare them to those from Chapter 3. In Sec. 5.4.2, we

finally apply the deep learning pipeline to the regression problem; the performance of the CNN is

compared to that of the gradient boosted trees adopted in Chapter 4.

5.4.1 Binary classification

Training: data preparation & model architecture

We started by testing our deep learning model on the simplest setting of a binary classification

problem. We split the dark matter particles in the simulations into two classes depending on

whether they belong to haloes above or below a given mass threshold at z = 0. All dark matter

particles in haloes with Mhalo ≥ 2 × 1012 M� belong to one class, whereas those in haloes with

Mhalo < 2 × 1012 M� belong to another class. The mass threshold Mth = 2 × 1012 M� lies in the

middle of the halo mass range probed by the simulation and is similar to that used in Chapter 3.

The inputs to the deep learning algorithm were kept the same for the binary classification and the

regression setups; the CNN was trained to infer the final class of a particle based on the initial density

contrast sampled in a 3D box of comoving length Lbox = 10 Mpch−1 centred on the particle’s initial

position. The architecture of the binary classification model differs from that of the regression

problem (described in Sec. 5.3.3) in two respects. The first is the loss function, which in the case of
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Figure 5.2: The evolution of the AUC score (left panel) and the loss function (right panel) as a

function of epoch, for the training set and the validation set. The algorithm converges after 60

epochs, since the validation scores of both metrics show no improvement in the last 10 epochs.

Deeper architectures and/or changes in the training procedure of the CNN show no improvement in

either metrics.

binary classification is the cross-entropy loss defined as L = − (y log p+ (1− y) log(1− p)), where

y is the class label and takes values y ∈ {0, 1} and p is the predicted probability of belonging to

class y = 1. The second is the non-linear activation function of the last fully-connected layer, which

is a sigmoid function instead of a linear one. Since the output of a sigmoid function is restricted

between 0 and 1, a sigmoid activation function is a common choice for binary classification where

the outputs represent probabilities. The training and testing data were prepared as explained in

Sec. 5.3.4.

Validation

We used the loss function and the area under the Receiver Operating Characteristic (ROC) curve,

or AUC, as metrics to evaluate the performance of the algorithm. A ROC curve compares the

true positive rate i.e., the fraction of correctly classified positives, to the false positive rate i.e.,

the fraction of negatives which have been incorrectly classified as positives, as a function of the

probability threshold separating the positive and negative classes. The area under the ROC curve

is a useful quantity to evaluate and compare the performance of classifiers. Fig. 5.2 shows the

evolution of the AUC score (left panel) and that of the loss function (right panel) as a function of

epoch, for the training set and the validation set. The algorithm converges after 60 epochs, since
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the validation scores of both metrics show no improvement in the last 10 epochs.

A test of robustness: different approaches for splitting data into batches

Our training data is composed of dark matter particles from five simulations based on different

initial conditions realizations. As explained in Sec. 5.3, the data is typically split into batches fed to

the network one at a time, and each time the CNN updates its parameters according to the samples

in that batch. As there is no unique way to sub-divide particles into batches, we investigated the

response of the AUC score to three different approaches in the way the training particles are split

into batches:

• Mixed sims: the entire set of training dark matter particles was randomly sub-divided into

batches, independent of which simulation the particles come from. These batches were then

used to train the CNN at every epoch, until convergence was reached.

• Sequential 4 sims: the algorithm was trained on particles from different simulations at different

epochs. For each simulation, we took the dark matter particles belonging to that simulation,

randomly sub-divided them into 250 batches and used those batches to train the algorithm for

three epochs. The choice of three epochs per simulation was made empirically as it returned

the highest AUC score when compared to a choice of one or five epochs. In the next three

epochs, the same procedure was repeated for a different simulation, and so on. We used four

simulations, meaning that the algorithm was trained on all particles in the training set by the

end of 12 epochs. The algorithm was trained for as many epochs as required for convergence,

by re-starting the training process from the first simulation at the end of every 12 epochs.

• Sequential 5 sims: this is identical to the sequential 4 sims approach, except that we used five,

rather than four, simulations to train the CNN. This was useful to test whether the choice of

four independent realizations in the training data is sufficient for the algorithm to generalize

to independent simulations. Here, the algorithm was trained on all particles in the training

set over 15 epochs (3 epochs × 5 simulations), rather than 12 as for the sequential 4 sims

approach.

The sequential approaches were motivated by the idea that by training the algorithm on different

simulations at different epochs, the algorithm will correct for the simulation-specific information

(i.e. the non-physical information) learnt in the previous epochs and retain only the information
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Figure 5.3: Moving average and standard deviation of the AUC score for the validation set, computed

in intervals of 10 epochs for three training methods; the two sequential methods using four and five

simulations respectively, and the mixed approach. The final AUCs are consistent, with the mixed

approach yielding faster convergence.

that is in common amongst the different realizations. We hypothesized that this may yield better

generalization to independent simulations and an improved performance.

Figure 5.3 compares the AUC as a function of epoch for the three training approaches; the two

sequential methods using four and five simulations, and the mixed sims approach. We show the

moving average of the AUC score over 10 epochs with its standard deviation, for a test set made

of dark matter particles from a different simulation to those used in any of the training methods.

