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ABSTRACT

In this paper, we focus on 1-bit precoding for large-scale antenna

systems in the downlink based on the concept of constructive inter-

ference (CI). By formulating the optimization problem that aims to

maximize the CI effect subject to the 1-bit constraint on the transmit

signals, we mathematically prove that, when relaxing the 1-bit con-

straint, the majority of the obtained transmit signals already satisfy

the 1-bit constraint. Based on this important observation, we propose

a 1-bit precoding method via a partial branch-and-bound (P-BB) ap-

proach, where the BB procedure is only performed for the entries

that do not comply with the 1-bit constraint. The proposed P-BB en-

ables the use of the BB framework in large-scale antenna scenarios,

which was not applicable due to its prohibitive complexity. Numeri-

cal results demonstrate a near-optimal error rate performance for the

proposed 1-bit precoding algorithm.

Index Terms— Massive MIMO, 1-bit precoding, constructive

interference, Lagrangian, branch-and-bound.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO), a.k.a. large-scale

antenna arrays, has become a key enabling technique for the coming

fifth-generation (5G) wireless communication systems [1]-[3]. In the

downlink transmission of a massive MIMO system, low-complexity

linear precoding methods [4] are shown to be near-optimal, while

non-linear precoding approaches [5]-[7] are not preferred due to

their high computational costs. Nevertheless, this near optimal-

ity is built on fully-digital signal processing with high-resolution

digital-to-analog converters (DACs), while such a direct extension

from small-scale antenna arrays to large-scale ones will incur pro-

hibitive hardware complexity. The consequent power consumption

at the base station (BS) will also be huge, which does not meet

the target of energy-efficient transmission for future wireless com-

munication systems. To this end, hardware-efficient large-scale

antenna architectures such as hybrid analog-digital structures [8]-

[11], constant-envelope transmission [12]-[14], and low-resolution

DACs have been proposed, where the use of low-resolution DACs,

more specifically 1-bit DACs, is the focus of this paper.

In the literature, there already exist some works that study the

precoding design in the presence of 1-bit DACs . This includes linear
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1-bit precoding designs in [15], [16] as well as nonlinear 1-bit pre-

coding designs [17]-[20], where non-linear 1-bit precoding schemes

generally perform much better than linear ones. More specifically, in

[17] and [18], non-linear 1-bit precoding schemes were proposed via

the gradient projection algorithm based on the minimum error rate

metric and minimum mean-squared error (MMSE) metric, respec-

tively. [19] proposed a 1-bit precoding design via a biconvex relax-

ation procedure, while [20] extended the work in [19] and proposed

several 1-bit precoding schemes based on semidefinite relaxation

(SDR), ℓ∞-norm relaxation and sphere precoding, respectively. It

should be noted that the above non-linear 1-bit precoding schemes

that achieve promising error rate performances operate on a sym-

bol level, i.e., the precoding strategy and the precoded signals are

designed based on both the data symbols to be transmitted and the

channel state information (CSI), as opposed to many traditional pre-

coding designs that are dependent on CSI only [4]-[7].

When it comes to symbol-level precoding, there is a concept

termed ‘constructive interference’ (CI) that has already received in-

creasing research attention in recent years [21], [22]. CI is defined

as the interference that pushes the received signals deeper in the de-

cision region and farther away from the decision boundaries, which

further improves the detection performance, though the MSE in this

case will increase. This observation has been exploited in [23] and

the references therein by symbol-level CI precoding to achieve an

improved error rate performance in traditional multi-user MIMO

scenarios. Inspired by this concept, [24]-[26] extended the idea of CI

to 1-bit precoding designs, and the resulting performance is shown

to be promising. Moreover, while not explicitly shown, [27] also

adopts the formulation of CI-based 1-bit precoding, where a branch-

and-bound (BB) based 1-bit precoding algorithm that returns the op-

timal solution is presented. However, this 1-bit design is based on

the fully-BB (F-BB) process, which is not practically useful in mas-

sive MIMO systems due to its unfavorable complexity.

