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Abstract 

Background 

Mood disorders (including major depressive disorder and bipolar disorder) affect 10-

20% of the population, ranging from brief, mild episodes to severe, incapacitating 

conditions that markedly impact lives. Despite their diagnostic distinction, multiple 

approaches have shown considerable sharing of risk factors across the mood 

disorders.  

Methods 

To clarify the molecular genetic basis of this sharing, and to highlight disorder-

specific associations, we meta-analysed data from the latest Psychiatric Genomics 

Consortium (PGC) genome-wide association studies of major depression (including 

data from 23andMe) and bipolar disorder, and an additional major depressive 

disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-

overlapping N = 609,424).  

Results 

73 loci reached genome-wide significance in the meta-analysis, including 15 novel 

for mood disorders. More genome-wide significant loci from the PGC analysis of 

major depression than bipolar disorder reached genome-wide significance. Genetic 

correlations revealed that type 2 bipolar disorder correlates strongly with recurrent 

major depressive disorder. Systems biology analyses highlight both similarities and 

differences between the mood disorders, particularly in the mouse brain cell types 

implicated by the expression patterns of associated genes. The mood disorders also 
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differ in their genetic correlation with educational attainment – positive in bipolar 

disorder but negative in major depressive disorder.  

Conclusions 

The mood disorders share several genetic associations, and can be combined 

effectively to increase variant discovery. However, we demonstrate several 

differences between genetic associations with these disorders. Furthermore, 

analysing subtypes of major depressive disorder and bipolar disorder provides 

evidence for a genetic mood disorders spectrum.  
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Introduction 

 Mood disorders affect 10-20% of the global population across their lifetime, 

ranging from brief, mild episodes to severe, incapacitating conditions that markedly 

impact lives (1–4). Major depressive disorder and bipolar disorder are the most 

common forms and have been grouped together since the third edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-III) (5). Although given 

dedicated chapters in DSM5, they remain grouped as mood disorders in the 

International Classification of Disorders (ICD11) (6, 7). 

Depressive episodes are common to major depressive disorder and type 2 

bipolar disorder, and are usually present in type 1 bipolar disorder (7). The bipolar 

disorders are distinguished from major depressive disorder by the presence of mania 

in type 1 and hypomania in type 2 (7). However, these distinctions are not absolute – 

some individuals with major depressive disorder may later develop bipolar disorder, 

and some endorse (hypo)manic symptoms (8–10). Following their first depressive 

episode, a non-remitting individual might develop recurrent major depressive 

disorder or bipolar disorder. Treatment guidelines for these prognoses differ (11, 12). 

Identifying shared and distinct genetic associations for major depressive disorder 

and bipolar disorder could aid our understanding of these diagnostic trajectories. 

Twin studies suggest that 35-45% of variance in risk for major depressive 

disorder and 65-70% of the variance in bipolar disorder risk is accounted for by 

additive genetic factors (13). These genetic components are partially shared, with a 

twin genetic correlation (rg) of ~65%, and common variant based rg derived from the 

results of genome-wide association studies (GWAS) of 30-35% (14–17). 

Considerable progress has been made in identifying specific genetic variants that 

https://paperpile.com/c/j2gbOB/GRG1N+xMsBC+NbFnO+3iPBL
https://paperpile.com/c/j2gbOB/nmEv
https://paperpile.com/c/j2gbOB/0ejq+QS6ez
https://paperpile.com/c/j2gbOB/QS6ez
https://paperpile.com/c/j2gbOB/QS6ez
https://paperpile.com/c/j2gbOB/fYzYm+Uy6wH+6kxl2
https://paperpile.com/c/j2gbOB/DnKt+emmc
https://paperpile.com/c/j2gbOB/qiL9A
https://paperpile.com/c/j2gbOB/9q2tp+eqFq+wv0At+fEoqH
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underlie genetic risk. Recently, the Psychiatric Genomics Consortium (PGC) 

published a GWAS of bipolar disorder, including over 20,000 cases, with 30 genomic 

loci reaching genome-wide significance (16). They also performed a GWAS of major 

depression, including over 135,000 individuals with major depressive disorder and 

other definitions of depression, with 44 loci reaching genome-wide significance (15). 

The PGC GWAS of major depression has since been combined with other 

depression GWAS (Supplementary Note). 

GWAS have identified statistical associations with major depressive disorder 

and with bipolar disorder individually, but have not explored the genetic aspects of 

the relationship between these disorders. In addition, both major depressive disorder 

and bipolar disorder exhibit considerable clinical heterogeneity and can be separated 

into subtypes. For example, the DSM5 includes categories for bipolar disorder type 1 

and type 2, and for single episode and recurrent major depressive disorder (7). We 

use the PGC analyses of major depression and bipolar disorder, along with analyses 

of formally-defined major depressive disorder from UK Biobank, to explore two aims 

(18, 19). Firstly, we seek to identify shared and distinct mood disorder genetics by 

combining studies of major depressive disorder and bipolar disorder. We then 

explore the genetic relationship of mood disorders to traits from the wider GWAS 

literature. Secondly, we assess the overall genetic similarities and differences of 

bipolar disorder subtypes (from the PGC) and major depressive disorder subtypes 

(from UK Biobank), through comparing their genetic correlations and polygenic risk 

scores from GWAS.  

