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Functionally Generated Portfolios in Stochastic Portfolio Theory

by Kangjianan XIE

In this dissertation, we focus on constructing trading strategies through the method of
functional generation. Such a construction is of great importance in Stochastic Portfo-
lio Theory established by Robert Fernholz. This method is simplified by Karatzas and
Ruf (Finance and Stochastics 21.3:753-787, 2017), where they also propose another
method called additive functional generation. Inspired by their work, we first investi-
gate the dependence of functional generation on an extra finite-variation process. A
mollification argument and Komlós theorem yield a general class of potential arbitrage
strategies. Secondly, we extend the analysis by incorporating transaction costs pro-
portional to the trading volume. The performance of several portfolios in the presence
of dividends and transaction costs is examined under different configurations. Next,
we analyse the so-called leakage effect used to measure the loss in portfolio wealth
due to renewing the portfolio constituents. Moreover, we further explore the method
of additive functional generation by considering the conjugate of a portfolio generating
function. The connection between functional generation and optimal transport is also
studied. An extended abstract can be found before the first chapter of this disserta-
tion.
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Impact Statement
Stochastic Portfolio Theory (SPT) has been used in an equity market to construct
trading strategies that have the potential to beat the market. The theory is built on
sound theoretical fundamentals and is extremely easy to be applied for investing in
the market. Our research contributes to the study of SPT as well as the investment
procedure in the following.

(i) We study the dependency of portfolio generating functions on some finite-variation
processes. This brings great flexibility into portfolio construction from both the-
oretical and practical aspects. Our methods on analysing generalised portfolio
generating functions can be used in future research on a similar topic.

(ii) We show both theoretically and empirically that monotonic changes in market
diversification can be used appropriately to enhance the portfolio performance.
It would be interesting to further explore the connection and apply it to investment
activities in the real market.

(iii) We propose a numerical scheme to incorporate transaction costs and dividends
when backtesting systemically generated trading strategies. This scheme can
be implemented directly in other empirical research using historical data of stock
capitalisations and return indices.

(iv) We approach the study of the so-called leakage effect differently from the pre-
vious research. Our method avoids a limitation in the original method used by
others in studying this topic.

(v) We improve the understanding of the role played by the conjugate of a portfolio
generating function in portfolio construction as well as in optimal transport.
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Extended Abstract
In this dissertation, we analyse the construction of trading strategies that have the
potential to outperform the market in the long run. In particular, we focus on trad-
ing strategies generated systematically through the method of functional generation,
which plays a crucial role in Stochastic Portfolio Theory (SPT). We contribute to SPT
both theoretically and empirically as outlined in the following.

This dissertation begins with an introduction to SPT in Chapter 1, where we present
the fundamentals of SPT, as well as review the significant contributions to the theory.
In the introduction, we first state the basic assumptions postulated for modelling an
equity market and introduce several fundamental concepts including trading strategies,
portfolio weights, and wealth process, in order to describe the investment process. We
then introduce the concept of relative arbitrage, which refers to a trading strategy that
outperforms another trading strategy. Generating relative arbitrages is one central
target in SPT and hence is of great importance. To this end, we present the original
methodology of generating relative arbitrages for stocks indexed by companies and,
additionally, indexed by ranks of company capitalisations. This methodology, known as
functional generation, depends on certain properties of so-called portfolio generating
functions and are generalised and reanalysed in Chapters 2 and 4. Associated with
this method, the so-called master formula is introduced to express the wealth of a
trading strategy generated functionally by market observables.

Chapter 2 is based on Ruf and Xie [80] and focuses on generalising portfolio gen-
erating functions to provide more flexibility to portfolio construction. Using the super-
martingale property of wealth processes corresponding to some portfolio generating
functions after an appropriate change of measures, Karatzas and Ruf [51] propose
a simple and intuitive structure to simplify the original method of functional genera-
tion. This is known as multiplicative functional generation. They also suggest another
method of functional generation called additive functional generation. Motivated by
their work, we investigate the dependence of portfolio generating functions on an ex-
tra finite-variation process. We also introduce a new category of portfolio generating
functions through a mollification argument and Komlós theorem. This category of func-
tions yields a general class of potential relative arbitrages under specific conditions
for both additive and multiplicative functional generations. The theoretical results of
this chapter are then illustrated by two examples of specific portfolio generating func-
tions. We backtest trading strategies generated both additively and multiplicatively
from these functions with data of daily market values and return indexes of all compo-
nent stocks in the S&P 500 index since year 1989. The theoretical results are shown
to work empirically according to the backtested performance of these trading strate-
gies. It is also shown that, for additive functional generation, certain choices of the
finite-variation process are better than others, provided that the market diversification
changes monotonically.
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When backtesting the trading strategies in Chapter 2, we assume that the market
is frictionless. This means no transaction cost is imposed when trading to rebalance
the portfolio. Nevertheless, paying transaction costs is probably the most important
reason that invalidates many trading strategies from beating the market practically as
they do theoretically. Hence, one should try to avoid such an unrealistic assumption
when judging the profitability of a trading strategy in the real market. Therefore, in
Chapter 3, we examine the effects of imposing transaction costs on trading strategies
studied in Chapter 2. However, the method used to incorporate transaction costs also
works for general systematically generated trading strategies.

Chapter 3 is based on Ruf and Xie [81]. We start with a literature review on transac-
tion costs in equity trading from both theoretical and empirical aspects. Next, we pro-
pose a method to incorporate transaction costs proportional to the trading volume in
a manner such that, when trading to rebalance a portfolio, the target portfolio weights
are matched after paying transaction costs. This method is then applied in a scheme to
backtest trading strategies using total market capitalisation and daily stock return time
series. Some practical considerations are also emphasised regarding the computation
and reinvestment of dividends. The data used for backtesting covers ordinary common
stocks traded on all major US exchanges from year 1962 to year 2016. Four portfolios
generated multiplicatively by corresponding specific portfolio generating functions are
backtested under different configurations involving trading frequency, constituent list
size, and renewing frequency. These portfolios are the index tracking portfolio, the
equally-weighted portfolio, the entropy-weighted portfolio, and the diversity-weighted
portfolio. In particular, the index tracking portfolio has portfolio weights given by the
market weights but is different from the corresponding capitalisation index. Indeed,
in contrast to the capitalisation index, it reinvests dividends, and is therefore used as
benchmark. The empirical results show that, in the absence of transaction costs, all
portfolios outperform the index tracking portfolio. This is consistent with the results
in Chapter 2. However, when proportional transaction costs of 0.5% are imposed,
this outperformance no longer exists for most portfolios. Some exceptional cases
include the entropy-weighted and the diversity-weighted portfolios under specific con-
figurations. Other results regarding the effects of changing configurations on portfolio
performance are also shown in Chapter 3 with details.

The trading strategies backtested in Chapter 3 invest in a certain number of largest
stocks in terms of market capitalisation each time we renew the constituent list. As the
component stocks change all the time, it is interesting to study the effect of replace-
ment between stocks on the portfolio performance. This motivates us to study the
so-called leakage effect. To this end, in Chapter 4, we first derive the master formulas
for trading strategies generated multiplicatively and additively from portfolio generating
functions of stocks ranked by capitalisation, respectively. This is done by applying the
method of functional generation for such functions, as introduced in Chapter 2. As
a consequence, the leakage for a functionally generated trading strategy is defined
directly through a term in the corresponding master formula. The leakage measures
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the loss in the wealth due to untimely renewing the constituent list. Our computation
of the leakage is different from what previous research has suggested. The method
to estimate leakage in discrete time is then introduced with some practical consider-
ations. Two empirical examples are provided at the end of Chapter 4 to estimate the
leakage of the corresponding trading strategies under different constituent list sizes
with the same data used in Chapter 3.

In the last chapter of our work, we use the conjugate of a portfolio generating func-
tion to further analyse the method of additive functional generation in a discrete-time
and model-free setup. Specifically, in the first half of Chapter 5, we recall the conjugate
of a concave function and illustrate the method of computing it with two examples. This
conjugate is used to define the concept of intrinsic value of a trading strategy, which
measures the profitability of the trading strategy in the long run. Then it is shown that
the method of additive functional generation can be used to generate optimal trading
strategies in that they have nonnegative intrinsic values even in the worst scenario.
From this point of view, an additively generated trading strategy can be attractive since
it is expected to be profitable in the long run. In the second half of Chapter 5, we
consider the link between the method of functional generation and optimal transport, a
mathematical area that has drawn much attention recently. Techniques of duality are
widely applied to study this connection in previous research as reviewed in this chap-
ter. An equivalence between an additively generated trading strategy and a specific
optimal transport problem is established by Vervuurt [88]. Based on this equivalence,
we also propose an alternative approach to solve the same optimal transport problem
by using the duality between the corresponding portfolio generating function and its
conjugate.

Our work is presented for readers with basic knowledge of probability theory and
stochastic analysis, and no prior knowledge of SPT is required.





1

Chapter 1

Introduction to Stochastic
Portfolio Theory

Stochastic Portfolio Theory (SPT), which was established by Robert Fernholz, is used
as a theoretical tool for applications in equity markets. It is also for analysing portfolios
with controlled behaviour under very general conditions, most of which are consistent
with observed features of the real market. Early papers of SPT include Fernholz [28,
30, 31]; see Fernholz [26] for details and Fernholz and Karatzas [35] for a survey of
SPT. One essential topic in SPT is to invest in an equity market with portfolios con-
structed systematically from some functions. These functions are known as portfolio
generating functions and depend merely on current observables: the market capital-
isation of each stock in the market. When generated from specific portfolio gener-
ating functions, these portfolios, known as functionally generated portfolios, can be
made good use of in certain types of markets. In particular, over sufficiently large
investment horizons, these portfolios will theoretically outperform the corresponding
capitalisation-weighted index with probability one. It is also remarkably easy to imple-
ment these portfolios, as there is no stochastic integration or drift involved in computing
the portfolio wealth, and hence the need for estimation is reduced.

1.1 Modelling the market

Based on classical portfolio theory introduced by Markowitz [60], the modern portfolio
theory of dynamic asset pricing is widely accepted to analyse the market structure and
used to direct investments in financial markets. The theory of dynamic asset pricing
is derived from the general equilibrium model for financial markets by Arrow [4]. It is
further developed on the capital asset pricing model by Sharpe [83] and the portfolio
optimisation problem by Merton [63]. The theory postulates strong assumptions on
the market structure. It relies on the existence of equivalent martingale measure(s)
and requires a market in equilibrium and free of arbitrage.

Although also descended from classical portfolio theory, SPT is in contrast to the
theory of dynamic asset pricing in that it is valid even without an equivalent martin-
gale measure and in the presence of arbitrage or market disequilibrium. In particular,
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most models in SPT only require the boundedness in probability of the terminal val-
ues of wealth processes, which is referred to as the weaker “No Unbounded Profit
with Bounded Risk” condition; see Karatzas and Kardaras [49]. Kardaras [53] shows
that this condition holds if and only if there exists an equivalent local martingale defla-
tor, a strictly positive process such that all discounted nonnegative wealth processes
become local martingales after multiplying it. Ruf and Runggaldier [79] provide a sys-
tematic construction of market models, where arbitrage opportunities exist for bounded
profits. We refer to Fontana [38] and Vervuurt [88] for an overview of study on model
construction under this weaker no-arbitrage condition.

Throughout our work, we face an equity market with d ≥ 2 companies, where each
company has always one share of stock outstanding. The vector-valued non-negative
market capitalisation process of these stocks is denoted by S(·) = (S1(·), · · · , Sd(·))′

with S1(0) > 0, · · · , Sd(0) > 0. At t > 0, it is allowed to have Si(t) = 0, for some but
not all i ∈ {1, · · · , d}. In the rest of this chapter and Chapters 2, 4, and 5, we fix a
filtered probability space (Ω,F(∞),F(·),P), where F(·) is a right-continuous filtration
with F(0) = {∅,Ω} and P is the physical probability measure. For all i ∈ {1, · · · , d}, we
assume that Si(·) is a continuous, non-negative semimartingale. An Itô market model
is usually adopted to model the dynamic of S(·) but is unnecessary to be presented
here; see Section 1.1 in Fernholz [26]. In Chapter 3, we refrain from imposing any
market model and only regard S(·) as non-negative process under discrete time.

1.2 Trading strategy

To define trading strategies, consider a vector-valued process ϑ(·) = (ϑ1(·), · · · , ϑd(·))′

in Rd, which is predictable and integrable with respect to S(·). We denote the collection
of all such processes by L(S). For such a process ϑ(·) ∈ L(S), we interpret ϑi(t) as
the number of shares in the stock of company i held at time t ≥ 0, for all i ∈ {1, · · · , d}.
Then

V ϑ(·;S) =
d∑
j=1

ϑj(·)Sj(·) (1.1)

can be interpreted as the wealth process corresponding to ϑ(·) in money amount.

Definition 1.2.1. (Trading strategy). A process ϕ(·) ∈ L(S) is called a trading strategy
for S(·) if

V ϕ(·;S)− V ϕ(0;S) =

∫ ·
0

d∑
j=1

ϕj(t)dSj(t). (1.2)

For a trading strategy ϕ(·), its corresponding portfolio weights are determined as
the following. Let us write

∆̄d =

(x1, · · · , xd)′ ∈ Rd :

d∑
j=1

xj = 1





1.2. Trading strategy 3

and

∆d =

(x1, · · · , xd)′ ∈ [0, 1]d :
d∑
j=1

xj = 1

 and ∆d
+ = ∆d ∩ (0, 1)d. (1.3)

Definition 1.2.2. (Portfolio weights). Given a trading strategy ϕ(·), its portfolio weight
process is a measurable, adapted ∆̄d-valued process π(·) = (π1(·), · · · , πd(·))′ with

πi(t) =
ϕi(t)Si(t)

V ϕ(t;S)
, i ∈ {1, · · · , d}, t ≥ 0. (1.4)

If πi(t) ≥ 0, for all i ∈ {1, · · · , d} and t ≥ 0, i.e., if π(·) is ∆d-valued, then the trading
strategy ϕ(·) is called a long-only trading strategy.

As suggested by (1.1) and (1.4), we have

d∑
j=1

πj(t) = 1, t ≥ 0.

Hence, the component process πi(·) represents the proportion of wealth V ϕ(·;S) in-
vested in stock i, for all i ∈ {1, · · · , d}. We shall only consider long-only trading strate-
gies in this work. The world “long-only” is omitted in the following for the sake of
simplicity.

Note that (1.2) implies that the wealth process of a trading strategy is self-financing.
Then for a trading strategy ϕ(·), the wealth process V ϕ(·;S) should evolve as

dV ϕ(t;S) =
d∑
j=1

ϕj(t)dSj(t) =
d∑
j=1

πj(t)V
ϕ(t;S)

Sj(t)
dSj(t) (1.5)

with chosen initial wealth V ϕ(0;S) = V0.

Market trading strategy

In Chapter 3, the wealth of a trading strategy is computed in terms of money amount
equivalent to (1.1). However, more frequently in SPT, as well as in Chapters 2, 4,
and 5, we are interested in the performance of our trading strategies relative to the
performance of some benchmark trading strategy. Most of the time, the market trading
strategy defined below is chosen to be such a benchmark trading strategy.

Definition 1.2.3. (Market trading strategy). Starting with initial wealth
∑d

j=1 Sj(0),
the market trading strategy for S(·) is given by the constant vector-valued process
ϕ(·) = (1, · · · , 1)′. The portfolio weight process of the market trading strategy, denoted
by µ(·) = (µ1(·), · · · , µd(·))′, is called the market weight process with µ(0) ∈ ∆d

+ and
market weights

µi(t) =
Si(t)∑d
j=1 Sj(t)

, i ∈ {1, · · · , d}, t ≥ 0. (1.6)
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By the assumptions on the market capitalisation process S(·), µi(·) is a continuous,
non-negative semimartingale, for all i ∈ {1, · · · , d}. The wealth process of the market
trading strategy is given by the process of the total market capitalisation

V (1,··· ,1)(·;S) =
d∑
j=1

Sj(·).

Hence, ϕ(·) = (1, · · · , 1)′ is called the market trading strategy in the sense that the
market is owned when implementing it.

Moreover, (1.6) suggests that we could interpret µi(·) as the capitalisation of com-
pany i when the total market capitalisation is taken as the numéraire. In this case,
given a trading strategy ϕ(·) for S(·), the wealth of ϕ(·) relative to the market is given
by the relative wealth process

V ϕ(·;µ) =
V ϕ(·;S)

V (1,··· ,1)(·;S)
=

d∑
j=1

ϕj(·)µj(·). (1.7)

In particular, a trading strategy ϕ(·) for S(·) is also a trading strategy for µ(·) in that
ϕ(·) is predictable and integrable with respect to µ(·), i.e., ϕ(·) ∈ L(µ), and

V ϕ(·;µ)− V ϕ(0;µ) =

∫ ·
0

d∑
j=1

ϕj(t)dµj(t). (1.8)

The equation above results from the fact that self-financing portfolios remain self-
financing after a numéraire change; see Proposition 1 in Geman, El Karoui, and Ro-
chet [40].

In the remaining part of this work except Chapter 3, we simply use V ϕ(·) to denote
the relative wealth of a trading strategy ϕ(·) for µ(·). Similar to (1.5), the dynamics of
V ϕ(·) is given by

dV ϕ(t) =

d∑
j=1

ϕj(t)dµj(t) =

d∑
j=1

πj(t)V
ϕ(t)

µj(t)
dµj(t), V ϕ(0) = 1, (1.9)

where π(·) = (π1(·), · · · , πd(·))′ is the process of portfolio weights for the trading strat-
egy ϕ(·).

Remark 1. To convert a predictable process ϑ(·) ∈ L(µ) into a trading strategy ϕ(·), we
adopt the measure of the “defect of self-financeability” of ϑ(·), introduced in Section 2
in Karatzas and Ruf [51] and defined as

Qϑ(·) = V ϑ(·)− V ϑ(0)−
∫ ·

0

d∑
j=1

ϑj(t)dµj(t). (1.10)
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As a result, the vector-valued process ϕ(·) = (ϕ1(·), · · · , ϕd(·))′ with components

ϕi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d}, (1.11)

where C can be any real constant, is a trading strategy for µ(·).

1.3 Relative arbitrage

As mentioned in Section 1.1, arbitrage opportunities in the market are allowed in SPT.
As a matter of fact, constructing trading strategies in a systematic way to explore
these arbitrage opportunities has always been a central topic in SPT and is still actively
studied. To be more specific, starting with the same initial wealth as the market trading
strategy, we are interested in trading strategies that can outperform the market trading
strategy over appropriate investment horizons with probability one. A trading strategy
that has this property is called a relative arbitrage as formally defined below.

Definition 1.3.1. (Relative arbitrage). A trading strategy ϕ(·) is said to be a relative
arbitrage with respect to the market over a given investment horizon [0, T ], for T ≥ 0,
if

V ϕ(·) ≥ 0 and V ϕ(0) = 1,

along with
P
[
V ϕ(T ) ≥ 1

]
= 1 and P

[
V ϕ(T ) > 1

]
> 0. (1.12)

If P
[
V ϕ(T ) > 1

]
= 1 holds, we say that the relative arbitrage is strong over [0, T ].

Remark 2. Definition 1.3.1 makes sense due to the fact that the relative wealth process
of the market trading strategy at any time is given by

V (1,··· ,1)(·) =

d∑
i=1

µi(·) = 1.

Then a relative arbitrage exists over a given investment horizon [0, T ] when a non-
negative relative wealth process V ϕ(·) has the same initial wealth as the market trading
strategy, the probability for V ϕ(T ) to be greater than the wealth of the market trading
strategy is strictly positive, and V ϕ(T ) is not lower than the wealth of the market trading
strategy.