In this paper, we design a near-optimal 1-bit precoding approach

that aims to minimize the symbol error rate (SER) in the down-

link transmission of a multi-user large-scale antenna system, where

the BB framework is leveraged. By exploiting the concept of CI

and adopting the ‘symbol-scaling’ metric, the SER minimization is

equivalent to the maximization on the scaling coefficients, based on

which we formulate the optimization problem, which is non-convex

due to the discrete 1-bit constraint on the transmit signals. By re-

laxing the 1-bit constraint and further analyzing the relaxed convex

problem, we mathematically prove that the majority of the entries in

the transmit signal vector obtained from solving the relaxed convex

problem already comply with the 1-bit constraint, i.e., only a small

part of the entries need to be further normalized to meet the 1-bit

requirement. Building upon this observation, we introduce the pro-

posed 1-bit precoding design based on the P-BB procedure to further

improve the performance, where the BB process is only performed



for the entries that do not satisfy the 1-bit constraint. Within the BB

process, we employ the ‘max-min’ criterion to design the P-BB algo-

rithm and adopt the adaptive subdivision rule to guarantee a fast con-

vergence speed. Compared to the traditional F-BB methods whose

complexity becomes prohibitive when large-scale antenna arrays are

considered, our proposed P-BB approach makes the BB framework

applicable in such scenarios with significantly reduced complexity,

while still exhibiting a near-optimal error rate performance, as vali-

dated by our numerical results.

Notations: a, a, and A denote scalar, column vector and matrix,

respectively. (·)T and (·)H denote transpose and conjugate transpose,

respectively. card (·) denotes the cardinality of a set, sgn [·] is the

sign function, and  is the imaginary unit. |·| denotes the modulus or

the absolute value, and ‖·‖2 denotes the ℓ2-norm. Cn×n and Rn×n

represent an n× n matrix in the complex and real set, respectively.

ℜ(·) and ℑ(·) represent the extraction of the real and imaginary part,

respectively, and IK represents a K ×K identity matrix.

2. SYSTEM MODEL

We focus on a generic downlink massive MIMO system, where

the BS with each RF chain equipped with a pair of 1-bit DACs

communicates with multiple single-antenna users in the same time-

frequency resource simultaneously. We denote the total number of

transmit antennas at the BS by Nt and the total number of users by

K, where Nt ≫ K. Since we focus on the effect of 1-bit DACs on

the data transmission, we assume ideal ADCs are adopted at each

receiver and perfect CSI is available at the BS [15]-[20]. We denote

the intended data symbol for user k by sk, which is assumed to be

drawn from a unit-norm M-PSK constellation, and we express the

data symbol vector as s = [s1, s2, · · · , sK ]T ∈ CK×1. We con-

sider a flat-fading Rayleigh channel between the BS and the users,

denoted by H = [h1,h2, · · · ,hK ]T ∈ CK×Nt , with each entry fol-

lowing a standard complex Gaussian distribution CN (0, 1), where

hk is the channel vector between the BS and user k. Accordingly,

the transmit signal vector x ∈ CNt×1 at the antenna port can be

expressed as

x = Q (x̃) = Q (P (s,H)) , (1)

where x̃ = P (s,H) represents the unquantized transmit signal vec-

tor, and Q is the 1-bit quantization operation. P forms the unquan-

tized signal vector x̃ based on the knowledge of s and H, which

represents the precoding strategy adopted at the BS. In this paper,

we normalize ‖x‖22 = 1 such that each entry in x satisfies

xn ∈ XDAC, ∀n ∈ N , (2)

where N = {1, 2, · · · , Nt} and XDAC =
{

± 1√
2Nt

± 1√
2Nt


}

. The

received signal vector y ∈ CK×1 can be expressed as

y = Hx+ n, (3)

where n ∈ CK×1 is the additive Gaussian noise at the receiver side

with n ∼ CN
(

0, σ2 · IK
)

.

3. PROPOSED 1-BIT PRECODING VIA P-BB

3.1. Problem Formulation

We present the construction of the 1-bit precoding optimization

problem based on the ‘symbol-scaling’ CI metric in this section.