The training was stopped once no significant improvement in the AUC score was found in the last

20 epochs; in all three cases, the change in the AUC (of order 10−4) is smaller than the AUC’s

statistical error (of order 10−3). The final AUCs from the three training methods are consistent; the

algorithm is able to learn the relevant information contained in the training data, independent of

how this information is provided during training. The mixed sims approach converges faster than

the sequential approaches; this is because in the mixed approach the algorithm learns from the

entire training set after a single epoch, whereas the sequential approaches take 12, or 15, epochs

before the algorithm has seen the entire training data at least once.
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Results

The final AUC of the test set returned by the best performing deep learning model is given by

AUC= 0.894. We compared the performance of the deep learning model to that of the random forest

model used in Chapter 3 for the same binary classification task. The fundamental difference between

the deep learning (DL) and the random forest (RF) models is given by the inputs used to train

the machine learning algorithms. The deep learning model learns directly from the initial density

field, which fully determines the initial conditions of the universe, whereas the random forest learns

from inputs which describe only specific aspects about the density field in the local environment

of the dark matter particles. We find that the AUC of the deep learning model is consistent with

that returned by the random forest model trained on spherical overdensities, AUC= 0.876± 0.034.

The errorbar in the AUC of the random forest comes from training the algorithm on ten training

sets, each made of different subsets of randomly-chosen dark matter particles. In other words, if

we provide the algorithm with the initial density field, containing all the information needed to

describe the initial conditions, we recover halo mass predictions that are consistent with those

of a model based on information about spherical overdensities alone. This may suggest that the

CNN is extracting features which are similar to spherically-averaged overdensities, and that these

saturate the most relevant information in the initial conditions about final halo masses. To verify

this hypothesis, we require tools that allow us to interpret the features learnt by the deep learning

model and use these to extract knowledge about the physics of the early universe relevant to halo

formation. In particular, this will allow us to test whether or not the information learnt by the deep

learning model coincides with that of spherical overdensities.

5.4.2 Regression

We then moved forward to applying our deep learning framework to a regression problem, where

the algorithm is trained to predict the mass of the halo to which that particle will belong at z = 0.

We followed the training procedure outlined in Sec. 5.3 and tested the performance of the algorithm

on sim-1, the remaining independent simulation not used for training or validation.

Figure 5.4 shows the predictions made by the CNN compared to the true halo masses of the

test set particles. The predictions are shown as violin plots i.e., distributions obtained from the

predicted halo masses of particles within bins defined by their true logarithmic halo mass. The

dots represent the medians of the predicted distributions as a function of the medians in each true

mass interval. We compare the distributions resulting from the CNN with those from a gradient
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Figure 5.4: Halo mass predictions returned by a CNN trained on the initial conditions density field

surrounding each dark matter particle’s initial position. The predictions are shown as violin plots

i.e., distributions (and their medians) of predicted halo masses of particles within evenly-spaced

bins of true logarithmic halo mass. The distributions returned by the CNN are compared to those

returned by a GBT, trained on spherical overdensities only. Despite the additional information

contained in the inputs to the CNN, the algorithms return similar halo mass predictions with a

marginal improvement in the bias of the CNN predicted distributions for low-mass haloes.

boosted tree (GBT) trained on the same regression task, similar to that adopted in Chapter 4.

As for the binary classification case, the fundamental difference between the CNN and the GBT

lies in the inputs we provide to the algorithms; the former learns from the initial density field,

containing all the information required to describe the initial conditions, whilst the latter learns

from a more limited set of information describing specific physical aspects about the density field.

We find that the CNN returns qualitatively similar predictions to those from the GBT in the mass

range 11.4 ≤ log(M/M�) ≤ 13.4, for the same set of test particles. The CNN provides a marginal

improvement in the bias present in the predicted distributions for particles in lower-mass haloes, as

shown by the medians of the CNN predicted distributions being increasingly closer to the y = x line

compared to the GBT medians. On the other hand, we find no significant difference in the variances

of the distributions returned by the two algorithms. Overall, the fact that the CNN learns directly

from the initial conditions field does not yield any substantial improvement in the final halo mass

predictions, compared to training an algorithm on spherical overdensities alone. This conclusion is
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consistent with that found from the binary classification case. Future work on the interpretation

of the features learnt by the CNN will provide insight into whether or not there exists information

beyond spherical overdensities that is useful to describe halo collapse.

5.5 A comparison with low-redshift inputs

The surprising result of the consistency between the halo mass predictions returned by the CNN

and those returned by the RF motivated us to perform additional tests of the robustness of the

CNN architecture adopted in this work. Choosing the exact network architecture requires extensive

numerical experimentation. The large number of hyperparameters involved in convolutional neural

networks makes a full optimization search, for example based on grid-search cross-validation,

infeasible. As mentioned in Sec. 5.3.3, we tested the impact of changes in a variety of architecture-

specific and layer-specific hyperparameters and retained the model yielding the best performance.

In this section, we present additional tests to verify whether or not the CNN architecture we adopt

is suited for our problem of learning final halo mass starting from the 3D density field. To do this,

we tested the performance of the model in simpler scenarios where we can compare the predictions

of the CNN against our expectations.

