
 1 

Opinion 

Algorithms for survival: a comparative perspective on emotions 

 

Dominik R. Bach1-3 & Peter Dayan4 

 
1Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, 
Switzerland 
2Neuroscience Centre Zurich, University of Zurich, 8057 Zurich, Switzerland 
3Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, 
UK 
4Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, UK 

  

Correspondence to D.R.B. email: dominik.bach@uzh.ch 

  



 2 

Abstract| The nature and neural implementation of emotions is the subject of vigorous 
debate. Here, we use Bayesian decision theory to address key complexities in this field and 
conceptualize emotions in terms of their relationship to survival-relevant behavioural 
choices. Decision theory indicates which behaviours are optimal in a given situation; 
however, the calculations required are radically intractable. We therefore conjecture that 
the brain employs a range of pre-programmed algorithms that provide approximate 
solutions.  These solutions appear to produce specific behavioural manifestations of 
emotions and can also be associated with core affective dimensions. We identify principles 
according to which these algorithms are implemented in the brain, and illustrate our 
approach by considering decision-making in the face of proximal threat.  
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Introduction 

Emotions are ineluctably tied to our actions in and perceptions of the world. They organize 
and colour our behaviour, physiological states, and conscious feelings. Perhaps less 
obviously, they are also a key part of our evolutionary heritage1, and thus are putatively 
adaptive. However, empirical debates about emotions abound. This is partly because there 
are different views based on divergent definitions of an emotion that aim at explaining 
disjunctive sets of phenomena. For example, psychological approaches often put primacy on 
reported feelings such as fear, anger, or happiness. These can be studied in relation to 
subjective experience in general (which is often collectively termed "affect")2,3, or in relation 
to other phenomena such as bodily changes, action tendencies, or motivational measures4,5. 
Other approaches6,7 focus on the facial, prosodic and bodily expression of emotions, partly 
motivated by comparisons across species1. Ethological and neuroscience researchers 
commonly investigate non-human behaviours labelled with terms such as 'anxiety-like' or 
'fear learning' by way of analogy to humans, albeit noting that such cross-species 
relationships are not always transparent8-11. 

It is thus no surprise that the theories that ensue also vary substantially, even to the extent 
that the very concept of emotion is used at distinct, and sometimes incommensurable, 
levels of analysis (Box 1)12. Sometimes emotion is conceived as being related to the putative 
goals of an agent (such as seeking information about potential threats when engaging in risk 
assessment13); sometimes to the psychological entities associated with observable 
phenomena (such as the notion of emotional states of fear and anger that cluster together 
distinct forms of responding to cues and situations14); and sometimes to the neural circuits 
controlling behaviour (such as fear circuits15). Most often, however, the concept is used in a 
largely taxonomical manner: to categorise measurable phenomena.  

Here, for conciliation, we seek to circumvent the quandaries associated with definitions of 
emotion. Instead, acknowledging that we eschew qualia (the joyfulness of joy or the 
fearfulness of fear and the like), we use decision theory to describe three facets of the 
determinants of behaviour in specific situations that lead to phenomena that are often 
classed as being emotional. The first is a computational analysis (Box 1) of the goals that 
humans and other animals pursue when making choices in natural environments, and which 
actions may achieve such goals. The second is an algorithmic analysis (Box 1) of the 
procedures that would enable an agent to decide on these actions. We describe specific 
exemplars of algorithms that appear to control phenomena often associated with emotions. 
The last is an implementational analysis (Box 1) of the possible neural substrates of these 
decision-making algorithms. According to this framework, one or more neural controllers 
are engaged which decide singly or collectively upon a specific response. Sophistication 
within the controllers, and in their selection and reconciliation, may lead to a substantial 
heterogeneity in the output, including both phenomena associated with emotions, and also 
other overt and covert behaviours.  

Bayesian decision theory (BDT, Box 1) provides a compelling computational level 
prescription of adaptive behaviour. However, it suffers from statistical complexity in its 
requirement for a large amount of information in novel environments to produce good 
trajectories of choices, and calculational complexity in the assessment of the expected 
worth of those choices. We argue that the brain appears to have adopted two major 
simplifications to approximate optimal choice. Both simplifications are germane to 
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emotions. The first simplification is to use partly pre-programmed algorithms to make these 
choices16; we highlight their surprising richness noting that they characteristically vary in at 
least three regards: the inputs they consider, the extent to which they are plastic, and the 
breadth of actions they arbitrate. The second simplification is to combine multiple different 
sorts of algorithm each of which excels in a different regime of training time and required 
speed17.  

