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ABSTRACT

Statistical modelling of sports data has become more and more popular in the recent
years and different types of models have been proposed to achieve a variety of
objectives: from identifying the key characteristics which lead a team to win or
lose to predicting the outcome of a game or the team rankings in national leagues.
Although not as popular as football or basketball, volleyball is a team sport with
both national and international level competitions in almost every country. However,
there is almost no study investigating the prediction of volleyball game outcomes
and team rankings in national leagues. We propose a Bayesian hierarchical model
for the prediction of the rankings of volleyball national teams, which also allows
to estimate the results of each match in the league. We consider two alternative
model specifications of different complexity which are validated using data from the
women’s volleyball Italian Serie A1 2017-2018 season.
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1. Introduction

A considerable amount of research has focused around the analysis of sport data,
mostly for the prediction of sport scores in each game and team rankings in national
leagues. Examples of different types of applications of statistical models to sport data
include football [2, 4, 11-13, 20], but also basketball [14] and hockey[16]. However,
there is a shortage of published works on the analysis of volleyball, and in particular
women’s volleyball data. Notable exceptions include: [10], who explored the differences
in playing characteristics between winning and losing teams in the international fed-
eration of men’s beach volleyball world tour tournament; [6] and [24], who examined
the overall performance of volleyball teams based on many game factors using data
from the men’s Italian serie A and the women’s National Collegiate Athletic Associa-
tion (NCAA) Division I volleyball league, respectively; [1] and [21], who used different
approaches to either analyse the results from the games or to predict future team
rankings in the Turkish men’s and women’s volleyball leagues.

A potential factor which limited the analysis of volleyball data in the literature is
the fact that the playing rules and the scoring system vary across countries and have
also changed over the years, e.g. from the ”side-out” to the "rally” scoring system.
According to the current regulations of the Federation International de Volleyball [5],
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volleyball games have six players on each side. Six rotational spots on the court are
changed every time a particular side serves the ball. The aim is to deliver the ball over
the net and ground it, or the ball touches on the ground of the opposing side, while
preventing the ball from touching the ground on their own side. The volleyball game
begins with a ”"serve” of the ball. Then players take turns rotating around the court
so each player has a chance to serve the ball. The members of the opposing team will
attempt to "save” it from hitting the ground and knock it to one of their own players
or hit it back over the net. Play will continue until one team fails by allowing the
ball to touch the ground in its own court or they correctly return it to the opposing
court. A point is awarded to the serving team if the opposing team makes a mistake.
If the serving team fails, however, then the receiving team has control of the ball and
becomes the serving team.

According to the current scoring system, matches are played until a team wins a
set of three games, with each game typically going to 25 points. However, if the two
teams won 2 games each, the third game then goes only up to 15 points. A team must
win each game by two points. If the score is tied with even numbers, both teams have
to continue playing the game until a 2-point lead is obtained. Otherwise, points keep
accumulating until one team wins with a margin of victory of two points, even if the
score is greater than 25 or 15 points. When playing in professional volleyball leagues,
the teams get points according to set numbers at the end of all matches in the league.
More specifically, the team points are awarded as follows: if the match is won 3-0 or
3-1, 3 points are assigned to the winner and 0 points to the loser; if the match is won
3-2, 2 points are assigned to the winner and 1 point to the loser.

In this paper, building on the previous literature on modelling sport data, we pro-
pose a novel Bayesian hierarchical modelling framework for the analysis of volleyball
data which allows to jointly predict match results and team rankings in national
leagues. We use data from the women’s volleyball Italian Serie A1 2017-2018 season
as a motivating example to implement and validate the proposed framework. The rest
of the article is structured as follows: Section 2 introduces the notation and the data
used for the analysis. Section 3 and Section 4 describe the modelling framework and
two alternative model specifications implemented for the analysis of the volleyball
data. Section 5 summarises the results in terms of parameter estimation as well as
outcome prediction and assesses the relative performance of the models. Finally, Sec-
tion 5 presents some issues and possible extensions that can be the material for future
work, while Appendix A includes the JAGS code for our analysis.

2. Data from the Italian Serie A1 2017-2018

Data were obtained from the Italian women’s volleyball federation web site (http:
//www.legavolleyfemminile.it/) and include different types of in-game statistics
related to each of the 132 matches of the regular season 2017-2018 for all 12 teams in
the league. Generally, there are six categories of volleyball statistics which have been
found to be associated with match results [10], which can be broadly distinguished in:
attack, setting, serving, passing, defense, and blocking. Data on variables related only
to four of these categories are included in the analysis since for some of the categories
data are not publicly available on the federation website. In particular, for each team
and match of the women’s Italian Serie Al regular season 2017-2018, the following
set of statistics are included in our analysis (in brackets the names assigned to each
variable):



Table 1. Summary of the type of data used in the analysis of the Italian Serie A1 women’s volleyball league
2017-2018.

i home team awayteam h a  Yn Yo Sh  Sa d° A" ser,c;f P oserddt
1 Casalmaggiore = Conegliano 3 4 60 7 0 3 0 0 -0.17  -0.06
2 Novara Busto Arsizio 8 2 113 108 3 2 1 1 -0.09 -0.10
3 Piacenza Scandicci 10 12 40 75 0 3 0 0 -0.07 0.03
4 San Casciano Monza 1 7 96 94 3 1 0 1 -0.07  -0.07
129 Casalmaggiore Piacenza 3 10 105 103 2 3 1 0 -0.04  -0.03
130 Scandicci Busto Arsizio 12 2 110 98 3 2 1 1 -0.06  -0.06
131 Filottrano San Casciano 5 11 113 108 3 2 1 1 -0.08  -0.03
132 Novara Legnano 8 6 75 57 3 0 0 1 -0.08  -0.07

Match. The number of the match.

Teams. The names of the home team (home team) and away team (away team)
for each match, together with a unique numeric score assigned to each team
regardless of whether it is the hosting (h) or visiting (a) team.

Points. Total number of points scored by the home team (y;) and by the away
team (yq)-

Sets. Total number of sets won by the home team (s;) and by the away team (s,) for
each match, and a binary indicator d° telling whether the 5-th set was played
(d* =1) or not (d* = 0). Additionally, we define a second binary indicator d",
which takes value 1 or 0 according to whether the home team won or lost the
match, respectively.

