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Abstract— This paper addresses the problem of safe naviga-
tion in an environment with randomly placed static obstacles.
We convert a commercial powered wheelchair into a semi-
autonomous vehicle with limited sight (environment awareness),
by instrumenting it using off-the-shelf ultrasonic sensors and
associated electronic boards (Arduino). In the continuity of
our previous work where we had used stochastic dynamic
programming to formulate optimization problems which led
to relatively large size look-up tables that can be used as
supervisory control, here we propose to extract rules using those
results (that data). The advantage of this approach is a low-
computational cost for future online implementation, and the
drawback is a suboptimal policy. The feasibility is assessed by
running simulations in a fairly realistic environment (Unity3D).

I. INTRODUCTION

This is our latest work in a series of 3 papers dedicated
to solving the problem of the nearest obstacle avoidance
using the method of stochastic dynamic programming (SDP)
[1]. To recall, our main contribution in [2] was the dy-
namic modeling of the physics (mechanics) of a 2-degree-of-
freedom (DoF) vehicle moving down a variable angle slope.
This was a control-oriented model, fairly simple but keeping
significant, representative physical phenomena of interest.
This was used in our follow-up paper [3] to address a model-
based control problem, namely the obstacle avoidance of
a vehicle with limited awareness of the environment (via
ultrasonic sensors calibrated for a maximum of 2.8 meters
range). Moreover, the driver’s intention was modeled as a
stochastic process, which we called the blind driver model.
We formulated two optimization-based problems, the so-
called longitudinal and lateral control, taking into account
both the agreement with respect to user’s intention as well
as the vehicle’s ability to safely stop/turn. We have shown
the concept feasibility by running simulations in Matlab.

In this paper, we continue with the same control method
presented in [2], [3] and:
• extend it towards both forward and backwards obstacle

avoidance, whereas in [3] we have only dealt with the
forward case;
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• analyze SDP results (fairly large size look-up tables) and
extract a simple rule-based control with low computation
requirement; this can be straightforwardly implemented
online using embedded boards (e.g. Arduino, STM32);
• run simulations in a more realistic environment, namely

Unity3D.

All this work is intended to be implemented and tested
in future, on the research platform depicted in Fig. 1. The
clinical and social motivation is to enable a wider range of
patients to be allowed to use powered wheelchairs, compared
to today’s practice, and more specifically people who suffer
from cognitive (mental), vision, body impairments [4].
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Fig. 1: Instrumented wheelchair.

Although historically the community of assistive technolo-
gies mainly exploited results from the robotics community
[5], in our work we got inspiration from the automotive field.



We took the concept of stochastic dynamic programming
from [6] and translated it towards a substantially different
control problem.

This paper is organized as follows. In section II we present
the discrete model involving behavior both deterministic
(specifically the wheelchair dynamics) and non-deterministic
(namely the user’s intention, initial position of the closest
obstacle). Next, in section III we put forward the latest state
of the custom-made electronics added onto the instrumented
wheelchair depicted in Fig. 1. After that, in section IV we
show how we formulated the forward-backwards safe driving
problem. Finally, section V is dedicated to simulations and
the paper ends with Conclusions.

II. MODELING

The system dynamics is described by a 6-state variables
system having the following coupled, nonlinear dynamics:

vd,k+1 = wvd,k (1)

ωd,k+1 = wωd,k (2)

vk+1 = σ1vk +σ2(vd,k + vu,k) (3)
ωk+1 = σ3ωk +σ4(ωd,k +ωu,k) (4)

θ
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where k stands for time index; superscript “b” for base frame
(attached to the moving frame); subscript “o” for obstacle;
∆t is the sampling time. The other notations are explained
in the following.

For convenience, we converted the joystick 2-axes position
into units of velocities. The first two eqs. (1)-(2) represent
the driver’s intention, expressed as the linear velocity demand
vd and the angular velocity demand ωd. Their dynamics is
governed by the stochastic variables (wvd ,wωd) with asso-
ciated probability distributions depending on a model. In
our previous work [3] we have used the so-called blind
driver model with uniform distribution. Other models can
be mentioned, including novice driver, expert driver, tremor
disorder, naughty child, etc. Pairs (vd,ωd) are bounded by
the admissible domain Ωv,ω which is an ellipsoid.

The middle eqs (3)-(4) are responsible of the deterministic
wheelchair motion, expressed as the actual linear and angular
velocities (v,ω), respectively. They are also bounded by the
set Ωv,ω comprising both positive (vehicle advances forward,
rotates clockwise as seen from above, respectively) and
negative values (vehicle moves backwards, turns counter-
clockwise as seen from above, respectively). The interested
reader can find all the details on how this model was derived
in our previous work [2], including the nominal values for
the parameters σ1 to σ4.