  

https://paperpile.com/c/j2gbOB/wv0At
https://paperpile.com/c/j2gbOB/eqFq
https://paperpile.com/c/j2gbOB/QS6ez
https://paperpile.com/c/j2gbOB/NigAY+qHwfB
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Materials and Methods 

Participants  

Our primary aim was to combine analyses of bipolar disorder and major 

depression to examine the shared and distinct genetics of these disorders. Summary 

statistics involved participants of Western European ancestries. Full descriptions of 

each study and their composite cohorts are provided in each paper (15, 16, 19). Brief 

descriptions are provided in the Supplementary Methods. Except where otherwise 

specified, summary statistics are available (or will be made available) at 

https://www.med.unc.edu/pgc/results-and-downloads. 

Major depression data were drawn from the full cohort (PGC MDD: 135,458 

cases, 344,901 controls) from (15). This included data from 23andMe (20), access to 

which requires a Data Transfer Agreement; consequently, the data analysed here 

differ from the summary statistics available at the link above. Data for bipolar 

disorder were drawn from the discovery analysis previously reported (PGC BD: 

20,352 cases, 31,358 controls), not including replication results (16). 

Secondly, we wished to examine genetic correlations between mood disorder 

subtypes. Summary statistics were available for the primary bipolar disorder 

subtypes, type 1 bipolar disorder (BD1: 14,879 cases, 30,992 controls) and type 2 

bipolar disorder (BD2: 3,421 cases, 22,155 controls), and for schizoaffective bipolar 

disorder (SAB: 977 cases, 8,690 controls), a mood disorder including psychotic 

symptoms. Controls are shared across these subtype analyses.  

Subtype GWAS are not yet available from PGC MDD. As such, a major 

depressive disorder cohort was derived from the online mental health questionnaire 

https://paperpile.com/c/j2gbOB/eqFq+wv0At+qHwfB
https://www.med.unc.edu/pgc/results-and-downloads
https://paperpile.com/c/j2gbOB/eqFq
https://paperpile.com/c/j2gbOB/PI84b
https://paperpile.com/c/j2gbOB/wv0At
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in the UK Biobank (UKB MDD: 29,475 cases, 63,482 controls; Resource 22 on 

http://biobank.ctsu.ox.ac.uk) (18). The definition of major depressive disorder in this 

cohort is based on DSM-5, as described in full elsewhere (18), and in Supplementary 

Table 1 (7). We defined three major depressive disorder subtypes for analysis. 

Individuals meeting criteria for major depressive disorder were classed as recurrent 

cases if they reported multiple depressed periods across their lifetime (rMDD, N = 

17,451), and single-episode cases otherwise (sMDD, N = 12,024, Supplementary 

Table 1). Individuals reporting depressive symptoms, but not meeting case criteria, 

were excluded from the main analysis but used as a "sub-threshold depression" 

subtype to examine the continuity of genetic associations with major depressive 

disorder below clinical thresholds (subMDD, N = 21,596). All subtypes were 

analysed with the full set of controls. Details on the quality control and analysis of the 

UK Biobank phenotypes is provided in the Supplementary Methods.  

Meta-analysis of GWAS data 

 We meta-analysed PGC MDD and UKB MDD to obtain a single major 

depressive disorder GWAS (combined MDD). We meta-analysed combined MDD 

with PGC BD, comparing mood disorder cases to controls (MOOD). Further meta-

analyses were performed between PGC MDD and each bipolar disorder subtype and 

major depressive disorder subtype to assess the relative increase in variant 

discovery when adding different mood disorder definitions to PGC MDD 

(Supplementary Results).  

Summary statistics were limited to common variants (MAF > 0.05; 

Supplementary Methods) either genotyped or imputed with high confidence (INFO 

score > 0.6) in all studies. Controls were shared between PGC MDD and PGC BD, 

http://biobank.ctsu.ox.ac.uk/
https://paperpile.com/c/j2gbOB/NigAY
https://paperpile.com/c/j2gbOB/NigAY
https://paperpile.com/c/j2gbOB/QS6ez
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and (due to the inclusion of summary data in PGC MDD) the extent of this overlap 

was unknown. Meta-analyses were therefore performed in METACARPA, which 

controls for sample overlap of unknown extent between studies using the variance-

covariance matrix of the observed effect sizes at each variant, weighted by the 

sample sizes (21, 22). METACARPA adjusted adequately for known overlap 

between cohorts (Supplementary Methods). For later analyses (particularly linkage 

disequilibrium score regression) we used as the sample size a "non-overlapping N" 

estimated for each meta-analysis (Supplementary Methods). The definition, 

annotation and visualisation of each meta-analysis is described in the 

Supplementary Materials.  

Sensitivity analysis using down-sampled PGC MDD 

Results from MOOD showed greater similarity to PGC MDD than to PGC BD. 

Cross-trait meta-analyses may be biased if the power of the composite analyses 

differs substantially (23, 24). The mean chi-square of combined MDD [1.7] exceeded 

that of PGC BD [1.39], suggesting this bias may affect our results (Supplementary 

Table 2). We therefore repeated our analyses, meta-analysing UKB MDD with 

summary statistics for PGC MDD that did not include participants from 23andMe nor 

the UK Biobank (mean chi-square = 1.35). All analyses were performed on the full 

and the down-sampled analyses, with the exception of GSMR analyses. Full results 

of the down-sampled analyses are described in the Supplementary Materials.  

