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Abstract 35 

Congenital hypopituitarism (CH) is rarely observed in combination with severe joint 36 

contractures (arthrogryposis). Schaaf-Yang syndrome (SHFYNG) phenotypically 37 

overlaps with Prader-Willi syndrome, with patients also manifesting arthrogryposis. L1 38 

syndrome: a group of X-linked disorders including hydrocephalus and lower limb 39 

spasticity, also rarely presents with arthrogryposis.  40 

We investigated the molecular basis underlying the combination of CH and 41 

arthrogryposis in five patients. The heterozygous p.Q666fs*47 mutation in the 42 

maternally imprinted MAGEL2 gene, previously described in multiple SHFYNG 43 

patients, was identified in Patients 1-4, all of whom manifested growth hormone 44 

deficiency and variable SHFYNG features, including dysmorphism, developmental 45 

delay, sleep apnea and visual problems. Non-identical twins (Patients 2 and 3) had 46 

diabetes insipidus and macrocephaly, and Patient 4 presented with ACTH 47 

insufficiency. A hemizygous L1CAM variant, p.G452R, previously implicated in L1 48 

syndrome patients, was identified in Patient 5, who presented with antenatal 49 

hydrocephalus.  50 

Human embryonic expression analysis revealed MAGEL2 transcripts in the 51 

developing hypothalamus and ventral diencephalon at Carnegie stages (CS) 19, 20 52 

and 23, and in Rathke’s pouch at CS20 and 23. L1CAM was expressed in the 53 

developing hypothalamus, ventral diencephalon and hindbrain (CS19, 20, 23), but not 54 

in Rathke’s pouch.  55 

We report MAGEL2 and L1CAM mutations in four pedigrees with variable CH and 56 

arthrogryposis. Patients presenting early in life with this combined phenotype should 57 
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be examined for features of SHFYNG and/or L1 syndrome. This study highlights the 58 

association of hypothalamo-pituitary disease with MAGEL2 and L1CAM mutations.  59 

 60 

Introduction 61 

Schaaf-Yang syndrome (SHFYNG) (OMIM: 615547) is a rare congenital disorder that 62 

is often mis-diagnosed as Prader-Willi syndrome (PWS) (OMIM: 176270), but includes 63 

arthrogryposis within the phenotypic spectrum. Arthrogryposis multiplex congenita 64 

(OMIM: 208100), commonly known as arthrogryposis, occurs in 1/3000 live births and 65 

involves multiple congenital joint contractures in two or more areas of the body, 66 

resulting from reduced or absent fetal movement. Arthrogryposis multiplex congenita 67 

has been reported in a patient with pituitary ectopia, who had seizures thought to be 68 

caused by hypoglycemia and who was later found to have a small anterior and an 69 

ectopic posterior pituitary (PP); however, no genetic etiology was identified (1). The 70 

main overlapping characteristic features of SHFYNG and PWS are hypotonia, feeding 71 

difficulties during infancy, global developmental delay/intellectual disability and sleep 72 

apnea (2-4). Patients with SHFYNG, however, lack certain stereotypical PWS features 73 

such as hyperphagia and subsequent obesity. PWS is linked to a specific locus 15q11-74 

q13 within the genome, where five maternally imprinted (paternally expressed) genes, 75 

namely MKRN3, MAGEL2, NDN, NPAP1, SNURF-SNRPN, and six maternally-76 

imprinted small nucleolar RNA (snoRNA) genes/clusters are located (3). Different 77 

deletions in this region give rise to variable PWS with a combination of genes being 78 

responsible for different manifestations of the disease (5-7).  79 

L1 syndrome describes a range of X-linked disorders including spastic paraplegia, 80 

MASA (Mental retardation, Aphasia, Spasticity, and Adducted thumbs) syndrome 81 
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(OMIM: 303350), X-linked hydrocephalus with stenosis of the aqueduct of Sylvius 82 

(HSAS) (OMIM: 307000), and X-linked complicated corpus callosum agenesis (8). L1 83 

syndrome occurs in 1/30,000 individuals and includes hydrocephalus, variably severe 84 

intellectual deficit, and spasticity of the lower limbs, with generalized contractures in 85 

rare cases. MASA syndrome, named after the characteristic phenotypes present in 86 

patients, also includes adducted thumbs in 50% of cases. A small number of patients 87 