Serve. Total number of serves (seri®), total number of perfect serves or "aces”,
i.e. ending in a point for the serving team (ser{®) and total number of serv-

ing errors (ser{""), i.e. ending in a point for the opponent team, for ¢t = (h,a).
eff _ sergc—sers™
ST = S

tot

Serve efficiency is then defined as ser o
t

Defence. Total number of digs (def{!), total number of perfect ”digs”, i.e. defence
action causing the ball to follow a trajectory defined according to specific criteria
err

(defP") and total number of digging errors (deff™"). Defence efficiency is then

defined as deffff = %.

Attack. Total number of attacks (att!®), total number of perfect attacks, i.e. attacks
ending in a point for the attacking team (att!") and total number of attacking

errors (att{""). Attack efficiency is then defined as attjf f= %

Block. Total number of blocks (blof°!), total number of perfect blocks, i.e. blocks end-
ing in a point for the blocking team (blo}*") and total number of blocking errors

per __ err
or ”invasions” (blof""). Block efficiency is then defined as bloff f= %.
t

Table 1 shows the structure of the dataset, which includes different types of in-game
statistics associated with each game (we use the term ... to indicate that the data
related to some of the matches and variables have been omitted from the table for
clarity). For example, the first row contains information about the first match of the
season between the home team Casalmaggiore and the away team Conegliano, which
are assigned with the unique numeric scores 3 and 4, respectively. The match ended
with a total point score of 60 to 75 in favour of the away team, who won a total of
three sets without losing any set.

In our analysis we also consider the efficiency measures of the different statistics



available for each team when playing at home and visiting: serve and attack efficiency
(sery T and attff Ty~ typically related to the offensive strength of each team — and block
and defence efficiency (bloff 7 and de fi 17 ) — typically associated with the defensive
strength of each team. These variables are included in the model to improve the
estimation of the attack and defence performances of the teams and the prediction of
the results for future matches.

Before introducing the model, it is important to highlight some key characteristics
of volleyball which needs to be taken into account when modelling the data. First,
unlike other sports, the total number of points scored in a volleyball match by each
team is not typically enough to determine which of the two teams effectively won the
match. For example, consider the situation where a match ends with the home team
winning a total of 3 sets with a relatively small point difference with respect to the
opponent in each set, while the away team wins 2 sets with a substantially larger
point gap in each set. Then, it is possible that the winning team is associated with a
lower number of points across all sets compared with those scored by the losing team.
Second, the total number of points assigned to the two opposing teams at the end of
a match may vary depending on the number of sets played. If the total number of sets
played is 3 or 4, the winning and losing team earns 3 and 0 points, respectively; if
the total number of sets played is 5, the winning and losing team are given 2 and 1
points, respectively.

Finally, we note that, although the total number of points scored in a match could
be potentially infinite, the total number of points scored in a single set may or may
not have an upper bound. For example, when a team scores 25 points in the first set
and the opponent has scored 23 or less, the match ends; however, if the opponent has
scored 24, the match continues until the point difference between the two teams is
equal to 2. Ideally, set specific statistics for each match would provide more detailed
information about the performance of each team compared with using the aggregated
points across all the sets played. However, this type of information is not typically
available to the public and their analysis would also introduce additional modelling
issues which are discussed in Section 6.

3. Modelling Framework

From a statistical perspective, one of the most interesting aspect in modelling team
sport data is related to the distributional form associated with the number of scores
in a single game by the two opponent teams. In the analysis of football data, the
Poisson distribution has been widely used to model the game scores; for example, [12]
proposed the use of a bivariate Poisson distribution which includes a parameter that
explicitly accounts for the covariance between the goals scored by the two competing
teams. More recently, [2] adopted a Bayesian hierarchical model which simultaneously
accounts for the correlation between the two variables via the specification of two
conditionally independent Poisson variables for the number of goals scored. Being
defined within a Bayesian framework, this flexible modelling specification also allows
to generate predictions of future games in a relatively easy way by means of the
posterior predictive distribution.

We extend and adapt the modelling frameworks typically used for the analysis of
football data and propose a novel Bayesian hierarchical modelling framework for the
analysis and prediction of volleyball results in regular seasons. Three different sub-
models or "modules” form our framework: (1) The module of the observed number of



points scored by the two opposing teams in a match (y, and y,); (2) the module of
the binary indicator for the number of sets played (d®); (3) the module of the binary
indicator for the winner of the match (d™). These three modules are jointly modelled
using a flexible Bayesian parametric approach, which allows to fully propagate the
uncertainty for each unobserved quantity and to assess the predictive performance of
the model in a relatively easy way. In the following, we describe the notation and the
model used in each of the three modules.

3.1. Module 1: Modelling the Scoring Intensity

In the first module of the framework, we follow [2, 12] and model the number of points
scored by the home and away team in the i-th match of the season y = (yni, Yqi) using
two independent Poisson distributions

Yni ~ Poisson(0p;)

(1)

Yai ~ Poisson(6y),

conditionally on the set of parameters 6 = (0;,04;), representing the scoring inten-
sity in the i-th match for the home and away team, respectively. The parameters in
Equation 1 are then modelled using the log-linear regressions

log(On;) = p+ A+ attpe) + defa(i)

2

log(0ai) = p + attygy + de fr, @
which corresponds to a Poisson log-linear model, whose parameters can be given spe-
cific interpretations [12]. Within the formulae of Equation 2, p is a constant, while A
can be identified as the home effect and represents the advantage for the team hosting
the game which is typically assumed to be constant for all the teams and through-
out the season. The overall offensive and defensive performances of the k-th team is
captured by the parameters att and def, whose nested indexes h(7),a(i) = 1,..., K
identify the home and away team in the i-th game of the season, where K denotes the
total number of the teams.

We then expand the modelling framework to incorporate match-specific statistics
related to the offensive and defensive performances of the home and away teams. More
specifically, the effects associated with the attack intensity of the home teams and the
defence effect of the away teams are:

att) = aon) + cngpattil? + asygseryl!

