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Abstract—In human-computer interaction, it is important to
accurately estimate the hand pose, especially fingertips. However,
traditional approaches to fingertip localization mainly rely on
depth images and thus suffer considerably from noise and missing
values. Instead of depth images, stereo images can also provide
3D information of hands. There are nevertheless limitations on
the dataset size, global viewpoints, hand articulations and hand
shapes in publicly available stereo-based hand pose datasets.
To mitigate these limitations and promote further research on
hand pose estimation from stereo images, we build a new
large-scale binocular hand pose dataset called THU-Bi-Hand,
offering a new perspective for fingertip localization. In the
THU-Bi-Hand dataset, there are 447k pairs of stereo images
of different hand shapes from 10 subjects with accurate 3D
location annotations of the wrist and five fingertips. Captured
with minimal restriction on the range of hand motion, the dataset
covers large global viewpoint space and hand articulation space.
To better present the performance of fingertip localization on
THU-Bi-Hand, we propose a novel scheme termed Bi-stream Pose
Guided Region Ensemble Network (Bi-Pose-REN). It extracts
more representative feature regions around joints in the feature
maps under the guidance of the previously estimated pose. The
feature regions are integrated hierarchically according to the
topology of hand joints to regress a refined hand pose. Bi-Pose-
REN and several existing methods are evaluated on THU-Bi-
Hand so that benchmarks are provided for further research.
Experimental results show that our Bi-Pose-REN has achieved
the best performance on THU-Bi-Hand.

Index Terms—Fingertip localization, Hand pose estimation,
Region ensemble network, Human-computer interaction, Hand
pose dataset.

I. INTRODUCTION

HAND pose estimation is one of the most important
techniques in many applications like virtual reality and

augmented reality [1]–[4]. Recently hand pose estimation from
depth images has drawn considerable research attention [5]–
[14], due to the emergence of depth cameras [15]–[18].
Compared with other hand joints, fingertips are much more
challenging to localize because of the high fingertip flexibility,
large viewpoint variation and poor depth quality [5]. Tradi-
tionally stereo-based hand poses are estimated by converting
stereo images into depth images with full stereo matching
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algorithms [19]. However, depth values around fingertips can
be inaccurate as large noise is introduced during conversion.
As a result, fingertip localization is hindered by accumulated
errors in disparity calculation and hand pose estimation.

Recently, several deep network methods have been devel-
oped for fingertip localization from binocular images [20]–
[22], without converting them into depth images. However,
their network architectures could not exploit the features of
binocular images effectively. Furthermore, in publicly avail-
able datasets of stereo-based hand poses [21], [23], there
have been limitations on the dataset size, viewpoints, hand
articulations and hand shapes. These limitations substantially
limit the generalization ability of trained models.

In this paper, we propose a novel hand pose estimation
approach, named as Bi-stream Pose Guided Region Ensemble
Network (Bi-Pose-REN), to estimate the locations of the wrist
and fingertips from stereo images directly. Feature maps are
extracted from left and right images by using DenseNet [24]
in a two-stream style. Cropped around the location of joints in
an initially estimated hand pose, the two-stream grid feature
regions are first fused by concatenation and fully connected
(FC) layers, and then integrated hierarchically according to
the topology of hand joints. Under an iterative refinement
framework, Bi-Pose-REN takes a previously predicted hand
pose as input and improves the estimation in each iteration.
Benefiting from the ensemble learning of multiple branches
and the more representative features of joints, our proposed
Bi-Pose-REN achieves the state-of-the-art performance over
existing methods on our previous ThuHand17 [21] dataset.

To further promote research on stereo-based hand pose esti-
mation, we build THU-Bi-Hand, a more large-scale binocular
hand pose dataset, which contains about 447k pairs of stereo
images from 10 different subjects with accurate annotations
of six hand joint (five fingertips and the wrist) locations. In
the dataset, 16 basic hand poses as well as transforming poses
between pairs of basic poses were captured for each subject.
The subjects were allowed to move their hands and fingers
freely under the restriction that their hands appeared entirely in
the valid imaging area. Captured from large diversity of hand
shapes and hand poses, the new dataset covers the natural hand
pose space commonly used in human-computer interaction
(HCI), with little restriction on the range of hand motion
including translation and rotation.