(<20) have a combination of L1 syndrome and Hirschsprung disease, a rare disorder 88 

affecting the colon leading to severe constipation and intestinal obstruction due to 89 

missing ganglion cells in the myenteric (Auerbach’s) plexus in the colon (9).  90 

In this study, we sought to investigate the genetic etiology in five patients from four 91 

unrelated families who presented with variable congenital hypopituitarism (CH) and 92 

arthrogryposis.  93 

 94 

Materials and Methods 95 

Exome sequencing of Patients 1-5 96 

The full coding region of Patients 1-5 were sequenced by GOSgene, London UK 97 

(Patients 1 and 5), GOSH UK as part of the Deciphering Developmental Disorders 98 

(DDD) Study (Patients 2 and 3) and by colleagues at the Pontificia Universidad 99 

Catolica de Chile (Patient 4). Raw sequencing data were mapped against the 100 

GRCh37/hg18 reference genome and data were analyzed using the Ingenuity® 101 

Variant Analysis™ software (https://www.qiagenbioinformatics.com/ 102 

products/ingenuity-variant-analysis) from QIAGEN, Inc (GOSgene). All remaining 103 

filtered variants were considered to be potentially pathogenic disease-causing 104 
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mutations. Exome sequencing and data analysis for Patients 1 and 5 were performed 105 

by GOSgene as previously described (10), for Patients 2-3 under the DDD study as 106 

previously described (11), and for Patient 4 by Ambry Genetics (www.ambrygen.com) 107 

using their standard protocol and filtering criteria. Mutations were confirmed in the 108 

patients via Sanger sequencing using specifically designed exon-spanning primers 109 

that amplify the DNA region containing the variant (annealing temperatures and primer 110 

sequences are available upon request). A chromosome microarray was also 111 

performed on the twins (Patients 2-3) (specific details of this protocol are available 112 

upon request). The appropriate ethical approval for the genetics and human embryonic 113 

tissue expression studies has been obtained prior to this project taking place. The 114 

patients/patient guardians gave full consent to all clinical and genetic studies carried 115 

out on their blood/DNA. 116 

 117 

Human embryonic expression studies using in situ hybridisation 118 

Human embryonic tissue sections were obtained from the Human Developmental 119 

Biology tissue Resource (HDBR) (http://hdbr.org) and selected from Carnegie stage 120 

(CS) 16, 19, 20 and 23 (equivalent to gestational age (GA) 5.5, 6, 7 and 8 weeks) 121 

respectively. Digoxigenin (DIG) RNA probes were made using purified vectors 122 

containing the full-length human cDNA of wild-type MAGEL2 (in the pCR4-TOPO 123 

vector, IMAGE ID: 8327725) and L1CAM (in the pCR-XL-TOPO vector, IMAGE ID: 124 

8991945) (Source Bioscience) respectively. Gene expression studies were performed 125 

by in situ hybridisation as previously described (12), to generate a human embryonic 126 

hypothalamo-pituitary expression profile for both MAGEL2 and L1CAM.  127 

 128 

http://www.ambrygen.com/
http://hdbr.org/
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 129 

 130 

Results 131 

Patient 1 132 

A white European patient presented at the age of 3.2 years with short stature, 133 

hypoglycemia, and arthrogryposis with scoliosis and a flexion deformity of the knees. 134 

She was hypotonic since birth and required nasal oxygen until 5 weeks of age. A 135 

respiratory collapse at 7 weeks of age necessitated a prolonged PICU admission. She 136 

was also noted to have laryngeal polyps. She was diagnosed with growth hormone 137 

deficiency (GHD), with a peak GH of 6.4μg/L and an undetectable IGF-I, at age 3.7 138 

years (Table 1). GH treatment was commenced at 4 years of age (Figure 1A). 139 

Dysmorphic features were noted, including bulbar palsy, a long face, a prominent 140 

forehead and micrognathia. She also had global developmental delay and a squint 141 

with mild optic nerve hypoplasia (ONH) and cerebral visual impairment. She had 142 

central sleep apnea and gastro-esophageal reflux. MRI of the brain was reported 143 

normal (Figure 2A). 144 

Patients 2 and 3 145 

Female non-identical white European twins with distal arthrogryposis were initially 146 

referred with hypernatremia, and were then diagnosed with diabetes insipidus (DI) 147 

shortly after birth. Subsequent short stature led to a diagnosis of GHD [peak GH to 148 

stimulation of 4.8μg/L and 3.2μg/L respectively, with an undetectable IGF-I, at 0.8 y; 149 