3

defatiy = Boati) + Bratiyde Sl + Baagiblog]”. ¥
We omit the index 4 from the terms to the left-hand side of the above formulae to ease
notation, i.e. alty;) = atty); and defy;) = def,y(;);- The overall offensive effect of the
home teams in Equation 3 is a function of a baseline team-specific parameter agp;),
and the attack and serve efficiencies of the home team, whose impact is captured
by the parameters aq;) and agy(). The overall defensive effect of the away team
is a function of a baseline team-specific parameter [yq(;), and the defence and block
efficiencies of the away team, whose impact is captured by the parameters 5,(; and
Baali), respectively.



Similarly, the effects associated with the attack intensity of the away teams and the
defence effect of the home teams are:

atta(i) = 0q(s) + Ozla(i)att(i{f + a2a(i)86T2{f

4

de fris) = Bon) + BinydeSi! + Bangiyblogl?, W

where the overall offensive effect in Equation 4 depends on the parameters agq (i), 1a(s)

and ayq(;), while the overall defensive effect depends on the parameters Sy (i), Bin()
and aop ;).

To achieve identifiability of the model, a set of parametric constraints needs to be

imposed. Following [2, 12], we impose sum-to-zero constraints on the team-specific
parameters

K K
Zajk =0 and Zﬂjk =0, (5)
k=1 k=1

for k =1,...,K and j = (0,1,2). Under this set of constraints, the overall offensive
and defensive effects of the teams are expressed as departures from a team of average
offensive and defensive performance. An alternative set of constraints that could be
imposed to achieve identifiability is known as corner constraints, where the overall
offensive and defensive effects of a "reference” team are set to 0, and the effects of
all other teams are expressed as departures from the effects of the reference team.
However, we find the interpretation of the model parameters under Equation 5 to be
more intuitive compared with the corner constraints, without the potential issue of
the choice of the reference team.

Within a Bayesian framework, prior distributions need to be specified for all ran-
dom parameters in the model. Weakly informative Normal distributions centred at
0 with a relatively large variances are specified for the fixed effect parameters (note
that we specify Normal distributions in terms of mean and precision, where preci-
sion=1/variance)

u ~ Normal(0,0.000001) and X ~ Normal(0,0.000001).

The team-specific random effect parameters are instead modelled as exchangeable from
common distributions

aji ~ Normal(fia,,7o,) and Bj; ~ Normal(pug,,73,),

fork=1,...,K and j = (0, 1,2). Finally, the mean and precision of the team-specific
effect distributions are modelled using weakly informative Normal and Gamma priors,
respectively:

e, ~ Normal(0,0.000001), pg, ~ Normal(0,0.000001),
Ta, ~ Gamma(0.01,0.01), 75, ~ Gamma(0.01,0.01),

for j = (0,1,2). These hyperparameters represent the latent structure of the model
which affects the estimation of the scoring intensity parameters 8, and thus indirectly
takes into account a form of correlation between the two outcome variables yp; and yq;.



3.2. Module 2: Modelling the Probability of Playing 5 Sets

In the second module, we explicitly model the chance of playing 5 sets in the i-th
match of the season, i.e. the sum of the sets won by the home (sp;) and away (s4;)
team is equal to 5. This is necessary when generating predictions in order to correctly
assign the points to the winning/losing teams throughout the season and evaluate the
rankings of the teams at the end of the season (Section 2).

We model the indicator variable d;, taking value 1 if 5 sets were played in the :—th
match and 0 otherwise, using a Bernoulli distribution

d; : = 1(spi + Sqi = 5) ~ Bernoulli(~)
logit(77) = Y0 + 1Yni + V2Yai

(6)
where I(sp; + sqi = 5) denotes an indicator function which takes value 1 when the
sum of the sets won by the home and away teams equal 5 and 0 otherwise, while 7
is the match probability of playing 5 sets, which is estimated on the logit scale as a
function of a set of parameters «. These include a baseline parameter vy and the total
number of points scored by the home and away teams, whose effect is captured by the
parameters 71 and 79, respectively. For all logistic regression coefficients vague Normal
prior distributions with mean 0 and standard deviation of 100 are specified.

3.3. Module 3: Modelling the Probability of Winning the Match

The last module deals with the chance of the home team to win the i-th match, i.e. the
total number of sets won by the home team (sy;) is larger than that of the away team
(sai) — we note that we could have also equivalently decided to model the chance of
the away team to win the i-th match. This part of the model is again necessary when
predicting the results for future matches, since the team associated with the higher
number of points scored in the i-th match may not correspond to the winning team
(Section 2).

We model the indicator variable d}", taking value 1 if the home team won the :—th
match and 0 otherwise, using another Bernoulli distribution

d* - =1(sp; > Sqi) ~ Bernoulli(m;")

logit(m;™) = no + MYni + M2Yai + 135 @)
where I(sp; > s4;) denotes an indicator function which takes value 1 when the number
of the sets won by the home team is larger than that of the away team and 0 otherwise,
while 77" is the match probability for the home team to win the match, which is
estimated on the logit scale as a function of a set of parameters 1. These include a
baseline parameter 7, the total number of points scored by the home and away teams,
and the binary indicator associated with playing 5 sets. The effects of the last three
variables is captured by the parameters 71, 172 and n3, respectively. For all logistic
regression coefficients vague Normal prior distributions with mean 0 and standard
deviation of 100 are specified.
Figure 1 shows a graphical representation of the structure of the model as well as
the contribution of each of the three modules to the framework.

FIGURE 1 HERE

The framework corresponds to a joint distribution for all the observed quantities which



are explicitly modelled. This is factored into the product of the marginal distribution
of the total number of points scored by the two teams in each match, Module 1 — p(y),
the conditional distribution of the probability of playing 5 sets in a match given y,
Module 2 - p(df | y), and the conditional probability of winning the match given y and
d?, Module 3 — p(d* | y,d). Module 1 also includes the different in-game statistics
as covariates in the model. These are related to the either the offensive (serve and
attack efficiency) or defensive (defence and block efficiency) effects of the home and
away teams in each match of the season, and are respectively denoted in the graph as
w2t — (ser ! ottty and @ = (deff T blof ) to ease notation, for t = (h, a).