Our main contributions can be summarized as follows.
(1) We proposed a new approach, Bi-Pose-REN, to esti-

mate fingertip locations directly from stereo images. Taking
a previously estimated pose as input, Bi-Pose-REN extracts
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more representative feature regions of joints and provides more
accurate localization.

(2) We built a new large-scale dataset THU-Bi-Hand1,
which consists of about 447k stereo image pairs from 10
subjects with large variant hand poses and movements as well
as accurate 3D location annotations of fingertips and wrist.

(3) We provided several benchmarks on the THU-Bi-Hand
dataset, offering a new perspective for fingertip localization.
We evaluated several methods including [20], TSBNet [21],
Bi-REN [22] and the proposed Bi-Pose-REN. Ablation studies
of Bi-Pose-REN were also introduced to analyze the module
effects.

The rest of this paper is organized as follows. We review
related work in Section II, describe details of the new Bi-Pose-
REN in Section III, and introduce the construction procedure
and detailed information of the THU-Bi-Hand dataset in
Section IV. Comparative studies with extensive experiments
are presented in Section V, and Section VI concludes the
whole paper and discusses some future work.

II. RELATED WORK

In this section, we first review popular hand pose datasets,
then discuss existing methods of hand pose estimation from
stereo images, and finally review different feature extraction
methods used in hand pose estimation from depth images.

A. Hand Pose Datasets

Publicly available hand pose datasets can be classified into
two kinds: depth image based datasets [5], [25]–[28] and stereo
image based datasets [21], [23].

1) Depth image based datasets: The NYU dataset [5] con-
tains over 72k RGB-D images from one subject in the training
set and 8k images from two different subjects (one of them is
the subject in the training set) for testing with 36 annotated
joints. The depth maps were collected from Microsoft Kinect
camera [15] with missing values along occluded boundaries
and noisy outlines [29].

The ICVL dataset [25] has 300k images with different
rotations from 10 subjects with 26 gestures for training and
1.6k images for testing. The depth images were captured by
Intel RealSense [18] with locations of 16 joints annotated.
The depth maps have a high quality with few missing values
and sharp outlines with little noise, but lots of samples were
annotated incorrectly in both training and test sets (about 36%
of the poses from the test set were annotated with errors of at
least 10mm) [29].

The MSRA dataset [26] contains 76.5k depth images col-
lected with Intel Creative Interactive Camera. Totally 21 joints
were annotated. There are 9 subjects with 17 gestures for each
subject. The variation of hand poses is limited in this dataset.

The BigHand2.2M dataset [27] contains 2.2 million depth
maps with 21 accurately annotated joint locations. It has large
diversity of global viewpoint, hand articulation and orientation.
There are 10 hand shapes in the training set and an additional
shape for testing.

1Dataset available at https://sites.google.com/view/thubihand or
http://image.ee.tsinghua.edu.cn/data/thubihand.

The HandNet dataset [28] was created from 10 participants,
containing more than 210k depth images captured by Intel
RealSense camera, with annotations of the hand center and
five fingertips.

2) Stereo image based datasets: In [23], a stereo hand pose
dataset was established, containing 18k stereo image pairs
with annotations of palm and finger joints. The images were
captured by a Point Grey Bumblebee2 stereo camera, divided
into 12 different sequences. There is only one subject in this
dataset. It is too small and contains only one hand shape,
which limits the generalization ability of trained models.

In our previous ThuHand17 dataset [21], there are 117k
binocular samples in the training set captured by Leap Motion
from eight subjects. The dataset covers 16 basic hand poses
and extra transitional poses. One subject mainly performed
some basic poses while the other subjects performed all the
basic and transitional poses. The test set contains another 10k
binocular samples of two subjects. However, ThuHand17 is
still not large enough, and the two subjects of its test set are
included in the eight subjects of its training set.