(Table 1)]. Their DI was treated with Desmopressin since birth and GH treatment 150 

commenced after 1 year of age (Figure 1B-C). The patients had distinctive features 151 
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including macrocephaly, a long face with bi-temporal narrowing, frontal bossing, 152 

scaphocephaly, micrognathia and a cleft/high arched palate. Patient 2 had nystagmus 153 

with optic nerve atrophy and was severely sight impaired, whilst her sister had ONH 154 

with visual impairment. They both had global developmental delay. Patient 2 is 155 

wheelchair bound and unable to speak, whilst Patient 3 is able to stand and has basic 156 

vocalization. The twins also had central sleep apnea and scoliosis. Patient 2 had 157 

chronic lung disease with supplemental oxygen requirement at night and had a 158 

tracheostomy until the age of 6 years. Patient 3 had a tracheostomy until 20 months 159 

of age. On MRI, Patient 2 showed evidence of progressive global cerebral  hemisphere  160 

atrophy  with  relative  preservation  of  the  posterior  fossa  structures, with a thin 161 

corpus callosum, a small PP, and optic nerve hypoplasia (Figure 2A). Patient 3 had 162 

generalised underdevelopment of the brain with a mature right parieto-occipital infarct 163 

and a thin corpus callosum, optic nerve hypoplasia, and a normal PP (Figure 2B). 164 

Patient 4 165 

A male Caucasian patient from Chile presented with short stature and a deceleration 166 

in growth rate at the age of 2.8 years. He was diagnosed with GHD (a stimulation test 167 

was not performed due to hypotension), adrenal insufficiency with a peak stimulated 168 

cortisol of 281 nmol/L (Table 1), transient hyperprolactinemia, and arthrogryposis. The 169 

latter consisted of contractures, shortening of the extremities, and limited extension of 170 

the elbows, knees, hips, and fingers, namely camptodactyly. He was started on 171 

hydrocortisone at 2.9 years and GH treatment at 3.5 years of age (Figure 1D). He had 172 

strabismus, global developmental delay with autism spectrum disorder (ASD), 173 

generalized hypotonia and dysmorphic features including a long face with bi-temporal 174 

narrowing, a prominent forehead, micrognathia, glossoptosis and a high arched 175 
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palate. He had gastroesophageal reflux and central sleep apnea, with respiratory 176 

complications leading to a tracheostomy. Cardiac complications included an osteum 177 

secundum interauricular communication with spontaneous closure. Cryptorchidism 178 

resolved with a bilateral orchidopexy. His MRI was normal (Figure 2D).  179 

Patient 5 180 

A male Afro-Caribbean patient presented with antenatal ventriculomegaly and 181 

dysmorphic features including bilateral radial clubbed hands and plagiocephaly. 182 

Flexion deformities that affected both the wrists and hands were noted antenatally, 183 

and he was diagnosed with distal arthrogryposis with adducted thumbs and flexion 184 

deformities of his digits post-natally. A ventriculo-peritoneal shunt was inserted at 4 185 

days of age, and hypoglycemic seizures ensued at the age of 0.7 years. He was later 186 

diagnosed with GHD (peak GH 3.7μg/L; undetectable IGF-I) and GH treatment was 187 

commenced from 1 year of age (Table 1) (Figure 1E). Gastrointestinal problems 188 

included dysphagia, and the patient was fed via a percutaneous endoscopic 189 

gastrostomy. Other phenotypic features present in this patient included a ventricular 190 

septal defect, severe obstructive sleep apnea, global developmental delay, 191 

generalised hypotonia, right hip subluxation and scoliosis. Bilateral astigmatism with 192 

a left divergent squint and subsequent visual impairment were apparent upon eye 193 

examination. His MRI revealed a bulky tectum, generalised white matter loss and a 194 

thin corpus callosum, with no evidence of obstructive hydrocephalus (Figure 2C).  195 