1)

4. Accounting for the multilevel correlation

Although the individual-level correlation between the observable variables yp; and yq4;
is taken into account through the hierarchical structure of the framework, a potential
limitation of the model is that it ignores the possible multilevel correlation between
the team-specific offensive aj, and defensive (j;, coefficients, for j = (0,1,2) and
k=1,..., K. Toshow the implications of this assumption, it is convenient to represent
the two categories of multilevel parameters, described in Section 3.1, using the matrix
notation

oy, ~ Normal (M, 5!) and B ~ Normal (Mg, 25" ) , (8)

where ay and B are the two vectors of length 3 containing the offensive and de-
fensive regression coefficients associated with team k in the league, respectively. The
hyperparameters

Mo = (fags Bass Ha,)  and - Mg = (ug,, g, 115,) »

are two vectors of length 3, representing the mean of the joint distributions of ay and
By, while

02, P0aCap0a;  PlaTanTas 3 PO8TB0TB1 187607 B
Ya = POaCay Oag U(Qxl P2a0a10az and 3p= P0BIB19 8o 938, P29310 B2 )

Plafag0ag  P2a0a0a; Tay P1BTB 0By P2BTB OB, o3,

are two 3 x 3 matrices, whose elements form the covariance matrices of the distributions
of a; and @i in Equation 8. In Section 3.1, we implicitly assumed independence
between the multilevel parameters and specify prior distributions only on 7, = L

2
O'aj

and 73, = U%?, i.e. we set p; = (pja,pjg) = 0 for j = (0,1,2).

To account for the possible multilevel correlation, prior distributions on p; can be
specified. One possibility is to directly specify separate priors on each component of
the covariance matrices ¥, including the correlation parameters. However, when the
number of multilevel parameters is more than 2, modelling p; is challenging, since they
all need to be constrained between —1 and 1 while also ensuring the positive definite-
ness of the covariance matrices. An alternative approach is to specify Inverse-Wishart
prior distributions on X (or equivalently Wishart priors on X~1!). This is defined as
Inv-Wishart(v, 2) and has the computational advantage of being the conjugate prior
for the covariance matrix of a multivariate Normal distribution, but requires the spec-
ification of two hyperprior parameters. The scale matrix €2, which must be positive



definite with dimension equal to the covariance matrix, and the degrees of freedom v,
which is bounded from below by the dimension of £2. A general problem when setting
these parameters is that, depending on the prior choice, some undesirable constraints
may be imposed on some of the parameters of X. For example, setting v equal to
the dimension of €2 4+ 1 corresponds to specifying uniform priors on the correlation
parameters p;, but it may lead to too restrictive priors on the scale parameters of 3.
Conversely, increasing the value of v allows to estimate the scale parameters of 3 with
more freedom, but at the cost of constraining the correlation parameters [8].

In our analysis, we account for the multilevel correlation using Inverse-Wishart
distributions on ¥, and X3, which are scaled in order to facilitate the specification
of the priors. This prior is known as the scaled Inverse-Wishart distribution [8] and
can be constructed in the following way. First, two vectors of scale parameters &, and
&s of length 3 are introduced such that the covariance matrices can be decomposed
as the products

Yo = Diag(£a)AaDiag(€a) and 3g = Diag(§)AgDiag(€g), 9)

where Diag(€n) and Diag(§g) are two 3 x 3 diagonal matrices with the entries of £q
and &g being the diagonal elements. The Inverse-Wishart priors are then specified on
the unscaled covariance matrices Ao and Ag, that is

Aq ~ Inv-Wishart(va, Q) and Ag ~ Inv-Wishart(vg, Qg).

We set 2, and €2g as identity matrices, and set vo and vg equal to 4. Weakly in-
formative priors are then assigned to each scaling factor, i.e. {4, ~ Normal(0,100)
and &g, ~ Normal(0,100), for j = (0,1,2). Under this approach, the j-th variance
components aij and og,j of the covariance matrices can then be retrieved as the prod-
uct between the corresponding diagonal elements of A, and Ag and the appropriate
scaling factors from &, and &g:

Ta, = Yoy, = fg_jAOéjj and U%,- =Yg, = fngﬂ;m’

Qj

for j = (0,1,2). Similarly, the ji-th covariance components are given by

Eaﬂ = gajgalezﬂ and Eﬂjz - €5j§51A5.1l7

for j,1 = (0,1,2) and j # l. Since this parametrisation is based on the decomposition
of the covariance matrix X, the parameters £ and A cannot be interpreted separately.
However, Equation 9 provides a useful way to set up the model and minimise the
amount of undesirable prior constraints when estimating the parameters of interest.

5. Implementation and Results

We fitted all models using JAGS [15], a software specifically designed for the anal-
ysis of Bayesian models using Markov Chain Monte Carlo (MCMC) simulation [3],
which was interfaced with R through the package R2jags [19]. Samples from the pos-
terior distribution of the parameters of interest generated by JAGS and saved to the
R workspace were then used to produce summary statistics and plots. We ran two
chains with 20,000 iterations per chain, using a burn-in of 10,000, for a total sample of



20,000 iterations for posterior inference. For each unknown quantity in the model, we
assessed convergence and autocorrelation of the MCMC simulations using diagnostic
measures such as the potential scale reduction factor and the effective sample size [7].

Alternative prior distributions were considered to check that no unintended infor-
mation was included into the models through the priors. For example, weakly infor-
mative uniform priors for the standard deviations between 0 and an upper value in
{100, 1000, 10000} were explored. In addition, different values for the variance included
in {10000, 100000, 1000000} of normally distributed regression parameters on the log
(Module 1) or logit (Module 2 and 3) scale were considered. Results were robust to
these specifications. We provide in Appendix A the JAGS code to implement the mod-
els.