Estimation of SNP-based heritability captured by common variants and genetic 

correlations with published GWAS  

The SNP-based heritability captured by common variants was assessed using 

linkage disequilibrium score regression (LDSC) for each meta-analysed set of data 

https://paperpile.com/c/j2gbOB/wj5yU+bNPIb
https://paperpile.com/c/j2gbOB/cNFTC+wsns4
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(25). SNP-based heritability estimates were transformed to the liability scale, 

assuming population prevalences of 15% for combined MDD, 1% for PGC BD, and 

16% for MOOD, and lower and upper bounds of these prevalences for comparison 

(Supplementary Methods). LDSC separates genome-wide inflation into components 

due to polygenicity and confounding (25). Inflation not due to polygenicity was 

quantified as (intercept-1)/(mean observed chi-square-1) (26). Genetic correlations 

were calculated in LDSC between each analysis and 414 traits curated from 

published GWAS. Local estimates of SNP-based heritability and genetic covariance 

were obtained using HESS v0.5.3b (Supplementary Methods and Results) (27, 28).  

Genetic correlations between subtype analyses 

To assess the structure of genetic correlations within the mood disorders, 

SNP-based heritabilities and genetic correlations were calculated in LDSC between 

bipolar disorder subtypes (BD1, BD2, SAB), and major depressive disorder subtypes 

(rMDD, sMDD, subMDD). Putative differences between genetic correlations were 

identified using a z-test (p < 0.05), and formally tested by applying a block-jackknife, 

with Bonferroni correction for significance (p < 8.3x10-4; Supplementary Methods). 

Differences between the genetic correlations of PGC MDD and each bipolar disorder 

subtype, and between PGC BD and each major depressive disorder subtype were 

also tested (Bonferroni correction for significance, p < 0.0083). Genetic correlations 

were hierarchically clustered using the gplots package in R v1.4.1 (29, 30). 

Hierarchical clustering was performed using just the subtypes, and including results 

from six external GWAS relevant to mood disorders (Supplementary Methods).  

https://paperpile.com/c/j2gbOB/RmsMH
https://paperpile.com/c/j2gbOB/RmsMH
https://paperpile.com/c/j2gbOB/hgR2P
https://paperpile.com/c/j2gbOB/VBog+iuBY
https://paperpile.com/c/j2gbOB/yfDiO+mkrZg
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Association of PGC BD polygenic risk scores with major depressive disorder 

subtypes 

Polygenic risk score analyses were performed using PRSice2 to assess 

whether rMDD was genetically more similar to PGC BD than were sMDD or subMDD 

(Supplementary Methods) (36). 

Gene-wise, gene-set, and tissue and single-cell enrichment analyses 

For all analyses, gene-wise p-values were calculated as the aggregate of the 

mean and smallest p-value of SNPs annotated to Ensembl gene locations using 

MAGMA v1.06 (Supplementary Methods and Results) (37). Gene set analysis was 

performed in MAGMA (Supplementary Methods and Results). Further analyses were 

performed to assess the enrichment of associated genes with expression-specificity 

profiles from tissues (Genotype-Tissue Expression project, version 7) and broadly-

defined ("level 1") and narrowly-defined ("level 2") mouse brain cell-types (38, 39). 

Analyses were performed in MAGMA following previously described methods with 

minor modifications, with Bonferroni-correction for significance (Supplementary 

Methods) (38). Similar analyses can be performed in LDSC-SEG – we report 

MAGMA results, which reflect specificity of expression across the range, whereas 

LDSC-SEG compares the top 10% of the range with the remainder (40). Results 

using LDSC are included in the Supplementary Tables.  

Mendelian randomisation (GSMR) 

Bidirectional Mendelian randomisation analyses were performed using the 

GSMR option in GCTA to allow exploratory inference of the causal direction of 

known relationships between mood disorder traits and other traits (41, 42). 

https://paperpile.com/c/j2gbOB/hF4s
https://paperpile.com/c/j2gbOB/h4Q5k
https://paperpile.com/c/j2gbOB/XNwAB+kIYEc
https://paperpile.com/c/j2gbOB/XNwAB
https://paperpile.com/c/j2gbOB/OpYR
https://paperpile.com/c/j2gbOB/hlmCP+Bmnd5
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Specifically the relationship between the mood disorder analyses (MOOD, combined 

MDD, PGC BD) and schizophrenia, intelligence, educational attainment, body mass 

index, and coronary artery disease were explored (Supplementary Methods) (32, 

43–46). These traits were previously examined in the PGC major depression GWAS 

– we additionally tested intelligence following the results of our genetic correlation 

analyses (15). 

Conditional and reversed-effect analyses 

Additional analyses were performed to identify shared and distinct mood 

disorder loci, using mtCOJO, an extension of GSMR (Supplementary Methods) (41, 

42). Analyses were performed on combined MDD conditional on PGC BD, and on 

PGC BD conditional on combined MDD (Supplementary Results). To identify loci 

with opposite directions of effect between combined MDD and PGC BD, the MOOD 

meta-analysis was repeated with reversed direction of effects for PGC BD 

(Supplementary Methods and Results). 