 196 

 197 

 198 
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Genetic analysis of Patients 1-5 199 

Whole exome sequencing was performed on the 5 patients with CH and arthrogryposis 200 

at three different institutions respectively. The results identified the MAGEL2 201 

c.1996dupC, p.Q666Pfs*47 truncation mutation in Patient 1 (GOSgene), Patients 2-3 202 

(GOSH UK as part of the Deciphering Developmental Disorders (DDD) Study), and 203 

Patient 4 (Pontificia Universidad Catolica de Chile). A chromosome microarray was 204 

also performed on the twins (Patients 2-3), which revealed a 16q11 duplication, 205 

45,186,600-45,416,670, in Patient 2 only. A hemizygous L1CAM c.1354G>A, 206 

p.G452R variant was identified in Patient 5 (GOSgene) who also had hydrocephalus 207 

and other features consistent with L1 syndrome. The p.G452R variant is located at a 208 

highly conserved residue across multiple species and is located within the Ig5 209 

extracellular domain of the L1 protein. Both MAGEL2 p.Q666Pfs*47 and L1CAM 210 

p.G452R are absent from control databases, including the gnomAD browser 211 

(http://gnomad.broadinstitute.org/).  212 

 213 

Human embryonic expression profile of MAGEL2 and L1CAM using in situ 214 

hybridisation 215 

MAGEL2 216 

At the early embryonic stage of CS16, there is no MAGEL2 expression in the 217 

developing hypothalamus or in Rathke’s pouch (RP) (the primordium of the anterior 218 

pituitary). However, there is strong transcript staining specifically in the inferior 219 

ganglion of the vagus nerve and the spinal ganglia. At CS19, MAGEL2 mRNA 220 

transcripts appear in the hypothalamus and the spinal cord, but are undetectable in 221 

http://gnomad.broadinstitute.org/
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RP. At CS20, strong expression is present throughout the ventral diencephalon, and 222 

in both RP and the PP. This expression is maintained within the hypothalamus and 223 

RP at CS23 and noted in the trigeminal ganglia (Figure 3). There was no staining 224 

visualised using the sense control probe on equivalent sections at any stage. 225 

 226 

L1CAM 227 

There was no L1CAM mRNA transcript staining at CS16 in the human embryonic brain 228 

sections incorporating the hypothalamus and RP. At CS19 there is strong expression 229 

in the hypothalamus and trigeminal ganglia, but not in RP. Staining was also noted in 230 

the metencephalon and throughout the ventral diencephalon at this stage. L1CAM 231 

expression is maintained in the hypothalamus and forebrain as well as the hindbrain 232 

during CS20 and 23 (Figure 4). No staining was observed in RP or in the PP at any 233 

stage analysed in this study. The sense control probe produced no staining at any 234 

stage.  235 

 236 

Discussion 237 

MAGEL2 is a member of the type II MAGE gene family involved in neurogenesis and 238 

brain function (13, 14). It is thought to enhance ubiquitin ligase activity (15), act as a 239 

regulator of retrograde transport and promote endosomal F-actin assembly, and is 240 

involved in the regulation of the circadian clock (16). In humans, loss of function point 241 

mutations causing truncations in the MAGEL2 gene were initially implicated in the 242 

etiology of variable PWS-like features and contractures of the small finger joints, a 243 

phenotype now commonly referred to as SHFYNG syndrome (3).  244 
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Magel2-null mice present with similar features to PWS in humans, including neonatal 245 

growth retardation, excessive weight gain after weaning, impaired hypothalamic 246 

regulation, reduced fertility and excess fat with decreased muscle mass (17-20). 247 

Additionally, Magel2-knock out mice elicit altered social phenotypes and impaired 248 

ability to distinguish between known and novel partners (21). Recent studies have 249 

concluded that POMC neuron activity and its communication with downstream targets 250 

is significantly compromised (22), and that oxytocin neuronal activity is suppressed 251 