Fernholz [28] discusses conditions for arbitrage to exist in equity markets, which
leads to the concept of relative arbitrage in the following research; also see Fernholz
[31]. In a market where no single company dominates the entire market in terms of
relative capitalisation on average over a period, the existence of a relative arbitrage
is shown in Section 3.3 in Fernholz [26] and by Fernholz, Karatzas, and Kardaras
[36]. Fernholz and Karatzas [34] analyse the existence of a relative arbitrage in a spe-
cific model of an abstract volatility-stabilized market. Such a market assigns constant
drift and volatility terms to the return of the market trading strategy and the largest
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volatilities to the smallest stocks. In a Markovian model for equity market and using
non-anticipative investment strategies, Fernholz and Karatzas [24] compute the small-
est initial wealth that one should invest in order to achieve a relative arbitrage over a
given investment horizon. Their results draw attention on the problem of optimising
relative arbitrage, which is further studied in Fernholz and Karatzas [25], Bayraktar,
Huang, and Song [9], and Ruf [77]. Conditions that connect relative arbitrage to the
market completeness are given in Theorem 8 in Ruf [78]. Pal and Wong [72] introduce
a pathwise approach to decompose the performance of a trading strategy relative to
the market trading strategy. The decomposition consists of a volatility term and two
entropy terms, such that a specific class of trading strategies can be constructed to
guarantee the existence of a relative arbitrage; see Wong [94] and Pal and Wong [74]
for extended results. Karatzas and Ruf [51] formulate conditions of the existence of a
relative arbitrage over sufficiently large investment horizons under a more generalised
and simplified framework of Fernholz [31]; see Chapter 2 for details. Pal [71] provides
sufficient conditions for a market with adequate stocks to contain a short term relative
arbitrage. Relative arbitrage over arbitrary time horizons under appropriate conditions
is studied by Fernholz, Karatzas, and Ruf [27].

1.4 Functional generation

To explore arbitrage opportunities relative to the market, Fernholz [31] comes up with a
powerful tool, called functional generation, to construct functionally generated trading
strategies from appropriate portfolio generating functions; see Chapter 3 in Fernholz
[26]. The wealth of a functionally generated trading strategy relative to the total market
capitalisation is merely a function, known as so-called master formula, of the market
weights. This formula does not involve stochastic integration or drifts, which makes
the analysis very easy as the need for estimation is reduced. Karatzas and Ruf [51]
interpret portfolio generating functions as Lyapunov functions. More precisely, the su-
permartingale property of the corresponding wealth processes after an appropriate
change of measure is utilised to study the performance of functionally generated trad-
ing strategies. We extend these results to a group of portfolio generating functions
with more generalised properties in Chapter 2.

In the following, we present the definition and the master formula of functionally
generated trading strategies given by Fernholz [26]. In particular, we refer to this
specific kind of functional generation as multiplicative function generation, in contrast
to another kind of functional generation called additive functional generation, as pro-
posed by Karatzas and Ruf [51].

Definition 1.4.1. (Multiplicative functional generation). For a continuous function G :

∆d → (0,∞) and a trading strategy ϕ(·), we say that ϕ(·) is multiplicatively generated
by the portfolio generating function G if there exists a measurable process Θ(·) of finite
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variation, such that

log V ϕ(t) = logG(µ(t)) + Θ(t), t ≥ 0. (1.13)

Equation (1.13) is known as the master formula, and the process Θ(·) is called the drift
process corresponding to G.

Now let us consider an open subset U of Rd such that ∆d ⊂ U . Then we can
always extend a continuous function defined on ∆d to a continuous function defined
on U .1 Here and throughout this work, we write G ∈ C2 if G is continuous and twice
differentiable in all variables on its domain. For two semimartingales X(·) and Y (·),
we use [X,Y ](·) to denote their quadratic covariation process.

Theorem 1.4.1. (Theorem 3.1.5 in Fernholz [26]). Given an open subset U of Rd with
∆d ⊂ U , consider a C2 function G : U → (0,∞). If

xi∂G(x)/∂xi
G(x)

, i ∈ {1, · · · , d},

is bounded for all x ∈ ∆d, then the trading strategy ϕ(·) generated multiplicatively by
G has portfolio weights

πi(t) =

G(µ(t)) +
∂G

∂xi
(µ(t))−

d∑
j=1

µj(t)
∂G

∂xj
(µ(t))

 µi(t)

G(µ(t))
, (1.14)

for all i ∈ {1, · · · , d} and t ≥ 0. Moreover, the drift process Θ(·) is given by

Θ(·) = −1

2

∫ ·
0

1

G(µ(t))

d∑
i,j=1

∂2G

∂xi∂xj
(µ(t))d [µi, µj ] (t). (1.15)

This theorem shows that given an appropriate portfolio generating function, the
corresponding multiplicatively generated trading strategy has portfolio weights given
explicitly by (1.14). The portfolio weight for each stock is a deterministic function of the
current observable market weights. Therefore, it becomes extremely straightforward
to implement this multiplicatively generated trading strategy. Moreover, the covariance
structure of the market is connected to the drift process Θ(·) through the quadratic
covariation term in (1.15). Especially, for t ≥ 0, Θ(t) can be computed directly from
observable quantities by the master formula (1.13). Hence, estimation of the covari-
ance structure is not needed. An example of functional generation is that a function
G : U → c with constant c ∈ (0,∞) generates the market trading strategy multiplica-
tively.

1This extension is guaranteed by the Tietze extension theorem. It is made such that a standard
coordinate system in Rd can be utilised to treat all the d market weights in the same manner, which
cannot be done on the (d− 1)-dimensional space ∆d.
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1.5 Rank-dependent trading strategy

Fernholz [29] generalises the methods of functional generation to a class of portfo-
lio generating functions that identify market weights not by their company index, but
by their ranks in terms of values. This generalisation leads to the rank-dependent
trading strategies and provides a mathematical interpretation of the size effect. This
effect is an observed phenomenon that stocks with smaller capitalisations tend to have
higher returns than stocks with larger capitalisations over long period; see Banz [8].
This generalisation also suggests a correction term on the drift process Θ(·) when the
component stocks in a portfolio change under specific circumstances. We will focus on
this later application in Chapter 4. For further research on the rank-dependent trading
strategies, we refer to Fernholz, Ichiba, and Karatzas [33] and Karatzas and Ruf [51].

The following definitions and results are necessary for presenting our work in
Chapters 2 and 4. For a vector x = (x1, · · · , xd)′ ∈ ∆d, denote its corresponding
ranked vector as x = (x(1), · · · , x(d))

′, where

max
i∈{1,··· ,d}

xi = x(1) ≥ x(2) ≥ · · · ≥ x(d−1) ≥ x(d) = min
i∈{1,··· ,d}

xi

are the components of x in descending order. Denote further

Wd =
{(
x(1), · · · , x(d)

)′ ∈ ∆d : 1 ≥ x(1) ≥ x(2) ≥ · · · ≥ x(d) ≥ 0
}

and
Wd

+ = Wd ∩ (0, 1)d (1.16)

Then the rank operator R : ∆d → Wd is a mapping such that R(x) = x. The ranked
market weight process µ(·) is given by

µ(·) = R(µ(·)) =
(
µ(1)(·), · · · , µ(d)(·)

)′
. (1.17)

The process µ(·) is a continuous, Wd-valued semimartingale whenever µ(·) is a con-
tinuous, ∆d-valued semimartingale (see Theorem 2.2 in Banner and Ghomrasni [7]).
Moreover, let pt be a random permutation of {1, · · · , d} that associates the name index
of stocks with their ranks at time t, for all t ≥ 0. To wit, we have

µpt(k)(t) = µ(k)(t), k ∈ {1, · · · , d}, t ≥ 0. (1.18)

In particular, if µ(k)(t) = µ(k+1)(t), for some k ∈ {1, · · · , d − 1}, then we set pt(k) <

pt(k + 1).

Definition 1.5.1. (Local time). The local time process of an R-valued continuous semi-
martingale Y at the origin is given by

LY (·) =
1

2

(
|Y (·)| − |Y (0)| −

∫ ·
0

sgn(Y (t))dY (t)

)
, (1.19)
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where sgn(y) = 21y∈(0,∞) − 1.

The local time LX(t) measures the time that X(·) has spent at 0 up to time t.
Hence, the process LX(·) is of finite variation. We refer to Karatzas and Shreve [52]
for a general study on local times.

Definition 1.5.2. (Pathwise mutually non-degenerate). The market weight processes
µ1(·), · · · , µd(·) are pathwise mutually non-degenerate if, for all t ≥ 0,

1. {t;µi(t) = µj(t)} has Lebesgue measure zero, for all i, j ∈ {1, · · · , d} with i 6= j,
a.s.;

2. {t;µi(t) = µj(t) = µk(t)} = ∅, for all i, j, k ∈ {1, · · · , d} with i < j < k, a.s.

The following theorem extends Theorem 1.4.1 to rank-dependent trading strategies
generated multiplicatively. Recall the ranked market weight process µ(·) from (1.17).

Theorem 1.5.1. (Theorem 4.2.1 in Fernholz [26]). Let the market weight processes
µ1(·), · · · , µd(·) be pathwise mutually non-degenerate and pt be a random permutation
by (1.18). For a given open subset U of Rd with ∆d ⊂ U , consider a function G : U →
R. If there exists a C2 function G : U → (0,∞) such that G(x) = G(R(x)), for all
x ∈ U , and

xi∂G(x)/∂xi
G(x)

, i ∈ {1, · · · , d},

is bounded for all x ∈ ∆d, then G generates the trading strategy ϕ(·) multiplicatively
with portfolio weights

πpt(k)(t) =

G(µ(t)) +
∂G

∂xk
(µ(t))−

d∑
j=1

µ(j)(t)
∂G

∂xj
(µ(t))

 µk(t)

G(µ(t))
,

for all k ∈ {1, · · · , d} and t ≥ 0. Moreover, the drift process Θ(·) is given by

Θ(·) = −1

2

∫ ·
0

1

G(µ(t))

d∑
i,j=1

∂2G

∂xi∂xj
(µ(t))d

[
µ(i), µ(j)

]
(t)

+
1

2

∫ ·
0

d−1∑
k=1

(
πpt(k+1)(t)− πpt(k)(t)

)
dLlogµ(k)−logµ(k+1)

(t).

(1.20)

Compared with Theorem 1.4.1, Theorem 1.5.1 shows that the drift process Θ(·)
can be decomposed into two components: a smooth component and a local time
component, as in (1.20). Theorem 1.5.1 is generalised by Banner and Ghomrasni [7]
such that Condition 2 in Definition 1.5.2 is not required anymore.

An example of a rank-dependent trading strategy is that the function G(x) = x(1),
for all x ∈ U , generates the trading strategy ϕ(·) multiplicatively with portfolio weights
πpt(k)(·) = 1k=1, for all k ∈ {1, · · · , d}. This trading strategy only invests in the largest
stock in the market throughout the investment horizon.
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In Chapter 4, we restudy the properties of rank-dependent trading strategies via a
different approach proposed in Chapter 2. We give details to the method of estimating
the local time component with real data for both multiplicative functional generation
and additive functional generation proposed by Karatzas and Ruf [51] and studied in
Chapter 2.
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Chapter 2

Generalised Lyapunov Functions
and Functionally Generated
Trading Strategies

As introduced in Chapter 1, a pivotal topic in SPT is the construction of functionally
generated trading strategies that can outperform the market trading strategy under
specific circumstances. The wealth of a trading strategy is linked to the correspond-
ing portfolio generating function G through the master formula; see Definition 1.4.1.
Karatzas and Ruf [51] extend and simplify the method by using the supermartingale
property of G after an appropriate change of measure to interpret G as a Lyapunov
function. They also define a new method of functional generation, the additive func-
tional generation, different from the multiplicative functional generation introduced by
Fernholz [31]. The framework of Karatzas and Ruf [51] will be used to formulate condi-
tions on trading strategies to be strong arbitrage relative to the market over sufficiently
large investment horizons in this chapter.

One offspring of a portfolio generating function is a generalised portfolio generat-
ing function, which depends on an additional argument with continuous path and finite
variation. This is inspired by the fact that in practice, people tend to take historical
data, such as past performance of stocks, or statistical estimates, into consideration
when constructing portfolios. Besides, this generalisation provides additional flexibil-
ity in choosing portfolio generating functions. Section 3.2 of Fernholz [26] formulates
the concept of time-dependent generating functions, and presents the master formula
under this situation. In the same framework, Strong [85] shows an extension of the
master formula to trading strategies generated by functions that also depend on the
current state of some continuous path process of finite variation. Also based on Fern-
holz’s structure, Schied, Speiser, and Voloshchenko [82] provide a pathwise version
of the relevant master formula. They also analyze examples where the additional pro-
cess is chosen to be the moving average of the market weights. In a recent paper,
Karatzas and Kim [50] generalize the methodology developed by Karatzas and Ruf
[51] in a pathwise, probability-free setting. They also generalize portfolio generating
functions with path-dependent functionals.

All the above mentioned papers (Fernholz [26], Strong [85], Schied, Speiser, and
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Voloshchenko [82], and Karatzas and Kim [50]) make assumptions on the smoothness
of the portfolio generating function with respect to both the finite-variation process and
the market weights. In this chapter, we weaken these assumptions such that the
choice for the portfolio generating function is less restricted. To this end, we use a
mollification argument and the Komlós theorem. Then we study several examples
empirically, using data from the S&P 500 index.1

This chapter is based on the paper Ruf and Xie [80] that has been accepted for
publication. An outline of the chapter is as follows. Section 2.1 first gives the definitions
of regular functions and Lyapunov functions, and then presents sufficient conditions
for a function to be regular and Lyapunov, respectively. The proofs of these results are
presented in Section 2.6. Section 2.2 defines additive and multiplicative generation,
and the corresponding trading strategies and wealth processes. Section 2.2 also gives
conditions for arbitrage relative to the market portfolio to exist. Section 2.3 describes
the data involved and the processing method to implement the empirical analysis.
Section 2.4 contains several examples of portfolio generating functions and discusses
empirical results. Section 2.5 concludes.

2.1 Generalised regular and Lyapunov functions

In the following of this chapter, we study portfolio generating functions that depend on
some Rm-valued continuous process of finite variation on [0, T ], for T ≥ 0 and some
m ∈ N. We use Λ(·) to denote such a process. This process allows for more flexibility
in selecting portfolio generating functions. Recall the market weight process µ(·) by
Definition 1.2.3 and the ranked market weight process µ(·) by (1.17). To this end, let
W and W be some open subsets of Rm × Rd such that

P[(Λ(t), µ(t)) ∈ W, ∀ t ≥ 0] = 1 (2.1)

and
P[(Λ(t),µ(t)) ∈W , ∀ t ≥ 0] = 1, (2.2)

respectively.
Moreover, we introduce several notions that will be used in this chapter and Chap-

ter 4. For a continuous function F , write F ∈ C∞ if F is infinitely differentiable. If
F = F (λ, x), write F ∈ C0,1 if F is differentiable with respect to the second argument
and ∂F/∂x is jointly continuous; write F ∈ C1,2 if F is once differentiable with respect
to the first argument, twice differentiable with respect to the second arguments, and

1As the constituent list of the stocks in the S&P 500 index changes over time, we avoid a survivorship
bias by not restricting the analysis to the current stocks in the S&P 500 index. Instead, we reconstruct the
historical constituent list of the S&P 500 index and adjust the portfolios appropriately when the constituent
list changes.
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∂F/∂λ and ∂2F/∂x2 are both jointly continuous. In addition, write

‖z‖2 =

 n∑
j=1

z2
j

1/2

to denote the L2 norm of z = (z1, · · · , zn)′ ∈ Rn.
Now let us consider two classes of portfolio generating functions, regular and Lya-

punov functions, which are introduced in Karatzas and Ruf [51]. We generalize these
notions here to allow for the additional process Λ(·). To this end, recall the open set
W, in which (Λ(·), µ(·)) take values, from (2.1).

Definition 2.1.1. (Generalised regular function). A continuous function G : W → R is
said to be generalised regular for Λ(·) and µ(·) if

1. there exists a measurable function GD = (GD
1 , · · · , GD

d )′ :W → Rd such that the
process ϑ(·) = (ϑ1(·), · · · , ϑd(·))′ with components

ϑi(·) = GD
i (Λ(·), µ(·)), i ∈ {1, · · · , d}, (2.3)

is in L(µ); and

2. the continuous, adapted process

ΓG(·) = G(Λ(0), µ(0))−G(Λ(·), µ(·)) +

∫ ·
0

d∑
j=1

ϑj(t)dµi(t) (2.4)

is of finite variation on the interval [0, T ], for all T ≥ 0.

Definition 2.1.2. (Generalised Lyapunov function). A generalised regular function
G : W → R is said to be a generalised Lyapunov function for Λ(·) and µ(·) if, for
some function GD as in Definition 2.1.1, the finite-variation process ΓG(·) of (2.4) is
non-decreasing.

A Lyapunov function turns the semimartingale µ(·) together with the finite-variation
process Λ(·) into a supermartingale under a related measure; see Remark 3.4 in
Karatzas and Ruf [51] for further explanations. Generally speaking, for a regular (or
Lyapunov) function G, the uniqueness of the corresponding measurable function GD

is not guaranteed. In the following, we shall omit the terminology “generalised” for
simplicity.

In the next example, we discuss sufficient conditions for a smooth function to be
regular or Lyapunov.

Example 2.1.1. Consider a C1,2 function G :W → R. Setting

ϑi(·) =
∂G

∂xi
(Λ(·), µ(·)), i ∈ {1, · · · , d},
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and applying Itô’s formula yield that G is regular for Λ(·) and µ(·). Indeed, we get the
finite-variation process

ΓG(·) = −
∫ ·

0

m∑
v=1

∂G

∂λv
(Λ(t), µ(t))dΛv(t)

− 1

2

d∑
i,j=1

∫ ·
0

∂2G

∂xi∂xj
(Λ(t), µ(t))d [µi, µj ] (t).

(2.5)

Moreover, if the process ΓG(·) is non-decreasing, then G is not only a regular
function, but also a Lyapunov function for Λ(·) and µ(·). For instance, this holds if
G is non-decreasing in every dimension with respect to the first argument and Λ(·) is
decreasing in every dimension, andG is concave with respect to the second argument.

Below we give sufficient conditions for a function G to be regular (Lyapunov). To
this end, recall the open setW from (2.1).

Theorem 2.1.1. For a continuous function G : W → R, consider the following condi-
tions.

(ai) On any compact set V ⊂ W, there exists a constant L = L(V) ≥ 0 such that, for
all (λ1, x), (λ2, x) ∈ V,

|G(λ1, x)−G(λ2, x)| ≤ L‖λ1 − λ2‖2.

(aii) FunctionG(·, x) is non-increasing, for fixed x, and Λ(·) is non-decreasing in every
dimension.

(bi) Function G is differentiable in the second argument and ∂G/∂x is jointly continu-
ous. Moreover, on any compact set V ⊂ W, there exists a constant L = L(V) ≥ 0

such that, for all (λ, x1), (λ, x2) ∈ V,∥∥∥∥∂G∂x (λ, x1)− ∂G

∂x
(λ, x2)

∥∥∥∥
2

≤ L‖x1 − x2‖2.

(bii) Function G(λ, ·) is concave, for fixed λ.

If one of the conditions (ai) or (aii) holds and one of the conditions (bi) or (bii) holds, G
is a regular function for Λ(·) and µ(·). Moreover, in the case that (aii) and (bii) hold, G
is Lyapunov.

The proof of Theorem 2.1.1 is given in Section 2.6. A generalised version of Itô’s
formula studied in Krylov [56] is related but can only be applied in a Markovian setting.

Theorem 2.1.1 can be applied to functions not in C1,2, such as in Example 2.1.3.
Another choice of a non-C1,2 function G is the Gini function; see Example 6.1 in
Karatzas and Ruf [51] for details.
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Remark 3. Consider the special case where Λ(·) is set to be a constant λ. Then
Theorem 2.1.1 generalises Theorem 3.7(i) and (ii) in Karatzas and Ruf [51]. If Λ(·)
is non-constant, in contrast to Theorem 3.7 in Karatzas and Ruf [51], even if G can
be extended to a continuous function concave in the second argument, G may not be
Lyapunov. A counterexample is given in Example 2.1.2. Therefore, for the generalised
case, Theorem 3.7 in Karatzas and Ruf [51] cannot be applied, and instead we have
to use modified conditions such as given by Theorem 2.1.1.