Currently, publicly available datasets of stereo-based hand
poses are insufficient for fingertip localization. In order to
promote research of fingertip localization from stereo images,
we built a new large-scale binocular hand pose dataset called
THU-Bi-Hand. Totally about 447k stereo images from 10
different subjects were collected. The training set contains all
samples of seven subjects and half of the samples of another
two subjects, while the test set contains the rest samples. There
are about 357k and 90k samples in the training and test sets,
respectively. THU-Bi-Hand is the largest binocular hand pose
dataset with a large variety of hand poses, hand movements
and hand shapes.

B. Stereo-based Hand Pose Estimation

Recent approaches to hand pose estimation from stereo
images can be categorized into two categories: indirect meth-
ods [23], [30] and direct methods [20]–[22], [31], [32]. Indirect
methods first compute depth maps from stereo images, and
then estimate hand poses from depth images. Direct methods
estimate hand poses directly from stereo images.

The indirect method of [23] incorporates on-line training
based skin color detector and constrained stereo matching
to compute depth maps from stereo images and conduct
hand segmentation. Then, depth-based hand pose tracking
algorithms [33], [34] are used to estimate hand poses in stereo
image sequences. However, it still cannot get rid of poor
depth quality around fingertips, which will cause difficulties
in fingertip localization. Furthermore, the error in depth map
calculation from stereo images hinders the performance of
depth-based hand pose estimation. In [30], depth proposals
and hand poses are jointly optimized by using Markov-chain
Monte Carlo (MCMC) sampling and two CNNs. The first
CNN evaluates the consistency between the proposed depth
images and the observed stereo images, while the second
CNN estimates hand poses from the proposed depth images.
However, it also suffers from poor depth quality around
fingertips, as with [23]. Besides, it consumes much time with
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a lot of depth proposals. A frame of stereo images under 200
MCMC proposals takes about 360 seconds during prediction.

Direct methods can avoid the influence of noise introduced
during depth map conversion. In [32], a generative hand
model based framework is proposed to optimize the hand
pose that maximizes the color consistency of the two views
of the hand, avoiding the explicit computation of disparity
maps of relatively uniformly colored hands. However, an
explicit definition of the hand model is required for model-
driven methods. It is also sensitive to the initialization of
hand poses and suffers from tracking failures. In [20], hand
mask images extracted from binocular images are exploited
to localize the palm center and fingertips by using a deep
CNN without explicitly computing depth maps. However, it
is unable to use the binocular image features sufficiently
and ignores informative details of hands. In [21], original
and hand mask images are concatenated along the channel
dimension as input. Two-stream convolutional layers with the
same structure but different parameters are used to extract
high level features of left and right images separately. The
features from two streams are fused by FC layers to estimate
the pixel coordinates of the joints. However, the whole feature
maps are used to regress joint positions. Localized features can
be used for better estimation. In [22], inspired by the region
ensemble strategy (REN) [35], [36], multi-view feature regions
are extracted from the feature maps and fused for hand pose
estimation from stereo images. But the positions of regions
are fixed and same for all samples, which is not optimal
for each joint in different samples. Different from [22], we
exploit pose guided structured region ensemble network (Pose-
REN) [37] to improve the performance of localizing hand
joints. Moreover, we build a new large-scale dataset THU-
Bi-Hand to promote research on fingertip localization from
stereo images. Besides, we also provide several benchmarks
on the THU-Bi-Hand dataset, offering a new perspective for
fingertip localization.

C. Feature Extraction and Region Ensemble

CNN-based architectures are proved to be very powerful
in many computer vision tasks due to their strong ability
of image feature extraction [24], [38]–[41]. In [41], residual
representations and shortcut connections are incorporated into
CNNs to address the problem of accuracy degradation when
networks go deeper. By inserting identity shortcut connections
between convolutional layers, the network is forced to learn
residual mapping, which is beneficial for improving perfor-
mance in deeper networks. Residual connections also ease
the optimization by providing faster convergence for relatively
shallow networks.

In [24], the benefits of connections between layers are
further exploited to formulate the DenseNets. DenseNets have
several dense blocks connected by transition layers. Inside
each dense block, every layer is connected to all other layers.
For each layer in a dense block, the feature maps of all
preceding layers are concatenated as inputs, and its own
feature maps are used as inputs of all subsequent layers
after being concatenated with feature maps of other layers.