(23) in Magel2-deficient mice. 252 

Specific association of the MAGEL2 gene with PWS was first suggested following 253 

expression studies using northern blotting, where MAGEL2 was expressed in the adult 254 

human brain, notably the hypothalamus, and in the fetal brain (however details were 255 

not specific), lung and kidney (24). The authors concluded that loss of MAGEL2 may 256 

explain abnormalities in brain development in PWS individuals. Expression analysis 257 

performed in the current study has further characterised the location of MAGEL2 258 

transcripts within the developing fetal human brain. We have shown that MAGEL2 is 259 

highly expressed in the developing hypothalamus from 6 to at least 8 weeks GA, and 260 

in the developing pituitary gland (RP) at 7-8 weeks GA (Figure 3), supporting the 261 

hypothesis that this gene plays a critical role during embryonic brain development.  262 

The MAGEL2 mutation c.1996dupC, p.Q666Pfs*47 identified in Patients 1-4 has been 263 

previously identified in two siblings diagnosed with a neurodevelopmental disorder 264 

including hypotonia, ASD, hyperinsulinemic hypoglycemia and features of 265 

arthrogryposis (25). Subsequently, the c.1996delC, causing a frameshift in the same 266 

location, p.Q666Sfs*36, was described in three patients with a lethal form of 267 

arthrogryposis (26). Both the c.1996delC deletion and c.1996dupC duplication have 268 
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since been identified in multiple SHFYNG patients. These data widened the 269 

phenotypic spectrum of SHFYNG, expanding the range to include fetal akinesia and 270 

arthrogryposis (27, 28). In previous reports of patients harboring MAGEL2 truncating 271 

mutations, intellectual disability varied from mild to severe, and ASD was not always 272 

present. The majority of affected patients had arthrogryposis (varying in severity), 273 

short stature, and hypogonadism, which are all common features in SHFYNG patients 274 

(3, 27, 28), with one female patient manifesting hypogonadotropic hypogonadism (HH) 275 

(27). Interestingly, a recent report describes the first SHFYNG patient with early onset 276 

obesity to harbor a MAGEL2 truncation (de novo c.1850G>A, p.Trp617*) (29).  277 

GHD has frequently been identified in SHFYNG patients; however other pituitary 278 

deficits have not been described until recently. Two siblings and an unrelated female 279 

patient with SHFYNG, arthrogryposis and severe respiratory difficulties were found to 280 

carry truncating MAGEL2 variants, p.Q638* and p.S1044* respectively, and 281 

manifested variable hypopituitarism (30). One of the siblings was diagnosed with 282 

central diabetes insipidus and gonadotrophin deficiency, whilst the unrelated patient 283 

was diagnosed with panhypopituitarism including GHD, central hypothyroidism, 284 

adrenal insufficiency, and gonadotrophin deficiency, with a hypoplastic anterior 285 

pituitary gland on MRI (30). Patients 2 and 3 from the current study manifest DI, and 286 

Patient 4 has multiple pituitary hormone deficiency including GHD and ACTH 287 

insufficiency. This is the first association of the p.Q666Pfs*47 frameshift with 288 

endocrinopathies in SHFYNG patients. Together with the previous report (30), these 289 

findings further highlight how different MAGEL2 truncations seem to play a role in the 290 

etiology of both DI and CPHD as part of SHFYNG syndrome, which until recently were 291 

not major phenotypic features reported in such patients. Another recent case report 292 

has identified the novel MAGEL2 p.Q1007* truncation in a SHFYNG patient with GHD, 293 
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hypothyroidism and hyperprolactinaemia (31), again suggesting that variable CH is 294 

being increasingly identified in these patients. Interestingly, a previous report 295 

described a patient with Moebius syndrome, GHD and arthrogryposis (32). Although 296 

no genetic mutations were identified in this patient, it demonstrates the link between 297 

these diverse phenotypes.   298 

A recent publication reported the first association of MAGEL2 truncation mutations 299 

with Chitayat-Hall syndrome (OMIM: 208080), which has a strong phenotypic overlap 300 

with SHFYNG (33). Chitayat-Hall syndrome is characterized by distal arthrogryposis, 301 

intellectual disability, dysmorphic features and hypopituitarism, with GHD being 302 

present in all reported cases to date (34). The same p.Q666Pfs*47 MAGEL2 303 

truncation was present in one of the Chitayat-Hall syndrome patients reported, 304 

demonstrating how variable overlapping phenotypes between SHFYNG and Chitayat-305 

