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Summary 

 

The LD score regression method tests whether there is an association between the LD score 

and allele frequency differences between cases and controls. It makes the assumption that 

there is no association between LD score and allele frequency differences between 

populations and hence that any observed association is due to a polygenic effect rather than 

population stratification. This assumption was previously tested only using European 

cohorts. In comparisons between more diverse HapMap populations we observe that there 

is indeed an association between the LD score and allele frequency differences. However 

this effect is small and when we carry out simulations of large case-control samples the 

effect becomes negligible. We conclude that if the intercept is small then any increase in 

mean chi-squared does indeed reflect a polygenic effect rather than population stratification.  
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Introduction 

 

LD score regression was proposed as a method to distinguish polygenic effects in genome-

wide association studies (GWASs) from confounding biases such as cryptic relatedness and 

population stratification (Bulik-Sullivan et al., 2015). In a GWAS one seeks to detect 

differences in allele frequencies between cases and controls due to variants which either 

directly affect phenotype or else which are in linkage disequilibrium (LD) with causal 

variants. A problem is that variant allele frequencies can vary between populations with 

different ancestries and hence a false positive GWAS signal can be produced if case and 

control samples are not properly matched. In order to detect that there are variants truly 

associated with disease risk, LD score regression makes two assumptions.  The first is that 

variants are more likely to be in LD with a causal variant if they are in LD with other nearby 

variants, as measured by their LD score. Under this assumption, there will be a positive 

correlation across variants between the LD score and a measure of difference in allele 

frequency between cases and controls such as the chi-squared statistic. This is the expected 

situation if there is an equal probability for any SNP to have a causal effect. The second 

assumption is that there will be no association between the LD score and the difference in 

allele frequency between populations. Under these two assumptions one can perform linear 



regression of the chi-squared onto the LD score and a positive gradient will indicate a 

polygenic effect on risk while the intercept will capture the effect of population stratification.  

 

In the original publication the second assumption was tested using Psychiatric Genetics 

Consortium controls from seven European cohorts and by computing association statistics 

between pairs of cohorts but it was not tested using more diverse cohorts (Bulik-Sullivan et 

al., 2015). For all pairs of cohorts there was minimal correlation, with the largest R-squared 

for any pair reported to be 0.000255. However all the cohorts used had been selected to be 

of white European origin and it is not known whether the correlation might be stronger if 

more ancestrally diverse cohorts were utilised. Although case-control studies of moderately 

rare traits will typically use subjects which are intended to be well-matched for ancestry, this 

may not be the case for studies which use very large samples derived from more diverse 

sources. For example, a recent study of risk tolerance used a sample of over 900,000 

subjects recruited from UK Biobank and 23andMe and reported an LD score intercept of 

1.04 and a mean chi-squared of 1.85 (Karlsson Linnér et al., 2019). One could speculate 

that if the chi-squared between different ancestries was correlated with the LD score then if 

there were a slight enrichment for one ancestry among cases then this could lead to an 

inflated mean chi-squared which reflected population stratification rather than a true 

polygenic effect.  

 

Method 

 

In order to examine the correlation between LD scores and allele frequency differences 

between populations of different ancestries we used the same HapMap datasets as we had 

used to demonstrate that the polygenic risk score for schizophrenia was associated with 

ancestry (Curtis, 2018). The merged post-QC phase I+II and III HapMap (International 

HapMap 3 Consortium et al., 2010) genotype files were downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-08_phaseII+III/forward/.  The file called 

scz2.prs.txt.gz, containing ORs and p values for 102,636 LD-independent single nucleotide 

polymorphism markers (SNPs), was downloaded from the Psychiatric Genetics Consortium 

(PGC) website (www.med.unc.edu/pgc/results-and-downloads). This is the training set 

produced as part of the PGC2 schizophrenia GWAS (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). This SNP set was obtained from the imputed 

GWAS genotypes by first excluding uncommon SNPs (MAF < 10%), low-quality variants 

(imputation INFO < 0.9), indels, and SNPs in the extended MHC region (chr6:25-34 Mb). 