We trained the CNN to learn the mapping between the non-linear density field at z = 0 and the

mass of the resulting haloes. This mapping is effectively given by an algorithm which first identifies

the boundary of a halo based on a fixed density threshold, similar to a friends-of-friends algorithm,

and then computes the mass enclosed within such halo. As this is a much simpler mapping than

that between the initial conditions density field and the final halo masses, we expect the CNN to

return near-perfect predictions. Similar to the z = 99 case, we sampled the non-linear density field

at z = 0 in a 3D box centred at each particle’s position. We revisited our choices of box size and

resolution of the 3D box, as the scales of interest at z = 0 naturally differ from those in the initial

conditions. We fixed the resolution to that used for the z = 99 case, N = 513, and chose a box

size of L = 1.5 Mpch−1, which approximately corresponds to the virial radius of a halo with mass

M = 1014 M�. These choices resulted in a voxel length lvoxel ∼ 30 kpch−1, which is approximately

equivalent to half the virial radius of a M = 1010 M� halo. Given that the box captures the virial

radius of the largest and smallest haloes probed by our simulations, we expect the input boxes to

contain the information required by the algorithm to learn the density field-to-haloes mapping. The

training and testing of the deep learning algorithm was performed following the same procedure

used for the initial conditions-to-haloes mapping in Sec. 5.4.2.
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Figure 5.5: Halo mass predictions returned by a CNN trained on the non-linear density field at

z = 0. The predictions are shown in the form of violin plots i.e., distributions (and their medians)

of predicted halo masses of particles within evenly-spaced bins of true logarithmic halo mass. The

distributions are shown for two independent simulations from those used for training. For both

simulations, the predictions are in good agreement with their respective ground truth halo masses,

yielding a Pearson correlation coefficient r = 0.97. However, the tails of the distributions indicate a

small degree of inaccuracy in the predictions. See the text for possible origins for these tails.

Figure 5.5 shows the halo mass predictions when using the z = 0 non-linear density field as input

to the CNN. The predictions are shown for two simulations based on different initial conditions

realizations to those of the simulations used for training. They are illustrated in the form of violin

plots, showing the distributions of predicted halo masses in bins of true mass. The predictions show

good agreement with the true halo mass labels in both simulations, yielding in both cases a Pearson

correlation coefficient r = 0.97, where r = 1 implies an exact linear relationship. Therefore, the

CNN is able to make use of the information contained in the inputs and return reliable predictions.

However, we note the presence of tails in the predicted halo mass distributions; these may be due

to the loss of information arising from the 513 voxelization of the density field needed to construct

the inputs to the deep learning algorithm. By contrast, the halo finder algorithm, which defines

the ground truth of the neural network, works at the particle-level resolution (the highest possible

resolution). This hypothesis could be verified by testing whether the model yields better predictions

when trained on the initial density field sampled at a higher resolution than 513. Alternatively, one
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could run an algorithm, similar to that of the halo finder, but working at voxel-level resolution

and test whether the resulting halo mass estimates match those predicted by the CNN. Another

possibility is that the tails in the distributions come from the predictions for dark matter particles

which have specific properties that make it harder for the algorithm to return accurate predictions;

for example, if they live near the boundary of the haloes. Further investigations regarding the origin

of these tails are part of ongoing work.

A natural extension of this work would be to test the performance of the deep learning model for

predicting z = 0 masses from the density field at intermediate redshifts, where smaller scales have

already entered the non-linear regime whilst larger scales are still in the linear regime. However,

this carries further complications regarding the choice of voxelization of the input boxes. The fixed

choice of N = 513 resolution sets a trade-off between the large linear scales and small non-linear

scales which can be probed by the box. Although an increased choice of resolution is possible, this

goes at the expense of changes in the CNN architecture and larger computational costs, thus making

the interpretation of the results of such tests more difficult.

5.6 Conclusions

We have presented a generalization of our machine learning framework to deep learning algorithms,

capable of learning final halo masses directly from the linear density field in the initial conditions of

an N -body simulation. The aim of our approach is ultimately to use deep learning for knowledge

extraction; that is, we would like to learn about physical aspects of the early universe which impact

the formation of late-time haloes using the results of deep learning, without the need to featurize

the initial conditions as in Chapters 3 & 4.

In this work, we presented the first step towards this goal. We trained a convolutional neural

network to learn the mapping between dark matter particles in the initial conditions and the mass

of the halo to which the particles belong at z = 0. The advantage of deep learning algorithms is

that they do not require feature extraction; the algorithm learns directly from the initial density

field, sampled in a box centred at each dark matter particle’s initial position. We compared the

performance of the CNN to that of the machine learning models adopted in Chapters 3 & 4. The

fundamental difference between the CNN and the machine learning models used in our previous

work lies in the inputs which we provide to the algorithms. The inputs to the CNN model contain

all the information necessary to fully describe the initial conditions of the universe, whereas the

models in Chapters 3 & 4 learn from hand-crafted features describing only specific aspects of the
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linear density field. We find that the halo mass predictions returned by the CNN are consistent with

those returned by the algorithms trained on spherical overdensities alone.