The ‘symbol-scaling’ CI formulation performs a signal decompo-

sition of the data symbols as well as the noiseless received signals,

Fig. 1: An illustrative example of CI condition for PSK

where the introduced scaling coefficients are the variables to be

optimized. To be more specific, we depict one quarter of an 8PSK

constellation as the example in Fig. 1, where without loss of gener-

ality we denote the data symbol for user k by ~OA = sk, which is

further decomposed along the two detection boundaries of sk into

[23]

~OA = ~OF + ~OG = s
A
k + s

B
k , ∀k ∈ K, (4)

where K = {1, 2, · · · ,K}, ~OF = sAk and ~OG = sBk are paral-

lel to the detection boundary l
(1)
TH and l

(2)
TH respectively, as shown in

Fig. 1. We refer the interested readers to Section IV of [26] for the

expression of sAk and sBk when a generic M-PSK modulation is em-

ployed, which are omitted here for brevity. We further denote the

received signal excluding noise for user k by ~OB, which is similarly

decomposed into

~OB = h
T
kx = α

A
k s

A
k + α

B
k s

B
k , ∀k ∈ K, (5)

where αA
k ≥ 0 and αB

k ≥ 0 are the introduced scaling coefficients

that jointly represent the effect of interference and 1-bit quantiza-

tion on sk. Following [23], minimizing the SER is equivalent to

pushing the noiseless received signal ~OB as deep as possible in the

decision region and farther away from both of the decision bound-

aries, which is further equivalent to maximizing the minimum value

of
{

αA
k , αB

k

}

. Accordingly, the 1-bit precoding design can be for-

mulated as

P1 : max
x

min
k,U

α
U
k

s.t. C1 :hT
kx = α

A
k s

A
k + α

B
k s

B
k , ∀k ∈ K;

C2 :xn ∈ XDAC, ∀n ∈ N ; C3 :U ∈ {A,B} ,
(6)

which is a non-convex optimization problem due to the discrete 1-bit

constraint xn ∈ XDAC, ∀n ∈ N .

3.2. Analytical Study on 1-bit CI Precoding

While P1 is originally a non-convex optimization problem and dif-

ficult to solve, by relaxing the 1-bit constraints in P1, we arrive at a



convex problem formulation:

P2 : max
x̃

min
k,U

α
U
k

s.t. C1 :hT
kx̃ = α

A
k s

A
k + α

B
k s

B
k , ∀k ∈ K;

C2 : |ℜ (x̃n)| ≤ 1√
2Nt

, |ℑ (x̃n)| ≤ 1√
2Nt

, ∀n ∈ N ;

C3 :U ∈ {A,B} .
(7)

A sub-optimal solution can then be obtained by enforcing the 1-bit

constraint on the signal vector x̃ obtained from solving P2, i.e.,

xn =
sgn [ℜ (x̃n)]√

2Nt

+
sgn [ℑ (x̃n)]√

2Nt

, ∀n ∈ N . (8)

We denote the above relaxation-normalization procedure by ‘CI 1-

Bit’ and the corresponding transmit signal vector by xPSK
CI .

Based on Lagrangian and KKT conditions, in this section we

further elaborate on P2 and show that most of the entries in x̃ from

solving P2 already comply with the 1-bit requirement, as a moti-

vation for our proposed 1-bit precoding approach via P-BB. To be

more specific, we first express αA
k and αB

k as a function of x, given

by

α
A
k =

ℑ
(

sBk
)

ℜ
(

hT
k

)

− ℜ
(

sBk
)

ℑ
(

hT
k

)

ℜ (sAk )ℑ (sBk )− ℑ (sAk )ℜ (sBk )
· ℜ (x)

− ℑ
(

sBk
)

ℑ
(

hT
k

)

+ ℜ
(

sBk
)

ℜ
(

hT
k

)

ℜ (sAk )ℑ (sBk )− ℑ (sAk )ℜ (sBk )
· ℑ (x)

= a
T
kℜ (x) + b

T
kℑ (x) ,

α
B
k =

ℜ
(

sAk
)

ℑ
(

hT
k

)

− ℑ
(

sAk
)

ℜ
(

hT
k

)

ℜ (sAk )ℑ (sBk )− ℑ (sAk )ℜ (sBk )
· ℜ (x)

+
ℜ
(

sAk
)

ℜ
(

hT
k

)

+ ℑ
(

sAk
)

ℑ
(

hT
k

)

ℜ (sAk )ℑ (sBk )− ℑ (sAk )ℜ (sBk )
· ℑ (x)

= c
T
kℜ (x) + d

T
kℑ (x) .