The SNPs were then LD pruned and “clumped”, by discarding SNPs within 500 kb of, and in 

r2 ≥ 0.1 with, another SNP which was more significantly associated with schizophrenia. 

Autosomal SNPs were selected if they appeared in this training dataset and if they had also 

been genotyped in all 11 of the HapMap cohorts, yielding a reduced set of 32,588 LD-

independent SNPs. HapMap subjects with genotyping call rate < 0.9 were removed, leaving 

a sample of 1,397. 

 

After QC, the 11 HapMap cohorts consisted of the following samples: ASW - African 

ancestry in Southwest USA, N=87; CEU - Utah residents with Northern and Western 

European ancestry, N=174; CHB - Han Chinese in Beijing, China, N=139; CHD - Chinese in 

Metropolitan Denver, Colorado, N=109; GIH - Gujarati Indians in Houston, Texas, N=101; 

JPT - Japanese in Tokyo, Japan, N=116; LWK - Luhya in Webuye, Kenya, N=110; MEX - 

Mexican ancestry in Los Angeles, California, N=86; MKK - Maasai in Kinyawa, Kenya, 



N=184; TSI - Toscani in Italia, N=102; YRI - Yoruba in Ibadan, Nigeria, N=209. The set of 

SNPs was reduced to the 30,753 for which european LD scores were available, as 

contained in the file 

https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2 obtained from 

https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial. These LD scores had been 

derived from the 1000 Genomes Europeans and hence were independent of the HapMap 

data. The allele frequencies in the CEU cohort were compared with those in each of the 

other ten cohorts using the assoc function of plink 1.09beta  to produce a chi-squared 

statistic for each SNP (www.cog-genomics.org/plink/1.9/) (Chang et al., 2015; Purcell et al., 

2007, 2009). Linear regression of the chi-squared statistics onto the LD scores was carried 

out using R version 3.3.2 (R Core Team, 2014). 

 

We reasoned that using SNPs which were LD-pruned might introduce biases with 

unpredictable effects. For example, one might expect that by selecting LD-pruned SNPs one 

was introducing a bias towards considering SNPs with lower LD scores. To obtain results for 

a set of SNPs which were not LD-pruned, the same LD score regression analysis between 

CEU and the other cohorts was then repeated using all 15,216 chromosome 22 SNPs which 

were present in HapMap and for which european LD scores were available. 

 

In order to assess the effects of population stratification, datasets were constructed which 

were intended to reflect varying proportions of CEU and YRI ancestry. A set of 200 controls 

and 200 cases was simulated using the CEU allele frequencies to generate control allele 

counts while the case allele counts were generated using a weighted average of CEU and 

YRI allele frequencies, with the YRI proportion increasing from 0 to 1. We also wanted to 

consider the situation of a case-control study in which there might be a small proportion of 

subjects with a different ancestry, with this proportion being different between cases and 

controls. In order to simulate such a study, a sample of 900,000 subjects with equal numbers 

of cases and controls was simulated with mainly CEU ancestry but with a fraction of 0.01 

YRI ancestry in controls and a fraction ranging from 0.01 to 0.011 YRI ancestry in cases. 

 

Results 

 

Table 1A shows the results of linear regression analysis of the chi-squared for allele 

frequency differences against LD scores for the LD-pruned SNPs. It can be seen that the LD 

score is indeed correlated with the difference in allele frequency between CEU and other 

cohorts. This produces a positive gradient for the regression line and means that the mean 

chi-squared is higher than the intercept. The effect is most marked in the comparison 

between CEU and YRI cohorts. The gradient is 0.295 (SE 0.033, p=10-18) with an intercept of 

42.1 and a mean chi-squared of 46.0. The correlation coefficient between the chi-squared 

and LD score is 0.0025. Table 1B shows that similar results are obtained for the 

chromosome 22 SNPs although for some cohorts the correlation is not statistically 

significant. 