One interpretation of this result is that spherical overdensities capture most of the information

relevant to halo formation within the initial conditions. On the other hand, it may be that further

optimization of hyperparameters of the CNN will enable improved predictions compared to those of

the GBT. This may reveal additional features beyond spherical overdensities that the algorithm finds

useful to predict final halo masses. To verify these hypotheses, we require tools to interpret the

features learnt by the deep learning model. This will allow us to establish whether the information

gleaned by the deep learning model correlates with spherical overdensities or if there exist additional

physical information relevant to predict halo collapse. In the next Chapter, we outline the next

steps towards building an interpretable deep learning framework for knowledge extraction: we

plan to develop a network architecture that exploits the synergies between convolutional neural

networks and variational auto-encoders. Future work also involves providing the deep learning

model with multiple linear fields, such as the linear density field and the linear tidal shear field; this

is straightforwardly achievable by exploiting the existing multiple ‘channels’ infrastructure already

established for RGB channels in images. When an RGB image is used as input to a CNN, the input

is a N × N × 3 array of pixels, where the 3 refers to the R,G and B values, which is convolved

with a filter of the same depth as the input, an M ×M × 3 array, where M is the size of the filter.

The output of the convolutional layer is then given by a 2D feature map of depth 1, similar to the

single channel case. In our context, multiple linear fields can be used as input to the CNN simply by

replacing the 3D filters in the first convolutional layer with 4D filters, where the size of the fourth

dimension is determined by the number of linear fields provided as input.

Our framework differs from other applications of 3D CNNs to cosmological simulations in two

regards. First, our CNN model returns particle-specific predictions. This yields a halo collapse

model that can describe the non-linear evolution of the density field from any initial location in the

simulation. By contrast, prior work often trains 3D CNNs to infer simulation-specific quantities, such

as cosmological parameters (Ntampaka et al. 2019; Pan et al. 2019; Ravanbakhsh et al. 2016), the

abundance of galaxies at z = 0 for a given voxelization of the simulation (Zhang et al. 2019) or the

z = 0 displacement field across the entire simulation (He et al. 2019). Predicting simulation-specific

quantities requires a large number of training simulations since each simulation represents one

single training example; in our work, since the training data consist of dark matter particles, we only

require a few cosmological simulations, as each contains millions of particles. Two examples close

to our work are that of Kodi Ramanah et al. (2019), where a Wasserstein generative adversarial
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network is used to predict the halo count distribution starting from the non-linear density field,

and that of Charnock et al. (2019), which uses a neural bias model to determine the halo mass

distribution from the non-linear density field. These applications differ from our work not only in

their implementations, but also in their aim to construct models that can be used as fast alternatives

to expensive computational simulations. The second difference is in the evaluation step. We

evaluate the performance of the model using localised particle-based metrics, that directly test how

well the outputs of the CNN match their respective ground truth. On the other hand, existing works

often evaluate the performance of their model on global summary statistics such as two-point or

three-point correlation functions (e.g. Kodi Ramanah et al. 2019; Mathuriya et al. 2018; Ntampaka

et al. 2019; Ravanbakhsh et al. 2016; Zhang et al. 2019). Although these are observables commonly

used in cosmology, they only contain limited information about the performance of the deep learning

algorithm and may therefore wash out informative aspects about the model’s predictions or hide

limitations of the model.

In the next Chapter, we will outline our plan for extending the current deep learning framework

to one based on variational auto-encoders. This will allow us to interpret the features of the CNN by

establishing whether the information extracted by the deep learning model correlates with spherical

overdensities. Future work will focus on making use of this framework for knowledge extraction, to

gain new physical understanding about the connection between the initial conditions and the final

haloes from the learning of the algorithm itself.
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6
Future work

6.1 Abstract

Future work will present an application to cosmological structure formation of the new field of

research of knowledge extraction in machine learning. The aim is to extract physical knowledge

about dark matter halo formation from the parameters learnt by a deep learning model, trained to

infer final halo masses starting from the initial density field. To do this, we plan to develop a network

architecture that combines convolutional neural networks with variational auto-encoders. The

variational auto-encoder learns to compress the information in the initial conditions relevant to halo

formation into a lower-dimensional representation, which can be interpreted in relation to physical

aspects of the initial conditions. First, we will use this to investigate whether the features learnt by

the deep learning model correlate with physically-meaningful features such as spherically-averaged

overdensities. We then plan to extend the framework to gain new insights into the physics of halo

formation from the learning of the model, thus improving our understanding of the relationship

between the linear universe and the non-linear large-scale structure.

6.2 Knowledge extraction from the deep learning model

Machine learning methods, especially deep neural networks, are used widely both in industry and

in scientific applications. Usually these models are trained to yield the best possible predictions, but

recently there has also been increasing interest for understanding the way a specific model operates

and the underlying reasons for the produced results. This is known as interpretability in machine

learning (see Chapter 2 for a review on tools for interpretability in deep learning). Our main goal

for utilizing machine learning is scientific understanding; we wish to gain new insights from a deep

140



learning model by extracting information from its learnt parameters and its outputs regarding the

underlying physics of the problem of interest. This new field of research, called knowledge extraction

from deep learning, has not yet been applied to cosmology.

Recently, there have been several applications in the field of natural sciences that use machine

learning for scientific discovery (Roscher et al. 2019). For example, Iten et al. (2018) introduced

SciNet, a modified variational auto-encoder (VAE; see Sec. 6.2.1 for an introduction to VAEs) which

learns a representation from experimental data, that can be used to derive physical concepts. They

applied their model to simple physical problems and demonstrated that the network is capable of

finding physically-relevant parameters, as the physical parameters and those learnt by the machine

learning model have a linear relationship. Similarly, Ye et al. (2018) constructed a low-dimensional

representation encoding the physical parameters to predict the outcome of a collision of objects from

videos. However, their works rely on prior knowledge about relevant parameters. For example, the

architecture of the model adopted by Iten et al. (2018) was designed with prior knowledge about

the underlying physical process. Moreover, the interpretability of their results was only possible

thanks to the ability to compare to already known representations in physics.