5.1. Results

In this section, we present the results of the models from a twofold perspective. First,
we look at the estimates of the team-specific marginal offensive and defensive effects,
which are denoted with of;, and j3,, respectively. This is achieved by setting all the
attack and defence related covariates in Equation 3 and Equation 4 to their centered
version, i.e. subtracting the means from the original vectors. In this way, it is possible
to interpret the intercept parameters agr = ag;, and Sor, = 37, as the marginal offen-
sive and defensive effects associated with each team in the league. Second, we assess
and compare the fit of the models using relative measures of predictive accuracy and
graphical posterior checks. The first provide an approximation of the relative ability
of the models to predict future results, while the second offer a relatively easy way to
assess the fit of the model. Specifically, we use the estimates of @ at each posterior
iteration to generate a vector y?"°® of 1000 replications from the posterior predictive
distribution of y. This, in turn, is used to validate the model by comparing the results
obtained from the replicated matches with those from the observed data (if the mod-
els are plausible, the observed data should look similar under the posterior predictive
distribution).

5.1.1. Posterior Estimates

Figure 2 displays the average marginal mean offensive (o, ) and defensive (37, effects
for each of the 12 teams in the league, which are estimated using the basic model of
Section 3 and the scaled Inverse-Wishart (IW) model of Section 4.

FIGURE 2 HERE

The position of the points in the graphs is related to the average offensive and defensive
performance of the teams, which are in turn based on the number of points scored
and conceded by each team throughout the season. We note that, the teams who
perform better are those associated with positive attack effects (more points scored)
and negative defence effects (less points conceded).

The results from both models are similar with limited differences. In general, we
can identify four main clusters of teams. The first cluster is formed by a single team
(Novara) who is associated with the largest attack effect among all the teams, but with
a close-to-zero defence effect (the effect is estimated to be slightly negative and positive
under the first and second model, respectively). The second cluster is formed by two
teams (Conegliano and Scandicci) who have small positive attack effects but relatively
large negative defence effects; Scandicci is by far the team with the smallest defence
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effect (reflecting the fact that it has the minimum number of conceded points in the
league).The third cluster is formed by six teams whose offensive and defensive effects
place them in the top part of the graphs; among these, Casalmaggiore is the team
with the largest attack and smallest defence effect, while Bergamo and San Casciano
are associated with negative attack effects. Finally, the fourth cluster is formed by
three teams (Filottrano, Legnano and Pesaro) who are located on the top-left part
of the graphs, and are associated with the poorest offensive performances. Additional
posterior summary measures, including the posterior 95% credible intervals, for the
team-specific attack and defence effects, the home effect (A) and the constant (u)
parameters are provided in Table B1 and Table B2 in Appendix B.

5.1.2. Model Assessment

We compute two relative measures of predictive accuracy to compare the fit of the
two models considered. We specifically rely on the Widely Applicable Information
Criterion (WAIC) [23] and the Leave-One-Out Information Criterion (LOOIC), which
provide estimates for the pointwise out-of-sample prediction accuracy from a fitted
Bayesian model using the log-likelihood evaluated at the posterior simulations of the
parameter values [22]. Both measures can be seen as approximations to different ver-
sions of cross-validation [18]. They can also be viewed as an improvement on the
Deviance Information Criterion (DIC) [17] for Bayesian models in that they use the
entire posterior distribution, are invariant to parametrisation, and are asymptotically
equal to Bayesian cross-validation [9]. These information criteria are obtained based
on the model deviance and a penalty for model complexity known as effective number
of parameters (p.rs) and, when comparing a set of models based on the same data, the
one associated with the lowest WAIC or LOOIC is the best-performing, among those
assessed. A detailed presentation about how these measures are computed and their
interpretation with respect to cross-validation approaches is outside the scope of this
article and we refer to [9] for a comprehensive review on the matter. Table 2 reports
the estimates of WAIC and LOOIC (and respective effective number of parameters)
associated with the two alternative model specifications.

Table 2. WAIC, LOOIC and respective effective number of parameter (pess) estimates for the Basic and
Scaled IW model.

Basic model Scaled IW model

WAIC (pess) 2646 (148) 2640 (145)
LOOIC (pess) 2665 (157) 2661 (155)

Both measures of predictive accuracy are higher when the Basic model is used
compared with Scaled IW model, with relatively similar estimates for p.sy, therefore
suggesting an overall better fit to the data of the second specification.

We additionally assess the predictive performance of the models using the observed
and replicated data. The latter are generated from the posterior predictive distribu-
tions of the models using the posterior samples of the parameters indexing the three
modules of the framework: the scoring intensity rates € (Module 1), the probability
of playing 5 sets 7° (Module 2), and the probability of winning the match 7™ (Mod-
ule 3). We use the posterior estimates from these parameters to jointly sample 1000
replications of the data (y"°P,d*"*P,d™"°P), which are then used for model assess-
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ment. Table 3 compares the predictive performance of the models in terms of the total
number of points scores and conceded, the number of matches won and the number
of points in the league earned by each team at the end of the season. Overall, the

Table 3. Posterior predictive validation of the models. The observed data and the replications from the basic
and the scaled IW model are compared in terms of: total number of points scores and conceded, total number
of wins and total number of points earned by each team at the end of the season.

Observed Basic model Scaled IW model

Teams Scored Conc’d Wins Points Scored Conc’d Wins Points Scored Conc’d Wins Points
Bergamo 1848 2025 7 19 1846 2020 7 21 1847 2020 7 21
Busto Arsizio 1999 1927 12 39 1998 1919 12 37 2006 1920 12 37
Casalmaggiore 1922 2051 6 23 1918 2042 7 23 1906 2039 7 23
Conegliano 1960 1696 17 50 1960 1706 18 50 1955 1713 18 50
Filottrano 1781 1961 7 19 1790 1954 6 18 1810 1950 6 18
Legnano 1642 1903 5 11 1656 1898 4 17 1660 1901 4 17
Monza 2003 1943 13 37 1994 1938 13 38 2005 1935 13 38
Novara 1987 1776 17 51 1963 1776 17 51 1963 1781 17 51
Pesaro 1776 1820 10 32 1785 1828 11 32 1789 1831 11 33
Piacenza 1888 1939 12 33 1886 1935 9 30 1890 1933 9 30
San Casciano 1807 1881 8 27 1812 1880 9 29 1797 1879 9 28
Scandicci 1865 1556 18 50 1858 1578 18 51 1862 1580 18 51

predicted results from both the basic and the scaled IW model seem to replicate the
observed data relatively well for most of the teams. The total number of points scored
and conceded are similar between the observed and replicated data, with the teams
scoring (conceding) the most being also associated with the highest replicated points
scored (conceded) and vice versa. Relatively small discrepancies are observed between
the results of the two models for some of the teams. The total number of wins and
league points are almost identical between the observed and replicated data, with the
scaled IW model being associated with slightly more accurate predictions compared
with the basic model.