Finally, the location of the nearest obstacle sitting in
the environment is specified by the absolute distance db

o ∈
[db,min

o ,db,max
o ], where db,min

o = 0.04 meters and db,max
o = 2.8

meters; the angle θ b
o ∈ (−π,π] radians, measured coun-

terclockwise with respect to the forward direction of the
advancing vehicle. This representation in polar coordinates
is new compared to our previous work [3]. The motivation
was twofold. Firstly, when the vehicle turns, the perception is
that an obstacle positioned nearby changes its position by a
little, compared to another obstacle sitting far away. For this
reason we find it advantageous to work in polar coordinates.
Later on, in the SDP formulation, when state variables are
placed on an uniform grid, this would physically correspond
to a circular grid in the real world (i.e. the environment), as
illustrated in Fig. 2. In particular, in Fig. 2 notations Q1 to
Q4 correspond to the 4 quadrants covering the entire range
of θ b

o .
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Fig. 2: Circular grid around the wheelchair used to describe
the location of the nearest obstacle.

Second, the ultrasonic sensors measure distance db
o di-

rectly, not the Cartesian position.
The control variables are the additional linear velocity

vu and angular velocity ωu. They are intended to assist
by correcting user’s desired input (vd,ωd) in order to ad-
dress safety concerns (obstacle avoidance). In particular, one
control design requirement is to avoid contradicting user’s
intention:

sign(vd + vu) = sign(vd) and
sign(ωd +ωu) = sign(ωd)

(7)

This is an alternative to other approaches in the literature
which neglect this criteria, for instance the potential field
approaches [7], [8].

III. EXPERIMENTAL RIG

The instrumented wheelchair is an active research platform
in constant evolution. In this section we would like to explain
how the state variables of system (1)-(6) are measured online.
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Fig. 3: Prototyping electrical components placed under
driver’s seat, attached to the inner side of the prototyping
metal frame.

All the electronics was mounted under the driver’s seat, and
can be accessed by unfolding the wheelchair, see Fig 3.

A collaboration with INSA Rennes [9] allowed us to use
a TIVA C board that is directly connected to the CAN bus of
the wheelchair and have access to the joystick data (vd,ωd)
appearing in (1)-(2).

Part of the odometry, two industrial encoders have been
mounted on each drive wheel, counting the rotation of the
wheels. This can be converted into wheelchair Cartesian
position and then estimate velocities (v,ω) from (3)-(4).

Twelve ultrasonic sensors were placed in an array covering
360◦around the wheelchair. They allow measurement of the
distance to the closest obstacle db

o from eq. (6), while the
angle θo can only be roughly known, with an uncertainty
within the 45◦beam range of each sensor.

IV. CONTROL

SDP suffers from the well-known curse of dimensional-
ity (exponential increase of the required computation with
each new state, control variable or uncertainty) [1]. Limited
computation power makes control design on the 6-DoF plant
model (1)-(6) impractical. For this reason we have proposed
in [3] to decouple system dynamics and formulated two
independent problems: the longitudinal and lateral control.
Whereas in [3] we dealt with the forward navigation case,
here we are interested in both forward and backwards safe
navigation.

A. Longitudinal control

By making the assumption that the vehicle is moving in a
straight line without turning (ωd ≡ 0, ω ≡ 0) the only danger
can be the closest obstacle situated ahead or to the rear of
the vehicle, but not to the sides (θo ≡ 0 or θo ≡ π). Thus we
ended up with a 3-DoF system comprising eqs. (1), (3) and
(6).

An issue often neglected or not clearly mentioned in the
literature is when to enable a proposed control and when not.
We address this by splitting state variables space (reachability
domain) into 8 regions, see Fig. 4:

• region 1: (vd < 0,v < 0,db
o > 0)

• region 2: (vd > 0,v < 0,db
o > 0)

• region 3: (vd < 0,v > 0,db
o > 0)

• region 4: (vd > 0,v > 0,db
o > 0)

• region 5: (vd < 0,v < 0,db
o < 0)

• region 6: (vd > 0,v < 0,db
o < 0)

• region 7: (vd < 0,v > 0,db
o < 0)

• region 8: (vd > 0,v > 0,db
o < 0)
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Fig. 4: State space divided into 8 rectangular cuboid shaped
regions: controllable with green, uncontrollable with red, no
danger with purple.

There are two situations that present no danger of hitting
any obstacle. This happens when: (i) the vehicle is advancing
backwards by following the associated instruction of the user,
while the obstacle is situated in front of the vehicle (region
1); (ii) the vehicle is advancing forward, again following
the corresponding instruction from the user, and the obstacle
is situated to the rear of the vehicle (region 8). In these
two situations, we do not need to enable any supervisory
control, just let the user input control freely the wheelchair’s
behavior.