Our ultimate aim is to gain physical insights in scenarios where the relevant physical parameters

are not known a priori, but can be instead extracted from an interpretable deep learning model.

Future work will focus on extracting new physical knowledge of non-linear halo collapse. This

means using the deep learning model to extract the physical aspects of the initial density field

that are most relevant to describe the formation of the final haloes. As a first goal, we plan to test

whether the deep learning algorithm is, at a minimum, capable of finding physical features which

we know are important for dark matter halo formation.

In Chapter 5, we used a convolutional neural network (CNN) to map the dark matter particles

in the initial conditions onto the mass of the final haloes to which they belong at z = 0. We found

that the predictions of the CNN match those of machine learning algorithms trained on information

about spherical overdensities alone. This suggested that the CNN could be learning features that

resemble those of spherical overdensities. On the other hand, this is only a hypothesis; the fact that

the CNN and the GBTs return consistent predictions does not directly imply that the CNN is learning

the same features used by the GBTs. It is possible that the CNN learns features that are uncorrelated

with spherical overdensities, while still returning predictions that are consistent with those of the

GBTs. Our next goal is to test this hypothesis. To do this, we require a deep learning model that

is interpretable i.e., one which extracts relevant features that can be interpreted and related to

physical aspects of the initial conditions, such as spherical overdensities. We plan to modify the
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CNN architecture presented in Chapter 5 to one which combines CNNs with VAEs, similar to the

architecture used in Iten et al. (2018). The VAE framework will allow us (i) to understand what

features the algorithm is learning and (ii) to test our hypothesis about the correlation between

the features learnt by the CNN and spherical overdensities. We give a general introduction to

auto-encoders, and in particular VAEs, in Sec. 6.2.1 and then describe the deep learning architecture

we plan to use for model interpretability in Sec. 6.2.2.

6.2.1 Variational auto-encoders

An auto-encoder is an unsupervised type of network that learns to compress the input data into a

lower-dimensional representation, known as the latent representation, and then decompresses that

to reconstruct something that is closely similar to the input data (Bourlard and Kamp 1988; Hinton

and Zemel 1993). The former part of the algorithm is known as the encoder and the second as the

decoder. The latent representation encodes the relevant information contained in the input data

into the lowest possible dimensions. The network architecture for auto-encoders varies between

simple feed-forward neural networks or convolutional neural networks depending on the use case;

in the latter case the network is known as a convolutional auto-encoder (CAE). Typically, training

an auto-encoder involves minimizing (via backpropagation) a reconstruction loss, measuring how

well the decoder can reconstruct an output that is identical to the original input, starting from the

latent representation. When the latent representation allows a good reconstruction of its input,

then it has retained the most important information present in the input data.

Auto-encoders are generally effective at dimensionality reduction, feature learning, denoising

images or generative modelling. However, one fundamental limitation of these algorithms is that

the latent space they convert their inputs to may not be continuous, or allow easy interpolation. If

the latent space has discontinuities, the decoder will return unrealistic outputs when sampling from

any region that overlaps a discontinuity in latent space. This is because during training, the decoder

was never given examples of encoded vectors coming from that region of latent space. VAEs are

one family of auto-encoders that, by construction, yield continuous latent representations (Kingma

and Welling 2014; Rezende et al. 2014). Instead of returning an encoded latent vector of size n,

the encoder outputs two vectors of size n: a vector of means µ and a vector of standard deviations

σ. The latent vector {zi}n1 , used as input to the decoder, is then given by random samples from

Gaussian distributions of means µ and standard deviations σ i.e., zi ∼ N (µi, σ
2
i ). In this way, the

auto-encoder learns the probability distribution functions over latent space, p(z|x), where z and
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x are the latent and input variables respectively, resulting in a smooth latent space which can be

easily interpolated. The loss function that is minimized when training a VAE is given by

LVAE = ||x− x̂||2 −DKL(N (µ,σ2) ‖ N (0,1)), (6.1)

where the first term is a reconstruction term, that measures the performance of the encoding-

decoding scheme, and the second is a regularization term, that regularizes the latent space by

making the distributions returned by the encoder close to a standard normal distribution. Without

the regularization term, the encoder can generate very different means µ and small standard

deviations σ as there are no limits to what values µ and σ can take. This would yield latent variables

which are tightly clustered and far apart from each other, making interpolation difficult. Instead,

the latent variables should be as close as possible to each other (while still being distinct), allowing

smooth interpolation. The regularization term is introduced in the loss function to ensure that the

latent space satisfies continuity i.e., two points close in latent space should return similar content

once decoded, and completeness i.e., all points sampled in latent space should return meaningful

content once decoded.