Although our approach applies equally to positive and negative circumstances, we mainly 
focus on decision-making under circumstances involving proximal threat, using a decision-
theoretic framework to arrange empirically-known means to achieve survival-relevant 
output. Threat encompasses many phenomena associated with emotions, and also raises 
specific concerns that are somewhat less well explored in the rich field of decision 
neuroscience.  

In this Opinion article, we aim to address several key issues. First, it has been difficult to 
decide between related emotion theories that try to explain the same phenomena (as 
exemplified4). A decision-theoretic analysis addresses this point by constraining the space of 
possible algorithms in terms of their efficacy. Second, there is little consensus as to whether 
emotional phenomena are the output of one or more dedicated mechanisms (for example, 
specific systems for appraising incoming sensory information14) or whether they are 
manifestations of the operation of more general-purpose systems (which is how 
constructionist approaches view the generation of conscious feelings18). If there are indeed 
dedicated mechanisms, we do not know whether they are discrete, or whether they are 
associated with common-sense categories of emotion (such as circuits directly realizing 
fear), or whether such mechanisms jointly or individually drive dimensional aspects of 
emotions14,19. We show how a rapprochement between these positions can emerge from a 
decision-theoretic analysis. Finally, we seek to provide clues as to the existence of meta-
cognitive, and apparently low dimensional, representations of affect2,20.  

 

[H1] Approximately optimal decisions  

At an abstract computational level21, appropriate behaviour can be specified by BDT. This 
maps states of beliefs about the world to optimal choices (Box 1). The decisions made by 
humans and other animals often come surprisingly close to those that would be optimal 
according to BDT in simple, short-run tasks22-24. However, BDT’s apparently simple 
prescriptions beg a number of critical conceptual problems concerning utility functions, 
limited information and the specification of possible actions. BDT also faces substantial 
computational challenges in more complicated problems; this focuses attention on 
approximations. 

 

[H3] Utility functions 

The first conceptual problem in BDT is a quantification of the costs and benefits associated 
with particular outcomes - this is called a utility function. Evolutionary precepts suggest the 
goal for an individual’s preferences should be to prioritize reproductive fitness, including 
one's own and one's relatives' survival. Practically, however, this metric is unusably long-
term. Behaviour thus appears to be influenced by a range of more proximal homeostatic 
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forces such as hunger, thirst, and (an aversion to) pain. Each such force might generate its 
own utility contribution by quantifying the beneficial or deleterious nature of states or 
stimuli. If these different utility contributions can be closely approximated as independent 
and commensurable, then making an overall choice based on their sum would be 
appropriate. That is, an agent could generate single behaviours that arbitrated as best as 
possible between seemingly incompatible demands on ultimate reproduction merely by 
consulting this overall utility.  

There is indeed evidence that utility contributions25 and some forms of approximate overall 
utility26 are realized in neural systems. However, it is also known that decision-making 
algorithms can generate appropriate behaviour without reference to any explicit utility 
computation. A famous finding in economics is that if an organism’s behaviour satisfies 
some basic principles of rationality, such as consistency and transitivity, then there exists a 
utility function that is consistent with its choices27. Therefore, an organism’s behaviour can 
appear as if it had been generated by a utility function, even if this utility function is purely 
virtual. Elucidating such cases experimentally poses an obvious challenge. 

 

[H3] Limited information 

The next conceptual problem arises when biological agents have very limited information 
about very complex environments, and at the same time exploratory actions are dangerous, 
for instance in the face of mortal threat, starvation, or dehydration. There are particularly 
severe computational costs attached to the standard decision-theoretic approach of 
building hierarchical Bayesian models in which this ignorance about aspects of the model is 
treated as itself being just another form of uncertainty28. One apparent solution to this 
conundrum is pre-programming: we argue that there are restrictive prior distributions that 
specify what to expect in the environment, and constrained policies that map observations 
to actions. The pre-specification and the constraints obviate the costs of learning and 
computation16,29. 

 

[H3] Action repertoire 

The final conceptual question relates to the set of actions that are available to the agent. In 
conventional applications of BDT, this set is of modest size and fully known to the agent. 
However, in natural environments, the range of possible effective actions can be 
overwhelming and is at least partly unknown. To solve this problem, the agent could 
compute with a limited action menu that is pre-programmed and/or is a substantial target 
for transfer from previous learning.  

A separate dimension of choice is when or how vigorously to act. A cost-benefit trade-off 
arises, with the energetic or inaccuracy cost of acting quickly balanced against the 
opportunity costs of acting slowly30-32. In benign environments, opportunity costs are 
rewards foregone whilst being slothful, and are quantified according to the average reward 
rate in the environment. In threatening environments, acting slowly may increase exposure 
to threat. It has been suggested that these two sorts of opportunity cost can be unified by 
treating averted potential punishments as being the equivalent of gained rewards32-35. 
Arousal has been interpreted as resulting from the prediction of a need for vigour36 in terms 
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of this unified opportunity cost. However, it is important to note that acting slowly might in 
some cases decrease exposure to threat, in which cases animals should either exhibit more 
haste than speed in active avoidance, or engage in passive avoidance37.  