The dense connections and feature map concatenations can
alleviate the vanishing-gradient problem, strengthen feature
propagation and encourage feature reuse. However, DenseNets
are highly memory consuming because of fast feature maps
growing.

In [35]–[37], CNNs with residual connections are used
for feature extraction in hand pose estimation and achieve
promising results. In [35], [36], the REN is proposed to
improve performance for hand pose estimation from depth
images. With feature maps of the last convolutional layer,
REN divides them into several grid regions. A region ensemble
strategy is used to concatenate the FC layer outputs of different
regions, which can represent multiple views of input images.
Benefiting from the multi-view strategy in both training and
testing as well as the ensemble learning of multiple branches,
REN achieves a great improvement in depth-based hand pose
estimation.

In [37], the region ensemble method is further exploited
to generate the Pose-REN to boost the performance of hand
pose estimation from depth images. Pose-REN is an iterative
refinement procedure estimating more accurate hand poses
in each iteration, taking previously estimated poses as input.
It crops spatial regions around each joint of the previously
predicted hand pose from the feature maps. The cropped
feature regions are integrated hierarchically by FC layers
following the topology of hand joints and produce a refined
hand pose, which is used as a guidance for feature cropping
in the next iteration.

III. BI-POSE-REN

In this section, we describe the details of Bi-Pose-REN, the
proposed approach to fingertip and wrist localization directly
from stereo images. The framework is shown in Fig. 1.

Both cropped stereo images and masks are used as input to
enhance the precision and the robustness of Bi-Pose-REN con-
sidering that original images have informative details of hands,
while masks are robust to variation of hand appearances [21].

First, left image is concatenated with left mask along
the channel dimension, while right image is concatenated
with right mask, producing two-stream 96 × 96 × 2 inputs.
Then, two DenseNet branches with the same structure and
parameters are used to extract feature maps from left and
right inputs respectively. In contrast to [24], to ease the GPU
memory consumption in Bi-Pose-REN, the input images are
first forwarded to convolutional layers and one average pooling
layer before being passed to dense blocks. Furthermore, batch
normalization (BN) does not help in our regression task in
practice. A similar phenomenon has been observed in other
regression tasks such as image super-resolution [43]. As sug-
gested in [43], unlike image classification tasks where scale-
invariant softmax is used to make predictions, the different
formulations of training and testing in the BN layers may
deteriorate the accuracy for regression tasks. Therefore, we
remove the BN layers of standard DenseNets in order to
improve the performance, accelerate training and inference
procedures, as well as reduce memory consumption.

Later on, inspired by Pose-REN [37], we use pose-guided
region ensemble to estimate joint positions from stereo images.
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a large range of hand movements (rotation and translation), a
large diversity of hand shapes and a large size of data samples.
THU-Bi-Hand can be very beneficial for promoting research
in hand pose estimation, especially fingertip detection from
binocular images. Fig. 6 shows some example images (after
preprocessing) and corresponding masks in THU-Bi-Hand.

C. Dataset Analysis

We compare the THU-Bi-Hand dataset and the hand pose
benchmark in [23], by visualizing the global viewpoints, hand
articulation and hand shapes of both datasets with t-SNE
visualization [47], [48] and PCA projection.

1) Hand Viewpoint Space: During data sampling, the sub-
jects were asked to explore the global viewpoint space as large
as possible by moving their hands in all the directions, under
the constraint that the hand region captured by the camera
is neither too small nor too big. They were also asked to
rotate their hands randomly, as long as the rotation angles
were smaller than 90 degrees from the natural state facing
the camera. As shown in Fig. 7 (left), the THU-Bi-Hand
dataset covers much larger hand viewpoint space than the
stereo dataset in [23].

2) Hand Articulation Space: In THU-Bi-Hand, all subjects
were asked to perform 16 basic hand poses and abundant
transforming poses between pairs of basic poses. Compared
with [23], the THU-Bi-Hand dataset explores much larger
hand articulation space (See Fig. 7 (middle and right)).

3) Hand Shape Space: There are totally 10 different hand
shapes in the THU-Bi-Hand dataset, while [23] only contains
one hand shape. Fig. 8 shows the 2D PCA projections of hand
shapes in these two datasets.