6.2.2 Convolutional neural networks with variational auto-encoders

As mentioned at the start of Sec. 6.2, our first goal will be to understand whether the features learnt

by the CNN model used in Chapter 5 correlate with spherical overdensities. To do this, we plan to

use VAEs to compress the initial density field into a lower-dimensional set of latent variables, which

contain relevant information to infer the mass of the final haloes at z = 0. The latent variables can

then be directly compared to physically-meaningful features, such as spherical overdensities, to test

whether or not there is a correlation between the two.

Traditional VAEs are unsupervised neural networks that only learn to encode and decode the input

data and therefore would have no information about the final haloes when learning to compress the

initial conditions field into latent variables. In order to obtain a set of latent variables that do contain

information about halo mass, we propose a deep learning architecture that combines variational

auto-encoders for data compression with fully-connected layers for the halo mass predictions, as

illustrated in Fig. 6.1. First, we will start from the CNN model used in Chapter 5. The model,

trained on N -body simulations, takes the 3D initial density field centred at the initial position of a

dark matter particle, and returns a prediction for the mass of the halo to which that particle belongs

at z = 0 (top panel of Fig. 6.1). Since we are interested in interpreting the features that lead to
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Figure 6.1: We plan to develop a VAE-like model (bottom panel) that will allow us to interpret the

features learnt by the CNN adopted in Chapter 5 (top panel) in relation to known physical aspects

of the initial conditions, such as spherical overdensities. The CNN is trained on N -body simulations

to predict the final mass of the halo to which a dark matter particle belongs at z = 0, starting from

the 3D initial density field. The CNN predictions are used as ground truth labels to a VAE model,

made of an encoder and a decoder that outputs halo mass. The encoder compresses the information

in the initial conditions relevant to the final halo mass into two vectors, one of means µ and another

of standard deviations σ. The latent vector is then randomly-sampled from Gaussian distributions

of those means and standard deviations. We will then be able to answer the question of whether the

CNN extracts features that resemble spherical overdensities by measuring the correlation between

the latent variables and spherical overdensities.

the predictions made by the CNN, we will use the CNN-predicted halo mass as the ground truth

label for the VAE model. In other words, the training data of the VAE model consist of the 3D

initial conditions density field as input and the halo mass predicted by the CNN model for each dark

matter particle as output. This setup will allow us to directly recover the features that lead to the

predictions returned by the CNN.
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The architecture of the proposed VAE model is shown in the bottom panel of Fig. 6.1. The

first part is that of the encoder, where the algorithm learns the compression. The encoder consists

of convolutional and pooling layers similar to the CNN architecture used in Chapter 5, without

fully-connected layers. The latent variables are then used as inputs to the fully-connected layers,

which output the (CNN predicted) mass of the halo associated with each particle. Since the ground

truth label of the VAE model is given by the halo mass predictions of the CNN, the loss function

minimized by the VAE network is given by

L =
1

N

N∑
i=1

(
MCNN
i,h −MVAE

i,h

)2 −DKL(N (µ,σ2) ‖ N (0,1)), (6.2)

where N is the number of training samples and MCNN
i,h and MVAE

i,h are the predicted masses

of the CNN and of the VAE for particle i, respectively. The first term in Eq. 6.2 is the mean

squared error, which measures how well the model predicts halo mass, and the second term is the

regularization term, which forces the latent space distributions to be close to normal distributions

(see Sec. 6.2.1). The weights of the architecture are learnt by minimizing the loss in Eq. (6.2) via

standard backpropagation. In this way, the encoder learns to compress the initial density field into a

set of latent variables which contain the information required to predict final halo masses. Since the

VAE and the CNN models are intended to be similar models, with the exception of the additional

latent layer in the VAE, we fix the values of the hyperparameters of the VAE to those used for the

CNN.

One important additional hyperparameter in the VAE model that must be set prior to training is

the dimensionality of the latent space. In Chapter 4, we found that the gradient-boosted trees learn

predominantly learns from 7 features: the values of the density field smoothed with a top-hat window

function on seven mass scales evenly spaced in logM within the range 13 ≤ log(Msmoothing/M�) ≤

14. Therefore, we will start with a choice of seven latent variables and test whether this choice

is sufficient to capture the information required to yield halo mass predictions that match those

of the CNN. We expect further investigation on the impact of our choice of dimensionality of the

latent space on the performance of the VAE model. The final step will be to quantify the correlation

between the latent variables and the seven spherical overdensity features using a covariance matrix.

This will ultimately allow us to verify whether the algorithm is learning physically-meaningful

information and whether this information correlates with overdensities smoothed on mass scales

13 ≤ log(Msmoothing/M�) ≤ 14. This is similar to what was done in Iten et al. (2018), where they

concluded that their model learnt the physically-relevant parameters given the linear relationship
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between the physical parameters and the latent variables.

Overall, the deep learning framework illustrated in Fig. 6.1 learns about halo formation starting

from the initial density field, while simultaneously returning a set of latent variables which com-

presses the information in the initial conditions that is useful for making halo mass predictions.

This framework is not limited to investigating correlations between known physical parameters

and latent variables. We plan to further expand this framework to extract new physical relations

between the initial conditions and final dark matter haloes, which may include localised components

around peaks in the initial density field or large-scale flows.
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7
Conclusions

In this thesis, we presented the first applications of a new machine learning approach to gain

physical understanding of cosmological structure formation. The approach consists of training a

machine learning algorithm to learn the non-linear relationship between the initial conditions and

the final mass of dark matter haloes directly from N -body simulations. The strength of our method

lies in its ability to establish a physical interpretation of the machine learning results. In this way, we

were able to learn about which physical aspects of the early universe contain relevant information

about the final dark matter haloes.