(9)

which is obtained by comparing the real and imaginary part of

both sides of (5). By expressing xE =
[

ℜ
(

xT
)

,ℑ
(

xT
)]T

,

Λ =
[

αA
1 , αA

2 , · · · , αA
K , αB

1 , α
B
2 , · · · , αB

K

]T
, and further defining

p
T
k =

[

a
T
k,b

T
k

]

, q
T
k =

[

c
T
k, d

T
k

]

,∀k ∈ K, (10)

(9) can be expressed in a compact matrix form as

Λ = MxE, (11)

where M ∈ R2K×2Nt is given by

M = [p1,p2, · · · ,pK ,q1,q2, · · · ,qK ]T. (12)

Based on this transformation, P2 is equivalent to the following opti-

mization problem:

P3 : max
x̃E

min
l

αl

s.t. C1 :αl = m
T
l x̃E, ∀l ∈ L;

C2 :
∣

∣

∣
x̃

E
m

∣

∣

∣
≤ 1√

2Nt

, ∀m ∈ M,

(13)

where mT
l represents the l-th row in M, x̃E

n is the n-th entry in x̃E,

L = {1, 2, · · · , 2K}, and M = {1, 2, · · · , 2Nt}. Based on the

formulation of P3, we derive the following important proposition,

which builds the foundation of the proposed P-BB procedure in the

following.

Proposition: For x̃E obtained by solving P3, there are at least

a total number of (2Nt − 2K + 1) entries that already comply with

the 1-bit requirement.

Proof: Proving this proposition is equivalent to proving that

there are at most a total number of (2K − 1) entries in x̃E whose

amplitudes are smaller than 1√
2Nt

.

To begin with, by transforming P3 into a standard minimization

form:

P4 : min
t,x̃E

− t

s.t. C1 :t−m
T
l x̃E ≤ 0, ∀l ∈ L;

C2 :x̃E
m − 1√

2Nt

≤ 0, − x̃
E
m − 1√

2Nt

≤ 0, ∀m ∈ M,

(14)

we express the Lagrangian of P4 as

L (t, x̃E, βl, µm, νm) = −t+
2K
∑

l=1

βl

(

t−m
T
l x̃E

)

+

2Nt
∑

m=1

µm

(

x̃
E
m − 1√

2Nt

)

−
2Nt
∑

m=1

νm

(

x̃
E
m +

1√
2Nt

)

=
(

1
T
β − 1

)

t− β
T
Mx̃E +

(

µ
T − ν

T
)

x̃E

− 1√
2Nt

(

1
T
µ+ 1

T
ν
)

,

(15)

where βl, µm, and νm are the non-negative Lagrangian multipliers.

We then construct the KKT conditions as:

∂L
∂t

= 1
T
β − 1 = 0 (16a)

∂L
∂x̃E

= −M
T
β + µ− ν = 0 (16b)

βl

(

t−m
T
l x̃E

)

= 0, βl ≥ 0, ∀l ∈ L (16c)

µm

(

x̃
E
m − 1√

2Nt

)

= 0, µm ≥ 0, ∀m ∈ M (16d)

νm

(

x̃
E
m +

1√
2Nt

)

= 0, νm ≥ 0, ∀m ∈ M (16e)

In the following, we prove this proposition by contradiction.

Suppose that there are a total number of 2K entries in x̃E whose

amplitudes are strictly smaller than 1√
2Nt

, and for notational conve-

nience we introduce a set S to include the indices of these entries,

which is mathematically expressed as

n ∈ S , if

∣

∣

∣
x̃

E
n

∣

∣

∣
<

1√
2Nt

, (17)

where we have card (S) = 2K based on our above assumption. Ac-

cording to the complementary slackness conditions (16d) and (16e),

we obtain

µn = 0, νn = 0, ∀n ∈ S . (18)

Recall (16b) which can be regarded as a linear equation with β

as the variable, and for simplicity we introduce W = MT =
[w1,w2, · · · ,w2Nt

]T. Given (18), we subsequently pick the corre-

sponding rows of W whose indices belong to S to formulate a sub

linear equation:

Wpβ = µ̂p − ν̂p = 0, (19)



where Wp ∈ Rcard(S)×2K is expressed as

Wp =
[

wn1 , · · · ,wnm
, · · · ,wncard(S)

]T

, ∀nm ∈ S . (20)

Based on that card (S) = 2K, we obtain that Wp is full-rank. Ac-

cording to the linear algebra theory [28], given a full-rank coefficient

matrix Wp, a non-zero solution to (19) does not exist and there is

only a trivial solution, i.e.,

β
∗ = 0. (21)

However, this solution does not comply with (16a) that enforces a

non-zero solution of β, which causes contradiction. By following a

step similar to the above, this contradiction is also observed if we as-

sume there are a total number of N > 2K entries in the obtained x̃E

whose amplitudes are strictly smaller than 1√
2Nt

, which completes

the proof. �

3.3. Proposed 1-Bit Precoding via Partial Branch-and-Bound

Based on the results in the Proposition, we propose the 1-bit pre-

coding design via P-BB in this section, which essentially performs

the BB process for part of the entries only, more specifically the

entries in x̃E that do not comply with the 1-bit requirement, as op-

posed to traditional BB-based schemes that perform BB process for

all the entries in the transmit signal vector. This allows a consider-

able complexity reduction while still exhibiting a near-optimal SER

performance, as will be shown by the numerical results.