Example 2.1.2. Assume that µ(·) ∈ ∆d with [µ1, µ1] (t) > 0, for all t > 0, and that

Λ(·) = γ
d∑
j=1

[µj , µj ] (·),

where γ is a constant.
Define the concave quadratic function

G(λ, x) = λ−
d∑
j=1

x2
j , λ ∈ R, x ∈ ∆d.

Then from (2.5) we have

ΓG(·) = −
∫ ·

0
dΛ(t) +

d∑
j=1

∫ ·
0

d [µj , µj ] (t) = (1− γ)
d∑
j=1

[µj , µj ] (·).

Observe that ΓG(·) is decreasing for γ > 1; hence G is not a Lyapunov function for
Λ(·) and µ(·), although it is concave in its second argument.

Define now G(λ, x) = −G(λ, x). Then we have ΓG(·) = −ΓG(·). Therefore, if
γ > 1 holds, ΓG(·) is increasing; hence G is Lyapunov although convex in its second
argument.

Recall the ranked market weights process µ(·) defined by (1.17) and the open set
W from (2.2).

Theorem 2.1.2. If a function G : W → R is regular for Λ(·) and µ(·) = R
(
µ(·)

)
, then

the composition G = G ◦R is regular for Λ(·) and µ(·).

To prove Theorem 2.1.2, we can apply the same techniques used in the proof
of Theorem 3.8 in Karatzas and Ruf [51], but now with the generalised form of the
function G; see Section 2.6 for details.

The following example concerns a function G which is not in C1,2. Recall the open
set Wd

+ from (1.16).

Example 2.1.3. Assume that µ(·) ∈ ∆d
+ and consider the C1,2 function

G(λ,x) = −λ
d1∑
l=1

x(l) log x(l) + 1−
d2∑

l=d1+1

x2
(l), λ ∈ R, x ∈Wd

+,



16 Chapter 2. Generalised Functionally Generated Portfolios

where d1 and d2 are positive integers with d1 < d2 ≤ d. According to Example 2.1.1,G
is regular for Λ(·) and µ(·). In particular, the corresponding measurable function GD

as in Definition 2.1.1 can be chosen with components

GD
l (λ,x) =


−λ log x(l) − λ, if l ∈ {1, · · · , d1}

−2x(l), if l ∈ {d1 + 1, · · · , d2}

0, otherwise

. (2.6)

In this case, Itô’s lemma yields

G(Λ(·),µ(·)) = G(Λ(0),µ(0)) +

∫ ·
0

d∑
l=1

GD
l (Λ(t),µ(t))dµ(l)(t)− ΓG(·) (2.7)

with GD
l given in (2.6) and

ΓG(·) =
1

2

∫ ·
0

d1∑
l=1

Λ(t)

µ(l)(t)
d
[
µ(l), µ(l)

]
(t) +

∫ ·
0

d2∑
l=d1+1

d
[
µ(l), µ(l)

]
(t)

+

∫ ·
0

d1∑
l=1

µ(l)(t) logµ(l)(t)dΛ(t).

(2.8)

Denote the number of components of x = (x1, · · · , xd)′ ∈ ∆d that coalesce at a
given rank l ∈ {1, · · · , d} by

Nl(x) =
d∑
i=1

1xi=x(l) . (2.9)

Then by Theorem 2.3 in Banner and Ghomrasni [7], the ranked market weight process
µ(·) has components

µ(l)(·) = µ(l)(0) +

∫ ·
0

d∑
i=1

1{µi(t)=µ(l)(t)}
Nl(µ(t))

dµi(t) +
d∑

k=l+1

∫ ·
0

dΛ(l,k)(t)

Nl(µ(t))

−
l−1∑
k=1

∫ ·
0

dΛ(k,l)(t)

Nl(µ(t))
, l ∈ {1, · · · , d},

(2.10)

where
Λ(i,j)(·) = Lµ(i)−µ(j)(·), 1 ≤ i < j ≤ d, (2.11)

is the local time process of the continuous semimartingale µ(i)(·) − µ(j)(·) ≥ 0 at the
origin by (1.19).

By Theorem 2.1.2, the function

G(λ, x) = G(λ,R(x)) = −λ
d1∑
l=1

d∑
j=1

1xj=x(l)
Nl(x)

xj log xj + 1−
d2∑

l=d1+1

d∑
j=1

1xj=x(l)
Nl(x)

x2
j

is regular for Λ(·) and µ(·), since G is regular for Λ(·) and µ(·).
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Now, assume that Λ(·) is of the form

Λ(·) = ξ ∧
(
ξ ∨ Λ′(·)

)
,

where ξ and ξ are two positive constants with ξ < ξ, and the process Λ′(·) is of finite
variation. Let

G(λ′, x) = G
(
ξ ∧

(
ξ ∨ λ′

)
, x
)
, λ′ ∈ R, x ∈ ∆d

+.

Then withGD
l and ΓG(·) given in (2.6) and (2.8), respectively, inserting (2.10) into (2.7)

yields

G(Λ′(·), µ(·)) = G(Λ′(0), µ(0)) +

∫ ·
0

d∑
j=1

GD
j (Λ′(t), µ(t))dµj(t)− ΓG(·),

where

GD
i (λ′, x) =

d∑
l=1

1{xi=x(l)}
Nl(x)

GD
l

(
ξ ∧

(
ξ ∨ λ′

)
,R(x)

)
, i ∈ {1, · · · , d},

and

ΓG(·) = ΓG(·)−
d−1∑
l=1

d∑
k=l+1

∫ ·
0

GD
l (Λ(t),R(µ(t)))

Nl(µ(t))
dΛ(l,k)(t)

+
d∑
l=2

l−1∑
k=1

∫ ·
0

GD
l (Λ(t),R(µ(t)))

Nl(µ(t))
dΛ(k,l)(t).

Observe that G is regular for Λ′(·) and µ(·), yet it is not in C1,2.

2.2 Functional generation and relative arbitrage

In Karatzas and Ruf [51], two types of functional generation, additive and multiplicative
generation, are constructed to study the properties of relative values of functionally
generated trading strategies. In this section, we first discuss the generalised versions
of these functional generations and the corresponding properties. Then we consider
sufficient conditions for strong arbitrage relative to the market to exist.

2.2.1 Additive generation

Recall the open setW from (2.1).

Definition 2.2.1. (Additive generation). For a function G :W → R, regular for Λ(·) and
µ(·), and the process ϑ(·) given in (2.3), the trading strategy ϕ(·) with components

ϕi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d}, (2.12)
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in the manner of (1.11) and (1.10), and with the real constant

C = G(Λ(0), µ(0))−
d∑
j=1

ϑj(0)µj(0), (2.13)

is said to be additively generated by the regular function G.

In Chapter 4, we will study the leakage effect of rank-dependent trading strategies
generated additively. In Chapter 5, we will provide an interpretation for the conjugate
function of G to connect the additive functional generation with an optimal trading
manner to generate profits in the long run.

Proposition 2.2.1. The trading strategy ϕ(·), generated additively by a regular func-
tion G :W → R, has components

ϕi(·) = ϑi(·) + ΓG(·) +G(Λ(·), µ(·))−
d∑
j=1

µj(·)ϑj(·), (2.14)

for all i ∈ {1, · · · , d}. Moreover, the wealth process of ϕ(·) is given by the master
formula

V ϕ(·) = G(Λ(·), µ(·)) + ΓG(·). (2.15)

Proof. We apply the reasoning of the proof of Proposition 4.3 in Karatzas and Ruf [51]
here for a generalised G. We first show (2.15). Since ϕ(·) is a trading strategy, by
(1.7), (2.12), and (2.13), we have

V ϕ(·) =
d∑
j=1

ϕj(·)µj(·) =
d∑
j=1

ϑj(·)µj(·)−Qϑ(·) + C

=
d∑
j=1

ϑj(·)µj(·)−Qϑ(·) +G(Λ(0), µ(0))−
d∑
j=1

ϑj(0)µj(0),

(2.16)

which yields
V ϕ(·) = V ϑ(·)− V ϑ(0) +G(Λ(0), µ(0))−Qϑ(·)

= G(Λ(0), µ(0)) +

∫ ·
0

d∑
j=1

ϑj(t)dµj(t)

by (1.10). Then combining the above equation and (2.4) yields (2.15).
To show (2.14), note that by (2.16) and (2.15), we have

C −Qϑ(·) = G(Λ(·), µ(·)) + ΓG(·)− V ϑ(·),

which together with (2.12) imply (2.14).

Remark 4. A trading strategy ϕ(·) generated additively from a regular function G is
not necessarily long-only as defined in Definition 1.2.2. As given by (2.14), the value
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of the trading strategy ϕ(·) depends strongly on the value of G, which is determined
by the function form of G, as well as the choice of Λ(·). Hence, by the relationship

πi(·) =
ϕi(·)µi(·)
V ϕ(·)

, i ∈ {1, · · · , d}, (2.17)

the portfolio weight πi(·) is non-positive whenever ϕi(·) is negative.
Whenever the wealth V ϕ(t) is positive, for all t ≥ 0, the portfolio weights π(t) has

components

πi(t) =

(
1 +

ϑi(t)−
∑d

j=1 µj(t)ϑj(t)

V ϕ(t)

)
µi(t)

=

(
1 +

ϑi(t)−
∑d

j=1 µj(t)ϑj(t)

G(Λ(t), µ(t)) + ΓG(t)

)
µi(t), i ∈ {1, · · · , d},

(2.18)

by (2.17), (2.14), and (2.15).

2.2.2 Multiplicative generation

Definition 2.2.2. (Multiplicative generation). For a function G : W → (0,∞), regular
for Λ(·) and µ(·), let the process ϑ(·) be given in (2.3) and assume that 1/G(Λ(·), µ(·))
is locally bounded. Consider the process ϑ(·) ∈ L(µ) with components

ϑi(·) = ϑi(·) exp

(∫ ·
0

dΓG(t)

G
(
Λ(t), µ(t)

)) , i ∈ {1, · · · , d}. (2.19)

Then the trading strategy ψ(·) with components

ψi(·) = ϑi(·)−Qϑ(·) + C, i ∈ {1, · · · , d}, (2.20)

in the manner of (1.11) and (1.10), and with C given in (2.13), is said to be multiplica-
tively generated by the regular function G.

Proposition 2.2.2. The trading strategy ψ(·), generated multiplicatively by a regular
function G :W → (0,∞) with 1/G(Λ(·), µ(·)) locally bounded, has components

ψi(·) = V ψ(·)

(
1 +

ϑi(·)−
∑d

j=1 ϑj(·)µj(·)
G(Λ(·), µ(·))

)
, (2.21)

for all i ∈ {1, · · · , d}, where the wealth process of ψ(·) is given by the master formula

V ψ(·) = G(Λ(·), µ(·)) exp

(∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

)
> 0. (2.22)

Proof. The reasoning of the proof of Proposition 4.8 in Karatzas and Ruf [51] is applied
for a generalised G. First we show that (2.22) holds. Since ψ(·) is a trading strategy,
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by (1.7), (2.20), and (2.19), we have

dV ψ(t) =
d∑
j=1

ψj(t)dµj(t) =
d∑
j=1

ϑj(t)dµj(t)

= exp

(∫ t

0

dΓG(u)

G(Λ(u), µ(u))

) d∑
j=1

ϑj(t)dµj(t).

Then by (2.4), we have

d∑
j=1

ϑj(t)dµj(t) = dΓG(t) + dG(Λ(t), µ(t)),

which implies

dV ψ(t) = exp

(∫ t

0

dΓG(u)

G(Λ(u), µ(u))

)(
dΓG(t) + dG(Λ(t), µ(t))

)
= d

(
G(Λ(t), µ(t)) exp

(∫ t

0

dΓG(u)

G(Λ(u), µ(u))

))
,

(2.23)

where the second equality is by the product rule.
Moreover, by (2.20), (1.10), (2.13), and (2.19), we have

V ψ(0) =

d∑
j=1

ψj(0)µj(0) =

d∑
j=1

ϑj(0)µj(0) + C

=

d∑
j=1

ϑj(0)µj(0) +G(Λ(0), µ(0))−
d∑
j=1

µj(0)ϑj(0) = G(Λ(0), µ(0))

= G(Λ(0), µ(0)) + ΓG(0),

which together with (2.23) implies (2.22).
To show (2.21), by (2.19) and (2.22), it is equivalent to show

ψi(·) = V ψ(·) + ϑi(·)−
d∑
j=1

ϑj(·)µj(·) = V ψ(·) + ϑi(·)− V ϑ(·), (2.24)

for all i ∈ {1, · · · , d}. By (1.10) and (2.13), (2.20) yields

ψi(·) = ϑi(·)− V ϑ(·) + V ϑ(0) +

∫ ·
0

d∑
j=1

ϑj(t)dµj(t) +G(Λ(0), µ(0))− V ϑ(0),

which, by (2.20), (2.22), (1.8), and
∑d

j=1 dµj(t) = 0, yields

ψi(·) = ϑi(·)− V ϑ(·) + V ψ(0) +

∫ ·
0

d∑
j=1

ψj(t)dµj(t) = ϑi(·)− V ϑ(·) + V ψ(·),
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for all i ∈ {1, · · · , d}, i.e., (2.24) indeed holds.

Remark 5. Let the trading strategy ψ(·) be generated multiplicatively by G. By (2.21)
and

πi(·) =
ψi(·)µi(·)
V ψ(·)

, i ∈ {1, · · · , d},

we have

πi(t) =

(
1 +

ϑi(t)−
∑d

j=1 ϑj(t)µj(t)

G(Λ(t), µ(t))

)
µi(t), i ∈ {1, · · · , d}, t ≥ 0. (2.25)

Compared with (1.14), (2.25) is more general in that G can be non-smooth and
depend on an extra component Λ(·).

2.2.3 Sufficient conditions for relative arbitrage

In Karatzas and Ruf [51], Theorems 5.1 and 5.2 give sufficient conditions for strong
arbitrage relative to the market to exist for both additively and multiplicatively generated
trading strategies, respectively. These results still hold for a regular / Lyapunov function
G :W → [0,∞) under specific conditions.

To be consistent with the conditions of arbitrage relative to the market in (1.12),
we normalise G(Λ(0), µ(0)) = 1 such that both of the wealth processes in (2.15) and
(2.22) have initial values 1. This normalisation is guaranteed by replacing G with G+ 1

when G(Λ(0), µ(0)) = 0, or with G/G(Λ(0), µ(0)) when G(Λ(0), µ(0)) > 0.

Theorem 2.2.3. Fix a function G : W → [0,∞), Lyapunov for Λ(·) and µ(·), with
G(Λ(0), µ(0)) = 1. For some real number T∗ > 0, suppose that

P
[
ΓG(T∗) > 1

]
= 1. (2.26)

Then the additively generated trading strategy ϕ(·) of Definition 2.2.1 is strong arbi-
trage relative to the market over every investment horizon [0, T ] with T ≥ T∗.

Proof. By (2.15) and G(Λ(0), µ(0)) = 1, we have V ϕ(0) = 1. Since G takes values
on [0,∞) and is Lyapunov for Λ(·) and µ(·), i.e., ΓG(·) is non-decreasing, we have
V ϕ(·) ≥ 0. Moreover, by (2.26), we have

V ϕ(T ) = G(Λ(T ), µ(T )) + ΓG(T ) ≥ ΓG(T∗) > 1, T ≥ T∗,

i.e., (1.12) holds. Hence, Definition 1.3.1 implies the desired result.

Theorem 2.2.4. Assume that |Λ(·)| is uniformly bounded. Fix a function G : W →
[0,∞), regular for Λ(·) and µ(·), withG(Λ(0), µ(0)) = 1. For some real numbers T∗ > 0,
suppose that we can find an ε = ε(T∗) > 0 such that

P
[
ΓG(T∗) > 1 + ε

]
= 1. (2.27)



22 Chapter 2. Generalised Functionally Generated Portfolios

Then there exists a constant c = c(T∗, ε) > 0 such that the trading strategy ψ(c)(·),
generated multiplicatively by the regular function

G(c) =
G+ c

1 + c
(2.28)

as in Definition 2.2.2, is strong arbitrage relative to the market over the investment
horizon [0, T∗]. Moreover, if G is a Lyapunov function for Λ(·) and µ(·), then ψ(c)(·) is
also a strong relative arbitrage over every investment horizon [0, T ] with T ≥ T∗.

Proof. We prove the theorem for a generalised G, using the same argument in the
proof of Theorem 5.2 in Karatzas and Ruf [51]. Since the regular function G takes
values on [0,∞), by (2.22) and G(Λ(0), µ(0)) = 1, we have V ψ(c)

(0) = 1 and V ψ(c)
(·) ≥

0. To make ψ(c)(·) strong relative arbitrage over [0, T∗], by Definition 1.3.1, we need to
show P[V ψ(c)

(T∗) > 1] = 1.
For constant c > 0, by (2.28) and (2.4), we have

ΓG
(c)

(·) =
ΓG(·)
1 + c

and G(c) ≥ c

1 + c
,

which, by (2.22), implies

V ψ(c)
(T∗) ≥

c

1 + c
exp

(∫ T∗

0

dΓG
(c)

(t)

G(c)(Λ(t), µ(t))

)

=
c

1 + c
exp

(∫ T∗

0

dΓG(t)

G(Λ(t), µ(t)) + c

)
.

(2.29)

Since G(Λ(·), µ(·)) is uniformly bounded thanks to the assumptions, there exists an
upper bound η of G. Then by (2.27), (2.29) yields

V ψ(c)
(T∗) ≥

c

1 + c
exp

(
1

η + c

∫ T∗

0
dΓG(t)

)
>

c

1 + c
exp

(
1 + ε

η + c

)
.

To proceed, note that

c

1 + c
exp

(
1 + ε

η + c

)
= exp

(
ε− η log(1 + 1/c) + 1− c log(1 + 1/c)

η + c

)
.

Since log(1 + x) < x, for all x > 0, we have

V ψ(c)
(T∗) > exp

(
ε− η log(1 + 1/c)

η + c

)
> 1,

for sufficiently large c. Therefore, there exists constant c sufficiently large such that
P[V ψ(c)

(T∗) > 1] = 1 holds.
If G is Lyapunov for Λ(·) and µ(·), then by (2.27), we have

P
[
ΓG(T ) ≥ ΓG(T∗) > 1 + ε

]
= 1, T ≥ T∗.
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Then, applying the same reasoning above yields the desired result.

2.3 Data source and processing

We start this section by describing the data used in the next section, where several
trading strategies are implemented. Then we discuss the method to process the data.

2.3.1 Data source and description

We shall consider a market consisting of all stocks in the S&P 500 index. We are
interested in the beginning of day and the end of day market weights of each of these
stocks. To calculate these market weights accurately (according to the method in
Subsection 2.3.2), we make use of two time series: the daily market values (market
capitalisations, which exclude all the dividend payments) and the daily return indexes
(used to consider the effect of reinvestment of dividend payments) of the correspond-
ing component stocks in the S&P 500 index. Both of these time series are available at
the end of each trading day.

The data of the market values and return indexes is downloaded from DataS-
tream.2 The first day, for which the data is available on DataStream, is September
29th, 1989. Since then there are in total 1140 constituents that have belonged to the
S&P 500 index. A list of stocks in the S&P 500 index is also attainable on DataStream.
In particular, for each month, we derive the list of constituents of the index at the last
day of this month. For a constituent delisted from the index in that month, we keep it
in our portfolio provided that the constituent still remains in the market till the end of
that month. However, we get rid of it from our portfolio on the same day when the con-
stituent does no longer exist in the market, usually due to mergers and acquisitions,
bankruptcies, etc. For a constituent newly added to the index in that month, we put it
into our portfolio from the first day of the following month.

2.3.2 Data processing

Theoretically, trading strategies vary continuously in time, while in the empirical anal-
ysis a daily trading frequency is used. The following procedure illustrates how we
examine the gains and losses in our portfolio relative to the market portfolio.

We discretise the time horizon as 0 = t0 < t1 < · · · < tN−1 = T , where N is the
total number of trading days.