We investigated the impact of different properties of the initial linear fields on the formation of

dark matter haloes. We started with a machine learning binary classification framework (Chapter 3),

where a random forest model was trained to predict whether dark matter particles will collapse into

haloes of mass above or below a threshold Mth = 1.8×1012 M�. Contrary to existing interpretations

of the Sheth-Tormen ellipsoidal collapse model, we found that the tidal shear field does not contain

additional information over that contained in the density field for our classification problem.

This result was confirmed by quantitatively showing that the learning process of the machine

learning algorithm is predominantly driven by the local overdensity around dark matter particles on

smoothing scales 1012 ≤ Msmoothing/M� ≤ 1014 and is unaffected by the surrounding tidal shear.

By comparing the machine learning predictions with those of analytic theories, we found that the

linear density field contains sufficient information to yield predictions at the accuracy level of both

spherical and ellipsoidal collapse analytic frameworks. Therefore, the machine learning and analytic

frameworks consistently show that the tidal shear field carries little role in the formation of dark

matter haloes around this mass threshold.

This result generalized to a regression setting (Chapter 4), where a gradient boosted trees

model was trained to infer the final mass of the halo to which a dark matter particle will belong
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at z = 0. We found no significant impact of the tidal shear field on the final mass of haloes in the

range 11.4 ≤ log (M/M�) ≤ 13.4. We quantified this with a machine learning model comparison

using a metric based on the Kullback-Leibler divergence. The addition of tidal shear information

does not yield an improved halo collapse model over one based on density information alone, as

the difference in the predictive performance of the two models is consistent with the statistical

uncertainty of the density-only based model.

The work presented in Chapters 3 & 4 was based on machine learning models that require their

inputs to be hand-crafted features. This approach is therefore limited by our ability to put forward

meaningful features, which are motivated by incomplete analytic approximations and can only

capture limited aspects of the initial conditions. To go beyond this, we extended our framework to

convolutional neural networks (CNNs; Chapter 5), as these can learn about halo formation directly

from the linear density field realization, without the need for feature extraction. We compared the

performance of the CNN to that of the tree ensemble models adopted in Chapters 3 & 4. Despite

the fact that the inputs to the CNN contain all the information necessary to fully describe the initial

conditions of the Universe, the CNN’s predictions are consistent with those of the ensembles of trees,

whose learning is based only on spherically-averaged overdensities. Surprisingly, this may indicate

that spherical overdensities saturate the most relevant information to halo formation contained

in the initial conditions. In Chapter 6, we outlined the next steps towards the ultimate goal of

this work: developing an interpretable deep learning framework that can be used to extract new

physical knowledge of the relation between the initial conditions and the final dark matter haloes.

At first, this will involve interpreting the information learnt by the CNN model with respect to any

relevant physical aspects of the initial conditions, such as spherical overdensities. We plan to do this

by adopting a hybrid architecture that combines convolutional neural networks with variational

auto-encoders.

The work presented in this thesis points toward a new field of research, knowledge extraction

from machine learning, which utilizes interpretable machine learning frameworks for the purpose

of extracting new physical knowledge about cosmological structure formation.
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A
Appendix to Chapter 4

A.1 A comparison with analytic theories

We validated the machine learning findings by comparing the accuracy of its predictions against

those of analytic theories which also provide final halo mass predictions based on the same initial

conditions information.

We compared the machine learning predictions based on the density features with EPS theory

and those based on density and tidal shear features with ST theory, for the test set particles in

sim-1. According to EPS, the fraction of density trajectories with a first upcrossing of a density

threshold barrier δth is equivalent to the fraction of haloes of mass M . The density threshold barrier

δth adopted by Bond et al. (1991) is that of spherical collapse: δth(z) = (D(z)/D(0))δsc, where

δsc ≈ 1.686. The predicted halo mass of each test particle is given by the smoothing mass scale at

which the particle first upcrosses the density threshold barrier.

In the ST formalism, EPS theory is extended to account for the effect of the tidal shear field by

adopting a “moving” collapse barrier rather than the spherical collapse barrier. The ST collapse

barrier b(z) varies as a function of the mass variance σ2(M) and is given by

b(z) =
√
aδsc(z)

[
1 +

(
β
σ2(M)

aδ2
sc(z)

)γ]
, (A.1)

where δsc(0) ≈ 1.686 and the best-fit parameters found in Sheth et al. (2001) are β = 0.485,

γ = 0.615 and a = 0.707. Similar to the EPS case, the predicted halo mass of each test particle is

given by the smoothing mass scale at which the particle first upcrosses the threshold barrier given

by Eq. (A.1). In summary, for each test particles we can compute the EPS and ST predicted halo

masses and compare those to the machine learning density-only and density combined with shear
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Figure A.1: Two-dimensional histograms and contours containing 68%, 95% and 99.7% of the joint

probability of the predicted vs. true halo masses for the analytic and machine learning models.

We compare the machine learning predictions based on the density features with EPS theory and

those based on density and tidal shear features with ST theory. The predictions are qualitatively

similar, but with tighter confidence regions in the machine learning case. This validates our machine

learning results as we find no evidence of any relevant information contained in the features that

the algorithm fails to learn.

predictions, respectively.