Results 

Evidence for confounding in meta-analyses  

Meta-analysis results were assessed for genome-wide inflation of test 

statistics using LDSC (25). The LDSC intercept was significantly >1 in most cases 

(1.00-1.06), which has previously been interpreted as confounding (Supplementary 

Table 2). However, such inflation can occur in large cohorts without confounding 

(47). Estimates of inflation not due to polygenicity were small in all meta-analyses (4-

7%, Supplementary Table 2).  

https://paperpile.com/c/j2gbOB/qkxf2+jbJmI+S8RQ7+wp47l+pwD8j
https://paperpile.com/c/j2gbOB/qkxf2+jbJmI+S8RQ7+wp47l+pwD8j
https://paperpile.com/c/j2gbOB/eqFq
https://paperpile.com/c/j2gbOB/hlmCP+Bmnd5
https://paperpile.com/c/j2gbOB/hlmCP+Bmnd5
https://paperpile.com/c/j2gbOB/RmsMH
https://paperpile.com/c/j2gbOB/aoGJo
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Combined MOOD meta-analysis 

 We meta-analysed the PGC MDD, PGC BD and the UKB MDD cohorts 

(MOOD, cases = 185,285, controls = 439,741, non-overlapping N = 609,424). 73 loci 

reached genome-wide significance, of which 55 were also seen in the meta-analysis 

of PGC MDD and UKB MDD (combined MDD, Supplementary Table 3, 

Supplementary Figures 1 and 2). Results are summarised in Table 1: 39 of the 44 

PGC MDD loci reached genome-wide significance in MOOD (Supplementary Table 

3, Supplementary Figures 1-8). In comparison, only four of the 19 PGC BD loci 

reached genome-wide significance in MOOD. MOOD loci overlapped considerably 

with previous studies of depression and depressive symptoms (51/73) (20, 23, 48–

52), bipolar disorder (3/73) (53–56), neuroticism (32/73) (23, 57–59), and 

schizophrenia (15/73) (32, 60), although participants overlap between MOOD and 

many of these studies. Locus 52 (chromosome 12) passed genome-wide 

significance in a previous meta-analysis of broad depression and bipolar disorder, 

although the two other loci from this study did not replicate (51). Six of the 73 

associations are entirely novel (p > 5x10-8 in previous studies of all phenotypes; 

Table 1, Supplementary Table 4). 

The down-sampled MOOD (cases = 95,481, controls = 287,932, non-

overlapping N = 280,214) showed increased similarity to PGC BD compared to 

MOOD, but remained more similar to PGC MDD. Nineteen loci reached genome-

wide significance in down-sampled MOOD, including nine (20%) from PGC MDD, 

compared with two (11%) reported in PGC BD (Supplementary Table 3). 17/19 loci 

were also observed in MOOD. Of the two loci not observed in MOOD, one passed 

genome-wide significance in PGC BD. 

https://paperpile.com/c/j2gbOB/XSvPp+PI84b+tSWSW+cNFTC+sdoAU+YrBHr+oiwYA
https://paperpile.com/c/j2gbOB/XSvPp+PI84b+tSWSW+cNFTC+sdoAU+YrBHr+oiwYA
https://paperpile.com/c/j2gbOB/Xk161+wbcIs+BWkBO+eHoOU
https://paperpile.com/c/j2gbOB/cNFTC+3BXSL+uLDLN+wYGsA
https://paperpile.com/c/j2gbOB/qkxf2+iu3hd
https://paperpile.com/c/j2gbOB/YrBHr
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SNP-based heritability and genetic correlations  

The estimate of SNP-based heritability for MOOD (8.8%) was closer to PGC 

MDD (9%) than to PGC BD (17-23%) (15, 16). Significant genetic correlations 

between MOOD and other traits included psychiatric and behavioural, reproductive, 

cardiometabolic, and sociodemographic traits (Figure 1, Supplementary Table 5). 

Genetic correlations with psychiatric and behavioural traits are consistently observed 

across psychiatric traits (17, 61). The genetic correlation with educational attainment 

differs, being negative in combined MDD, but positive in PGC BD (Supplementary 

Table 6). The genetic correlation (rg) between MOOD and educational attainment 

was -0.058 (p=0.004), intermediate between the results of combined MDD and of 

PGC BD. Notably, the genetic correlation with intelligence (IQ) was not significant in 

combined MDD, PGC BD, nor MOOD (p>1.27x10-4). 

The SNP-based heritability of down-sampled MOOD from LDSC was 11%, 

closer to PGC MDD than to PGC BD (Supplementary Table 2). Genetic correlations 

varied (Supplementary Tables 5 and 7) with some more similar to PGC BD 

(schizophrenia: down-sampled rg = 0.61, combined MDD rg = 0.35, PGC BD rg = 

0.7), and others more similar to combined MDD (ADHD: down-sampled rg = 0.48, 

combined MDD rg = 0.45, PGC BD rg = 0.14). The genetic correlation with IQ was 

significant (rg = -0.13, p = 5x10-7). The 23andMe depression cohort has a positive 

genetic correlation with IQ (rg = 0.06, p = 0.01). Including this cohort in the PGC 

MDD sample obscured a negative genetic correlation with IQ. The greater genetic 

correlation of MOOD with combined MDD (0.98) compared to PGC BD (0.55) 

persisted when comparing down-sampled MOOD to combined MDD (0.85) and PGC 

BD (0.75; Supplementary Table 6).  

https://paperpile.com/c/j2gbOB/wv0At+eqFq
https://paperpile.com/c/j2gbOB/n4UlT+fEoqH
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Relationship between mood disorder subtypes 

 Analyses were performed using GWAS data from subtypes of bipolar disorder 

(BD1, BD2, SAB) and major depressive disorder (rMDD, sMDD, subMDD). SNP-

based heritability for the subtypes ranged from subMDD and sMDD (8%), through 

BD2 and rMDD (10% and 12%, respectively) to BD1 and SAB (22% and 29% 

respectively, Figure 2, Supplementary Table 2).  