• The transaction on day tl, for all l ∈ {1, · · · , N − 1}, is made at the beginning
of day (tl), taking the beginning of day tl market weights µ(tl) as inputs. These

2DataStream, operated by Thomson Reuters, is a financial time series database; see
https://financial.thomsonreuters.com/en/products/data-analytics/economic-data.html.

https://financial.thomsonreuters.com/en/products/data-analytics/economic-data.html
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market weights µ(tl) are computed by

µi(tl) =
MVi(tl)

Σ(tl)
, i ∈ {1, · · · , d},

where MVi(tl) is the market value of stock i at the beginning of day tl, which is
assumed to be equal to the market value attainable at the end of the last trading
day tl−1, and Σ(tl) =

∑d
j=1 MVj(tl) denotes the total market capitalisation at the

beginning of day tl.

• The theoretical (non-self-financing) trading strategy throughout day tl, denoted
by θ(tl), is computed based on either (2.3) or (2.19), taking µ(tl) as inputs. De-
note the implemented (self-financing) trading strategy corresponding to θ(tl) by
φ(tl). Then V φ(tl), the beginning of day tl wealth of the portfolio corresponding
to φ(tl), is given by

V φ(t1) =
V φ(tl−1)Σ(tl−1)

Σ(t1)
. (2.30)

This is based on the assumption that the real portfolio wealth does not change
overnight. In (2.30), V φ(tl−1) and Σ(tl−1) are the end of day tl−1 portfolio wealth
and total market capitalisation, respectively, computed at tl−1 (thus already known
at tl).

• To derive the implemented (self-financing) trading strategy φ(tl) corresponding
to θ(tl), we compute the number

C(tl) =

d∑
j=1

θj(tl)µj(tl)− V φ(tl). (2.31)

Then φ(tl) is derived by

φi(tl) = θi(tl)− C(tl), i ∈ {1, · · · , d}. (2.32)

This guarantees

V φ(tl) =

d∑
i=1

φi(tl)µi(tl).

• At the end of day tl, the return indexes of the stocks for tl are available, and the
total returns TR(tl) are computed through dividing the return indexes of tl with
the return indexes of tl−1. Then the end of day tl implied market values MV(tl),
which take the dividend payments into consideration, are given by

MVi(tl) = MVi(tl)TRi(tl), i ∈ {1, · · · , d}.

The end of day tl modified total market capitalisation Σ(tl) and market weights
µ(tl) are calculated similarly as Σ(tl) and µ(tl), with MV(tl) replaced by MV(tl).
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• The end of day tl portfolio wealth is then computed by

V φ(tl) =

d∑
j=1

φj(tl)µj(tl).

Note that we have

V φ(tl) = V φ(tl) +

d∑
j=1

θj(tl)
(
µj(tl)− µj(tl)

)
. (2.33)

In particular, at the beginning of day t0, all of the above steps are still applied,
except that we have V φ(t0) = 1 instead of (2.30) due to Definition 1.3.1.

2.4 Examples and empirical results

In this section, several examples of portfolio generating functions are empirically stud-
ied. In particular, the performance of these trading strategies will be analysed further
in Chapter 3 when incorporating with transaction costs. Recall the open set ∆d

+ from
(1.3).

Example 2.4.1. Define the generalised entropy function

G(λ, x) = λ
d∑
j=1

xj log

(
1

xj

)
, λ ∈ R+, x ∈ ∆d

+,

with values in (0, λ log d), for fixed λ > 0. Suppose that µ(·) takes values in ∆d
+ and

that Λ(·) is (0,∞)-valued.
From (2.5) we have

ΓG(·) =

d∑
j=1

∫ ·
0
µj(t) logµj(t)dΛ(t) +

1

2

d∑
j=1

∫ ·
0

Λ(t)
d [µj , µj ] (t)

µj(t)
. (2.34)

Then G is a Lyapunov function for Λ(·) and µ(·) provided that ΓG(·) is non-decreasing.
One sufficient condition for this to hold is that Λ(·) is non-increasing.

From (2.14), the trading strategy ϕ(·), generated additively by G, has components

ϕi(·) = ΓG(·)− Λ(·) logµi(·), i ∈ {1, · · · , d}. (2.35)

Using (2.15), the corresponding wealth process V ϕ(·) is strictly positive if G is Lya-
punov for Λ(·) and µ(·).

For the multiplicative generation, G is required to be bounded away from zero. One
sufficient condition for this to hold is that Λ(·) is bounded away from 0 and the market
is diverse on [0,∞), i.e., there exists ε > 0 such that G(Λ(t), µ(t)) ≥ Λ(t)ε, for all t ≥ 0

(see Proposition 2.3.2 in Fernholz [26]). Then from (2.21), the trading strategy ψ(·),
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generated multiplicatively by G, has components

ψi(·) = −Λ(·) logµi(·) exp

(∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

)
, i ∈ {1, · · · , d}.

The corresponding wealth process V ψ(·) is given in (2.22).
Now, let us discuss sufficient conditions for the existence of arbitrage relative to the

market. To this end, let Λ(·) be such that G is Lyapunov for Λ(·) and µ(·), for example,
let Λ(·) be non-increasing. Next, consider

G =
G

G(Λ(0), µ(0))
, (2.36)

together with the non-decreasing process

ΓG(·) =
ΓG(·)

G(Λ(0), µ(0))
. (2.37)

Then from Theorem 2.2.3, if

P
[
ΓG(T∗) > 1

]
= P

[
ΓG(T∗) > G(Λ(0), µ(0))

]
= 1,

then the trading strategy ϕ(·)/G(Λ(0), µ(0)), generated additively by G, is strong rela-
tive arbitrage over every time horizon [0, T ] with T ≥ T∗.

Similarly, from Theorem 2.2.4, if

P
[
ΓG(T∗) > 1 + ε

]
= P

[
ΓG(T∗) > G(Λ(0), µ(0))(1 + ε)

]
= 1,

then the trading strategy ψ(c)(·), generated multiplicatively by

G(c) =
G+ c

G(Λ(0), µ(0)) + c
, (2.38)

for some sufficiently large c > 0, is strong relative arbitrage over every time horizon
[0, T ] with T ≥ T∗.

To empirically examine the performance of the portfolio generated by G, we only
restrict G to be regular for Λ(·) and µ(·), although G is Lyapunov for some of the
choices of Λ(·) in the following.

Recall that the wealth processes of portfolios generated either additively or multi-
plicatively are relative to the S&P 500 index. For a specific day tn, we estimate

[µi, µi] (tn) ≈
n∑
l=1

(µi(tl)− µi(tl))2, i ∈ {1, · · · , d},

where tl (tl) denotes the beginning (end) of the day tl.
Figure 2.1 presents ΓG(·) given in (2.37) and the relative wealth processes V ϕ(·)

and V ψ(0)
(·) (minus 1 to start from 0 as ΓG(·)) of trading strategies generated additively
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and multiplicatively by G, respectively, with finite-variation process Λ(·) = 1. As we can
observe from the figure, both V ϕ(·) and V ψ(0)

(·) have been continuously outperforming
the market trading strategy since the year 2000.

FIGURE 2.1: Gamma process ΓG(·) and relative wealth pro-
cesses (minus 1) of both the additively and the multiplicatively
generated trading strategies with constant Λ(·) = 1.

Next, we examine the effect that choosing some non-constant Λ(·) may have on
the portfolio performance. Figures 2.2 and 2.3 display the relative wealth processes
V ϕ(·) (in logarithmic scale) generated additively corresponding to two different groups
of Λ(·). The first group of Λ(·) is increasing, which results in decreasing ΓG(·) given
by (2.34); the corresponding G is only regular but not Lyapunov for Λ(·) and µ(·).
The second group of Λ(·) is decreasing; the corresponding ΓG(·) given by (2.34) is
increasing and G is Lyapunov for Λ(·) and µ(·).

More precisely, for all l ∈ {1, · · · , N}, in Figure 2.2, the wealth processes V ϕ(·) cor-
responding to Λ(tl) = exp

(
10−4l

)
and Λ(tl) = exp

(
−10−4l

)
are plotted; in Figure 2.3,

the wealth processes V ϕ(·) corresponding to

Λ(tl) = exp

100
d∑
j=1

[µj , µj ] (tl)

 and Λ(tl) = exp

−100
d∑
j=1

[µj , µj ] (tl)


are plotted. The constants 10−4 and 100 are chosen such that, with these forms, the
daily changes of both G(Λ(·), µ(·)) and ΓG(·) are roughly at the same level of magni-
tude. Hence, in (2.15), neither part on the right hand side dominates the other.

As we can observe from the figures, choosing Λ(·) increasing seems to lead to a
better performance than choosing Λ(·) constant, which again seems to be better than
choosing Λ(·) decreasing. We attribute the reason behind this observation to the state
of market diversification as follows.
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FIGURE 2.2: Relative wealth process V ϕ(·) (in logarithmic scale)
of additively generated trading strategies with Λ(·) a deterministic
exponential.

FIGURE 2.3: Relative wealth process V ϕ(·) (in logarithmic scale)
of additively generated trading strategies with Λ(·) an exponential
of the quadratic variation of µ(·).

Observe that (2.33) yields

V ϕ(tl) = V ϕ(tl) +
1

G(Λ(0), µ(0))
Λ(tl)D(tl), l ∈ {0, · · · , N}, (2.39)
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where D(tl) is given by

D(tl) =

d∑
j=1

− logµj(tl)(µj(tl)− µj(tl)). (2.40)

The value D(tl) can be considered as an indicator of the direction of changes in
market weights from the beginning to the end of day tl. The value D(tl) will be positive
(negative), if market weights are shifted from companies with large (small) beginning
of day market weights to companies with small (large) beginning of day market weights
throughout day tl. We consider a simple example to better understand why this is the
case.

Fix d = 2 and assume that µ1(tl) > µ2(tl). Then

D(tl) = − logµ1(tl)(µ1(tl)− µ1(tl))− logµ2(tl)(µ2(tl)− µ2(tl))

= (− logµ1(tl) + log µ2(tl))(µ1(tl)− µ1(tl))

holds due to the fact that

µ1(tl)− µ1(tl) = −(µ2(tl)− µ2(tl)).

Hence, D(tl) > 0 if and only if µ1(tl) < µ1(tl), i.e., the market weight of the company
with larger beginning of day market weight decreases, while the market weight of the
company with smaller beginning of day market weight increases.

Hence, a positive D(·) indicates an enhancement in market diversification, while
D(·) being negative actually implies a reduction in market diversification. Figure 2.4
plots the cumulative process

E(·) =

·∑
tl=t1

D(tl).

The processE(·) is increasing (decreasing) wheneverD(·) is positive (negative). From
Figure 2.4 we can observe that after a slight increase from the year 1991 to the year
1995, E(·) keeps declining till the year 2000. Then E(·) rises up in the long run from
the year 2000 until now.

The behaviour of the process E(·) is in line with another measurement of the mar-
ket diversification. More precisely, let us consider the process

∑d
j=1(µj ∧ 0.002)(·).

Note that the value 0.002 = 1/500, which is roughly the number of constituents in the
portfolio. This process is a measure of the market diversification, as it goes up when
the market weights of small companies become larger, i.e., the market diversification
is strengthened. Figure 2.5 plots the process, which first grows from the year 1991 to
the year 1995. Then from the year 1995 to 2000, the process declines fast. This indi-
cates that during this period, the market diversification weakens. On the contrary, the
market diversification strengthens afterwards until the year 2008, as the process goes
up. Then the level of market diversification remains within a relatively small range.
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FIGURE 2.4: Integration process E(·) with components given by
(2.40).

FIGURE 2.5: Process
∑d

j=1(µj ∧ 0.002)(·) as a measure of the
market diversification degree in the S&P 500 market.

As a result, according to (2.39), if the market presents a trend of increasing diversi-
fication, an increasing positive Λ(·) helps to reinforce this effect, and further assists in
pulling up V ϕ(·), while a decreasing positive Λ(·) is counteractive. On the other hand,
if the market presents a trend of decreasing diversification, then a decreasing positive
Λ(·) helps to slow down the declining speed of V ϕ(·), while an increasing positive Λ(·)
would make the speed even faster. This is confirmed in Figures 2.2 and 2.3, as from
the year 1991 to the year 1995 and from the year 2000 till now, an increasing positive
Λ(·) makes V ϕ(·) perform better, while from the year 1995 to the year 2000, V ϕ(·)
corresponding to a decreasing positive Λ(·) is slightly larger.
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Although an increasing positive Λ(·) has positive effect on the portfolio perfor-
mance V ϕ(·) whenever the market diversification strengthens, we are not allowed to
choose Λ(·) arbitrarily fast increasing. The reason is that the trading strategy ϕ(·) is
required to be long-only in our framework, i.e., ϕ(·) given by (2.35) must be nonneg-
ative at any time. If Λ(·) is increasing fast enough, ΓG(·) will become negative and
decrease fast, which may result in negative ϕ(·) according to (2.35).

As for the multiplicative generation, the different choices of finite-variation process
do not change the wealth processes significantly. Indeed, according to (2.34), an in-
creasing Λ(·) may slow down the growth rate of Γ(·), or even turn Γ(·) into a decreasing
one. When applying (2.32) to ϑ(·) from (2.19), we have

V ψ(c)
(tl) = exp

(∫ tl

0

dΓG(t)

G(Λ(t), µ(t)) + c

)
Λ(tl)

G(Λ(0), µ(0)) + c
D(tl) + V ψ(c)

(tl),

for all l ∈ {0, · · · , N}, with D(·) given in (2.40). In this example, according to the
above equation, the positive effect in boosting V ψ(c)

(·) contributed by an increasing
positive Λ(·) is counteracted more or less by the opposite impact the same Λ(·) has
on the exponential part. A similar analysis also applies to a decreasing positive Λ(·).
Therefore, under the above mentioned situation (market diversification increases in
general), the different choices of a monotone Λ(·) do not influence V ψ(c)

(·) as much
as they do on V ϕ(·).

Note that our process D(·) is related but not the same as the Bregman divergence

DB,G

[
µ(tl)|µ(tl)

]
= Λ(tl)D(tl)−

(
G
(
Λ(tl), µ(tl)

)
−G

(
Λ(tl), µ(tl)

))
,

defined in Definition 3.6 in Wong [93]. For its connection to optimal transport, we refer
to Wong [93].

To conclude this example, we compute several empirical indicators corresponding
to the performance of above mentioned trading strategies over the chosen time hori-
zon. The S&P 500 market trading strategy has an averaged yearly return of 9.87% and
a Sharpe ratio of 0.37.3 As for the functionally generated trading strategies analyzed
in this example, their averaged yearly returns are ranging from 11.12% to 12%, their
Sharpe ratios lie between 0.45 and 0.49, and their excess returns with respect to the
market trading strategy vary from 1.25% to 2.13%. We refer to Banner et al. [6] for a
detailed empirical study to explain these excess returns.

The following example is motivated by Schied, Speiser, and Voloshchenko [82].

Example 2.4.2. Consider the function

G(λ, x) =

(
d∑
i=1

(αxi + (1− α)λi)
p

) 1
p

, λ ∈ Rd+, x ∈ ∆d
+,

3To compute the Sharpe ratios of the market trading strategy and other functionally generated trading
strategies, the one-year U.S. Treasury yields are used. The data of these yields can be downloaded from
https://www.federalreserve.gov.

https://www.federalreserve.gov
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with constants α, p ∈ (0, 1). Then G is concave.
For fixed constant δ > 0, define the Rd+-valued moving average process Λ(·) by

Λi(·) =

1
δ

∫ ·
0 µi(t)dt+ 1

δ

∫ 0
·−δ µi(0)dt on [0, δ)

1
δ

∫ ·
·−δ µi(t)dt on [δ,∞)

,

for all i ∈ {1, · · · , d}.
Write µ(·) = αµ(·) + (1− α)Λ(·). Then by (2.5),

ΓG(·) = −(1− α)

d∑
j=1

∫ ·
0

(
G(Λ(t), µ(t))

µj(t)

)1−p
dΛj(t)

− α2(1− p)
2

d∑
i,j=1

∫ ·
0

(
G(Λ(t), µ(t))

µi(t)µj(t)

)1−p 1∑d
v=1 (µv(t))

p
d [µi, µj ] (t)

+
α2(1− p)

2

d∑
j=1

∫ ·
0

(
G(Λ(t), µ(t))

µj(t)

)1−p 1

µj(t)
d [µj , µj ] (t).

Notice that G is not Lyapunov in general.
The trading strategies ϕ(·) and ψ(·), generated additively and multiplicatively by G,

respectively, are given by

ϕi(·) = G(Λ(·), µ(·))

 α (µi(·))
p

µi(·)
∑d

v=1 (µv(·))
p
−

d∑
j=1

αµj(·)
(
µj(·)

)p
µj(·)

∑d
v=1 (µv(·))

p
+ 1

+ ΓG(·)

and

ψi(·) =
(
ϕi(·)− ΓG(·)

)
exp

(∫ ·
0

dΓG(t)

G(Λ(t), µ(t))

)
, i ∈ {1, · · · , d}.

The corresponding wealth processes V ϕ(·) and V ψ(·) can be derived from (2.15) and
(2.22), respectively.

Consider the normalised regular function G given in (2.36) and the corresponding
process ΓG(·) given in (2.37). By Theorem 2.2.4, if

P
[
ΓG(T∗) > 1 + ε

]
= P

[
ΓG(T∗) > G(Λ(0), µ(0))(1 + ε)

]
= 1,

then the trading strategy ψ(c)(·), generated multiplicatively by G(c) given in (2.38) for
some sufficiently large c > 0, is strong relative arbitrage over the investment horizon
[0, T∗].

To simulate the relative performance of ϕ(·) and ψ(c)(·), we use the parameters
δ = 250 days and p = 0.8. Figure 2.6 shows ΓG(·) and the wealth processes V ϕ(·)
and V ψ(0)

(·) without the effect of the moving average part, i.e., α = 1. In this case, G
is Lyapunov. The performance of ϕ(·) and ψ(c)(·) is similar to that in Example 2.4.1,
when the finite-variation process is chosen to be constant. Figure 2.7 presents the
case when α = 0.6. It can be observed that ΓG(·) increases slower when the moving
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average part is considered. Compared with the case that the moving average part is
not included, the wealth processes V ϕ(·) and V ψ(0)

(·) also take smaller values in the
long run. This is due to the fact that when α decreases, the volatility of µ(·) decreases
as well. In this case, we trade slower, and the gains and losses will also be relatively
less.

FIGURE 2.6: Gamma process ΓG(·) and relative wealth pro-
cesses (minus 1) of both the additively and the multiplicatively
generated trading strategies with δ = 250 days, p = 0.8, and
α = 1.

For the four functionally generated trading strategies examined in this example,
their averaged yearly returns range from 11.21% to 11.47%, their Sharpe ratios lie
between 0.45 and 0.47, and their excess returns with respect to the market trading
strategy vary from 1.34% to 1.6%.

2.5 Conclusion

Karatzas and Ruf [51] build a simple and intuitive structure by interpreting the port-
folio generating functions G initiated by Fernholz [31] as Lyapunov functions. They
formulate conditions for the existence of strong arbitrage relative to the market over
appropriate time horizons. The purpose of this paper is to investigate the dependence
of the portfolio generating functions G on an extra Rm-valued, progressive, continuous
process Λ(·) of finite variation on [0, T ], for all T ≥ 0.

The results of the theoretical part in this chapter are illuminated by several exam-
ples and shown to work on empirical data using stocks from the S&P 500 index. The
effects that different choices of Λ(·) have on the portfolio wealths are analyzed. Pro-
vided that the market undergoes an explicit trend of either increasing or decreasing
market diversification, certain choices of Λ(·) are better than others.



34 Chapter 2. Generalised Functionally Generated Portfolios

FIGURE 2.7: Gamma process ΓG(·) and relative wealth pro-
cesses (minus 1) of both the additively and the multiplicatively
generated trading strategies with δ = 250 days, p = 0.8, and
α = 0.6.

2.6 Proofs of Theorems 2.1.1 and 2.1.2

2.6.1 Preliminaries

Before providing the proof of Theorem 2.1.1, we discuss some technical details.
Recall the open set W from (2.1) and consider a continuous function g : W → R.