There are four situations when the wheelchair is un-
controllable (there is no reaction of the vehicle to inputs
coming from the joystick). This happens: (i) when the
vehicle advances forward but the joystick values correspond
to requesting to advance backwards (regions 2 and 6); (ii)
when the vehicle advances backwards but the joystick is set
in position forward (regions 3 and 7). In all these situations,
the wheelchair behaves as if we let go of the joystick and
consequently starts braking.1

Finally, there are two situations when the wheelchair is
controllable and a danger is present ahead (region 1) or at
the rear (region 8). It is here that we need to enable assistive
control, by formulating two optimization problems, one for
each region. We solved them by SDP. We kindly guide the
reader to check the problem formulation of our previous
work [3] where we have treated only region 1. The same
procedure can be applied for region 8. The outcome of these

1Note that this behavior corresponds to the default parameters set on this
particular wheelchair and can be modified using the manufacturer’s hardware
dongle and software (dealer or OEM).



two SDP implementations are two look-up tables of fairly
large size (in the order of tens of Megabytes) which can be
fairly easy handled by prototyping hardware (e.g. Raspberry
Pi, Odroid). However, their size can be problematic if an
attempt is made to implement them on embedded boards with
limited memory (e.g. Arduino, STM32). For this reason we
propose to extract rules by making an analysis of the look-up
table data.

Rule-based suboptimal control: Depending on the distance
to the nearest obstacle db

o , there are two main tendencies
that can be observed in the 3-dimensional look-up table data
vu = vu(vd,v,db

o):
• at close distance values for db

o , the assistive control vu will
privilege safety thus counteract precipitated user’s demand
vd; however, vu will never contradict user’s intention by
virtue of condition (7);
• at far distance values for db

o , the user’s demand will prevail
and the assistive control effect will vanish.

Apart these two opposing tendencies, there is a transition
region between them. The ability to extract some rules in
this region depends highly on how fine (dense) the SDP grid
was set up from the beginning. To simplify our presentation,
we will use a linear interpolation function f depicted in
Fig. 5, although more generally it is a polynomial. Note the
maximum value of f is reached at the limit of visibility of the
ultrasonic sensors db

o = db,max
o , while the minimum value of

f is set to an arbitrary db
o ≥ db,min

o in order to allow safe stop.
Regarding the latter, note the value set in Fig. 5 is rather too
conservative, corresponding to a rather too careful design.
However, it is compatible with the ideal (virtual) utrasonic
sensor from section V. In a future work, this value should be
lowered prior to the implementation on the actual vehicle.
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Fig. 5: Transition function f (db
o).

To summarize, the rule-based longitudinal control is pre-
sented as Algorithm 1. To simplify notations, we dropped
out the index k everywhere.

B. Lateral control

In this case we make the assumption that vehicle is
turning only, without advancing linearly (vd ≡ 0, v ≡ 0).
Consequently, the nearest obstacle will always be situated
at the same constant distance db

o . We end up with the 3-DoF
system consisting of eqs. (2), (4) and (5).

The same analysis presented in section IV-A was carried
out. For brevity reasons, we present only the final result,

vu = 0 //initialization: longitudinal control is disabled
if (vd > 0 and v≥ 0 and θ b

o >−22.5◦ and
θ b

o < 22.5◦) //region 4 and obstacle present ahead
of the vehicle

or (vd < 0 and v≤ 0 and (θ b
o > 157.5◦ or

θ b
o <−157.5◦)) //region 5 and obstacle present to

the rear of the vehicle
then

vu = f (db
o)vd

end
Algorithm 1: Rule-based longitudinal control

namely the rule-based lateral control from Algorithm 2. As
previously, to simplify notations, we dropped out the index
k everywhere. Note that in Algorithm 2 we have used the
same function f from Fig. 5 although more generally, they
need not be the same.

C. Geometric interpretation

It is interesting to notice that Algorithms 1 and 2 have
a simple visual interpretation. If we look on the joystick
map (vd,ωd), the effect of each control will be to reduce
(shrink) the admissible domain of the cumulative request
(vd + vu,ωd + ωu) by a certain amount. If we look on
Fig. 6b:
• the longitudinal control acts on the vertical axis (see the

straight boundary orange lines and arrows in Fig. 6b),
• the lateral control acts on the horizontal axis (see the

straight boundary dark red lines and arrows in Fig. 6b)
A similar geometric analysis can be carried out with the
control design of the team in INSA Rennes [4], [10].