The major depressive disorder subtypes were strongly and significantly 

genetically correlated (rg = 0.9-0.94, prg = 0 < 8.3x10-4). These correlations did not 

differ significantly from 1 (all prg = 1 > 0.3), nor from each other (all pΔrg = 0 > 0.5, Figure 

2, Supplementary Table 8). BD1 and SAB were strongly correlated (rg = 0.77, prg = 0 = 

6x10-13, prg = 1 = 0.03), as were BD1 and BD2 (rg = 0.86, prg = 0 = 3x10-16, prg = 1 = 0.2). 

However, BD2 was not significantly correlated with SAB (rg = 0.22, prg = 0 = 0.02). 

In hierarchical clustering, BD2 clustered with the major depressive disorder 

subtypes rather than the bipolar disorder subtypes. The strength of correlation 

between BD2 and BD1 did not differ from that between BD2 and rMDD (rg = 0.68, prg 

= 0 = 3x10-8, prg = 1 = 0.01), following multiple testing correction (Δrg = 0.18, p = 0.02). 

Overall, these results suggest a spectrum of genetic relationships between major 

depressive disorder and bipolar disorder, with BD2 bridging the two disorders (Figure 

3; Supplementary Figure 9). This spectrum remained when six external phenotypes 

were added (Supplementary Results, Supplementary Figure 10).  

 Polygenic risk score analyses showed that individuals with high polygenic risk 

scores for PGC BD were more likely to report rMDD than sMDD, and more likely to 

report sMDD than subMDD (Supplementary Results). 
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Tissue and cell-type specificity analyses 

The results of gene-wise and gene set analyses are described in the 

Supplementary Results. The tissue-specificity of associated genes differed minimally 

between the analyses (Supplementary Table 9). All brain regions were significantly 

enriched in all analyses, and the pituitary was also enriched in combined MDD and 

PGC BD (p < 9.43x10-4, Bonferroni correction for 53 regions, Supplementary Table 

9). Results from down-sampled MOOD and down-sampled MDD were generally 

consistent with the main analyses, except spinal cord was not enriched in either, nor 

was the cordate in the down-sampled MDD analysis.  

In contrast, cell-type enrichments differed between combined MDD and PGC 

BD (Figure 4, Supplementary Tables 10 and 11). Genes associated with PGC BD 

were enriched for expression in pyramidal cells from the CA1 region of the 

hippocampus and the somatosensory cortex, and in striatal interneurons. None of 

these enrichments were significant in combined MDD. Genes only associated with 

combined MDD were significantly enriched for expression in neuroblasts and 

dopaminergic neurons from adult mice. Further cell-types (dopaminergic 

neuroblasts; dopaminergic, GABAergic and midbrain nucleus neurons from 

embryonic mice; interneurons; and medium spiny neurons) were enriched for both 

combined MDD and PGC BD, but the rank and strength of enrichment differed, most 

notably for medium spiny neurons. The general pattern of differences persisted when 

comparing PGC BD with down-sampled MDD, although genes associated with 

down-sampled MDD were not enriched for expression in adult dopaminergic 

neurons, embryonic midbrain nucleus neurons, interneurons, nor medium spiny 

neurons (Supplementary Figure 11). 
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Shared and distinct relationships with mood disorders and inferred causality 

Bidirectional Mendelian randomisation was used to investigate previously-

described relationships between mood disorder phenotypes (combined MDD, PGC 

BD) and external traits: schizophrenia, educational attainment, IQ, body mass index 

(BMI) and coronary artery disease (CAD; Figure 5, Supplementary Table 12). 

Associations with PGC BD should be interpreted cautiously, as only 19 loci reached 

genome-wide significance, several of which were removed as potentially pleiotropic 

in the analyses below.  

A positive bidirectional relationship was observed between combined MDD 

and PGC BD, and between schizophrenia and both combined MDD and PGC BD. 

This is consistent with psychiatric disorders acting as causal risk factors for the 

development of further psychiatric disorders, or being correlated with other causal 

risk factors, including (but not limited to) the observed shared genetic basis. 

The relationship with educational years differed between the mood disorders 

– there was a negative bidirectional relationship between educational years and 

combined MDD, but a positive bidirectional relationship with PGC BD (albeit with 

only nominal significance from PGC BD to educational years). In contrast, no 

significant relationship was observed between mood phenotypes and IQ. This is 

consistent with differing causal roles of education (or correlates of education) on the 

mood disorders, with a weaker reciprocal effect of the mood disorders altering the 

length of education.  

A positive association was seen from BMI to combined MDD, but not from 

combined MDD to BMI. In contrast, only a nominally significant negative relationship 
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was seen from PGC BD to BMI. A positive association was observed from combined 

MDD to CAD; no relationship was observed between CAD and PGC BD.  

Discussion 

We identified 73 genetic loci by meta-analysing cohorts of major depression 

and bipolar disorder, including 15 loci novel to mood disorders. Our overall mood 

disorders meta-analysis results (MOOD) have more in common with our major 

depressive disorder analysis (combined MDD) than our bipolar disorder analysis 

(PGC BD). Partly, this results from the greater power of the major depressive 

disorder analysis compared to the bipolar disorder analysis. Nevertheless, our 

sensitivity analysis with equivalently powered cohorts (using down-sampled MDD in 

place of combined MDD) still showed a greater overall similarity to PGC MDD. 