Figure A.1 shows the predicted halo masses as a function of true halo masses for the analytic and

machine learning models. We show two-dimensional histograms and the contours containing 68%,

95% and 99.7% of the joint probability. Machine learning and analytic models show qualitatively

similar predictions, but with tighter confidence regions for the machine learning predictions. This is

especially notable where the analytic models’ predictions extend to much lower mass values than

the machine learning predictions. Note also that the ST predictions are shifted towards lower mass

values compared to the PS predictions, for fixed true halo mass. This directly reflects the fact that

the ST collapse barrier takes larger δ values than the PS barrier at fixed smoothing mass scale; the

same particle will therefore cross the collapse barrier at lower smoothing mass scales for ST than

PS, which in turn results in a lower halo mass prediction.

This test validates our machine learning results by ruling out the possibility that the algorithm
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is not making use of all the information contained in the features. Moreover, this also shows

that the machine learning algorithm provides better predictions than the analytic models on a

particle-by-particle basis.

In Sec. 4.5, we compared the performance of two machine learning models by computing the

KL divergence between the distributions of number of particles within bins of halo mass predicted

by the two models. A similar quantitative comparison between the machine learning and the

analytic models is not possible. This is because in order to compute the KL divergence between two

distributions, these must share the same normalization. Instead, the total number of particles in

halos predicted by the machine learning algorithm is not the same as that predicted by the analytic

theories. The former is given by all the particles in the test set, whereas the latter is given by only

those particles in the test set that cross the collapse thresholds. Therefore, one cannot use the KL

divergence to meaningfully quantify the difference between the machine learning and the analytic

predicted distributions. A qualitative comparison between the distributions as in Fig. A.1 is sufficient

for the purpose of this work.
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cosmological structure formation. Proceedings of the National Academy of Science, 116(28):
13825–13832, Jul 2019. doi: 10.1073/pnas.1821458116.

J. Hilden. The area under the roc curve and its competitors. Medical Decision Making, 11
(2):95–101, 1991. doi: 10.1177/0272989X9101100204. URL https://doi.org/10.1177/

0272989X9101100204. PMID: 1865785.

G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and helmholtz free energy.
In NIPS, 1993.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Comput., 18(7):1527–1554, July 2006. ISSN 0899-7667. doi: 10.1162/neco.2006.18.7.1527.
URL http://dx.doi.org/10.1162/neco.2006.18.7.1527.

R. W. Hockney and J. W. Eastwood. Computer simulation using particles. 1988.

E. Hubble. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings
of the National Academy of Sciences, 15(3):168–173, 1929. ISSN 0027-8424. doi: 10.1073/pnas.
15.3.168. URL https://www.pnas.org/content/15/3/168.

D. Huterer and D. L. Shafer. Dark energy two decades after: observables, probes, consistency tests.
Reports on Progress in Physics, 81(1):016901, Jan 2018. doi: 10.1088/1361-6633/aa997e.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pages 448–456. JMLR.org, 2015. URL
http://dl.acm.org/citation.cfm?id=3045118.3045167.

157

https://link.aps.org/doi/10.1103/PhysRevD.23.347
https://link.aps.org/doi/10.1103/PhysRevD.23.347
https://doi.org/10.1177/0272989X9101100204
https://doi.org/10.1177/0272989X9101100204
http://dx.doi.org/10.1162/neco.2006.18.7.1527
https://www.pnas.org/content/15/3/168
http://dl.acm.org/citation.cfm?id=3045118.3045167


R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner. Discovering physical concepts with neural
networks. arXiv e-prints, art. arXiv:1807.10300, Jul 2018.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam & beyond. 05 2018.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning: With
Applications in R. Springer Publishing Company, Incorporated, 2014. ISBN 1461471370,
9781461471370.

N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck. Deep learning dark matter map reconstructions
from DES SV weak lensing data. arXiv e-prints, art. arXiv:1908.00543, Aug 2019.

A. Jenkins, C. S. Frenk, S. D. M. White, J. M. Colberg, S. Cole, A. E. Evrard, H. M. P. Couchman, and
N. Yoshida. The mass function of dark matter haloes. MNRAS, 321:372–384, Feb. 2001. doi:
10.1046/j.1365-8711.2001.04029.x.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the Limits of Language
Modeling. arXiv e-prints, art. arXiv:1602.02410, Feb 2016.

H. M. Kamdar, M. J. Turk, and R. J. Brunner. Machine learning and cosmological simulations - I.
Semi-analytical models. MNRAS, 455:642–658, Jan. 2016. doi: 10.1093/mnras/stv2310.

K. Kamnitsas, L. Chen, C. Ledig, D. Rueckert, and B. Glocker. Multi-scale 3d convolutional neural
networks for lesion segmentation in brain mri. 2015.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly
efficient gradient boosting decision tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 3146–3154. Curran Associates, Inc., 2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 12 2014.

D. Kingma and M. Welling. Auto-encoding variational bayes. 12 2014.

A. Knebe, S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A. Aragon-Calvo, Y. Ascasibar, P. S.
Behroozi, D. Ceverino, S. Colombi, J. Diemand, K. Dolag, B. L. Falck, P. Fasel, J. Gardner,
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