Along with the conceptual problems described above, another problem for BDT is its formal 
intractability: the required computations can rarely be performed with viable amounts of 
time and/or require more storage than is realistically available. A number of generic 
approximations have therefore been proposed (Box 2). As we describe below, specific 
exemplars of these approximations appear to govern behaviour under threat. It is important 
to note that these particular algorithms are not simple or transparent consequences of BDT 
itself.  

 

[H1] Control algorithms for survival 

Control algorithms are characterizations of ways that an agent - a machine or an animal - 
can determine appropriate actions. Efficient control algorithms approximate BDT as closely 
as possible while minimizing computational costs. Such algorithms can be classified along 
two orthogonal fault-lines (Box 2). One concerns action contingency, and is associated with 
the distinction between Pavlovian and instrumental control38,39. The other concerns 
prospective versus retrospective prediction about the future, and is associated with the 
distinction between model-based and model-free control17,40-42.  

By considering how behaviour under threat is controlled, we can identify several principles. 
Perhaps the most important in this area is the pre-programming we mentioned above. One 
instance of this is Pavlovian control, in which there is an ineluctable coupling of particular 
predictions to particular actions. However, there are at least three further aspects of pre-
programming, all of which arise as limits to flexibility or a lack of requirement for inference 
or learning. First, as exemplified in the next section, algorithms often take as input only a 
selected set of sensory cues and ignore others43. Pre-specifying the set that is considered 
circumvents the more general problem of inferring which are relevant44. Second is plasticity: 
the extent to which predictors of important outcomes can be learned de novo? Some 
systems cannot learn at all, and so can only operate in a purely pre-specified manner43; for 
others, plasticity is limited45,46. Third is that the menu of possible actions may be restricted 
to different degrees, pre-specifying which is ever even considered47. As we describe below, 
various behaviours appear to be controlled by distinct algorithms that have different pre-
programming characteristics, and may thus potentially represent separate controllers.  

 

[H3] Consummatory actions 

Consummatory responses — instincts, or fixed action patterns — occur in the presence of 
evidently significant events, such as imminent or proximal threat. They appear to be 
substantially pre-programmed; however, they are not hard-wired to the extent that 
activation of an algorithm leads to the same action pattern every time.  

Startling, for instance, is a stereotypical action pattern that is found in many species. It 
protects a subject from predator attack, is exclusively elicited by a selective set of sensory 
cues, cannot become associated with other sensory cues via learning and is apparently not 
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altered by unfavourable outcomes43. Thus, it appears to be governed by a Pavlovian 
controller and to be strongly pre-programmed in all of the three domains described above. 
However, its magnitude appears to vary according to both the prior probability of attack and 
opportunity costs48. Certain other protective actions appear to be more plastic than 
startling: for example, the eye blink reflex to corneal air puff49 can become associated with 
predictive cues through learning. 

Other threat-related consummatory responses include the suite of behaviours often 
labelled as fight, flight, and freeze responses50. The algorithm underlying these responses 
putatively infers the proximity of the threat that is a latent cause of the animal’s 
observations (this is known as the 'defensive distance'51,52 or 'predatory imminence'53) and 
makes delicate judgements between the response options. It is often implicitly assumed 
that this algorithm is Pavlovian and strongly pre-programmed in terms of the action 
repertoire.  

In the absence of mortal threat, unexpected events may require sampling of information 
and thus elicit a physiological orienting response54 and inhibition of goal-oriented 
behaviour55. These responses can co-occur with feelings of surprise in humans55. However, 
the algorithms and implementations involved are less well understood. 

On the appetitive side, in non-human species, the manipulation and handling of food, 
aspects of social interactions between peers and parenting and/or husbandry have been 
identified as Pavlovian consummatory actions that persist even in the absence of 
reinforcement. Famous examples include pecking in gull chicks56, courtship in stickle-
backs57, egg-moving in geese57 and potentially elementary eating actions in wild gorillas58. 
The prevalence of such pre-programmed appetitive behaviours is not well-researched in 
humans. They may occur, for example, in the context of affection between infants and 
parents or between sexual partners. 