(a) Physical
wheelchair joystick

(b) Associated maximum admissible do-
main Ωv,ω in blue

Fig. 6: Reduction of the allowed control inputs sent to
the power module, consequence of enabling the assistive
(corrective) control.

To summarize, this assistive control acts as a virtual
damper between the user and the obstacle. To justify this, we



doApplyLateralControl = false //initialization
if (vd > 0 and v > 0) //vehicle advances forward and

that state space is controllable
then

if (ωd > 0 and ω > 0 and θ b
o ∈ Q1) //vehicle

turns counterclockwise and there is an obstacle
(danger) in the direction where it heads to

or (ωd < 0 and ω < 0 and θ b
o ∈ Q4) //vehicle

turns clockwise and there is an obstacle
(danger) in the direction where it heads to
then

doApplyLateralControl = true
end

end
if (vd < 0 and v < 0) //vehicle advances backwards

and that state space is controllable
then

if (ωd > 0 and ω > 0 and θ b
o ∈ Q3) //vehicle

turns counterclockwise and there is an obstacle
(danger) in the direction where it heads to

or (ωd < 0 and ω < 0 and θ b
o ∈ Q2) //vehicle

turns clockwise and there is an obstacle
(danger) in the direction where it heads to
then

doApplyLateralControl = true
end

end
ωu = 0 //initialization: lateral control is disabled
if (doApplyLateralControl == true) then

ωu = f (db
o)ωd

end
Algorithm 2: Rule-based lateral control

recall the damping force is defined as the product between
a damping coefficient the actual speed. In our case, function
f (·) acts as a variable damping coefficient.

V. SIMULATIONS

In this paper, we provide more realistic simulations com-
pared to our previous work [2], [3].

Two tests have been performed to evaluate our proposed
algorithm in terms of safety and manoeuvrability. A realistic
wheelchair model is built in Unity3D where its kinematic
constraints have been taken into account (see Fig. 7). For
simpler implementation, an ideal (virtual) 360 degree ultra-
sonic sensor is used to detect the surrounding obstacles at a
frequency of 20 Hz. The velocity commands sends are sent
from ROS to Unity3D every 0.08 seconds.

A. Safety Test

In order to test whether our proposed shared-control
algorithm ensure safety, a simple safety test has been imple-
mented. Six scenarios have been designed to test longitudinal
and lateral control by placing a cylinder in different positions
with respect to the wheelchair. The user expresses his driving
intention by pressing the corresponding arrow keys on the

Fig. 7: Instrumented wheelchair model in Unity3D

keyboard. In this test, we deliberately drive the wheelchair
towards the obstacle and record the resultant behavior.

B. Maneuverability Test

In order to test the maneuverability of our algorithm, we
designed a more complex navigation scenario by building
a maze with four static cylinder obstacles (Fig. 8). During
the test, an operator drives the wheelchair through the maze
from a starting position to an end line. The completion
time and number of collisions were recorded to evaluate the
performance. In addition, to guarantee the comparability, the
operator attempted to avoid the obstacles in the same pattern
(e.g. avoid the first obstacle from the left, then avoid the
second one from the right etc.) through three repeated trials.

Fig. 8: Maze for manoeuvrability test, walls have thickness
of 6m and static obstacles have radius of 0.5m. Yellow star
indicate the start position and green star shows the goal. (a)
Top view; (b) Wheelchair view

C. Results

No collisions were observed during the safety test. For
longitudinal and lateral control, the wheelchair simply de-
creased its linear and angular velocities, respectively, and
stopped correctly at the minimum allowed distance.



Fig. 9: View from above: Trajectory of the vehicle’s center of mass, in Cartesian space (x-axis and y-axis measured in
meters), for 3 trials of the manoeuvrability test. The color at each point in space along the trajectory represents vehicle’s
linear velocity v ∈ [0,vmax], with vmax = 0.54 m/s (see colorbar). Green lines indicate the walls; the four static obstacles that
need to be avoided are illustrated with blue dots.

In terms of the maneuverability test, three trials have been
performed and visualized as shown in Fig. 9. On average, the
completion time is 97.8 seconds and no collisions occurred.

Our preliminary simulation results indicate that the control
algorithm does indeed exhibit the level of safety required,
whilst still allowing sufficient maneuverability. In the fu-
ture, we aim to test it in more complicated scenarios and
then eventually on the prototype wheelchair that we have
built. This will involve experiments with human participants,
which could be healthy, able-bodied or potential end-users
or existing wheelchair users.

VI. CONCLUSIONS
This paper presented two velocity-based obstacle avoid-

ance control algorithms, namely the longitudinal and the
lateral control, respectively. Simulations in Unity3D on a
wheelchair model show feasibility, whilst we intend to test
it on the actual vehicle in the future.
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