Genetic associations shared between the mood disorders were more similar 

to major depressive disorder than to bipolar disorder. This may reflect a complex 

genetic architecture in bipolar disorder, wherein variants may be associated more 

with manic than depressive symptoms, and vice versa. Variants associated more 

with mania (or psychosis) may have higher effect sizes, detectable at current bipolar 

disorder GWAS sample sizes, and may not be strongly associated with major 

depressive disorder. This could explain the higher heritability of bipolar disorder 

compared to major depressive disorder, and reports that most of the genetic 

variance for mania is not shared with depression (13, 14). Meta-analysis of bipolar 

disorder and major depressive disorder cohorts would support variants associated 

more with depression, but not those associated more with mania. This is consistent 

with our findings, and with depressive symptoms being both the unifying feature of 

the mood disorders and the core feature of major depressive disorder. 

https://paperpile.com/c/j2gbOB/qiL9A+9q2tp
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We assessed genetic correlations between mood disorder subtypes. We 

observed high, consistent correlations between major depressive disorder subtypes, 

including sub-threshold depression. Bipolar disorder type 2 showed greater genetic 

similarity to major depressive disorder compared to type 1. In this, we build on 

similar findings from polygenic risk scores analyses (16, 56). Individuals with high 

polygenic risk scores for PGC BD were more likely to report recurrent than single-

episode major depressive disorder. However, the genetic correlation of PGC BD with 

recurrent major depressive disorder was not significantly greater than that with 

single-episode major depressive disorder. This might reflect the difference in power 

between these methods. We also examined the genetic correlations between mood 

disorder subtypes in the context of relevant external traits (Supplementary Results). 

Our subtype analyses support a genetic mood spectrum consisting of the 

schizophrenia-like bipolar disorder type 1 and schizoaffective disorder at one pole, 

and the depressive disorders at the other, with bipolar disorder type 2 occupying an 

intermediate position. 

Conditional and reversed-effect analyses (Supplementary Results) suggest 

that few if any loci we identified are disorder-specific. However, our results highlight 

some differences between the genetics of the mood disorders. The expression 

specificity of associated genes in mouse brain cell types differed between bipolar 

disorder and major depressive disorder analyses. Cell-types more associated with 

bipolar disorder (pyramidal neurons and striatal interneurons) were also enriched in 

analyses of schizophrenia (38). Cell-types more associated in major depressive 

disorder (neuroblasts, adult dopaminergic neurons, embryonic GABAergic neurons) 

had weaker enrichments in schizophrenia, but were enriched in analyses of 

neuroticism (57). The higher rank of the enrichment of serotonergic neurons with 

https://paperpile.com/c/j2gbOB/wv0At+eHoOU
https://paperpile.com/c/j2gbOB/XNwAB
https://paperpile.com/c/j2gbOB/3BXSL
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major depressive disorder compared to bipolar disorder is striking given the use of 

drugs targeting the serotonergic system in the treatment of depression (63). 

However, cell-type enrichment analyses are still novel, and require cautious 

interpretation, especially given the use of mouse reference data (38, 64).  

We explored the potentially causal relationships between the mood disorders 

and other traits with Mendelian randomisation. However, the interpretation of these 

analyses is challenging, especially for complex traits, when the ascertainment of 

cases varies, and when there are relatively few (< 20) variants used as instruments 

(for example, in the PGC BD analyses presented) (41, 67, 68). Major depressive 

disorder and bipolar disorder demonstrate considerable heterogeneity (as our 

subtype analyses show for bipolar disorder types 1 and 2), potentially confounding 

the results of Mendelian randomisation. That said, our analyses are consistent with a 

bidirectional influence of educational attainment on risk for mood disorders (and vice 

versa), with different directions of effect in the two mood disorders. We found no 

significant relationship between IQ and either mood disorder. We also find results 

consistent with major depressive disorder increasing the risk for coronary artery 

disease in a relatively well powered analysis. This mirrors epidemiological findings, 

although the mechanism remains unclear (69). 

Although the mood disorders share diagnostic features, notably the presence 

of depressive episodes, they are distinct disorders. This is reflected in their differing 

epidemiology – for example, more women than men suffer from major depressive 

disorder, whereas diagnoses of bipolar disorder are roughly equal between the 

sexes (3). Differences in our genetic results between major depressive disorder and 

bipolar disorder may result from epidemiological heterogeneity, rather than distinct 

biological mechanisms (70). Deeper phenotyping of GWAS datasets is ongoing, and 

https://paperpile.com/c/j2gbOB/h68lF
https://paperpile.com/c/j2gbOB/XNwAB+fPAu2
https://paperpile.com/c/j2gbOB/k2W5T+hlmCP+5aSPb
https://paperpile.com/c/j2gbOB/3SHBE
https://paperpile.com/c/j2gbOB/NbFnO
https://paperpile.com/c/j2gbOB/uOuO
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will enable the effect of confounding factors such as sex to be incorporated in future 

studies (71). 

We extend previous findings showing genetic continuity across the mood 

disorders (15–17, 56). Combined analyses of major depressive disorder and bipolar 

disorder may increase variant discovery, as well as the discovery of shared and 

distinct neurobiological gene sets and cell types. Our results also indicate some 

genetic differences between major depressive disorder and bipolar disorder, 

including opposite bidirectional relationships of each mood disorder with educational 

attainment, a possible influence of major depressive disorder on coronary artery 

disease risk and differing mouse brain cell types implicated by the enrichment 

patterns of associated genes in each disorder. Finally, our data are consistent with 

the existence of a genetic mood disorder spectrum with separate clusters for bipolar 

disorder type 1 and depressive disorders, linked by bipolar disorder type 2, and with 

depression as the common symptom. The mood disorders have a partially genetic 

aetiology that is partially shared - identifying specific distinct genetic associations 

with major depressive disorder and with bipolar disorder remains an aim for future 

research.   

https://paperpile.com/c/j2gbOB/ETTN
https://paperpile.com/c/j2gbOB/eqFq+wv0At+eHoOU+fEoqH
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Figure Legends 

Figure 1: Selected genetic correlations of a) psychiatric traits and b) other traits with 

the main meta-analysis (MOOD), the separate mood disorder analyses (combined 

MDD and PGC BD), and the down-sampled analyses (down-sampled MOOD, down-

sampled MDD). Full genetic correlation results are provided in Supplementary Table 

5. 