Hall syndrome arise from the same genotype, and suggesting that full length MAGEL2 306 

is crucial for normal development of the human brain, and for normal hypothalamo-307 

pituitary function. Chitayat-Hall syndrome and SHFYNG may in fact be the same 308 

syndrome albeit with variable penetrance, with some patients having sleep apnea, 309 

currently noted as a characteristic feature of SHFYNG but not Chitayat-Hall. There are 310 

an increasing number of patients with SHFYNG with MAGEL2 mutations (35) that 311 

have not had their hypothalamo-pituitary function tested, suggesting that pituitary 312 

dysfunction may be a more frequent feature of SHFYNG, as is observed with Chitayat-313 

Hall syndrome. Early endocrine diagnosis is crucial if endocrine morbidity is to be 314 

prevented, and therefore essential for improvement of the quality of life of these 315 

complex patients.  316 
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Mutations in L1CAM, located on the X chromosome (Xp28) and encoding the L1 317 

protein, have been implicated in the etiology of L1 syndrome (8). Female carriers may 318 

also manifest minor features of this syndrome such as adducted thumbs or mild 319 

intellectual deficit (36). L1 is an axonal glycoprotein cell adhesion molecule that plays 320 

a role in neuronal migration and differentiation, including axon fasciculation (37), 321 

neurite outgrowth (38), synapse formation (39) and myelination (40). L1CAM-null mice 322 

have hydrocephalus, a smaller hippocampus and cerebellum, corpus callosal 323 

hypoplasia, hyperfasciculation of the corticothalamic tracts, and pyramidal tract 324 

abnormalities (41-46). Mutations within the cytoplasmic domain of the L1 protein 325 

(L1CD) have been described in MASA syndrome, which led to murine studies with 326 

L1CD disruption. Surprisingly these mice have normal brain morphology, although 327 

they have defects in motor function (47). The hemizygous L1CAM mutation, p.G452R, 328 

identified in Patient 5 has been described previously in a patient with severe 329 

hydrocephalus (48). This mutation lies within, and is predicted to affect, the structure 330 

of the L1 extracellular domain required for correct folding of the protein, and 331 

subsequently thought to affect binding through the distortion of domain conformation 332 

(49). Further investigations supported this, with a decreased ligand-binding ability in 333 

the presence of L1CAM p.G452R (50).  334 

In rodents, L1cam is expressed in migrating neuron cell bodies from embryonic stage 335 

9.5 and is later expressed in growing and regenerating axons. Myelinating Schwann 336 

cells express L1CAM during embryonic and postnatal development, whilst non-337 

myelinating Schwann cells express L1CAM through adulthood (51-54). The human 338 

L1CAM expression profile generated in this study revealed high transcript expression 339 

in the hypothalamus from 6-8 weeks of development (Figure 4). However, no 340 

expression was visible in RP or the PP, suggesting that this gene is hypothalamic and 341 
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plays a critical role in this region during brain development. Patient 5 is the first patient 342 

to our knowledge that has an L1CAM mutation and manifests GHD with pituitary 343 

dysfunction associated with features of L1 syndrome.  344 

The trigeminal ganglia are sensory ganglia of the trigeminal nerve, responsible for 345 

sensation in the face and for motor functions. Both MAGEL2 and L1CAM expression 346 

within these specific tissues and during midline craniofacial development may suggest 347 

that the sensation in the face may be impaired in patients with mutations in these 348 

genes. However, the presence of global developmental delay did not allow 349 

assessment of this function. Limited availability of human embryonic sections did not 350 

allow analysis of expression beyond 8 weeks of gestation.   351 

To summarise, our data suggest that patients with SHFYNG and L1 syndromes should 352 

all be screened and monitored for hypothalamo-pituitary abnormalities. Furthermore, 353 