 

[H3] Preparatory actions 

When significant events are not yet present but can be predicted from innate or learned 
precursors, preparatory controllers enter the frame. These often exhibit a substantial 
degree of plasticity. Predictions can be made in either a model-based or model-free manner. 
Model-based predictions of forthcoming outcomes support specific forms of preparation; 
this could underly particular bodily responses such as the conditioned protective eyeblink49 
or limb withdrawal59. Such preparation could be functionally linked to the consummatory 
responses that the actual arrival of the outcomes would inspire. However, model-based 
predictions could potentially also support more general preparatory actions such as 
approach, avoidance and inhibition. By contrast, model-free predictions are, by their very 
design, limited to the support of such general preparation because they marginalize away 
specific outcomes. This means that they can lead to what appear to be suboptimal or self-
contradictory choices. For example, in situations in which the outcome is devalued, a 
subject may execute preparatory actions that get it to a state in which a consummatory 
response would be possible, but then fail to emit that response40. Both model-based and 
model-free predictions could determine a unified opportunity cost of sloth32. 
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Fear responses provide well-known examples of behaviours that are subject to a 
preparatory controller. These responses include Pavlovian actions that enable the subject to 
prepare for specific threats50 and which might arise discretely from model-based algorithms, 
together with relatively unspecific bodily arousal that could arise from either model-based 
or model-free control. It has been suggested that preparation for specific threats may arise 
from multiple separate neural controllers60. Precursors of threat are often learned through 
experience, thus requiring plasticity. This is apparent in cue-conditioned61 and context-
conditioned freezing62. Such learning occurs for various sensory stimuli across different 
modalities, although some stimulus-outcome combinations are apparently more readily 
learned than others45,63 suggesting that there is a pre-programmed restriction on plasticity.  

Research on fear has also highlighted instrumental preparation for threat. Examples of this 
include conditioned active avoidance33 and the 'escape from fear' paradigm, which involves 
the de-novo acquisition of actions that avert predicted threat47. Some pre-programmed 
constraints are apparent in the action repertoire: for example, rats can apparently learn to 
rear to avoid a threat, but not to nose-poke47. 

Finally, a large body of work has described instrumental controllers for obtaining distal 
reward64. This forms a crucial part of the behavioural repertoire for survival in the context of 
foraging65,66, possibly resonating with emotional phenomena such as enthusiasm.  

 

[H3] Resolving conflict between controllers 

There may be direct conflict between different controllers' prescriptions, for instance 
between Pavlovian and instrumental mechanisms for achieving the same goal, or between 
controllers advocating approach and avoidance (for example, when foraging in conditions of 
both hunger and threat52. In the latter case, the dedicated action pattern that is adopted to 
resolve such conflict has been termed 'anxiety-like'8 and includes passive avoidance (that is, 
a complete lack of approach). In exploration or foraging paradigms, such avoidance 
gradually disappears over time67. A related response in humans is anxiety-like behavioural 
inhibition, which has been suggested to be partly under instrumental and possibly model-
based control37,68.  

Whenever controllers conflict, arbitration is necessary. One way this might happen is via 
some common currency reporting strength or importance on an absolute scale. 
Interestingly, there is an entire field in economics concerned with designing mechanisms 
that ensure individual agents achieve common goals. It has been proposed to translate such 
approach to neuroscience, in our case by regarding algorithms as individual agents69.  

 

[H3] Summary 

In sum, as described above, several control algorithms with distinct features jointly 
determine an animal's survival-relevant choices. The control of many consummatory 
behaviours appears to be Pavlovian but model-based70: that is, it is associated with specific 
outcomes, but does not consider whether the desired outcomes are actually achieved. 
Furthermore, there appear to be several distinct algorithms in control of these behaviours, 
characterised by further pre-progamming of specific aspects. It is difficult to explain such 



 9 

distinct algorithms in the context of a general-purpose emotion controller, as suggested by 
some dimensional theories in emotion psychology14. Instead, they resonate to a degree with 
theories that posit the existence of sets of distinct emotions1,71,72. On the other hand, the 
distinct algorithms highlighted here do not map onto the classical emotion categories 
proposed by basic emotion theory7,73 and its derivatives. For example, the phenomena 
classically labelled as 'fear' may involve parallel algorithms, including at least one that does 
not take previous action outcomes into account (Pavlovian) and one that does 
(instrumental). Thus, our analysis suggests the existence of discrete algorithmic categories 
that need not map neatly onto phenomenological boundaries. 

If there is indeed a multiplicity of controllers that are incompletely aware of their own 
domains of applicability, arbitration may be necessary, which could rely on common 
currencies. Model-free controllers can by design not consider particular goals but only 
attach scalar quantities to environmental states or actions, as this underpins their formal 
simplicity. As such, the output of these controllers may be captured in a low-dimensional 
space with axes such as utility or valence (mediating approach or withdrawal) and arousal 
(mediating invigoration and inhibition). 