Figure 2: SNP-based heritability estimates for the subtypes of bipolar disorder and 

subtypes of major depressive disorder from the UK Biobank. Points = SNP-based 

heritability estimates. Lines = 95% confidence intervals. Full SNP-based heritability 

results are provided in Supplementary Table 2. 

Figure 3: Genetic correlations across the mood disorder spectrum. Labelled arrows 

show genetic correlations significantly different from 0. Solid arrows represent 

genetic correlations not significantly different from 1 (p < 0.00333, Bonferroni 

correction for 15 tests). Full results are provided in Supplementary Table 8. 

Figure 4: Cell-type expression specificity of genes associated with bipolar disorder 

(PGC BIP, left) and major depressive disorder (combined MDD, right). Black vertical 

lines = significant enrichment (p < 2x10-3, Bonferroni correction for 24 cell types). 

See Supplementary Table 10 for full results. 

Figure 5: GSMR results from analyses with the main meta-analysis (MOOD), and the 

major depression and bipolar disorder analyses (combined MDD, PGC BD). 

Exposures are intelligence (IQ), educational attainment (EDU), coronary artery 

disease (CAD), body mass index (BMI), and schizophrenia (SCZ). X axis – "as Trait" 

refers to the effects of the analysis (inner y-axis) on the exposure (outer y-axis), 
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while "as Exposure" refers to reverse direction (e.g. MOOD has an effect on CAD, 

CAD does not have an effect on MOOD). * p < 0.004 (Bonferroni correction for two-

way comparisons with six exposures). For figure data, including the number of non-

pleiotropic SNPs included in each instrument, see Supplementary Table 12. 

 

Data availability 

GWAS results from analyses including 23andMe are restricted by a data transfer 

agreement with 23andMe. For these analyses, LD-independent sets of 10,000 SNPs 

will be made available via the Psychiatric Genetics Consortium 

(https://www.med.unc.edu/pgc/results-and-downloads). Summary statistics not 

including 23andMe will be made available via the Psychiatric Genetics Consortium 

(https://www.med.unc.edu/pgc/results-and-downloads).  

https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
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Tables 

Locus Chr BP Index SNP A1 A2 OR SE p Previous report 

1 1 37192741 rs1002656 T C 0.97 0.005 2.71x10-11 DO, N 

2 1 72837239 rs7531118 T C 0.96 0.004 1.05x10-16 D, DO, S, O 

4 1 80795989 rs6667297 A G 0.97 0.005 5.86x10-11 D, DO 

5 1 90796053 rs4261101 A G 0.97 0.005 1.78x10-8 D 

6 1 175913828 rs10913112 T C 0.97 0.005 1.46x10-10 DO, O 

7 1 177370033 rs16851203 T C 0.96 0.007 2.38x10-9 DO, S, O 

9 2 22582968 rs61533748 T C 0.97 0.004 3.84x10-11 DO, N 

10 2 57987593 rs11682175 T C 0.97 0.004 2.18x10-11 D, DO, BS, N, S, O 

11 2 157111313 rs1226412 T C 1.03 0.005 1.27x10-8 D, DO, N, O 

12 2 198807015 rs1518367 A T 0.97 0.005 1.18x10-8 BS, S, O 

13 3 108148557 rs1531188 T C 0.96 0.006 1.61x10-9 O 

14 3 158107180 rs7430565 A G 0.97 0.004 2.30x10-11 D, DO, N, O 

16 4 42047778 rs34215985 C G 0.97 0.006 1.72x10-10 D, DO, N 

17 5 77709430 rs4529173 T C 0.97 0.005 4.29x10-9 O 

18 5 88002653 rs447801 T C 1.03 0.004 2.29x10-10 D, DO, N, O 

19 5 92995013 rs71639293 A G 1.03 0.005 5.85x10-9 DO, N 

20 5 103904226 rs12658032 A G 1.04 0.005 2.19x10-16 D, DO, N, O 

21 5 106603482 rs55993664 A C 0.97 0.006 1.87x10-8 NOVEL LOCUS 

22 5 124251883 rs116755193 T C 0.97 0.005 1.47x10-10 D, O 

23 5 164523472 rs11135349 A C 0.97 0.004 2.96x10-11 D, DO, N 

24 5 166992078 rs4869056 A G 0.97 0.005 5.21x10-9 D 

25 6 28673998 rs145410455 A G 0.94 0.007 7.17x10-18 
D, DO, BO, BS, 

DS, N, S, O 

26 6 101339400 rs7771570 T C 0.97 0.004 9.68x10-10 DO, N, O 

27 6 105365891 rs1933802 C G 0.98 0.004 1.05x10-8 DO, S, O 

28 7 12267221 rs4721057 A G 0.97 0.004 7.31x10-11 D, DO, N, O 

29 7 24826589 rs79879286 C G 1.04 0.006 1.97x10-11 B, BS, DO, S 

30 7 82514089 rs34866621 T C 1.03 0.005 2.21x10-8 DO, O 
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31 7 109099919 rs58104186 A G 1.03 0.004 7.12x10-9 D, DO 