 

Table 2 shows the results using simulations generated from allele frequencies assuming 

different proportions of CEU and YRI ancestry. In Table 2A it can be seen that, as would be 

expected, with large proportions of YRI ancestry in cases the gradient and correlation 

coefficient increase. However when the proportion of YRI ancestry is less than 0.5 the 

gradient is very small or even negative, meaning that in this situation the mean chi-squared 



is equal to or less than the intercept. In Table 2B, intended to reflect a more realistic situation 

of a large sample size and some YRI ancestry in cases and controls, it can be seen that only 

a small degree of enrichment of YRI in cases, from 0.01 to 0.0105, is sufficient to increase 

the intercept to 1.05. With this degree of enrichment the gradient is very small and 

essentially there is no inflation of the mean chi-squared. When the enrichment increases to 

0.011, producing an intercept of 1.25, the gradient becomes very slightly negative, actually 

producing a mean chi-squared which is slightly smaller than the intercept. Since a small 

degree of enrichment has a large effect on the intercept without producing an inflated mean 

chi-squared it seems that this would not lead to an erroneous conclusion that a polygenic 

effect was present. 

 

Discussion 

 

From these results we draw two main conclusions. The first conclusion is that a fundamental 

assumption of the LD score regression method, that LD score is not associated with allele 

frequency differences between populations, is incorrect. The second conclusion is that for 

the purpose of demonstrating a polygenic effect in practice this does not matter. 

 

When we compare the CEU cohort to others we actually observe quite marked association 

between the LD score and the chi-squared for allele frequency differences. In the case of the 

YRI cohort this produces a correlation coefficient ten times higher than that reported 

between any of the pairs of European cohorts originally studied. This is clearly observed 

even when LD-pruned SNPs are used, meaning that there can be no artefact for example 

related to self-correlated SNPs. The positive correlation means that the mean chi-squared is 

higher than the intercept. However, this is only a small effect. Using the original samples, the 

mean chi-squared for the YRI cohort is only about 10% higher than the intercept for both the 

LD-pruned and chromosome 22 SNPs. If this effect scaled linearly with sample size then in 

practice it would not be expected to produce major problems. However it is not intuitively 

obvious that this effect would scale linearly and to address this we carried out simulations 

using a large sample size. What we see is that in fact the effect actually diminishes 

markedly. When there is only a small degree of enrichment of YRI ancestry, such that the 

intercept increases from 1 to 1.05 in line with that observed in the association study of risky 

behaviour, then there is essentially no inflation of the mean chi-squared.  

 

We note that a recent study has also detected a correlation between LD score and allele 

frequency divergence in British and European samples and demonstrates that background 

selection is capable of explaining much of this (Berg et al., 2019).  

 

From the investigations we have performed using cohorts more diverse than the European 

cohorts originally studied we conclude that the LD score is positively associated with allele 

frequency differences between populations but that if a low value is observed for the 

intercept then any increase in the mean chi-squared can be ascribed to a polygenic effect on 

the phenotype rather than to population stratification. 
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Table 1 

A. Results of LD regression analysis of CEU cohort against other cohorts for LD-pruned 

SNPs across all autosomes. The p value is for the gradient being non-zero. 