Figure 3 compares the cumulative points derived from the observed results through-
out the season (the black line) and the predictions from both the basic model (in red),
and the scaled Inverse-Wishart model (in blue).

FIGURE 3 HERE

For almost all teams the predicted results are relatively close to the observed data and
suggest a good performance of both models. In particular, the lines of the observed
and replicated cumulative points intertwine in many cases, with only two teams for
which the results are slightly overestimated (Filottrano and San Casciano). We note
that, for some of the teams, the predictions from the scaled IW model are closer to
the line of the observed points and outperform the predictions from the basic model
(Bergamo, Busto Arsizio, Conegliano, Monza, San Casciano and Scandicci). For all the
other teams, the performance of the two models is either similar or varies throughout
the season.

Finally, we compare the predictive ability of the two models in terms of the rankings
of the teams in the league (calculated based on the total number of points earned by
each team at the end of the season). Figure 4 shows the probability of ending the
season in different positions for each team in the league, which is calculated based on
the replications from either the basic (top graph) or scaled IW (bottom graph) model.
The order of the teams has been set according to the expected mean rank of the teams
in the league across the replicated seasons to favour the interpretation of the graphs.
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Each position is associated with a different colour, from dark blue (1-st position) to
yellow (12-th position).

FIGURE 4 HERE

Across the replications, the expected mean rank from the Basic model (top graph)
and the Scaled IW model (bottom graph) lead to the same ordering of the teams. In
particular, the predictive probabilities of finishing the season in a specific position are
very similar between the two models and are in line with the observed rankings of
the teams in the league (see Table 3), with Novara, Scandicci and Conegliano being
associated with the highest probabilities of placing in the top three positions and with
Filottrano and Legnano having the highest chance of being placed at the bottom of
the league. Overall, there are some variations (from 1% to 7%) in the probability of
being in a specific rank between the results from the two models for some of the teams,
but in most of the cases these differences remain negligible.

6. Discussion

The model presented in this paper is an application of Bayesian hierarchical modelling
to sport data. The basic structure presented in Section 3 and its extension in Section 4
can be easily implemented and run using standard MCMC algorithms, such as the
one provided for JAGS in Appendix A. Previous approaches have focused either on
the identification of the key factors determining the performance of a team [6, 24]
or the prediction of team rankings [21]. To our knowledge, this is the first modelling
framework which jointly allows to predict team rankings and the outcomes of the
matches during a season in volleyball. The two alternative specifications implemented
in our analysis show generally good predictive performances; between the two models,
the scaled IW model seems to be slightly more accurate compared with the basic
model, but is also associated with a higher level of complexity.

One potential limitation of the framework is that only match-specific statistics are
used for estimation and prediction purposes. Ideally, the use of set-specific statistics
could improve the predictive power of the model while also eliminating the need to
include the models for the indicator variables of Equation 6 and Equation 7 . Indeed,
since predictions would be related to the results from each set played, the information
about the number of sets and the winner of the match would be directly incorporated.
However, this would introduce additional problems related to the choice of the distribu-
tions for modelling the number of points scored by the opposing teams in a set, which
is subject to specific constraints (e.g. difference of 2 points if one team scores more
than 25). In addition, set-specific statistics are not typically available from national
federation web sites and are difficult to collect for all the matches in a season.

Finally, the flexibility of the proposed framework allows the extension of the model
in many ways. For example, additional types of in-game statistics (e.g. number of
passes), if available, could be incorporated to further improve the predictions of the
model; alternative distributions could also be specified to model the total number
of scores y during the season (e.g. Negative Binomial). The scaled IW model could
be extended by jointly modelling the team-specific attack and defence effects (a, 3)
with a single multivariate Normal distribution and scaled IW prior to account for the
possible multilevel correlation between all random effect parameters. Although in our
analysis the implementation of this more complex model did not lead to any substantial
variation in the results, compared with the model of Section 4, this may not be the case
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in other applications. In addition, following the approaches in the recent literature on
the analysis of football matches [20], data from different leagues and seasons could also
be analysed jointly to deliver a context-specific validation framework that accounts for
the temporal dimension in the data and the clustering across the leagues.
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Appendix A. Model Code

The complete JAGS code for the models in Section 3 and Section 4 used in the analysis
is given below.

model {
# LIKELIHOOD FOR THE THREE MODULES
for (i in 1:nmatches) {

# Observed number of points scored by each team (Module 1)
y.h[n] ~ dpois(thetali,1])
y.aln] ~ dpois(thetali,2])

##scoring intensities (accounting for mixing components)

log(thetali,1]) <- mu + lambda + att[i,1] + defl[i,1]

att.h[i,1] <- alphaO[hometeam[i]] + alphall[hometeam[i]]*att.eff.h[g] +
alpha2[hometeam[i]]*ser.eff .h[i]

def.h[i,1] <- betaO[awayteam[i]] + betall[awayteam[i]]*def.eff.alg] +
beta2[awayteam[i]]*blo.eff.a[i]

log(thetali,2]) <- mu + att.al[i,2] + def.ali,2]

att.al[i,2] <- alphaO[awayteam[i]] + alphal[awayteam[i]]*att.eff.a[i] +
alpha2[awayteam[i]]*ser.eff.a[il

def.a[i,2] <- betaO[hometeam[i]] + betal[hometeam[i]]*def.eff.h[i] +
beta2[hometeam[i]]*blo.eff .h[i]

# Indicators for number of sets played (Module 2)
d.s[i] ~ dbern(pi.s[i])
logit(pi.s[i]) <- gamma[1] + gamma[2]*y.h[i] + gamma[3]*y.a[i]