Since the appropriateness of control algorithms in a particular situation depends on the 
goals of the organism, substantial variability in their output is to be expected. It is therefore 
unlikely that sharp boundaries can be drawn between phenomenological categories of 
behaviour as being associated with particular algorithms. Similarly, it may not be possible to 
enumerate precisely a particular set of algorithms based just on behavioural evidence. 
Furthermore, organisms that occupy separate ecological niches may also employ very 
distinct controllers. 

 

[H1] Neural circuits for survival 

Armed with this basic architecture of control, we now turn to the analysis of their neural 
implementation. As described above, we have functionally defined a collection of discrete, 
pre-programmed, algorithms and have also identified dimensions such as (predicted) 
positive and negative utility that drive model-free control, or others that might arbitrate 
between controllers. This discrete/dimensional duality is also evident in the neural systems 
that mediate these control algorithms.  

 

[H3]  Multiple neural controllers 

We have proposed the existence of multiple discrete controllers with restricted action 
menus. Some algorithmically distinct controllers are implemented in close macroscopic 
proximity. For instance, the controllers for fight/flight and for different kinds of freezing 
behaviour may be anatomically closely related in subdivisions of the periaqueductal gray74,75 
and operate on the basis of the same sensory input. Utility functions that are associated 
with distinct controllers, may be implemented in closely related and rather small neuron 
populations in the hypothalamus25.  

In favour of macroscopically separated controllers, circumscribed brain lesions can have a 
profound and specific impact on emotional behaviour. For one example, amygdala lesions 
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impair what is termed cue-conditioned freezing76, but appear leave intact some innate 
anxiety-like behaviour in rodents77. The latter are reduced by hippocampal lesions77,78 which 
do not impact cue-conditioned freezing76. There are other examples of such specificities: for 
example, it has been proposed that learning appropriate preparatory actions to specific 
threats (which algorithmically requires model-based control), ma require y partly separate 
and independent neural systems60. 

In addition, different Pavlovian actions appear to be under the influence of topographically-
defined regions of the nucleus accumbens. Chemical stimulation of neurons in different 
parts of this structure can lead to appetitively- or aversively-directed actions79,80, although 
the loci that relate to each type of action vary according to the familiarity of the context81. 
Such gross dynamic reorganization according to properties of the environment may be a 
strategy to induce long-term but not hard-wired pre-programming of neural decision 
controllers. 

 

[H3] Distributed neural controllers 

Despite the evidence outlined above, we believe that it is likely inaccurate to conceive of 
discrete neural controllers as isolated coherent units that can be defined by their histology, 
macroscopic structure or transmitter systems. Rather, functional control units that can be 
separated on an algorithmic level could to correspond to distributed and redundant systems 
on an implementation level. Hierarchically-organized controllers may also involve some 
separate and some shared structures. 

For example, learning to predict a specific threat and elicit an appropriate response to 
predictors (as in Pavlovian fear conditioning) can be abstractly described by a single 
decision-making algorithm. However, it appears that considerable array of brain regions is 
involved10. This could include computation of evidence for threat in the amygdala, and 
computation of meta-evidence on the current applicability of this prediction in particular 
environments in the prefrontal cortex (as occurs, for example during extinction training82), 
and the additional involvement of sensory cortices for predictors with particular sensory 
properties83,84.  

 

[H3] Scalar representations 

There is also evidence for neural representations of some of the axes of dimensional 
systems. Neuroimaging studies have demonstrated widespread representation of scalar 
stimulus valence85-88, and shared representation of diverse pleasures26; electrophysiological 
recordings show encoding of global utility in the orbitofrontal cortex89, and of reward 
prediction errors across various stimuli in phasic dopaminergic responses90. Model-free 
prediction and control, which lack specific goal-directedness, have been ascribed to the 
central nucleus of the amygdala, the core of the accumbens, and the dorsolateral 
striatum64,91-95. Furthermore, tonic dopaminergic responses appear to reflect average 
reward30,32. This duality of discrete and dimensional systems reflects our algorithmic notion 
that there are discrete controllers that use scalar functions, some of which are shared.  
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[H3] Arbitration between controllers 

The critical remaining implementational question concerns the neural basis of arbitration 
and interaction amongst the discrete controllers, and, at a more systemic level, between 
model-based and model-free control.  