Cohort Intercept (SE) Gradient (SE) p value R-squared Average chi-
squared 

ASW 17.5 (0.24) 0.087 (0.014) 9.67E-10 0.001220 18.7 

CHB 26.0 (0.33) 0.065 (0.020) 9.10E-04 0.000358 26.8 

CHD 23.4 (0.29) 0.056 (0.018) 1.44E-03 0.000330 24.1 

GIH 8.4 (0.12) 0.031 (0.007) 6.72E-06 0.000659 8.8 

JPT 23.5 (0.30) 0.058 (0.018) 1.35E-03 0.000334 24.3 

LWK 28.6 (0.37) 0.152 (0.022) 1.21E-11 0.001490 30.7 

MEX 7.6 (0.10) 0.014 (0.006) 2.97E-02 0.000154 7.7 

MKK 27.0 (0.36) 0.164 (0.022) 3.08E-14 0.001870 29.2 

TSI 1.9 (0.03) 0.017 (0.002) 1.70E-23 0.003240 2.1 

YRI 42.1 (0.56) 0.295 (0.033) 9.72E-19 0.002540 46.0 
 

B. Results of LD regression analysis of CEU cohort against other cohorts for chromosome 

22 SNPs.  

Cohort Intercept (SE) Gradient (SE) p value R-squared Average chi-
squared 

ASW 20.8 (0.33) -0.015 (0.013) 2.35E-01 0.000093 20.4 

CHB 31.8 (0.51) -0.016 (0.020) 4.05E-01 0.000046 31.5 

CHD 28.8 (0.47) -0.006 (0.018) 7.60E-01 0.000006 28.7 

GIH 10.3 (0.17) -0.014 (0.006) 2.56E-02 0.000328 10.1 

JPT 27.5 (0.46) 0.027 (0.018) 1.28E-01 0.000152 28.0 

LWK 34.5 (0.58) 0.098 (0.022) 1.19E-05 0.001260 36.5 

MEX 9.2 (0.18) 0.068 (0.007) 6.38E-23 0.006370 10.5 

MKK 30.9 (0.54) 0.120 (0.021) 7.23E-09 0.002200 33.3 

TSI 1.9 (0.03) -0.001 (0.001) 5.78E-01 0.000020 1.9 

YRI 50.9 (0.86) 0.221 (0.033) 2.99E-11 0.002900 55.3 
 

  



Table 2 

A. Results of LD regression analysis of chromosome 22 SNPs with 200 controls and 200 

cases with the control allele counts simulated from CEU allele frequencies and the case 

allele counts from a weighted average of CEU and YRI allele frequencies. 

Proportion 
YRI 

Intercept (SE) Gradient (SE) p value R-squared Average chi-
squared 

0.0 1.03 (0.02) 0.000 (0.001) 9.73E-01 0.000000 1.03 

0.1 1.93 (0.03) -0.005 (0.001) 4.23E-04 0.000817 1.84 

0.2 4.08 (0.07) -0.007 (0.003) 1.29E-02 0.000406 3.94 

0.3 7.37 (0.13) -0.006 (0.005) 2.27E-01 0.000096 7.25 

0.4 11.40 (0.20) 0.004 (0.008) 5.90E-01 0.000019 11.50 

0.5 16.70 (0.28) 0.010 (0.011) 3.49E-01 0.000058 16.90 

0.6 22.60 (0.38) 0.035 (0.015) 1.54E-02 0.000386 23.30 

0.7 29.60 (0.49) 0.072 (0.019) 1.40E-04 0.000953 31.00 

0.8 37.50 (0.62) 0.117 (0.024) 1.01E-06 0.001570 39.80 

0.9 47.10 (0.78) 0.166 (0.030) 3.47E-08 0.002000 50.40 

1.0 57.40 (0.96) 0.249 (0.037) 1.64E-11 0.002980 62.40 

 

B. Results of LD regression analysis of chromosome 22 SNPs with 450,000 controls and 

450,000 cases with the controls having 0.99 CEU ancestry and 0.01 YRI ancestry and cases 

to having varying degrees of enrichment for YRI ancestry.  

Proportion 
YRI 

Intercept (SE) Gradient (SE) p value R-squared Average chi-
squared 

0.0100 0.99 (0.02) 0.000 (0.001) 5.33E-01 0.000026 1.00 

0.0101 1.03 (0.02) 0.000 (0.001) 5.48E-01 0.000024 1.02 

0.0102 1.04 (0.02) -0.001 (0.001) 2.99E-01 0.000071 1.03 

0.0103 1.02 (0.02) 0.001 (0.001) 2.77E-01 0.000078 1.04 

0.0104 1.04 (0.02) 0.000 (0.001) 8.26E-01 0.000003 1.04 

0.0105 1.06 (0.02) 0.000 (0.001) 5.93E-01 0.000019 1.05 

0.0106 1.11 (0.02) -0.001 (0.001) 2.08E-01 0.000104 1.09 

0.0107 1.12 (0.02) -0.001 (0.001) 3.13E-01 0.000067 1.11 

0.0108 1.14 (0.02) -0.001 (0.001) 3.29E-01 0.000063 1.12 

0.0109 1.17 (0.02) -0.001 (0.001) 3.54E-01 0.000056 1.15 

0.0110 1.25 (0.02) -0.002 (0.001) 9.18E-03 0.000446 1.21 
 

 