Define a function g : Rm+d → R by

g(z) =

g(z), if z ∈ W

0, if z /∈ W
.

Next, let (gn1,n2)n1,n2∈N be the family of functions gn1,n2 :W → R given by

gn1,n2(λ, x) =

∫
Rd
ηn2(y)

∫
Rm

ηn1(u)g(λ− u, x− y)dudy, (2.41)

for all (λ, x) ∈ W, with gn1,n2(λ, x) = 0 whenever the right hand side of (2.41) is not
defined. Here in (2.41), for z ∈ Rl and n ∈ N,

ηn(z) =

βnl exp
(

1
n2‖z‖22−1

)
, if ‖z‖2 < 1

n

0, if ‖z‖2 ≥ 1
n

(2.42)

is used with the normalisation constant

β =

(∫
Rl

exp

(
1

‖y‖22 − 1

)
dy

)−1

,
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independent of n.

Lemma 2.6.1. Let V denote any closed subset ofW. Consider a continuous function
g :W → R and the mollification (gn1,n2)n1,n2∈N of g defined as in (2.41).

(i) We have
lim
n2↑∞

lim
n1↑∞

gn1,n2 = g.

(ii) For n1, n2 ∈ N large enough, gn1,n2 ∈ C∞(V).

(iii) If there exists a constant L = L(V) ≥ 0 such that, for all (λ1, x), (λ2, x) ∈ V,

|g(λ1, x)− g(λ2, x)| ≤ L‖λ1 − λ2‖2,

then, for n1, n2 ∈ N large enough and all (λ, x) ∈ V, we have∣∣∣∣∂gn1,n2

∂λv
(λ, x)

∣∣∣∣ ≤ L, v ∈ {1, · · · ,m}.

(iv) If g ∈ C0,1, then, for all (λ, x) ∈ W, we have

lim
n2↑∞

lim
n1↑∞

∂gn1,n2

∂xi
(λ, x) =

∂g

∂xi
(λ, x), i ∈ {1, · · · , d}.

(v) If g ∈ C0,1 and if there exists a constant L = L(V) ≥ 0 such that, for all
(λ, x1), (λ, x2) ∈ V, ∥∥∥∥∂g∂x(λ, x1)− ∂g

∂x
(λ, x2)

∥∥∥∥
2

≤ L‖x1 − x2‖2,

then, for n1, n2 ∈ N large enough and all (λ, x) ∈ V, we have∣∣∣∣∂2gn1,n2

∂xi∂xj
(λ, x)

∣∣∣∣ ≤ L,
for all i, j ∈ {1, · · · , d}.

Proof. For (i) and (ii), see Theorem 6 in Appendix C in Evans [23].
For (iii), observe that, for each n1, n2 ∈ N large enough and all v ∈ {1, · · · ,m},

(2.41) yields∣∣∣∣∂gn1,n2

∂λv
(λ, x)

∣∣∣∣ =

∣∣∣∣limδ→0

gn1,n2(λ+ δev, x)− gn1,n2(λ, x)

δ

∣∣∣∣
=

∣∣∣∣limδ→0

1

δ

∫
Rd
ηn2(y)

∫
Rm

ηn1(u)
(
g(λ+ δev − u, x− y)− g(λ− u, x− y)

)
dudy

∣∣∣∣
≤ lim

δ→0

1

δ

∫
Rd
ηn2(y)

∫
Rm

ηn1(u) |g(λ+ δev − u, x− y)− g(λ− u, x− y)|dudy

≤ lim
δ→0

1

δ
δL

∫
Rd
ηn2(y)

∫
Rm

ηn1(u)dudy = L,
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for all (λ, x) ∈ V, where ev is the unit vector in the v-th dimension.
For (iv), apply the dominated convergence theorem and (i) to ∂g/∂xi, for all i ∈

{1, · · · , d}.
For (v), apply the dominated convergence theorem and a similar argument as in

(iii).

The following lemma is an extension of Lemma 2 in Bouleau [13]. For a continuous
function g :W → R, consider its corresponding mollification (gn1,n2)n1,n2∈N defined as
in (2.41).

Lemma 2.6.2. If a continuous function g :W → R is concave in its second argument,
then

lim
n2↑∞

lim
n1↑∞

∂gn1,n2

∂xi
= fi, i ∈ {1, · · · , d},

for some measurable function fi :W → R, bounded on any compact V ⊂ W.

Proof. Fix i ∈ {1, · · · , d}. With the notation in (2.42), we have

ηn(z) = nlη1(nz), z ∈ Rl, n ∈ N.

For (λ, x) ∈ W and n2 ∈ N large enough, the definition of gn1,n2 in (2.41), the domi-
nated convergence theorem, and Lemma 2.6.1(i)&(ii) yield

lim
n1↑∞

∂gn1,n2

∂xi
(λ, x) = lim

n1↑∞

∫
Rd

∂ηn2

∂xi
(x− y)

∫
Rm

ηn1(u)g(λ− u, y)dudy

=

∫
Rd

∂ηn2

∂xi
(x− y) lim

n1↑∞

∫
Rm

ηn1(u)g(λ− u, y)dudy

=

∫
Rd

∂ηn2

∂xi
(x− y)g(λ, y)dy

= −
∫
Rd

∂ηn2

∂yi
(y)g(λ, x− y)dy

=

∫
Rd
n2
∂η1

∂yi
(y)g

(
λ, x+

y

n2

)
dy

=

∫
Rd

∂η1

∂yi
(y)n2

(
g

(
λ, x+

y

n2

)
− g (λ, x)

)
dy.

Note that the last equality holds due to the fact that∫
Rd

∂η1

∂yi
(y)dy = 0.

Next, for all (λ, x) ∈ W and y ∈ Rd, define the one-sided directional partial deriva-
tive as

∇g(λ, x; y) = lim
n2↑∞

g (λ, x+ y/n2)− g(λ, x)

1/n2
.
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Such ∇g exists according to Theorem 23.1 in Rockafellar [76]. Since g is concave in
the second argument, it is locally Lipschitz in its second argument on W (see Theo-
rem 10.4 in Rockafellar [76]). Hence, for each compact V ⊂ W, there exists a constant
L = L(V) ≥ 0 such that ∇g(λ, x; y) ≤ L, for all y ∈ Rd and (λ, x) in the interior of V.

The statement now follows with

fi(λ, x) =

∫
Rd
∇g(λ, x; y)

∂η1

∂yi
(y)dy,

for all (λ, x) ∈ W, by the dominated convergence theorem.

Lemma 2.6.3. Assume that µ(·) has Doob-Meyer decomposition

µ(·) = µ(0) +M(·) + V (·),

whereM(·) is a d-dimensional continuous local martingale and V (·) is a d-dimensional
finite-variation process with M(0) = V (0) = 0. Moreover, suppose that,

(i) for some open V ⊂ W, we have

(Λ(·), µ(·)) = (Λ(· ∧ τ), µ(· ∧ τ)),

where
τ = inf {t ≥ 0; (Λ(t), µ(t)) /∈ V} ;

(ii) for some constant κ ≥ 0, we have

d∑
j=1

(
[Mj ,Mj ] (∞) +

∫ ∞
0

d|Vj(t)|
)

+
m∑
v=1

∫ ∞
0

d|Λv(t)| ≤ κ <∞. (2.43)

Let (hi)i∈{1,··· ,d} be a family of functions hi : V → R and let (hn1,n2
i )n1,n2∈N,i∈{1,··· ,d}

be a family of doubly indexed sequences of uniformly bounded functions hn1,n2
i : V →

R. If
lim
n2↑∞

lim
n1↑∞

hn1,n2
i = hi, i ∈ {1, · · · , d},

then there exist two random subsequences (nk1)k∈N and (nk2)k∈N with

lim
k↑∞

nk1 =∞ = lim
k↑∞

nk2

such that

lim
k↑∞

∫ t

0

d∑
j=1

h
nk1 ,n

k
2

j (Λ(u), µ(u))dµj(u) =

∫ t

0

d∑
j=1

hj(Λ(u), µ(u))dµj(u), a.s., (2.44)

for all t ≥ 0.
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Proof. Fix i ∈ {1, · · · , d} and write

Θn1,n2
i (·) = hn1,n2

i (Λ(·), µ(·))− hi(Λ(·), µ(·)).

By (2.43) and the bounded convergence theorem, we have

0 = E
[

lim
n2↑∞

lim
n1↑∞

∫ ∞
0

(Θn1,n2
i (t))

2
d [Mi,Mi] (t)

]
= lim

n2↑∞
lim
n1↑∞

E
[∫ ∞

0
(Θn1,n2

i (t))
2

d [Mi,Mi] (t)

]
= lim

n2↑∞
lim
n1↑∞

E

[(∫ ∞
0

Θn1,n2
i (t)dMi(t)

)2
]
,

by Itô’s isometry, and

0 = lim
n2↑∞

lim
n1↑∞

E

[(∫ ∞
0
|Θn1,n2

i (t)| d|Vi(t)|
)2
]
. (2.45)

Since
∫ ·

0 Θn1,n2
i (t)dMi(t) is a uniformly integrable martingale (as it is a local mar-

tingale with bounded quadratic variation), Doob’s submartingale inequality yields

E

[(
sup
t≥0

∣∣∣∣∫ t

0
Θn1,n2
i (u)dMi(u)

∣∣∣∣)2
]
≤ 4E

[(∫ ∞
0

Θn1,n2
i (t)dMi(t)

)2
]
,

which implies

0 = lim
n2↑∞

lim
n1↑∞

E

[(
sup
t≥0

∣∣∣∣∫ t

0
Θn1,n2
i (u)dMi(u)

∣∣∣∣)2
]
. (2.46)

Therefore, (2.45), (2.46), and the triangle inequality yield

0 = lim
n2↑∞

lim
n1↑∞

E

[(
sup
t≥0

∣∣∣∣∫ t

0
Θn1,n2
i (u)dµi(u)

∣∣∣∣)2
]
.

Write

En1,n2
i = E

[(
sup
t≥0

∣∣∣∣∫ t

0
Θn1,n2
i (u)dµi(u)

∣∣∣∣)2
]
, n1, n2 ∈ N,

and
Ei = lim

n2↑∞
lim
n1↑∞

En1,n2
i .

For each n2 ∈ N, denote En2
i = limn1↑∞E

n1,n2
i . Then we can find a subsequence

(n1(n2))n2∈N of N with n1(n2) ↑ ∞ as n2 ↑ ∞ such that, for each n2 ∈ N,∣∣∣En1(n2),n2

i − En2
i

∣∣∣ ≤ 1

n2
.
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Since the triangle inequality yields∣∣∣En1(n2),n2

i − Ei
∣∣∣ ≤ 1

n2
+ |En2

i − Ei| → 0 as n2 ↑ ∞,

we have
lim
n2↑∞

E
n1(n2),n2

i = Ei = 0.

This implies

lim
n2↑∞

sup
t≥0

∣∣∣∣∣
∫ t

0

d∑
i=1

h
n1(n2),n2

i (Λ(u), µ(u))dµi(u)−
∫ t

0

d∑
i=1

hi(Λ(u), µ(u))dµi(u)

∣∣∣∣∣ = 0

in L2. Since convergence in L2 implies almost sure convergence of a subsequence,
we can find a random subsequence (nk2)k∈N of N with nk2 ↑ ∞ as k ↑ ∞ such that
(2.44) holds with nk1 = n1(nk2).

Lemma 2.6.4. Fix l ∈ N; let Λ(·) be an l-dimensional continuous process of finite
variation; let (Υu,n(·))u∈{1,··· ,l},n∈N be a family of processes with (Υu,n(·))n∈N uniformly
bounded, for each u ∈ {1, · · · , l}; and let (Θn(·))n∈N be a sequence of non-decreasing
continuous processes. Define

Hn(·) =

∫ ·
0

l∑
u=1

Υu,n(t)dΛu(t) + Θn(·), n ∈ N.

If
lim
n↑∞

Hn(·) = H(·), a.s.,

then H(·) is of finite variation.

Proof. The following steps are partially inspired by the proof of Lemma 3.3 in Abi
Jaber, Bouchard, and Illand [1].

Since
(
Υ1,n(·)

)
n∈N is uniformly bounded, the Komlós theorem (see Theorem 1.3 in

Delbaen and Schachermayer [17]) yields the following. For each n ∈ N, there exists
a convex combination Υ1

1,n(·) ∈ Conv(Υ1,k(·), k ≥ n) such that (Υ1
1,n(·))n∈N converges

to some adapted bounded process Υ1(·). More precisely, for each n ∈ N, we can find
some random integer Nn ≥ 0 and (wkn)n≤k≤Nn ⊂ [0, 1] such that

Nn∑
k=n

wkn = 1 and Υ1
1,n(·) =

Nn∑
k=n

wknΥ1,k(·).

For each n ∈ N, define

H1
n(·) =

Nn∑
k=n

wknHn(·), Θ1
n(·) =

Nn∑
k=n

wknΘk(·), and Υ1
u,n(·) =

Nn∑
k=n

wknΥu,k(·),

for all u ∈ {2, · · · , l}.
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Since limn↑∞Hn(·) = H(·), a.s., we have

∣∣H1
n(·)−H(·)

∣∣ =

∣∣∣∣∣
Nn∑
k=n

wknHk(·)−H(·)

∣∣∣∣∣ ≤
Nn∑
k=n

wkn |Hk(·)−H(·)| → 0

as n ↑ ∞, which implies limn↑∞H
1
n(·) = H(·), a.s. Besides, Θ1

n(·) is non-decreasing,
as it is a convex combination of non-decreasing processes.

Since (Υ1
2,n(·))n∈N is also uniformly bounded, by the Komlós theorem again, for

each n ∈ N, there exists another convex combination Υ2
2,n(·) ∈ Conv(Υ1

2,k(·), k ≥ n)

such that (Υ2
2,n(·))n∈N converges to some adapted bounded process Υ2(·). With the

same convex combination for each n ∈ N, define Υ2
u,n(·), for all u ∈ {1, 3, · · · , l},

H2
n(·), and similarly Θ2

n(·). In particular, (Υ2
1,n(·))n∈N still converges to Υ1(·), as for

each n ∈ N, Υ2
1,n(·) is a convex combination of processes that converge to Υ1(·).

Similarly, we have limn↑∞H
2
n(·) = H(·), a.s. Moreover, Θ2

n(·) is non-decreasing.
Iteratively, we construct sequences of processes (Υ3

u,n(·))n∈N, · · · , (Υl
u,n(·))n∈N, for

each u ∈ {1, · · · , l}, and processes H3
n(·), · · · , H l

n(·) and Θ3
n(·), · · · ,Θl

n(·) in the same
manner. In particular, (Υl

u,n(·))n∈N converges to some adapted bounded process Υu,
for each u ∈ {1, · · · , l}, and we have limn↑∞H

l
n(·) = H(·), a.s. Moreover, Θl

n(·) is
non-decreasing.

By the dominated convergence theorem, we have

lim
n↑∞

∫ ·
0

l∑
u=1

Υl
u,n(t)dΛu(t) =

∫ ·
0

l∑
u=1

Υu(t)dΛu(t), a.s.,

which is of finite variation. Therefore, we have

H(·) = lim
n↑∞

H l
n(·) =

∫ ·
0

l∑
u=1

Υu(t)dΛu(t) + lim
n↑∞

Θl
n(·), a.s.

Since Θl
n(·) is non-decreasing and converges, it is of finite variation, which implies the

assertion.

2.6.2 Proof of Theorem 2.1.1

Proof of Theorem 2.1.1. Assume that the semimartingale µ(·) has the Doob-Meyer
decomposition

µ(·) = µ(0) +M(·) + V (·),

whereM(·) is a d-dimensional continuous local martingale and V (·) is a d-dimensional
finite-variation process with M(0) = V (0) = 0.
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Let (Wn)n∈N be a non-decreasing sequence of open sets such that the closure of
Wn is inW, for all n ∈ N. For each κ ∈ N, we consider the stopping time

τκ = inf

{
t ≥ 0; (Λ(t), µ(t)) /∈ Wκ

or
d∑

i,j=1

[Mi,Mj ] (t) +
d∑
j=1

∫ t

0
d|Vj(u)|+

m∑
v=1

∫ t

0
d|Λv(u)| ≥ κ

} (2.47)

with inf{∅} = ∞. Since (Λ(·), µ(·)) ∈ W, we have limκ↑∞ τκ = ∞, a.s. As
⋃
κ∈N{τκ >

t} = Ω, for all t ≥ 0, to prove that G is regular (Lyapunov), it is equivalent to show that
G is regular (Lyapunov) for Λ (· ∧ τκ) and µ (· ∧ τκ), for all κ ∈ N. Hence, without loss
of generality, let us assume that (Λ(·), µ(·)) = (Λ(· ∧ τκ), µ(· ∧ τκ)), for some κ ∈ N.

Without loss of generality, assume that aij(·) is a predictable and uniformly bounded
process, for all i, j ∈ {1, · · · , d}, such that

[µi, µj ] (t) =

∫ t

0
aij(u)dA(u) ≤ κ, t ≥ 0,

where A(·) =
∑d

j=1 [µj , µj ] (·). Here, the equality holds according to the Kunita-
Watanabe inequality (see also Proposition 2.9 in Jacod and Shiryaev [44]) and the
inequality due to (2.47).

Now, consider a mollification (Gn1,n2)n1,n2∈N of G defined as in (2.41). According
to Lemma 2.6.1(ii), for n1, n2 ∈ N large enough, Itô’s lemma applied to Gn1,n2 yields

Gn1,n2(Λ(t), µ(t)) = Gn1,n2(Λ(0), µ(0)) +

∫ t

0

d∑
j=1

∂Gn1,n2

∂xj
(Λ(u), µ(u))dµj(u)

+

∫ t

0
Υ0,n1,n2(u)dA(u) +

∫ t

0

m∑
v=1

Υv,n1,n2(u)dΛv(u),

(2.48)

for all t ≥ 0, where

Υ0,n1,n2(t) =
1

2

d∑
i,j=1

∂2Gn1,n2

∂xi∂xj
(Λ(t), µ(t))aij(t)

and
Υv,n1,n2(t) =

∂Gn1,n2

∂λv
(Λ(t), µ(t)),

for all v ∈ {1, · · · ,m}.
For all (λ, x) ∈ W and i ∈ {1, · · · , d}, if (bi) holds, Lemma 2.6.1(iv) yields

lim
n2↑∞

lim
n1↑∞

∂Gn1,n2

∂xi
(λ, x) =

∂G

∂xi
(λ, x);
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if (bii) holds, Lemma 2.6.2 yields

lim
n2↑∞

lim
n1↑∞

∂Gn1,n2

∂xi
(λ, x) = fi(λ, x),

for some measurable function fi. Moreover, thanks to (bi) or (bii), there exists a con-
stant L = L(Wκ) ≥ 0 such that, for n1, n2 ∈ N large enough,∣∣∣∣∂Gn1,n2

∂xi

∣∣∣∣ ≤ L, i ∈ {1, · · · , d}.

This follows from the Lipschitz continuity of G on the closure ofWκ in the second argu-
ment and a similar reasoning as in the proof of Lemma 2.6.1(iii). Then by Lemma 2.6.3,
there exist random subsequences (nk1)k∈N and (nk2)k∈N with

lim
k↑∞

nk1 =∞ = lim
k↑∞

nk2

such that, if we write Gk = Gnk1 ,nk2
, we have

lim
k↑∞

∫ t

0

d∑
j=1

∂Gk
∂xj

(Λ(u), µ(u))dµj(u) = F (Λ(t), µ(t)), a.s., (2.49)

for all t ≥ 0, where

F (Λ(t), µ(t)) =


∫ t

0

∑d
j=1

∂G
∂xj

(Λ(u), µ(u))dµj(u), if (bi) holds∫ t
0

∑d
j=1 fj(Λ(u), µ(u))dµj(u), if (bii) holds

.