One worked example of this question concerns top-down, model-based, inhibition. For 
instance in learned helplessness experiments, the over-exuberant activity in the 
serotonergic raphe that is caused by repeated negative outcomes and drives helplessness is 
apparently suppressed via the medial pre-frontal cortex in those subjects that are able to 
exert control96. Thus one controller which helps mediate passivity and behavioural inhibition 
(the raphe) is suppressed by another (the medial pre-frontal cortex). Indeed, 
neuromodulators and neuropeptides97 could provide a convenient way to communicate 
dimensional quantities such as utility or arousal globally, in keeping with widespread 
dopamine98, serotonin99, and norepinephrine100 projections. Circulating hormones, for 
example in the case of stress hormones101, could spread even broader influences over even 
longer timescales. 

There is also evidence that instrumental inhibition of Pavlovian misbehavior is accompanied 
by particular theta rhythms, which could be signatures or signals associated with 
regulation102. Relevant to this, it is known that controllers of fear and anxiety, which appear 
to exploit a common microcircuit for storing threat predictions103, are associated with 
amygdala oscillations in the same theta frequency range52,104-106.  

 

[H1] Feelings as actions 

We have so far considered emotions from the outside looking in. One could adopt a more 
first-person view and ask about subjective feelings, which in humans often occur in the 
absence of overt behaviour. These are, of course, the subject of entire subfields of 
psychology,4,107 and so our hope is just to show how they might fit into the current picture. 
Importantly, although they are regarded by some as being critical for the assignment of an 
emotional label, we here assume that feelings are not required to initiate immediate 
actions, a proposal that is in line with previous biological and psychological 
approaches1,12,108. This raises two central questions: what are feelings, and what, if anything, 
is their adaptive function?  

In terms of their nature, feelings might be meta-cognitive representations of the inner 
workings of decision-making systems. They would thus be constructed as the output of 
more basic psychological operations18. Given the many ways described above that scalar 
quantities (such as utility and vigour) provide a low dimensional projection of the bulk of 
decision-making controllers, it is no surprise that that our subjective sense and its 
verbalisation hews substantially to the dimensions of valence and arousal2,20.  

Various data suggest that experienced (even incidental) feelings influence future decisions, 
as well as immediate actions109. First, there is a suggestion that moods can be understood as 
long-run averages of short-lasting feelings, and that these moods could themselves have an 
enduring impact on future decisions, acting as forms of generic environmental 
priors36,110,111. Secondly, although decisions are shaped by currently experienced feelings, 
they are also influenced by the feelings anticipated to occur after relevant outcomes112. 
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Hence, feelings experienced in the past may provide sparse and efficient signals for future 
deliberation of decision outcomes, and thus simplify model-based search113 and/or memory 
look-up114. Such anticipated feelings may be rather abstract or may induce actual feelings115. 
Since feelings are only incompletely able to represent the full workings of the various 
controllers, their influence may appear suboptimal or irrational (just as we argued for 
model-free controllers). Finally, an adaptive function of conscious feeling may be to enable 
verbal communication that relies on conscious access to content. Communication is an 
aspect of emotions that we have not discussed in this review (Box 3). 

Overall, the view outlined in this article provides a basis for the existence of dedicated 
feelings attached to emotional behaviour, something that is only incompletely paralleled in 
the conscious perception of other mental operations. The existence of such feelings would 
thus explain the lingering differentiation between cold and hot cognition in neuroscience 
research, even though such a distinction may not exist in terms of the mathematical or even 
neural structures of the inferences concerned116,117. 

 

[H1] Conclusion  

Emotion is a vast and critical topic. We have tried to provide a formal foundation for a 
computationally oriented study of emotions. Our decision-theoretic approach resonates 
with a central tenet of appraisal theories of emotion: that emotional phenomena are the 
output of a system for response optimization14, just like any other behaviour. We therefore 
analysed the goals of behaviour in biological environments, dissected emotions into 
associated actions and feelings, and characterised aspects of the particular decision-making 
algorithms that govern these actions. We exploited parallels with reward-based decision 
making in which the decision theoretic analysis of model-based and model-free, and 
Pavlovian and instrumental control has been more extensively examined. However, our 
focus on threat allowed us to highlight the crucial importance of pre-programming in 
controlling phenomena often associated with emotions. We discussed some of the evidence 
for multiple, discrete, neurally distinct, decision-making systems that do not map onto 
classical phenomenological emotion categories, as well as for scalar systems that support 
dimensions of behaviour, and possibly also feeling. This extends and joins previous accounts 
that either assumed phenomenological emotion categories (such as basic emotions7,73), or 
propose non-modular, dimensional systems that can contribute to more than one common 
sense emotion category (as for example in many instances of appraisal theory, or in 
constructed emotion theory18,118). Many computational, psychological and neural questions 
remain, and we hope to have furnished a useful framework for answering them.  
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Box 1: Levels of theoretical analysis  

In computational neuroscience, it is common to distinguish different levels of analysis that 
go back to Marr21.  