# Indicators for match winner (Module 3)

d.m[i] ~ dbern(pi.m[i])

logit(pi.m[i]) <- etal[1] + eta[2]*y.h[i] + etal[3]*y.al[i] + eta[4]*d.s[il]
}

# Priors on the constant and home effects
mu ~ dnorm(0,0.00001)
home ~ dnorm(0,0.00001)

# INDEPENDENT PRIORS: BASIC MODEL

## Trick to code the ‘‘sum-to-zero’’ constraint
for (t in 1l:nteams){

alphaO.star[t] ~ dnorm(mu.alphaO,tau.alpha0)
betal.star[t] ~ dnorm(mu.betal,tau.beta0)
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alphaO[t] <- alphaO.star[t] - mean(alphaO.star[])
betaO[t] <- betal.star[t] - mean(betal.star[])
alphal.star[t] ~ dnorm(mu.alphal,tau.alphal)
betal.star[t] ~ dnorm(mu.betal,tau.betal)
alpha2.star[t] ~ dnorm(mu.alpha2,tau.alpha2)
beta2.star[t] ~ dnorm(mu.beta2,tau.beta2)
alphal[t] <- alphal.star[t] - mean(alphal.star[])
betal[t] <- betal.star[t] - mean(betal.star[])
alpha2[t] <- alpha2.star[t] - mean(alpha2.star[])
beta2[t] <- beta2.star[t] - mean(beta2.star[])

}

##priors on the random effects
mu.alpha0 ~ dnorm(0,0.00001)
mu.beta0 ~ dnorm(0,0.00001)
tau.alpha0 ~ dgamma(0.01,0.01)
tau.betal0 ~ dgamma(0.01,0.01)
mu.alphal ~ dnorm(0,0.00001)
mu.betal ~ dnorm(0,0.00001)
tau.alphal ~ dgamma(0.01,0.01)
tau.betal ~ dgamma(0.01,0.01)
mu.alpha2 ~ dnorm(0,0.00001)
mu.beta2 ~ dnorm(0,0.00001)
tau.alpha2 ~ dgamma(0.01,0.01)
tau.beta2 ~ dgamma(0.01,0.01)

# JOINT PRIOR: SCALED IW MODEL

## Trick to code the ‘‘sum-to-zero’’ constraint
for (t in 1:nteams)q{

alphaO.star[t] <- xi.alphaO*Alphal[t,1]
alphal.star[t] <- xi.alphal*Alphalt,2]
alpha2.star[t] <- xi.alpha2*Alphalt,3]
betal.star[t] <- xi.betaO*Betal[t,1]
betal.star[t] <- xi.betal*Betalt,2]
beta2.star[t] <- xi.beta2*Betalt,3]

alphaO[t] <- alphaO.star[t] - mean(alphaO.star[])
betalO[t] <- betal.star[t] - mean(betal.star[])
alphal[t] <- alphal.star[t] - mean(alphal.star[])
betal[t] <- betal.star[t] - mean(betal.star[])
alpha2[t] <- alpha2.star[t] - mean(alpha2.star[])
beta2[t] <- beta2.star[t] - mean(beta2.star[])

#multivariate normal prior on random effects
Alphalt,1:3] ~ dmnorm (M.raw.alphalt,], Tau.raw.alphal,])
Beta[t,1:3] ~ dmnorm (M.raw.betal[t,], Tau.raw.betal,])

#raw prior mean

.raw.alpha[t,1] <- mu.raw.alphaO
.raw.alpha[t,2] <- mu.raw.alphal
.raw.alpha[t,3] <- mu.raw.alpha2
.raw.beta[t,1] <- mu.raw.betal
.raw.beta[t,2] <- mu.raw.betal
.raw.beta[t,3] <- mu.raw.beta2

YFRER2R22=2=

#raw hyperprior means

mu.raw.alpha0 ~ dnorm (0, 0.00001)
mu.raw.alphal ~ dnorm (0, 0.00001)
mu.raw.alpha2 ~ dnorm (0, 0.00001)
mu.raw.beta0 ~ dnorm (0, 0.00001)
mu.raw.betal ~ dnorm (0, 0.00001)
mu.raw.betal ~ dnorm (0, 0.00001)
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#priors on the scaling factors
xi.alphaO ~ dunif (0, 100)
xi.alphal ~ dunif (0, 100)
xi.alpha2 ~ dunif (0, 100)
xi.beta0 ~ dunif (0, 100)
xi.betal ~ dunif (0, 100)
xi.beta2 ~ dunif (0, 100)

#rescaled hyperprior means

mu.alpha0 <- xi.alphaO*mu.raw.alphaO
mu.alphal <- xi.alphal*mu.raw.alphal
mu.alpha2 <- xi.alpha2*mu.raw.alpha2
mu.betal <- xi.alphaO*mu.raw.betal
mu.betal <- xi.alphaO*mu.raw.betal
mu.beta2 <- xi.alphaO*mu.raw.beta2

#Wishart prior on raw precision matrix
Tau.raw.alpha[1:3,1:3] ~ dwish (Omega.alphal,], nu.alpha)
Tau.raw.beta[1:3,1:3] ~ dwish (Omega.betal[,], nu.beta)

#raw covariance matrix
Sigma.raw.alpha[1:3,1:3] <- inverse(Tau.raw.alphal,])
Sigma.raw.beta[1:3,1:3] <- inverse(Tau.raw.betal,])

#rescaled standard deviation components

sigma.alpha0 <- xi.alphaO*sqrt(Sigma.raw.alphal[1l,1])
sigma.alphal. <- xi.alphal*sqrt(Sigma.raw.alphal[2,2])
sigma.alpha2 <- xi.alpha2*sqrt(Sigma.raw.alphal[3,3])
sigma.beta0 <- xi.betaO*sqrt(Sigma.raw.betal1,1])
sigma.betal <- xi.betal*sqrt(Sigma.raw.betal[2,2])
sigma.beta2 <- xi.beta2*sqrt(Sigma.raw.betal3,3])

#priors on the logistic regressions
for(s in 1:3){

gamma[s] ~ dnorm(0,0.0001)

}

for(k in 1:4){

etalk] ~ dnorm(0,0.0001)

}

Appendix B. Posterior Results
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Table B1. Posterior summaries of the estimates of the marginal team-specific attack (af,) and defence (35,)
effects, the home effect and the constant from the log-linera regression of the basic model in Section 3. The
model is fitted to data from the women’s volleyball Italian Serie Al season 2017-2018.