To proceed, write

Hk(t) = Gk(Λ(0), µ(0))−Gk(Λ(t), µ(t)) +

∫ t

0

d∑
j=1

∂Gk
∂xj

(Λ(u), µ(u))dµj(u),

for all k ∈ N, and

H(t) = G(Λ(0), µ(0))−G(Λ(t), µ(t)) + F (Λ(t), µ(t)), t ≥ 0.

for all t ≥ 0. Then, (2.48) with respect to the random subsequences (nk1)k∈N and
(nk2)k∈N is of the form

Hk(t) = −
∫ t

0
Υ0,k(u)dA(u)−

∫ t

0

m∑
v=1

Υv,k(u)dΛv(u), t ≥ 0.

Note that by Lemma 2.6.1(i) and (2.49), limk↑∞Hk(t) = H(t), a.s., for all t ≥ 0.



2.6. Proofs of Theorems 2.1.1 and 2.1.2 43

A measurable function GD in Condition 1 of Definition 2.1.1 is chosen with compo-
nents

GD
i

(
λ, x

)
=

 ∂G
∂xi

(λ, x), if (bi) holds

fi(λ, x), if (bii) holds
, i ∈ {1, · · · , d}.

Then, as ΓG(·) = H(·) according to (2.4), it is enough to show that H(·) is of finite
variation in the following four cases.

Case 1.
Assume that (ai) and (bi) hold. Then by Lemma 2.6.1(iii)&(v), the processes

(Υ0,k(·))k∈N and (Υv,k(·))v∈{1,··· ,m},k∈N are uniformly bounded. With l = m + 1, we
have

Λv(·) = Λv(·) and (Υv,k(·))k∈N = (Υv,k(·))k∈N, v ∈ {1, · · · ,m},

and

Λm+1(·) = A(·), (Υm+1,k(·))k∈N = (Υ0,k(·))k∈N, and (Θk(·))k∈N = 0.

Hence, Lemma 2.6.4 yields that H(·) is of finite variation on compact sets.
Case 2.
Assume that (ai) and (bii) hold. According to Lemma 2.6.1(iii), the processes

(Υv,k(·))v∈{1,··· ,m},k∈N are uniformly bounded. Since G is concave in the second ar-
gument, for each k ∈ N, Gk is also concave in the second argument. Using the
negative semidefinite property of the Hessian of Gk and choosing the matrix-valued
process a(·) = (aij(·))i,j∈{1,··· ,d} to be symmetric and positive semidefinite, one can
show that Υ0,k(t) ≤ 0, for all t ≥ 0. This implies that the processes

Θk(·) = −
∫ ·

0
Υ0,k(t)dA(t), k ∈ N,

are non-decreasing. Similar to Case 1, but now with l = m, Lemma 2.6.4 yields again
that H(·) is of finite variation.

Case 3.
Assume that (aii) and (bi) hold. By Lemma 2.6.1(v), the process (Υ0,k(·))k∈N is

uniformly bounded. As G is non-increasing in the v-th dimension of the first argument,
so is Gk, for all v ∈ {1, · · · ,m}. Therefore, Υv,k(t) ≤ 0, for all t ≥ 0, as Λ(·) is
non-decreasing in the v-th dimension, for all v ∈ {1, · · · ,m}. This implies that the
processes

Θk(·) = −
∫ ·

0

m∑
v=1

Υv,k(t)dΛv(t), k ∈ N,

are non-decreasing. Similar to above, Lemma 2.6.4 implies that H(·) is of finite varia-
tion.

Case 4.
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Assume that (aii) and (bii) hold. With

Θk(·) = −
∫ ·

0
Υ0,k(t)dA(t)−

∫ ·
0

m∑
v=1

Υv,k(t)dΛv(t), k ∈ N,

Lemma 2.6.4 implies again that H(·) is of finite variation. It is clear that G is Lyapunov.

2.6.3 Proof of Theorem 2.1.2

Proof of Theorem 2.1.2. The following steps are partially inspired by the proof of The-
orem 3.8 in Karatzas and Ruf [51]. Recall the ranked market weight process µ(·) from
(1.17).

According to Theorem 2.3 in Banner and Ghomrasni [7], for each l ∈ {1, · · · , d},
one can find a measurable function hl : ∆d → (0, 1] and a finite-variation processBl(·)
with Bl(0) = 0 such that

µ(l)(·) = µ(l)(0) +

∫ ·
0

d∑
j=1

hl(µ(t))1{µ(l)(t)=µj(t)}dµj(t) +Bl(·). (2.50)

Since G is regular for Λ(·) and µ(·), by Definition 2.1.1, there exist a measurable
function GD and a finite-variation process ΓG(·) such that

G(Λ(·),µ(·)) = G(Λ(0),µ(0)) +

∫ ·
0

d∑
l=1

GD
l (Λ(t),µ(t))dµ(l)(t)− ΓG(·). (2.51)

By (2.50), we have

∫ ·
0

d∑
l=1

GD
l (Λ(t),µ(t))dµ(l)(t) =

∫ ·
0

d∑
l=1

GD
l (Λ(t),µ(t))hl(µ(t))1{µ(l)(t)=µi(t)}dµi(t)

+

∫ ·
0

d∑
l=1

GD
l (Λ(t),µ(t))dBl(t).

(2.52)
Now consider the measurable function GD :W → Rd with components

GD
i (λ, x) =

d∑
l=1

GD
l (λ,R(x))hl(x)1x(l)=xi , i ∈ {1, · · · , d},

and the finite-variation process

ΓG(·) = ΓG(·)−
∫ ·

0

d∑
l=1

GD
l (Λ(t),µ(t))dBl(t).

Then (5.8) and (2.52), together with G(λ, x) = G(λ,R(x)), yield (2.4), i.e., G is regular
for Λ(·) and µ(·).
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2.6.4 An alternative proof for a special case

The proof technique of Theorem VII.31 in Dellacherie and Meyer [18] suggests an
alternative argument for the case that conditions (ai) and (bii) in Theorem 2.1.1 hold.
We summarise these ideas in the following result.

Theorem 2.6.5. If a function f : W → R is locally Lipschitz in the first argument and
concave in the second argument, then the process f(Λ(·), µ(·)) is a semimartingale.

Proof. Assume that the semimartingale µ(·) has the Doob-Meyer decomposition

µ(·) = µ(0) +M(·) + V (·),

whereM(·) is a d-dimensional continuous local martingale and V (·) is a d-dimensional
finite-variation process with M(0) = V (0) = 0.

Let (Wn)n∈N be a non-decreasing sequence of open sets such that the closure
of Wn is in W, for all n ∈ N. For each κ ∈ N, we consider the stopping time τκ

given in (2.47). Without loss of generality, let us assume again that (Λ(·), µ(·)) =

(Λ(· ∧ τκ), µ(· ∧ τκ)), for some κ ∈ N.
Since f is locally Lipschitz in both arguments (see Theorem 10.4 in Rockafellar

[76]), we can find a Lipschitz constant L such that, for all s, t ≥ 0 with s ≤ t, we have

|f(Λ(t), µ(t))− f(Λ(s), µ(0) +M(t) + V (s))|

≤ L

 m∑
v=1

|Λv(t)− Λv(s)|+
d∑
j=1

|Vj(t)− Vi(s)|


≤ L

 m∑
v=1

∫ t

s
|dΛv(u)|+

d∑
j=1

∫ t

s
|dVj(u)|

 .

(2.53)

Let

Z(·) = −f(Λ(·), µ(·)) + L

 m∑
v=1

∫ ·
0
|dΛv(t)|+

d∑
j=1

∫ ·
0
|dVj(t)|

 ,

then Z(·) is bounded. Hence we have

E [Z(t)− Z(s)|F(s)] = E [f(Λ(s), µ(s))− f(Λ(s), µ(0) +M(t) + V (s))|F(s)]

+ E

[
f(Λ(s), µ(0) +M(t) + V (s))− f(Λ(t), µ(t))

+ L

(
m∑
v=1

∫ t

s
|dΛv(u)|+

d∑
j=1

∫ t

s
|dVj(u)|

)∣∣∣∣∣F(s)

]
≥ E [f(Λ(s), µ(s))− f(Λ(s), µ(0) +M(t) + V (s))|F(s)] ≥ 0,

where the first inequality is by (2.53) and the second inequality holds by Jensen’s in-
equality. Therefore, Z(·) is a submartingale, which makes f(Λ(·), µ(·)) a semimartin-
gale.
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Chapter 3

The Impact of Proportional
Transaction Costs on
Systematically Generated
Portfolios

Although often neglected in portfolio analysis for sake of simplicity, transaction costs
matter significantly for portfolio performance. Even small proportional transaction
costs can have a large negative effect, especially when trades are made to rebalance
the portfolio in a relatively high frequency. Hence, one should at least test the per-
formance of a given portfolio when transaction costs are imposed, even if transaction
costs are not explicitly taken into account while constructing the portfolio.

In this chapter, which is based on Ruf and Xie [81], we examine the effects of im-
posing transaction costs on systematically generated portfolios, for example, function-
ally generated portfolios. Such portfolios play a significant role in Stochastic Portfolio
Theory; see Fernholz [26]. Ruf and Xie [80] and Karatzas and Kim [50] demonstrate
empirically that functionally generated portfolios outperform the market portfolio in the
absence of transaction costs. To explore whether or to what extent this result still
holds when transaction costs are imposed, we empirically examine the performance
of four portfolios. These are the index tracking portfolio, the equally-weighted portfo-
lio, the entropy-weighted portfolio, and the diversity-weighted portfolio. We consider
different configurations including trading frequency, transaction cost rate, constituent
list size, and renewing frequency. For the diversity-weighted portfolio, we also propose
a method to smooth transaction costs. Wong [92] indicates an alternative approach,
namely to adjust the trading frequency based on certain information-theoretic quanti-
ties.

When backtesting the portfolios with historical data, the index tracking portfolio
is used as benchmark. In the absence of transaction costs, the equally-weighted,
the entropy-weighted, and the diversity-weighted portfolios outperform the index track-
ing portfolio. In particular, the equally-weighted portfolio performs better than any
other portfolio under the same configuration. When proportional transaction costs of
0.5% are imposed, however, the equally-weighted portfolio underperforms all other
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portfolios. The entropy-weighted and the diversity-weighted portfolios still outperform
the benchmark under appropriate trading frequencies and constituents list sizes with
yearly excess returns around 1bp to 4bp.

The following is an outline of this chapter. Section 3.1 presents a literature review
on transaction costs in equity trading from both theoretical and empirical aspects. Sec-
tion 3.2 proposes a framework of backtesting portfolio performance in the presence of
transaction costs. In particular, Subsection 3.2.1 incorporates proportional transaction
costs when rebalancing a portfolio. Subsection 3.2.2 provides some practical consid-
erations and details when backtesting portfolio performance. Section 3.3 empirically
examines the performance of several different portfolios under various configurations.
A method to smooth transaction costs is also provided in Section 3.3. Section 3.4
concludes.

3.1 Literature review

Within the framework of portfolio selection and dynamic trading introduced by Merton
[63, 64], there is a large amount of research that takes transaction costs into consid-
eration. The most common assumption is that trading costs occur proportionally to
the total volume traded. We shall now provide some pointers to this literature. Follow-
ing Merton’s construction, Magill and Constantinides [59] are among the first to study
the impact of proportional transaction costs in portfolio choice. Based on a financial
market model with one risky asset and another non-risky asset, Taksar, Klass, and
Assaf [87] analyse the optimal portfolio selection problem when proportional transac-
tion costs are imposed. Proportional transaction costs are also addressed in Davis
and Norman [15], who provide a numerical method to solve a related free boundary
problem. Muthuraman [66] and Muthuraman and Zha [67] develop further compu-
tational schemes to solve the portfolio optimisation problem. Moreover, Kallsen and
Muhle-Karbe [47] and Czichowsky and Schachermayer [14] use duality theory for the
portfolio optimisation problem with proportional transaction costs by means of shadow
price processes. In the presence of general transaction costs, liquidity costs, and mar-
ket impact, Zhang et al. [96] provide a simulation-and-regression based approach to
solve the dynamic portfolio optimisation problem. In general, we refer to Guasoni and
Muhle-Karbe [42] and Muhle-Karbe, Reppen, and Soner [65] for an overview of the
transaction cost literature evolved since Magill and Constantinides [59]. Most of this
literature focuses on the case of one risky asset only. For a discussion of transaction
costs in the presence of several risky assets, we refer to Muthuraman and Zha [67],
Bichuch and Shreve [11], and Possamaï, Mete Soner, and Touzi [75].

Other types of transaction costs are also studied. Transaction costs in equity mar-
kets are often modeled as bid-ask spread. We refer to Amihud and Mendelson [3], as
well as Bion-Nadal [12], for a mathematical framework of bid-ask dynamic pricing in
financial markets. Novy-Marx and Velikov [68] also study the bid-ask spread empiri-
cally and propose several transaction cost mitigation strategies; see Novy-Marx and
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Velikov [69] as well. The total transaction costs are split into a fixed part and a propor-
tional part in Eastham and Hastings [21] and Korn [55]. With a new formulation of the
consumption and portfolio choice model of Merton [64], Duffie and Sun [20] study the
impact of lump sum transaction costs proportional to the portfolio value. A quadratic
transaction cost form is used in Heaton and Lucas [43], Grinold [41], and Gârleanu and
Pedersen [39] to reflect the impact of trading on the average stock price. Kabanov [46]
models transaction costs as random processes in a general semimartingale model of
a currency market. Then the set of hedging endowments within a multi-asset case
to optimise the expected utility from terminal wealth is studied. A dynamic equilib-
rium model of trading volume is purposed by Lo, Mamaysky, and Wang [58], in which
agents face fixed transaction costs.

The third stream of literature focuses on the empirical analysis and estimates
transaction costs with data from actual equity markets. Keim and Madhavan [54]
use order-level data on equity transactions by a sample of institutional traders with
different investment styles and order submission strategies. They examine the mag-
nitude and determinants of transaction costs and propose that institutional traders in
exchange-listed stocks have lower costs than in comparable Nasdaq stocks. Lesmond,
Ogden, and Trzcinka [57] develop a model based on expected and actual stock re-
turns to estimate transaction costs for numerous stock exchanges. De Roon, Nijman,
and Werker [16] demonstrate empirically that diversification benefits in emerging mar-
kets disappear when investors face short sales constraints or small transaction costs.
Fong, Holden, and Trzcinka [37] document transaction costs in over 40 developed
and emerging country exchanges. Jones [45] estimates the annual proportional costs
of aggregate equity trading, with the sum of half-spreads and one-way commissions,
multiplied by annual turnover. This paper is based on bid-ask spreads on Dow Jones
stocks and an annual estimate of the weighted-average commission rate for trading
NYSE stocks. Based on daily prices of the DJIA index from year 1897 to year 2011,
Bajgrowicz and Scaillet [5] show that the performance of technical trading rules is
completely offset when incorporating with low transaction costs. With measures of
transaction costs for 19 frontier markets, Marshall, Nguyen, and Visaltanachoti [61]
also investigate the link between transaction costs and diversification benefits and
show a similar result in frontier markets. Olivares-Nadal and DeMiguel [70] give a the-
oretical proof of the equivalence between the portfolio problem with transaction costs
and problems designed to alleviate the impact of estimation error. Then they include
estimation error to calibrate transaction costs and propose a data-driven approach to
the portfolio optimisation problem.

The index tracking problem also involves a transaction cost analysis. Here, the
goal is to construct a portfolio to approximate the performance of the target index. It is
universally recognised that there is a tradeoff between reducing the transaction costs
imposed from rebalancing the index-tracking portfolio and maintaining the accuracy
in tracking the target index. For literature relating to this topic, we refer to Strub and
Baumann [86] and their references.
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3.2 Backtesting in the presence of transaction costs

3.2.1 Incorporating transaction costs into wealth dynamics

We shall study the performance of long-only stock portfolios that are rebalanced dis-
cretely. The market is not assumed to be frictionless; transaction costs are imposed
when we trade in the market to rebalance the portfolios. The portfolios are constructed
in such a way that their weights match given target weights after paying transaction
costs. This construction is more rigid than the one in Gârleanu and Pedersen [39], for
example, where the portfolio weights may deviate from the target weights.

To be more specific, recall that we are facing a market with d ≥ 2 stocks. Denote
the amount of currency invested in each stock by Ξ(·) = (Ξ1(·), · · · ,Ξd(·))′ and the
total amount invested in a portfolio by

V (·) =

d∑
i=1

Ξi(·) ≥ 0.

Note that Ξi(·) = πi(·)V (·), for all i ∈ {1, · · · , d}, where π(·) = (π1(·), · · · , πd(·))′ is the
portfolio weight process defined as in Definition 1.2.2.

Assume that trading stocks involves proportional transaction costs at a time-invariant
rate tcb (tcs), with 0 ≤ tcb, tcs < 1 for buying (selling) a stock. This means that the sale
of one unit of currency of a stock nets only (1− tcs) units of currency in cash, while
buying one unit of currency of a stock costs

(
1 + tcb

)
units of currency.

Let us now consider how to trade the stocks in order to match the target weights
when transaction costs are imposed. To begin, let us focus on trading at a specific
time t. When rebalancing the portfolio at time t, we know the wealth Ξ(t−) invested in
each stock and hence the total wealth of the portfolio V (t−) =

∑d
i=1 Ξi(t−) (exclusive

of dividends). We also know the dividends paid at time t−, their total denoted by
D(t−) ≥ 0.

Given target weights π, we require π(t) = π after the portfolio is rebalanced at time
t. After trading, the wealth Ξ(t) invested in each stock in the portfolio satisfies

Ξj(t) = πj(t)
d∑
i=1

Ξi(t), j ∈ {1, · · · , d}. (3.1)

We provide details about how to compute Ξ(t) later in this subsection.
As the portfolio needs to be self-financing, the amount of currency used to buy

extra stocks should be exactly the amount of currency obtained from selling redundant
stocks plus the dividends if there are any. This yields

(
1 + tcb

) d∑
i=1

(Ξi(t)− Ξi(t−))+ = (1− tcs)
d∑
i=1

(Ξi(t−)− Ξi(t))
+ +D(t−). (3.2)
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The total transaction costs imposed from trading stocks at time t are computed by

TC(t) = tcb
d∑
i=1

(Ξi(t)− Ξi(t−))+ + tcs
d∑
i=1

(Ξi(t−)− Ξi(t))
+ . (3.3)

Therefore, the total wealth of the portfolio at time t, given by V (t) =
∑d

i=1 Ξi(t), satis-
fies

V (t) = V (t−) +D(t−)− TC(t).

Method of computing Ξ(t)

In the following, we propose a method to compute Ξ(t), given Ξ(t−), D(t−), and the
target weights π. Throughout this section, we assume

V (t−) > 0, D(t−) ≥ 0,
d∑
i=1

πi = 1, πj ≥ 0, and Ξj(t−) ≥ 0,

for all j ∈ {1, · · · , d}.
To begin with, (3.1) implies that Ξ(t) is of the form

Ξj(t) = cV (t−)πj(t), j ∈ {1, · · · , d}, (3.4)

for some c > 0. Note that if the market is frictionless, i.e., if tcb = tcs = 0, and if there
are no dividends paid at time t−, i.e., if D(t−) = 0, then V (t) = V (t−) and c = 1.
When transaction costs are imposed, we shall use the constraint (3.2) to determine c.

To make headway, define

D̂ =
D(t−) + (1− tcs)

∑d
i=1 Ξi(t−)1πi(t)=0

V (t−)
(3.5)

and
cj =

πj(t−)

πj(t)
1πj(t)>0, j ∈ {1, · · · , d}.

Then dividing both sides of (3.2) by V (t−) yields

(
1 + tcb

) d∑
i=1

(c− ci)+ πi(t) = (1− tcs)
d∑
i=1

(ci − c)+ πi(t) + D̂. (3.6)

Note that the LHS of (3.6) is a continuous function of c and strictly increasing from
0 to ∞, as c changes from mini∈{1,··· ,d} ci to ∞. Moreover, the RHS of (3.6) is a
continuous function of c strictly decreasing from ∞ to D̂ ≥ 0, as c changes from −∞
to maxi∈{1,··· ,d} ci, and equals D̂ afterwards, as c changes from maxi∈{1,··· ,d} ci to ∞.
Hence, both sides of (3.6) as functions of c must intersect at some unique point, i.e., a
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unique solution exists for (3.6). To proceed, define

D̂j =
(

1 + tcb
) d∑
i=1

(cj − ci)+ πi(t)− (1− tcs)
d∑
i=1

(ci − cj)+ πi(t), (3.7)

for all j ∈ {1, · · · , d}. We are now ready to provide an expression for the unknown
constant c.