Computational level 

At the computational level21, theoretical analysis focuses on formalising the problem that 
the nervous system has to solve, and finding an appropriate, often optimal or normative 
solution. One optimal solution to any decision-making problem is given by Bayesian decision 
theory (BDT119). According to this theory, agents should create and maintain a so-called 
‘belief state’ which summarises the whole history of their past observations. To do so, they 
must employ what is known as a generative model of possible trajectories of environmental 
states and how those states generate sensory data (note that the ‘environment’ in this case 
encompasses the body of the agent). Agents should then make the choices that maximize 
average long-run benefit by computing an expectation over all possible present and future 
states along such trajectories. The long-run benefit is typically a weighted sum of the 
utilities of each possible outcome in the future, with more weight given to outcomes that 
occur sooner (temporal discounting). Specifying these outcome values is therefore a key 
ingredient of BDT. The BDT solution is a benchmark that no natural or artificial agent can 
surpass.  

Algorithmic level 

The algorithmic level of analysis concerns how a given problem is solved. Various fields have 
suggested exact and approximate algorithmic approaches to BDT. These have been given 
names such as optimal control theory, dynamic programming and reinforcement learning 
119-121. Approximations are necessary because normative solutions are often analytically 
intractable and cannot even be computed numerically offline in an exact manner. Many 
neuroscientists use reinforcement learning theory as a formal framework for stating and 
solving the decision-making problems that they pose their subjects. 

Implementational level 

The implementational level of analysis considers the ways that algorithms are realized in 
neural circuits. This spans descriptions on a macroscopic level (brain areas and large 
populations of neurons), those on a mesoscopic scale (modestly-sized circuits of neurons 
subject to neuromodulatory influences) and the microscopic level (within-neuron 
computations).  

 

Box 2: Types of controller  

A controller is a system or device that selects or modulates internal or external actions. 
Controllers have algorithmic or mathematical descriptions in terms of things such as the 
constraints they exactly or approximately enforce; they can also be implemented in neural 
tissue or in other substrates. 

 

Pavlovian vs. instrumental control 
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Animal behaviour reflects the influence of different controllers with specific characteristics. 
Pavlovian control hard-wires certain pre-programmed behaviours to certain events, or 
learned predictions thereof, without evaluating the consequences of the actions. In 
environments or circumstances that are suitably stable (that is action-outcome 
contingencies that are expected to be constant over the organism's whole life), there are 
advantages to this approach; however, in labile environments, animals must be more 
flexible. Instrumental control, even if it reflects certain initial biases, can learn to make 
choices on the basis of the contingency that is experienced between action and outcome, 
thus providing more flexibility. Pavlovian and instrumental control can be experimentally 
distinguished by exploiting cases in which hard-wired actions (such as pecking predictors of 
food pellets in pigeons122 or rooting with objects associated with food in pigs123) are pitted 
against experimentally-determined contingencies (such as denying or delaying rewards that 
are approached in this way).  

Model-based vs. model-free control 

At least two canonical methods have been described for making predictions when whole 
trajectories of future states and possibly actions must be considered. Model-based 
reasoning120 involves building a precise set of beliefs about the structure of the environment 
and the outcomes it affords and searching the model prospectively at the time of choice 
through a form of dynamic programming120. This has some attractive properties: for 
example, models are often relatively easy to learn and choice can be appropriately sensitive 
to changes in the environment. However, building and searching such models can be 
ruinously expensive in terms of computation and working memory as the number of future 
possibilities escalates113. Thus simplification is essential. One simplification is a more general 
form of model-based control algorithm70, in which action–outcome contingencies are 
assumed to be fixed. This is Pavlovian model-based control, which still involves a 
representation of a specific goal. 

Model-free reasoning provides a radically different method of simplification: here, 
estimates or predictions of net long-run utility are learned by experience, based on nothing 
more than 'cached' observations of the utility itself via Pavlovian or instrumental learning 
rules, without building or using a model. The resulting values are intended to estimate the 
same quantities that model-based reasoning would produce, namely the summed expected 
utility of the future outcomes120. Given the way these estimates are acquired, model-free 
predictions cannot change immediately if either the worth of the outcomes changes (for 
example, because of satiation) or the transitions leading to them alter.124 This characteristic 
fixedness allows model-based and model-free values to be discriminated experimentally.  

The need to integrate model-based and model-free influences has been considered to be an 
example of a more general meta-control problem125-128, influenced by particular 
characteristics such as the relative uncertainties of the two sorts of controller17, or the cost 
versus benefit of engaging in expensive model-based calculations to overcome potentially 
incorrect model-free ones129,130.  