34 9 11379630 rs10959753 T C 0.96 0.005 1.45x10-13 D, DO, N, O 

35 9 37207269 rs4526442 T C 0.96 0.006 7.97x10-11 DO, O 

36 9 81413414 rs11137850 A G 1.03 0.005 1.25x10-8 NOVEL LOCUS 

38 9 119733380 rs10759881 A C 1.03 0.005 8.56x10-9 D, DO 

40 9 122664468 rs10818400 T G 0.98 0.004 1.29x10-8 N 

41 9 126682068 rs7029033 T C 1.04 0.008 2.61x10-8 D, DO, O 

42 10 104684544 rs78821730 A G 0.96 0.007 2.95x10-8 N, BS, S, O 

43 10 106563924 rs61867293 T C 0.96 0.005 5.64x10-12 D, DO, N, O 

44 11 16293680 rs977509 T C 0.97 0.005 1.19x10-8 DO, N, O 

45 11 31850105 rs1806153 T G 1.03 0.005 2.81x10-9 D, DO, N, O 

46 11 32765866 rs143864773 T C 1.04 0.008 1.70x10-8 NOVEL LOCUS 

47 11 61557803 rs102275 T C 0.97 0.005 5.04x10-11 B, DO, BO, O 

48 11 63632673 rs10792422 T G 0.98 0.004 2.18x10-8 O 

49 11 88743208 rs4753209 A T 0.97 0.004 4.15x10-9 DO, N, O 

50 11 99268617 rs1504721 A C 0.98 0.004 2.24x10-8 O 

51 11 113392994 rs2514218 T C 0.97 0.005 3.22x10-10 DO, BS, N, S, O 

52 12 2344644 rs769087 A G 1.03 0.005 3.27x10-8 
B, BD, BO, DS, 

BS, S, O 

53 12 23947737 rs4074723 A C 0.97 0.004 3.18x10-9 D, DO, N, O 

54 12 121186246 rs58235352 A G 0.95 0.009 1.64x10-10 DO, O 

55 12 121907336 rs7962128 A G 1.02 0.004 3.63x10-8 NOVEL LOCUS 

56 13 44327799 rs4143229 A C 0.95 0.008 2.73x10-10 D 

57 13 53625781 rs12552 A G 1.04 0.004 1.25x10-23 D, DO, O 

58 14 42074726 rs61990288 A G 0.97 0.004 2.29x10-10 D, DO, O 

60 14 64686207 rs915057 A G 0.98 0.004 1.92x10-8 D, DO, O 

61 14 75130235 rs1045430 T G 0.97 0.004 9.83x10-11 D, DO, N, O 

62 14 104017953 rs10149470 A G 0.97 0.004 1.15x10-10 
D, DS, DO, BS, S, 

O 

63 15 36355868 rs1828385 A C 0.97 0.004 1.15x10-8 NOVEL LOCUS 

64 15 37643831 rs8037355 T C 0.97 0.004 4.09x10-15 D, DO, O 
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65 16 6310645 rs8063603 A G 0.97 0.005 5.36x10-11 D, DO 

66 16 7667332 rs11077206 C G 1.03 0.004 5.49x10-10 D, DO, N, O 

67 16 13038723 rs12935276 T G 0.97 0.005 4.75x10-10 D, DO, N, O 

68 16 13750257 rs7403810 T G 1.03 0.005 7.52x10-11 DO, BS, S, O 

69 16 72214276 rs11643192 A C 1.03 0.004 1.46x10-11 D, O 

70 17 27363750 rs75581564 A G 1.04 0.006 2.47x10-10 D, DO, O 

71 18 31349072 rs4534926 C G 1.03 0.004 9.14x10-9 DO, N 

72 18 36883737 rs62099069 A T 0.97 0.004 9.52x10-10 D, O 

73 18 42260348 rs117763335 T C 0.97 0.005 1.33x10-8 O 

74 18 50614732 rs11663393 A G 1.03 0.004 1.56x10-10 D, DO, N, O 

75 18 52517906 rs1833288 A G 1.03 0.005 4.54x10-8 
D, DS, DO, N, S, 

O 

76 18 53101598 rs12958048 A G 1.04 0.005 4.86x10-14 D, DO, BS, N, S, O 

77 19 30939989 rs33431 T C 1.02 0.004 4.04x10-8 DO, O 

78 20 45841052 rs910187 A G 0.97 0.005 3.09x10-9 DO, O 

79 22 41621714 rs2179744 A G 1.03 0.005 3.83x10-12 
D, B, DO, BS, N, 

S, O 

80 22 42815358 rs7288411 A G 1.03 0.005 3.86x10-8 NOVEL LOCUS 

81 22 50679436 rs113872034 A G 0.96 0.006 1.10x10-9 O 

 

Table 1: Loci genome-wide significant (p < 5x10-8) in the MOOD meta-analysis.  

Locus – shared locus number for annotation (Supplementary Table 3), Chr – chromosome, 

BP – base position, A1 – effect allele, A2 – non-effect allele, Previous report – locus 

previously implicated in PGC MDD (D), PGC BD (B), previous combined studies of bipolar 

disorder and major depressive disorder (BD), other studies of major depressive disorder or 

depressive symptoms (DO), other studies of bipolar disorder (BO), previous combined 

studies of bipolar disorder and schizophrenia (BS), previous combined studies of major 

depressive disorder and schizophrenia (DS), neuroticism (N), schizophrenia (S), or other 

studies (O – see Supplementary Table 4). 