Proposition 3.2.1. Recall that (3.5) and (3.7) imply D̂ ≥ 0 and mini∈{1,··· ,d} D̂i ≤ 0.
Hence,

j = arg max
i∈{1,··· ,d}

{
D̂i; D̂i ≤ D̂

}
(3.8)

is well-defined. Then

c =

(
1 + tcb

)∑d
i=1 ciπi(t)1ci≤cj + (1− tcs)

∑d
i=1 πi(t−)1ci>cj + D̂(

1 + tcb
)∑d

i=1 πi(t)1ci≤cj + (1− tcs)
∑d

i=1 πi(t)1ci>cj
(3.9)

solves (3.6) uniquely.

Proof. By the definition of D̂j given in (3.7) and by some basic computations, (3.9) is
equivalent to

c = cj +
D̂ − D̂j(

1 + tcb
)∑d

i=1 πi(t)1ci≤cj + (1− tcs)
∑d

i=1 πi(t)1ci>cj
,

which implies 1ci≤c ≥ 1ci≤cj , for all i ∈ {1, · · · , d}.
In the case maxi∈{1,··· ,d} D̂i ≤ D̂, we have 1ci≤cj = 1, hence 1ci≤c ≤ 1ci≤cj , for all

i ∈ {1, · · · , d}. In the case maxi∈{1,··· ,d} D̂i > D̂, define

j′ = arg min
i∈{1,··· ,d}

{
D̂i; D̂i > D̂

}
.

Then (3.9) is equivalent to

c =

(
1 + tcb

)∑d
i=1 ciπi(t)1ci<cj′ + (1− tcs)

∑d
i=1 πi(t−)1ci≥cj′ + D̂(

1 + tcb
)∑d

i=1 πi(t)1ci<cj′ + (1− tcs)
∑d

i=1 πi(t)1ci≥cj′

= cj′ +
D̂ − D̂j′(

1 + tcb
)∑d

i=1 πi(t)1ci<cj′ + (1− tcs)
∑d

i=1 πi(t)1ci≥cj′
,

which implies 1ci>c ≥ 1ci>cj , for all i ∈ {1, · · · , d}. All in all, we have shown 1ci≤c =

1ci≤cj , for all i ∈ {1, · · · , d}.
Define next

Πb =
(

1 + tcb
) d∑
i=1

πi(t)1ci≤cj , Πs = (1− tcs)

d∑
i=1

πi(t)1ci>cj ,

Π
b

=
(

1 + tcb
) d∑
i=1

ciπi(t)1ci≤cj , Π
s

= (1− tcs)

d∑
i=1

πi(t−)1ci>cj .
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Hence, after inserting c by (3.9) into (3.6), the LHS of (3.6) becomes

LHS = cΠb −Π
b

=
ΠbΠ

s −ΠsΠ
b

+ ΠbD̂

Πb + Πs
,

and the RHS of (3.6) becomes

RHS = Π
s − cΠs + D̂ =

ΠbΠ
s −ΠsΠ

b −ΠsD̂

Πb + Πs
+ D̂ = LHS.

Therefore, c defined by (3.9) indeed solves (3.6).

Remark 6. In practice, we can apply both numerical and analytical methods to find the
constant c. As suggested by (3.6), to find c numerically, we can simply search for the
minimum of the function

c 7→

∣∣∣∣∣(1 + tcb
) d∑
i=1

(c− ci)+ πi(t)− (1− tcs)
d∑
i=1

(ci − c)+ πi(t)− D̂

∣∣∣∣∣ .
Alternatively, by determining the index j given by (3.8), we can apply Proposition 3.2.1
to compute c analytically.

If the analytical approach is implemented, we can speed up the algorithm by mak-
ing the following observations. We expect the value of c not to be far away from 1,
which is precisely the value in the case of no transaction costs and no dividends. As
suggested by the proof of Proposition 3.2.1, the family (D̂i)i∈{1,··· ,d} has the same
ranking as (ci)i∈{1,··· ,d}. Therefore, we proceed by ranking all ci’s in ascending order
and comparing D̂k with D̂, where

k = arg max
i∈{1,··· ,d}

{ci; ci ≤ 1} .

If D̂k = D̂, then j = k and we are done. If D̂k > D̂, then we repeatedly compute D̂i

corresponding to a smaller ci < ck each time until we find the exact index j. If D̂k < D̂,
then we simply go the other way around.

Proposition 3.2.1 is applied to determine the constant c used in (3.4) in order to
compute Ξ(t). Note that, in this subsection, we take Ξ(t−) and D(t−) as given. In the
next subsection, we discuss how to compute Ξ(t−) and D(t−) from the data.

3.2.2 Practical considerations

For the preparation of the empirical study in the next section, we now introduce the
method used to backtest the portfolio performance.

To begin with, assume that we are given the total market capitalizations and the
daily returns for all stocks; denote these processes by S(·) = (S1(·), · · · , Sd(·))′ and
r(·) = (r1(·), · · · , rd(·))′, respectively. Assume that there are in total N days. For all
l ∈ {1, · · · , N}, let tl denote the end of day l, at which the end of day total market
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capitalizations and the daily returns for day l are available. Moreover, if we trade on
day l, then we call day l a trading day and the trade is made at time tl.

Now focus on a specific trading day l with l ∈ {1, · · · , N} and fix i ∈ {1, · · · , d}
for the moment. In Subsection 3.2.1, given Ξ(tl−) and D(tl−), as well as the target
weights specified by the corresponding portfolio at time tl, we have shown how to
compute Ξ(tl). In the following, we show how to obtain Ξ(tl−) and D(tl−).

The daily return ri(tl) includes the dividends of stock i if there are any. We decom-
pose the daily return ri(tl) into two parts: the dividend rate rDi (tl) and the realised rate
rRi (tl). The dividend rate rDi (tl) is computed as

rDi (tl) = max

{
1 + ri(tl)−

Si(tl)

Si(tl−1)
, 0

}
(3.10)

and yields the amount of dividends received at time tl for each unit of currency invested
in stock i at time tl−1.1 The realised rate rRi (tl) is computed as

rRi (tl) = ri(tl)− rDi (tl)

and yields the units of currency held in stock i at time tl for each unit of currency
invested in stock i at time tl−1.

The maximum is used in (3.10) to make sure that the dividend rate is nonnegative.
Indeed, occasionally the data may suggest Si(tl−1)(1 + ri(tl)) < Si(tl). This can
happen, for example, when company i issues extra stocks at time tl. In this case, we
simply assume that there are no dividends paid at time tl.

A special situation requires us to pay extra attention. A few times, some stock i
is delisted from the market at time tl, for example, due to bankruptcy or merger. In
this case, we still have data for ri(tl), but not for Si(tl). To deal with this situation, we
assume that there are no dividends paid in stock i at time tl. As a result, we have
rDi (tl) = 0 and rRi (tl) = ri(tl) for such stock i. To close the position in stock i, we
assume that one needs to pay transaction costs.

Without loss of generality, assume that there are n ≥ 1 days (including the trading
day l) involved since the last trading day, i.e., the last trading day before l is l − n.
For all k ∈ {l − n + 1, · · · , l}, we compute rD(tk) and rR(tk) as above. In particular,
if some stock i in the portfolio is delisted from the market at time tu, for some u ∈
{l − n+ 1, · · · , l − 1}, then we set rRi (tv) = rDi (tv) = 0, for all v ∈ {u+ 1, · · · , l}.

Then given Ξ(tl−n), we compute

Ξi(tl−) = Ξi(tl−n)
l∏

k=l−n+1

(
1 + rRi (tk)

)
, i ∈ {1, · · · , d}.

1The dividends computed from the dividend rate rD contain not only the actual stock dividends, but
also other corporate actions. For example, AT&T, which dominated the telephone market for most of the
20th century, was broken up into eight smaller companies in 1984. This lead to a significant drop in the
stock price. In our analysis below, we assume that the investor obtained cash in exchange (instead of
stocks in the newly established companies).
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Since all dividends paid between two consecutive trading days are only reinvested at
time tl, the total dividends available for reinvesting are computed by

D(tl−) =

d∑
i=1

Ξi(tl−n)

l∑
k=l−n+1

rDi (tk)

k−1∏
u=l−n+1

(
1 + rRi (tu)

)
.

We are now ready to show the empirical results.

3.3 Examples and empirical results

In this section, we analyze the performance of several portfolios empirically. The target
weights are expressed in terms of the market weights µ(·) = (µ1(·), · · · , µd(·))′ with
components

µj(·) =
Sj(·)∑d
i=1 Si(·)

, j ∈ {1, · · · , d},

as defined in Definition 1.2.3. In Subsection 3.3.4, we also propose a method to
smooth transaction costs.

We shall consider the largest d stocks. We will vary the number d between 100,
300, and 500. The constituent list (the list of the top d stocks) is renewed either weekly,
monthly, or quarterly. Whenever we renew the constituent list, we keep the d stocks
with the largest total market capitalizations at that time. We trade only these d stocks
afterwards until we renew the constituent list again. If any of these stocks stops to
exist in the market due to any reason, we simply invest in the remaining stocks without
adding a new stock to the list before we renew it next time. Note that renewing the
constituent list implies trading to replace the old top d stocks with the new top d stocks.
We trade with a specific frequency, which can be either daily, weekly, or monthly. For
research on optimal trading frequency, we refer to Ekren, Liu, and Muhle-Karbe [22].

At time t0, we take the transaction costs due to initializing a portfolio as sunk cost,
i.e., we set TC(t0) = 0. Moreover, we start a portfolio with initial wealth V (t0) = 1000.
Note that unless otherwise mentioned, the logarithmic scale is used when plotting V (·)
and TC(·) for the purpose of better interpretability. To simplify the analysis, we impose
a uniform transaction cost rate tc on both buying and selling the stocks, i.e., we set
tcb = tcs = tc.

For each example, we provide tables with the yearly returns, the excess returns
(relative to the corresponding index tracking portfolio), the standard deviations of the
yearly returns, and the Sharpe ratios of the portfolios.2 These tables also include
the wealth and the cumulative transaction costs at the end of the investment period,
and the average ratio of the yearly transaction costs to the beginning of year portfolio
wealth of the portfolios.

2To compute the Sharpe ratios of the portfolios and the indices, the one-year U.S. Treasury yields are
used. The data of these yields can be downloaded from https://www.federalreserve.gov.

https://www.federalreserve.gov
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Data source

The data of the total market capitalizations S(·) and the daily returns r(·) is down-
loaded from the CRSP US Stock Database.3 This database contains the traded stocks
on all major US exchanges. More precisely, we focus on ordinary common stocks.4

The data starts January 2nd, 1962 and ends December 30th, 2016.
The total market capitalizations are computed by multiplying the numbers of out-

standing shares with the share prices, and are essential in determining the target
weights. The daily returns include dividends but also delisting returns in case stocks
get delisted (for example, the recovery rate in case a traded firm goes bankrupt).

3.3.1 Index tracking portfolio

In this subsection, we introduce the index tracking portfolio. This portfolio is used to
benchmark the performance of other portfolios studied in the following subsections.
The index tracking portfolio has target weights

πj(·) = µj(·), j ∈ {1, · · · , d}.

Note that this portfolio is rebalanced only when the constituent list changes or when
dividends are reinvested.

The index tracking portfolio includes the effects of paying transaction costs and
reinvesting dividends. In contrast, the capitalization index with wealth process

d∑
i=1

Si(·)×
1000∑d
i=1 Si(t0)

does not take transaction costs and dividends into consideration.
In the following, we examine the performance of the index tracking portfolio under

different trading frequencies, renewing frequencies, as well as constituent list sizes d.
The portfolio is backtested when there are no transaction costs, i.e., when tc = 0, and
when tc = 0.5% and tc = 1%, respectively. These numbers are consistent with the
transaction cost estimates in Stoll and Whaley [84], Keim and Madhavan [54], Novy-
Marx and Velikov [68], and Fong, Holden, and Trzcinka [37].

Varying the trading frequency

We fix the constituent list size d = 100 and use monthly renewing frequency. Table 3.1
shows the performance of the index tracking portfolio and the corresponding capital-
ization index under daily, weekly, and monthly trading frequencies, respectively.5 Note
that the capitalization index does not depend on the trading frequency. As expected,

3See http://www.crsp.com/products/research-products/crsp-us-stock-databases for details.
4Those stocks in CRSP which have ‘Share Code’ 10, 11, or 12.
5The t-statistics of yearly returns of all portfolios considered in this section range from 3.29 to 4.98.

Since they are all significant, we shall omit these numbers in the tables below.

http://www.crsp.com/products/research-products/crsp-us-stock-databases
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with the same trading frequency, the portfolio performs worse under a larger transac-
tion cost rate tc. In addition, the portfolio outperforms the corresponding index, which
implies that the dividends paid exceed the transaction costs imposed even if tc = 1%.
In Figure 3.1, the wealth processes of the daily traded index tracking portfolio and the
corresponding capitalization index are plotted.

YR Std SR Wealth TC TR

CI 8.84 16.59 0.22 54.5

ITd0 10.30 16.87 0.30 111.7

ITd0.5 10.09 16.84 0.29 100.7 2.7 0.21

ITd1 9.89 16.81 0.28 90.7 5.0 0.42

ITw0 10.30 16.88 0.30 111.3

ITw0.5 10.10 16.85 0.29 100.7 2.5 0.20

ITw1 9.90 16.82 0.28 91.0 4.7 0.40

ITm0 10.27 16.88 0.30 109.7

ITm0.5 10.08 16.86 0.29 99.7 2.3 0.19

ITm1 9.89 16.83 0.28 90.6 4.3 0.38

TABLE 3.1: Yearly returns (YR) in percentage, standard devia-
tions of yearly returns (Std), Sharpe ratios (SR), the wealth and
the cumulative transaction costs (TC) in thousands at the end of
the investment period, and the average ratio of the yearly trans-
action costs to the beginning of year portfolio wealth (TR) in per-
centage of the index tracking portfolio (IT) and the corresponding
capitalization index (CI) under different trading frequencies and
transaction cost rates tc with d = 100 and monthly renewing fre-
quency. The subscript x corresponds to tc = x% and the super-
scripts d, w, and m indicate daily, weekly, and monthly trading
frequencies, respectively.

Varying the renewing frequency

Still fixing the constituent list size d = 100, we now use daily trading frequency and
vary the renewing frequency between weekly, monthly, and quarterly frequencies, re-
spectively. As shown in Figure 3.2 and Table 3.2, under the same transaction cost rate
tc, the less frequently the constituent list is renewed, the better the portfolio performs.
As trades are made when we renew the constituent list, renewing more frequently will
impose larger transaction costs, which impacts the performance of the portfolio to a
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FIGURE 3.1: The wealth processes of the index tracking portfolio
(IT) and the corresponding capitalization index (CI) on logarithmic
scale under different transaction cost rates tc with d = 100, daily
trading frequency, and monthly renewing frequency. The weekly
and the monthly traded portfolio performs similarly to the daily
traded portfolio under the same transaction cost rate tc.

higher degree. Additionally, the more frequently the constituent list is renewed, the
more sensitive the portfolio is to a larger transaction cost rate tc.

Varying the constituent list size d

With daily trading and monthly renewing frequencies, we now backtest the perfor-
mance of the index tracking portfolio under different constituent list sizes d. As shown
in Figure 3.3 and Table 3.3, the portfolio outperforms the corresponding index even
with transaction cost rate tc = 1%. The more stocks the constituent list contains, the
better the portfolio performs.

3.3.2 Equally-weighted portfolio

This subsection examines the equally-weighted portfolio. See Benartzi and Thaler [10]
and Windcliff and Boyle [91] for a discussion of this portfolio in the context of defined
contribution plans, and DeMiguel, Garlappi, and Uppal [19] for a careful study of its
properties. Here, the target weights are given by

πj(·) =
1

d
, j ∈ {1, · · · , d}.

For each portfolio with a specific trading frequency, a specific renewing frequency,
and a specific constituent list size d, we examine its performance when there are no
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FIGURE 3.2: The wealth processes of the index tracking portfolio
(IT) and the corresponding capitalization index (CI) on logarith-
mic scale under different renewing frequencies and transaction
cost rates tc with d = 100 and daily trading frequency. The perfor-
mance of the weekly renewed portfolio when tc = 0 is similar to
that of the quarterly renewed portfolio when tc = 1%. The weekly
and the quarterly renewed capitalisation index is not very different
from the monthly renewed one.

transaction costs, i.e., when tc = 0, and when tc = 0.5% and tc = 1%, respectively. As
shown in the following, the equally-weighted portfolio outperforms the corresponding
index tracking portfolio when there are no transaction costs. This well-behaved per-
formance of the equally-weighted portfolio within a frictionless market is popular in the
academic literature. However, the equally-weighted portfolio is very sensitive to trans-
action costs. Its performance is strongly compromised even with a small transaction
cost rate tc = 0.5%.

Varying the trading frequency

Let us fix d = 100 and apply monthly renewing frequency. Figure 3.4 plots and Ta-
ble 3.4 summarises the wealth processes of the equally-weighted and the correspond-
ing index tracking portfolio under different trading frequencies and transaction cost
rates tc. When there are no transaction costs, i.e., when tc = 0, the equally-weighted
portfolio outperforms the corresponding index tracking portfolio under all three differ-
ent trading frequencies. A similar observation is also provided in Banner et al. [6].
In addition, the more frequently the portfolio is traded, the better it performs. Trading
more frequently also allows to reinvest the dividends faster, which helps to enhance
the portfolio performance.
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YR Std SR Wealth TC TR

CIW 8.85 16.66 0.22 54.5

ITW0 10.14 16.89 0.29 102.2

ITW0.5 9.73 16.84 0.27 83.5 4.2 0.40

ITW1 9.33 16.79 0.25 68.1 7.2 0.79

CIQ 8.82 16.44 0.22 54.4

ITQ0 10.34 16.83 0.31 114.2

ITQ0.5 10.20 16.81 0.30 106.5 2.0 0.15

ITQ1 10.06 16.79 0.29 99.2 3.8 0.29

TABLE 3.2: Yearly returns (YR) in percentage, standard devia-
tions of yearly returns (Std), Sharpe ratios (SR), the wealth and
the cumulative transaction costs (TC) in thousands at the end of
the investment period, and the average ratio of the yearly trans-
action costs to the beginning of year portfolio wealth (TR) in per-
centage of the index tracking portfolio (IT) and the corresponding
capitalization index (CI) under different renewing frequencies and
transaction cost rates tc with d = 100 and daily trading frequency.
The subscript x corresponds to tc = x% and the superscripts W
and Q indicate weekly and quarterly renewing frequencies, re-
spectively.

When transaction costs are imposed, Figure 3.4 and Table 3.4 suggest that under
the same transaction cost rate tc, the more frequently the portfolio is traded, the larger
the decrease in portfolio performance is. The performance of the equally-weighted
portfolio is strongly affected by transaction costs. Even with tc = 0.5%, the corre-
sponding index tracking portfolio outperforms the equally-weighted portfolio. However,
slowing down trading helps to reduce the influence of transaction costs. Indeed, the
performance of the monthly traded equally-weighted portfolio when tc = 1% is similar
to that of the daily traded one when tc = 0.5%. As shown in Figure 3.5, the cumulative
transaction costs paid from a monthly traded equally-weighted portfolio when tc = 1%

are smaller than that from a daily traded one when tc = 0.5%.
We now study the sensitivity of the Sharpe ratio with respect to the transaction

cost rate tc. Specifically, we compute the Sharpe ratios of the monthly traded equally-
weighted and index tracking portfolio for tc ∈ {0, 0.01%, 0.02%, · · · , 0.5%}. As plotted
in Figure 3.6, the Sharpe ratios of both the equally-weighted and the index tracking
portfolio decrease as tc becomes larger. On the left hand side of the intersection
when tc < 0.22%, the equally-weighted portfolio has a higher Sharpe ratio. On the
right hand side of the intersection when tc > 0.22%, the inverse situation holds. This
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FIGURE 3.3: The wealth processes of the index tracking portfolio
(IT) and the corresponding capitalization index (CI) on logarithmic
scale under different constituent list sizes d and transaction cost
rates tc with daily trading and monthly renewing frequencies. For
both the portfolio and the index, the wealth processes with d =

300 are omitted. Everything else equal, they would lie between
the plotted ones with d = 100 and with d = 500.

indicates that the equally-weighted portfolio depends more on transaction costs than
the index tracking portfolio.