V. EXPERIMENTS AND DISCUSSIONS

In this section, Bi-Pose-REN, Chen et al. [20], TSBNet [21]
and Bi-REN [22] are first evaluated on the ThuHand17
and THU-Bi-Hand datasets as the benchmarks for further
research on fingertip localization from stereo images. Then
extra experiments on the THU-Bi-Hand dataset are conducted
to investigate the effectiveness of different modules in Bi-Pose-
REN.

A. Experimental Setup

Bi-Pose-REN was implemented with Caffe [49] using C++.
Stochastic gradient descent (SGD) was adopted with the mini-
batch size of 128, a weight decay of 0.0005 and a momentum
of 0.9. For experiments on ThuHand17, the learning rate
started from 0.001 and was divided by 10 on iteration 100k,
160k and 200k, and the model was trained for total 240k
iterations. As for THU-Bi-Hand, the learning rate was divided
by 10 on iterations 300k, 500k and 600k, and the model
was trained for totally 700k iterations. For Bi-Pose-REN, we
trained the model for two iterations, and used the final model
of the second iteration to test for one iteration.

TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON THUHAND17 AND

THU-BI-HAND. OUR BI-POSE-REN OUTPERFORMS OTHER METHODS.

Method ThuHand17 THU-Bi-Hand

Chen et al. [20] 16.84mm 18.12mm

TSBNet [21] 10.91mm 13.27mm

Bi-REN [22] 8.98mm 9.47mm

Bi-Pose-REN (Ours) 8.08mm 9.17mm

B. Evaluation Metrics

The performance is evaluated via two metrics by follow-
ing [21]: 1) Average 3D distance error is the Euclidean
distance between the 3D coordinate predictions in the Leap
Motion coordinate system and the ground-truths (in millime-
ters). 2) Percentage of success frames is the percentage of
correctly predicted frames where all 3D distance errors of the
six hand joints are smaller than a threshold.

C. Benchmarks of Fingertip Localization

We compare Bi-Pose-REN with previous work including
Chen et al. [20], TSBNet [21] and Bi-REN [22], to demon-
strate its effectiveness. The average 3D distance error and the
percentage of success frames on the THU-Bi-Hand dataset are
shown in Fig. 9. Table I presents the quantitative mean error
for all the joints (the rightmost three bars labelled as “Mean”)
on both datasets.

The mean error of Bi-Pose-REN on the ThuHand17 dataset
is 8.08mm, reduced from 16.84mm, 10.91mm and 8.98mm
compared with Chen et al. [20], TSBNet [21] and Bi-
REN [22], respectively (with about 52%, 26% and 10%
improvements). As for the THU-Bi-Hand dataset, Bi-Pose-
REN outperforms Chen et al. [20], TSBNet [21] and Bi-
REN [22] by 49.39%, 30.90% and 3.17%, respectively. As
shown in Fig. 9, Bi-Pose-REN localizes each joint in smaller
average errors than Chen et al. [20], TSBNet [21] and Bi-
REN [22] on THU-Bi-Hand. Except the wrist, all the joints
have their average errors smaller than 10mm for Bi-Pose-REN.

Moreover, Bi-Pose-REN produces higher percentage of suc-
cess frames than Chen et al. [20] and TSBNet [21] consis-
tently, no matter with large or small thresholds. Compared
with [22], Bi-Pose-REN is slighly better with small thresholds,
and it is comparable with [22] with large thresholds. Specifi-
cally on the THU-Bi-Hand dataset, with a threshold of 20mm,
the percentage of success frames of Bi-Pose-REN is higher
than 75%, while TSBNet [21] about 45%, Chen et al. [20]
lower than 20% and Bi-REN [22] about 75%. In summary,
Bi-Pose-REN not only localizes the wrist and fingertips more
accurately than previous methods, but also surpasses others
in predicting frames under various levels of accuracy require-
ment.

Bi-Pose-REN runs at 55fps on an NVIDIA GeForce 1080TI
GPU in inference phase (6.6ms for initialization plus 11.6ms
for refinement), which is promising for real-time applications.

D. Ablation Studies

For ablation studies of our Bi-Pose-REN, we first introduce
the modules and then evaluate different methods.
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