To begin with, we perform row rearrangements on x̃E to arrive

at x̂E, such that it can be decomposed into

x̂E =
[

x
T
F,x

T
R

]T

, (22)

where xF ∈ RNF×1 consists of xE
m that already satisfy the 1-

bit constraint and is fixed throughout the P-BB procedure. xR =
[

xR
1, x

R
2, · · · , xR

NR

]T
consists of the residual entries in x̂E whose

amplitudes are smaller than 1√
2Nt

. Following the Proposition, we

obtain NF ≥ (2Nt − 2K + 1), NR ≤ (2K − 1) and NF +NR =

2Nt. Similarly, we rearrange M into M̂ such that M̂x̂E = Mx̃E,

which is also decomposed into

M̂ = [MF,MR] , (23)

where MF =
[

m̂F
1, m̂

F
2, · · · , m̂F

2K

]T ∈ R2K×NF and MR =
[

m̂R
1 , m̂

R
2 , · · · , m̂R

2K

]T ∈ R2K×NR . The proposed P-BB approach

aims to further optimize xR with xF fixed, which leads to the fol-

lowing optimization problem:

P5 : min
xR

− t

s.t. C1 :t−
(

m̂
R
l

)T

xR ≤
(

m̂
F
l

)T

xF, ∀l ∈ L;

C2 :xR
m ∈ XDAC, ∀m = {1, 2, · · · , NR} .

(24)

The subsequent BB procedure follows [27] and is omitted here due to

the limited space, where we note that to guarantee a fast convergence

speed, in the branching process we adopt the adaptive subdivision

rule to choose the index of the entry in xR which is to be allocated a

value in the current iteration. The corresponding index of the entry

that is chosen should satisfy:

n = argmax
n

∣

∣

∣x
R
n −Q

(

x
R
n

)∣

∣

∣ , (25)

where xR
n is the n-th entry in xR and n is its corresponding index.

This proposed 1-bit precoding algorithm is termed ‘CI 1-Bit P-BB’.
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Fig. 2: SER v.s. transmit SNR, QPSK, Nt = 64, K = 16
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Fig. 3: SER v.s. transmit SNR, 8PSK, Nt = 128, K = 16

4. NUMERICAL RESULTS

We present numerical results of the proposed 1-bit precoding design

in this section based on Monte Carlo simulations. In each figure, we

define the transmit SNR as ρ = 1
σ2 by assuming unit transmit power,

and we compare our proposed P-BB based scheme with both linear

and non-linear 1-bit precoding designs in the literature.

In Fig. 2, we present the SER result for QPSK modulation in a

64× 16 MIMO system. Compared to existing 1-bit precoding algo-

rithms, our proposed 1-bit precoding via P-BB achieves a noticeable

improvement in terms of the error rate and eliminates the error floor

that are commonly observed for traditional 1-bit precoding methods

when the SNR becomes high. A similar trend is observed when we

extend the modulation type to 8PSK, as depicted in Fig. 3 for a

128 × 16 MIMO system. Both the above results validate the effec-

tiveness of the proposed 1-bit precoding approach via P-BB.

5. CONCLUSION

In this paper, we have proposed a 1-bit precoding approach via the

P-BB procedure, which significantly outperforms existing 1-bit pre-

coding schemes and is shown to achieve near-optimal error rate per-

formance. The proposed 1-bit precoding scheme is built on the ob-

servation that most of the entries in the obtained transmit signal vec-

tor already satisfy the 1-bit requirement by solving the relaxed 1-bit

precoding problem, and thus the BB process is only needed for the

residual entries that do not comply with the 1-bit constraint. The

proposed 1-bit precoding scheme also enables the BB framework to

be applicable in large-scale antenna arrays, which was not applicable

due to the prohibitive complexity.
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