CH patients with accompanying joint contractures should be screened for MAGEL2 354 

and L1CAM mutations and evaluated/monitored for additional phenotypes commonly 355 

present in SHFYNG or L1 syndrome respectively. Our data and previously published 356 

data on SHFYNG and L1 syndromes suggest that MAGEL2 or L1CAM, respectively, 357 

should be screened for mutations using Sanger sequencing before next generation 358 

techniques are conducted, as there is a high chance that a mutation lies within these 359 

genes in such patients. This would be the most cost-effective approach in screening 360 

for the most likely genetic diagnosis. However, in those cases where a mutation is not 361 

identified in either of these genes, either whole exome or genome sequencing may be 362 

performed. 363 

 364 

 365 
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 366 

Figure 1 (A-E): Growth charts of (A) Patient 1, (B) Patient 2 and (C) Patient 3, (D) 367 

Patient 4 and (E) Patient 5.  368 

The red labelled arrow indicates when growth hormone (GH) treatment commenced 369 

in the patients respectively. The purple arrow on (D) indicates commencement of 370 

hydrocortisone.    371 

Figure 2: Magnetic resonance imaging (MRI) for Patients 2, 3 and 5.  372 

(A) MRI of Patient 1. MRI shows a normal anterior and posterior pituitary, with no 373 

other anomalies. (B) MRI of Patient 2 (twin). MRI reveals global cerebral hemisphere 374 

atrophy with a small posterior pituitary, a thin corpus callosum and small optic nerves. 375 

(C) MRI of Patient 3 (twin). MRI reveals generalised underdevelopment of the brain. 376 

The posterior pituitary was normal with small optic nerves and a thin corpus callosum. 377 

(D) MRI of Patient 4. MRI shows a normal anterior and posterior pituitary, with no 378 

other anomalies. (E) MRI of Patient 5. MRI shows generalised underdevelopment of 379 

the brain and a very thin corpus callosum. AP, anterior pituitary; PP, posterior pituitary; 380 

WML, white matter loss; CC, corpus callosum; ON, optic nerve. 381 

Figure 3: Human MAGEL2 expression during embryonic development.  382 

(A) Carnegie stage (CS) 16, the equivalent of 5.5 weeks into embryonic development. 383 

MAGEL2 expression is noted in the inferior ganglion of the vagus (IGV) nerve and the 384 

spinal ganglia (SG). (B) At CS19, 6 weeks into development, there are high levels of 385 

mRNA transcripts in the developing hypothalamus (Hyp), ventral diencephalon (VD), 386 

and (C) spinal cord (SC). (D) At CS20, 7 weeks into development, strong transcript 387 

staining is present throughout the VD, and in both Rathke’s pouch (RP) and the 388 
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posterior pituitary (PP). (E) A magnified image of the RP and PP from image (D). (F) 389 

At CS23, 8 weeks into development, MAGEL2 expression is maintained in the Hyp, 390 

RP and PP, with some expression in the trigeminal ganglia (TG).  391 

Figure 4: Human L1CAM expression during embryonic development 392 

(A-B) A human embryonic section from Carnegie stage (CS) 19 showing L1CAM 393 

mRNA transcripts in the developing hypothalamus (Hyp), ventral diencephalon (VD) 394 

and trigeminal ganglia (TG). (B) mRNA transcripts can be seen in the spinal cord (S). 395 

(C-D) In a different embryo section at CS19 and at CS20 respectively, L1CAM 396 

expression is noted throughout the metencephalon (M) and again in the trigeminal 397 

ganglia (TG). There is no mRNA transcript staining in RP at either stage. (E) In a 398 

different embryo section at CS20, specific expression is seen throughout the 399 

hypothalamus and in the TG. (F) At CS23, L1CAM expression is observed ubiquitously 400 

throughout the brain, particularly in the metencephalon, (G) and is also present in the 401 

retina (R) of the eye. (H) A different embryo section at CS23 shows that L1CAM 402 

expression is partially maintained in the Hyp and TG. (I) At CS23, there is strong 403 

expression in the telencephalon (forebrain).  404 
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