For completeness, we note that model-based instrumental control is sometimes equated 
with ‘rational’ or ‘non-emotional’ control and contrasted with ‘emotional’ model-free or 
even Pavlovian control131. However, such a characterization is not well supported by the 
evidence and interpretations that we have adduced. 
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Box 3: Cooperation and competition 

In contexts that include multiple agents, communicative actions — which are another 
output of emotional systems — require game-theoretic considerations of competition and 
cooperation132. Cooperation includes the possibility of learning from vicarious rewards and 
punishments supplied to others whose reactions we can observe – something that can, of 
course, be expensive for them. 

When in competition, subjects have an incentive to produce fallacious external (though not 
internal) reactions, such as false emotions (or ‘cheap talk’). Thus, it could be useful to 
pretend to be distraught to get other people to help or (as in the game of chicken) to 
pretend to be angry (that is, to imply that one will perform self-harming, irrational actions 
such as fighting) in order to gain concessions or dominance. The possibility of deception 
provides one’s interlocutors with the incentive to detect and punish cheaters; evolutionary 
game theory provides some hints as to where such long-run battles might end up, helping 
address the important questions as to how individual-level emotional characteristics 
maximise population-level fitness133,134 and how heterogeneity across a population might 
result135.  

Of course, although the internal representations that we use might be based on the same 
regularities of behaviour that external, third-parties, also observe, even the meta-
cognitively challenged amongst us are able to access much richer, covert, physiological and 
neural signals about our own states, including a machinery for interoceptive inference136. 
Thus we can have a more accurate and faithful model of ourselves, than we can of others. 
Sadly, in an internal form of competition, when considering ourselves, we might be 
susceptible to self-serving editing (also known as Pavlovian pruning113) such that we could 
be less biased observers of others than of ourselves.  
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Glossary 

Decision theory: A computational-level theory for making choices given information about 
states and resulting utilities. Bayesian decision theory (BDT) is a formally optimal 
(normative) decision theory. 

Algorithms: In this article, an algorithm denotes an abstract, self-contained set of 
operations or effective procedure that maps sensory input and internal state to external and 
internal actions.  

Controllers: In this article, a controller corresponds to a realised neural circuit that is 
capable of implementing one or several algorithms for choosing or emitting actions. 

Constructionist approach: A family of theoretical approaches that views subjectively 
experienced mental categories (such as feelings) as constructed representations of more 
basic psychological operations, which are not consciously accessible.  

Utility functions: A real utility function quantifies how useful or dangerous certain outcomes 
are to an agent, in a given situation and is realized in the output of actual neural circuits. A 
virtual utility function is an as-if construct that provides quantifications that are consistent 
with behavioural choices, but without necessarily underlying those choices. 

Consistency: Choice consistency, or independence, denotes that if A is preferred over B, 
then A+C is preferred over B+C, irrespective of what C is. This is a fundamental component 
of expected utility theory, and of revealed choice theory.  

Transitivity: Assume A is preferred over B, and B is preferred over C. These preferences are 
said to be transitive if A is also preferred over C. This is a fundamental component of 
expected utility theory, and of revealed choice theory. 

Pre-programming: In this article,  pre-programming refers to any restriction on the workings 
of a controller that can be cast in BDT terms as an immutable prior, mapping of state or 
prediction to action, or utility function.  

Action contingency: the causal relationship between the execution of actions and the 
outcomes that result. 

Pavlovian: In this article, we use the term Pavlovian to denote an algorithm or controller 
whose choice of actions is insensitive to the actual consequences of those actions. We do 
not use the term to denote design characteristics of experiments (as is sometimes the case). 

Instrumental: The term instrumental in this article refers to an algorithm or controller 
whose choices are contingent on their past or predicted future consequences. We do not 
refer here to design characteristics of experiments. 

Model-based: We use the term model-based to characterise algorithms that exploit a model 
of the structure of the environment and the outcomes it affords to make long-run 
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predictions about the future. Predictions need not be action-contingent, and so can support 
either Pavlovian or instrumental controllers. 

Model-free: We use the term model-free to describe algorithms that learn to make long-run 
predictions by caching or saving experiences from the past, generally by enforcing self-
consistency in successive outputs. Predictions are typically scalar, for instance, of summed 
future value, and so do not encode the specific outcomes underpinning those values. 
Model-free predictions need not be action-contingent, and so can support either Pavlovian 
or instrumental controllers. 

Appraisal theory: A family of emotion theories all of which posit that manifestations of 
emotions (feelings, motivational processes, bodily reactions, etc.) are the output of a set of 
cognitive appraisals, or encompass such appraisals. Theories differ widely according to the 
appraisals they consider part of the set. 
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