Attack Effect Defence Effect

Teams mean sd 2.5% median 97.5% mean sd 2.5%  median 97.5%

Bergamo -0.0098 0.0246 -0.0589 -0.0098 0.0382 0.0434 0.0224 -0.0005 0.0433  0.0873
Busto Arsizio  0.0177 0.0223 -0.0257 0.0178  0.0612 0.0594 0.0276 0.0054 0.0594 0.1138
Casalmaggiore  0.0247 0.0221 -0.0190 0.0251  0.0676 0.0859 0.0236 0.0399 0.0861  0.1320

Conegliano 0.0042 0.0242 -0.0433 0.0042  0.0518 -0.0846 0.0235 -0.1307 -0.0843 -0.0389
Filottrano -0.0750 0.0276 -0.1299 -0.0746 -0.0219 0.0318 0.0248 -0.0172 0.0315 0.0799
Legnano -0.0957 0.0260 -0.1471 -0.0957 -0.0446 0.0144 0.0242 -0.0327 0.0143 0.0622
Monza 0.0309 0.0239 -0.0161 0.0307  0.0777 0.0491  0.0250 -0.0001 0.0492  0.0976
Novara 0.1448 0.0334 0.0807  0.1447  0.2103 -0.0069 0.0281 -0.0612 -0.0072 0.0487
Pesaro -0.0527 0.0232 -0.0982 -0.0526 -0.0078 -0.0326  0.0237 -0.0792 -0.0324 0.0131

Piacenza 0.0105 0.0247 -0.0375 0.0104 0.0594 0.0311 0.0251 -0.0178 0.0312  0.0800
San Casciano -0.0140 0.0248 -0.0628 -0.0141 0.0345 0.0087 0.0256 -0.0423 0.0091  0.0582
Scandicci 0.0144 0.0294 -0.0428 0.0142 0.0727 -0.1998 0.0340 -0.2680 -0.1992 -0.1351

Home 0.0343 0.0147 0.0054 0.0343 0.0633
Constant 4.443 0.012 4.419 4.443 4.467

Table B2. Posterior summaries of the estimates of the marginal team-specific attack (aj, ) and defence (35,)
effects, the home effect and the constant from the log-linear regression of the scaled IW model in Section 4.
The model is fitted to data from the women’s volleyball Italian Serie A1l season 2017-2018.

Attack Effect Defence Effect

Teams mean sd 2.5%  median 97.5% mean sd 2.5% median 97.5%

Bergamo -0.0130 0.0211 -0.0543 -0.0131 0.0287 0.0401 0.0224 -0.0037 0.0401 0.0841
Busto Arsizio  0.0188 0.0207 -0.0224 0.0190  0.0589 0.0610 0.0289 0.0050 0.0610  0.1176
Casalmaggiore  0.0138  0.0209 -0.0269 0.0136  0.0555 0.0817 0.0233 0.0364 0.0816 0.1272

Conegliano 0.0011  0.0236 -0.0452 0.0011  0.0473 -0.0792 0.0234 -0.1256 -0.0790 -0.0341
Filottrano -0.0573 0.0244 -0.1086 -0.0563 -0.0128 0.0312 0.0242 -0.0165 0.0313  0.0782
Legnano -0.0854 0.0233 -0.1329 -0.0849 -0.0412 0.0160 0.0234 -0.0300 0.0159 0.0619
Monza 0.0298 0.0206 -0.0111 0.0300 0.0702 0.0424 0.0247 -0.0054 0.0422 0.0913
Novara 0.1530 0.0350 0.0850  0.1527  0.2221 0.0073  0.0303 -0.0520 0.0070  0.0666
Pesaro -0.0537 0.0207 -0.0951 -0.0535 -0.0133 -0.0296 0.0238 -0.0762 -0.0297 0.0170

Piacenza 0.0067 0.0220 -0.0367 0.0069  0.0497 0.0309 0.0240 -0.0163 0.0309 0.0781
San Casciano -0.0291 0.0228 -0.0725 -0.0297 0.0175 0.0068 0.0251 -0.0434 0.0071  0.0554

Scandicci 0.0155 0.0264 -0.0355 0.0153  0.0686 -0.2084 0.0369 -0.2818 -0.2082 -0.1360
Home 0.0311 0.0147 0.0022  0.031 0.0601
Constant 4.447 0.012 4.424 4.447 4.471
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Module 1

Module 2 Module 3

Figure 1. Graphical representation of the modelling framework. The joint distribution p(y,d?,d*) is ex-
pressed in terms of a distribution of the scoring intensity p(y), the conditional distributions of the probability
of playing 5 sets p(df | y) and the conditional probability of winning the match p(d® | y,ds), respectively
indicated with a dashed blue, red and green line. The parameters indexing the corresponding distributions or
“modules” are indicated with different Greek letters, while ¢ denotes the match index within the regular season.
The solid black arrows show the dependence relationships between the parameters and variables within and
between the three modules.
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Figure 2. Average marginal mean offensive (af, ) and defensive (8, ) effects for all teams in the league, esti-
mated from the log-linear regression of the basic model from Section 3 (panel a) and the scaled IW model from
Section 4 (panel b). The teams associated with the best (worst) effects are denoted with triangles (diamonds)
to distinguish them from the others.
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Figure 3. Posterior predictive validation of the models. The black line represents the observed cumulative
points through the season for each team in the league, while the red and blue lines represent the corresponding
predictions from the basic and scaled IW model, respectively.
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Novara 1
Scandicci 1
Conegliano 1
Monza 1

Busto Arsizio 1
Pesaro 1
Piacenza 1

San Casciano 1
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Figure 4. Posterior probabilities of the rankings for each team in the league, estimated using the replicated
data generated from the basic model (top panel) and the scaled IW model (bottom panel). Each position is
associated with a different colour with higher (lower) ranks being associated with darker (lighter) colours. Only
the probability values equal or above 10% are displayed for clarity.
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