Moreover, as shown in Figure 3.6, the Sharpe ratio is roughly affine in the trans-
action cost rate. As the standard deviations of yearly returns remain relatively stable
for each portfolio, the average yearly return is also roughly affine in transaction cost
rate. This observation is consistent with the value of yearly returns reported in all ta-
bles, regardless of the portfolio considered. In particular, the slope of the line, when
multiplied by the negative of the standard deviation of the portfolio yearly return, is an
approximation of the portfolio turnover, as suggested below by Remark 7.

Remark 7. Consider a single period from time 0 to time 1 and let tc1 and tc2 be two
different transaction cost rates. Then, given the initial wealth V (0) of a portfolio at time
0, we have

r1 − r2 ≈
V (1)− TC1 − V (0)

V (0)
− V (1)− TC2 − V (0)

V (0)

≈ (tc2 − tc1)TV

V (0)
= (tc2 − tc1)Turnover.

Here, r1 and r2 are the net returns of the portfolio from time 0 to time 1 with tc1 and
tc2, respectively, V (1) is the portfolio wealth at time 1 if there are no transaction costs,
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YR Std SR Wealth TC TR

CI300 8.94 16.14 0.23 58.7

IT300
0 10.61 16.57 0.33 132.5

IT300
0.5 10.46 16.55 0.32 123.1 2.4 0.16

IT300
1 10.31 16.53 0.31 114.3 4.5 0.33

CI500 9.01 16.15 0.24 60.6

IT500
0 10.83 16.61 0.34 147.2

IT500
0.5 10.71 16.60 0.33 139.0 2.3 0.14

IT500
1 10.59 16.58 0.33 131.1 4.3 0.27

TABLE 3.3: Yearly returns (YR) in percentage, standard devia-
tions of yearly returns (Std), Sharpe ratios (SR), the wealth and
the cumulative transaction costs (TC) in thousands at the end of
the investment period, and the average ratio of the yearly trans-
action costs to the beginning of year portfolio wealth (TR) in per-
centage of the index tracking portfolio (IT) and the corresponding
capitalization index (CI) under different constituent list sizes d and
transaction cost rates tc with daily trading and monthly renewing
frequencies. The subscript x corresponds to tc = x% and the su-
perscripts 300 and 500 indicate d = 300 and d = 500, respectively.

and TV is the trading volume of the portfolio. Therefore, we have

SR1 − SR2

tc1 − tc2
≈ r1 − r2

σ(tc1 − tc2)
≈ −Turnover

σ
,

where SR1 and SR2 are the Sharpe ratios of the portfolio with tc1 and tc2, respectively,
and σ is the standard deviation of the portfolio return.

Varying the renewing frequency

Now we examine the performance of the equally-weighted portfolio with d = 100, daily
trading frequency, and under weekly, monthly, and quarterly renewing frequencies, re-
spectively. As shown in Figure 3.7 and Table 3.5, under the same transaction cost
rate tc, the less frequently the constituent list is renewed, the better the portfolio per-
forms. With tc = 0.5%, the equally-weighted portfolio already performs worse than
the corresponding index tracking portfolio. In particular, the portfolio with a more fre-
quent renewing frequency is more sensitive to transaction costs. As studied in more
detail in Subsection 3.3.4, the reason behind these observations is that trading on re-
newing days incurs extremely large transaction costs compared with trading on other
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FIGURE 3.4: The wealth processes of the equally-weighted port-
folio (EW) and the corresponding index tracking portfolio (IT) on
logarithmic scale under different trading frequencies and transac-
tion cost rates tc with d = 100 and monthly renewing frequency.
Under the same transaction cost rate tc, the weekly and the
monthly traded index tracking portfolio performs similarly to the
one traded daily.

FIGURE 3.5: Cumulative transaction costs on logarithmic scale
of the equally-weighted portfolio (EW) under different trading fre-
quencies and transaction cost rates tc with d = 100 and monthly
renewing frequency.

days when the constituent list is not renewed. These large transaction costs paid on
renewing days strongly impact the portfolio performance.

The cumulative transaction costs of the equally-weighted portfolio of Table 3.5 are
shown in Figure 3.8. Earlier on, the cumulative transaction costs are higher when
weekly renewed than when monthly or quarterly renewed due to the large transaction
costs associated with the renewal days. However, later on, the cumulative transaction
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YR ER Std SR Wealth TC TR

ITd0 10.30 16.87 0.30 111.7

EWd
0 11.10 0.79 [2.35] 16.83 0.35 168.2

ITd0.5 10.09 16.84 0.29 100.7 2.7 0.21

EWd
0.5 9.19 -0.91 [-2.77] 16.65 0.24 64.0 15.5 1.81

ITd1 9.89 16.81 0.28 90.7 5.0 0.42

EWd
1 7.31 -2.58 [-7.80] 16.48 0.13 24.3 15.0 3.58

ITw0 10.30 16.88 0.30 111.3

EWw
0 10.94 0.64 [1.92] 16.93 0.34 153.8

ITw0.5 10.10 16.85 0.29 100.7 2.5 0.20

EWw
0.5 9.82 -0.27 [-0.83] 16.81 0.28 87.7 11.4 1.06

ITw1 9.90 16.82 0.28 91.0 4.7 0.40

EWw
1 8.72 -1.18 [-3.60] 16.69 0.21 50.0 14.8 2.10

ITm0 10.27 16.88 0.30 109.7

EWm
0 10.53 0.26 [0.84] 17.00 0.31 123.7

ITm0.5 10.08 16.86 0.29 99.7 2.3 0.19

EWm
0.5 9.81 -0.27 [-0.88] 16.91 0.27 86.1 7.2 0.68

ITm1 9.89 16.83 0.28 90.6 4.3 0.38

EWm
1 9.10 -0.79 [-2.60] 16.83 0.23 59.9 10.9 1.36

TABLE 3.4: Yearly returns (YR) and excess returns (ER) in per-
centage (t-statistics in brackets), standard deviations of yearly re-
turns (Std), Sharpe ratios, the wealth and the cumulative transac-
tion costs (TC) in thousands at the end of the investment period,
and the average ratio of the yearly transaction costs to the begin-
ning of year portfolio wealth (TR) in percentage of the equally-
weighted portfolio (EW) and the corresponding index tracking
portfolio (IT) under different trading frequencies and transaction
cost rates tc with d = 100 and monthly renewing frequency. The
subscript x corresponds to tc = x% and the superscripts d, w,
and m indicate daily, weekly, and monthly trading frequencies,
respectively.

costs of the weekly renewed portfolio are smaller. The reason is that the weekly re-
newed portfolio performs worse than the monthly or the quarterly renewed portfolio,
hence the transaction costs imposed as a proportion of the portfolio wealth are also
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FIGURE 3.6: Sharpe ratios of the equally-weighted portfolio (EW)
and the index tracking portfolio (IT) under different transaction
cost rates tc with d = 100, monthly trading frequency, and monthly
renewing frequency.

FIGURE 3.7: The wealth processes of the equally-weighted port-
folio (EW) and the corresponding index tracking portfolio (IT) on
logarithmic scale under different renewing frequencies and trans-
action cost rates tc with d = 100 and daily trading frequency.
For the index tracking portfolio, the wealth processes of the quar-
terly renewed one with tc = 0 and the weekly renewed one with
tc = 1% are plotted. The omitted wealth processes of the index
tracking portfolio lie between the plotted ones.
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YR ER Std SR Wealth TC TR

ITW0 10.14 16.89 0.29 102.2

EWW
0 10.62 0.48 [1.48] 16.95 0.32 129.8

ITW0.5 9.73 16.84 0.27 83.5 4.2 0.40

EWW
0.5 8.20 -1.54 [-4.81] 16.71 0.18 37.5 12.9 2.29

ITW1 9.33 16.79 0.25 68.1 7.2 0.79

EWW
1 5.83 -3.50 [-10.66] 16.50 0.04 11.0 10.5 4.54

ITQ0 10.34 16.83 0.31 114.2

EWQ
0 11.21 0.86 [2.34] 16.82 0.36 177.6

ITQ0.5 10.20 16.81 0.30 106.5 2.0 0.15

EWQ
0.5 9.47 -0.73 [-2.06] 16.65 0.26 73.9 16.0 1.64

ITQ1 10.06 16.79 0.29 99.2 3.8 0.29

EWQ
1 7.76 -2.30 [-6.56] 16.50 0.16 30.8 16.5 3.25

TABLE 3.5: Yearly returns (YR) and excess returns (ER) in per-
centage (t-statistics in brackets), standard deviations of yearly re-
turns (Std), Sharpe ratios, the wealth and the cumulative transac-
tion costs (TC) in thousands at the end of the investment period,
and the average ratio of the yearly transaction costs to the begin-
ning of year portfolio wealth (TR) in percentage of the equally-
weighted portfolio (EW) and the corresponding index tracking
portfolio (IT) under different renewing frequencies and transac-
tion cost rates tc with d = 100 and daily trading frequency. The
subscript x corresponds to tc = x% and the superscripts W and
Q indicate weekly and quarterly renewing frequencies, respec-
tively.

smaller.

Varying the market size d

With daily trading and monthly renewing frequencies, Figure 3.9 plots and Table 3.6
summarises the wealth processes of the equally-weighted and the corresponding in-
dex tracking portfolio under different constituent list sizes d. The more stocks the
constituent list contains, the better the portfolio performs under the same transaction
cost rate tc. Again, its performance is reduced by transaction costs. Even with d = 500

and tc = 0.5%, the equally-weighted portfolio performs worse than the corresponding
index tracking portfolio. In addition, the portfolio with a larger constituent list size d is
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FIGURE 3.8: Cumulative transaction costs on logarithmic scale
of the equally-weighted portfolio (EW) under different renewing
frequencies and transaction cost rates tc with d = 100 and daily
trading frequency.

not necessarily more sensitive to transaction costs. Figure 3.10 plots the cumulative
transaction costs generated by the portfolio of Table 3.6.

FIGURE 3.9: The wealth processes of the equally-weighted port-
folio (EW) and the corresponding index tracking portfolio (IT) on
logarithmic scale under different constituent list sizes d and trans-
action cost rates tc with daily trading and monthly renewing fre-
quencies. For the index tracking portfolio, the wealth processes
of the one with d = 500 when tc = 0 and the one with d = 100

when tc = 1% are plotted. The omitted wealth processes of the
index tracking portfolio lie between the plotted ones.



68 Chapter 3. The Impact of Proportional Transaction Costs

YR ER Std SR Wealth TC TR

IT300
0 10.61 16.57 0.33 132.5

EW300
0 11.92 1.31 [2.66] 16.59 0.41 255.3

IT300
0.5 10.46 16.55 0.32 123.1 2.4 0.16

EW300
0.5 9.92 -0.54 [-1.13] 16.43 0.29 93.6 21.8 1.88

IT300
1 10.31 16.53 0.31 114.3 4.5 0.33

EW300
1 7.96 -2.35 [-4.92] 16.29 0.17 34.3 20.5 3.73

IT500
0 10.83 16.61 0.34 147.2

EW500
0 12.52 1.70 [3.08] 17.07 0.43 332.8

IT500
0.5 10.71 16.60 0.33 139.0 2.3 0.14

EW500
0.5 10.46 -0.25 [-0.47] 16.90 0.31 118.4 27.3 1.94

IT500
1 10.59 16.58 0.33 131.1 4.3 0.27

EW500
1 8.43 -2.16 [-4.07] 16.74 0.19 42.1 24.8 3.85

TABLE 3.6: Yearly returns (YR) and excess returns (ER) in per-
centage (t-statistics in brackets), standard deviations of yearly re-
turns (Std), Sharpe ratios, the wealth and the cumulative transac-
tion costs (TC) in thousands at the end of the investment period,
and the average ratio of the yearly transaction costs to the begin-
ning of year portfolio wealth (TR) in percentage of the equally-
weighted portfolio (EW) and the corresponding index tracking
portfolio (IT) under different constituent list sizes d and transac-
tion cost rates tc with daily trading and monthly renewing frequen-
cies. The subscript x corresponds to tc = x% and the super-
scripts 300 and 500 indicate d = 300 and d = 500, respectively.

3.3.3 Entropy-weighted portfolio

In this subsection, we consider the entropy-weighted portfolio (see Section 2.3 in Fern-
holz [26], Example 5.3 in Karatzas and Ruf [51], and Example 2.4.1), which relies on
target weights

πj(·) =
µj(·) logµj(·)∑d
i=1 µi(·) logµi(·)

, j ∈ {1, · · · , d}.

In the following, we examine the performance of the entropy-weighted portfolio
under specific configurations when there are no transaction costs, i.e., when tc =

0, and when tc = 0.5%. The performance of the entropy-weighted portfolio is less
sensitive to transaction costs and is better when tc = 0.5%, compared with that of the
equally-weighted portfolio.
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FIGURE 3.10: Cumulative transaction costs on logarithmic scale
of the equally-weighted portfolio (EW) under different constituent
list sizes d and transaction cost rates tc with daily trading fre-
quency and monthly renewing frequency.

Varying the trading frequency

As before, when backtesting the portfolio under different trading frequencies, we set
the constituent list size d = 100 and apply monthly renewing frequency. Figure 3.11
displays and Table 3.7 summarises the wealth processes of the entropy-weighted
and the corresponding index tracking portfolio under different trading frequencies.
Compared with the equally-weighted portfolio summarised in Table 3.4, the entropy-
weighted portfolio performs worse (but still outperforms the corresponding index track-
ing portfolio) when there are no transaction costs, i.e., when tc = 0. However, opposite
to the equally-weighted portfolio, the weekly and the monthly traded entropy-weighted
portfolio still outperforms the corresponding index tracking portfolio when tc = 0.5%.

Over a large time horizon, the loss in the portfolio wealth resulting from paying
transaction costs is usually higher than the cumulative transaction costs imposed. This
is exhibited in Figure 3.11, which also plots the sum of the wealth process and of the
cumulative transaction costs of the entropy-weighted portfolio when tc = 0.5%. Notice
that the wealth process when tc = 0 is above this sum. Indeed, paying transaction
costs not only takes money out of the portfolio, but also deprives the opportunity for
making potential gains.

Varying the renewing frequency

With d = 100 and daily trading frequency, we now examine the performance of the
entropy-weighted portfolio applying different renewing frequencies (renewed weekly,
monthly, and quarterly, respectively). Figure 3.12 displays and Table 3.8 summarises
the wealth processes of the entropy-weighted and the corresponding index tracking
portfolio under different renewing frequencies. Similar to the equally-weighted portfo-
lio, the less frequently the constituent list is renewed, the better the entropy-weighted
portfolio performs. When transaction costs are imposed, its performance depends
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FIGURE 3.11: The wealth processes of the entropy-weighted
portfolio (ET) and the corresponding index tracking portfolio (IT)
on logarithmic scale under different trading frequencies and
transaction cost rates tc with d = 100 and monthly renewing fre-
quency. For both the entropy-weighted and the index tracking
portfolio, the omitted wealth processes of Table 3.7 lie between
the plotted ones. The sum of the wealth process and of the cu-
mulative transaction costs of the daily traded entropy-weighted
portfolio when tc = 0.5% is also plotted. Note that the sum is
below the wealth process of the daily traded entropy-weighted
portfolio when tc = 0.

more on the renewing frequency. However, compared with the equally-weighted port-
folio summarised in Table 3.5, the performance of the entropy-weighted portfolio is
less sensitive to transaction costs under the same renewing frequency.

Varying the market size d

Applying daily trading and monthly renewing frequencies, we backtest the entropy-
weighted portfolio under different constituent list sizes d (= 100, 300, and 500, respec-
tively), as shown in Figure 3.13 and Table 3.9. Similar to the equally-weighted and
the index tracking portfolio, the more stocks the constituent list contains, the better the
entropy-weighted portfolio performs. Compared with the equally-weighted portfolio,
the entropy-weighted portfolio with the same d depends less on transaction costs. In
particular, with d = 500 and tc = 0.5%, the entropy-weighted portfolio still outperforms
the corresponding index tracking portfolio.
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YR ER Std SR Wealth TC TR

ITd0 10.30 16.87 0.30 111.7

ETd0 10.53 0.23 [2.03] 16.90 0.32 125.1

ITd0.5 10.09 16.84 0.29 100.7 2.7 0.21

ETd0.5 9.97 -0.12 [-1.08] 16.83 0.28 94.6 6.4 0.53

ITw0 10.30 16.88 0.30 111.3

ETw0 10.50 0.21 [1.82] 16.92 0.31 123.1

ITw0.5 10.10 16.85 0.29 100.7 2.5 0.20

ETw0.5 10.12 0.02 [0.21] 16.88 0.29 101.7 4.5 0.36

ITm0 10.27 16.88 0.30 109.7

ETm0 10.40 0.14 [1.24] 16.94 0.31 116.9

ITm0.5 10.08 16.86 0.29 99.7 2.3 0.19

ETm0.5 10.11 0.03 [0.29] 16.90 0.29 100.8 3.4 0.28

TABLE 3.7: Yearly returns (YR) and excess returns (ER) in per-
centage (t-statistics in brackets), standard deviations of yearly
returns (Std), Sharpe ratios (SR), the wealth and the cumula-
tive transaction costs (TC) in thousands at the end of the in-
vestment period, and the average ratio of the yearly transaction
costs to the beginning of year portfolio wealth (TR) in percentage
of the entropy-weighted portfolio (ET) and the corresponding in-
dex tracking portfolio (IT) under different trading frequencies and
transaction cost rates tc with d = 100 and monthly renewing fre-
quency. The subscript x corresponds to tc = x% and the super-
scripts d, w, and m indicate daily, weekly, and monthly trading
frequencies, respectively.

3.3.4 Diversity-weighted portfolio and smoothing transaction costs

One portfolio that draws much attention in Stochastic Portfolio Theory is the so-called
diversity-weighted portfolio generated from the “measure of diversity”

Gp(x) =

(
d∑
i=1

xpi

)1/p

, x ∈ ∆d,

for some fixed p ∈ (0, 1), where ∆d is given by (1.3). Without changing the relative
ranking of the stocks, the function Gp(·) generates portfolio weights smaller (larger)
than the corresponding market weights for stocks with large (small) market weights.
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FIGURE 3.12: The wealth processes of the entropy-weighted
portfolio (ET) and the corresponding index tracking portfolio (IT)
on logarithmic scale under different renewing frequencies and
transaction cost rates tc with d = 100 and daily trading frequency.
For both the entropy-weighted and the index tracking portfolio,
the omitted wealth processes of Table 3.8 lie between the plotted
ones.

This diversification property of Gp is closely related to the implementation of relative
arbitrage portfolios; see Section 7 in Fernholz and Karatzas [35] for details. Sec-
tion 6.3 in Fernholz [26] provides a theoretical approximation of the diversity-weighted
portfolio turnover. Vervuurt and Karatzas [89] study the portfolio generated by Gp with
a negative p. An empirical study of this portfolio using S&P 500 market data can be
found in Fernholz, Garvy, and Hannon [32] and Chapter 7 of Fernholz [26], as well
as in Example 2.4.2. Here, the target portfolio weights are consistent with the trading
strategy generated multiplicatively in Example 2.4.2.

In the following, we examine the performance of this portfolio and illustrate the
tradeoff between trading with a higher frequency and paying transaction costs. To
achieve this, we shall replace the market weights by a smoothed version, given by

µ(·) = αµ(·) + (1− α)Λ(·)

with α ∈ (0, 1). Here, the moving average process Λ(·) = (Λ1(·), · · · ,Λd(·))′ is given
by

Λj(·) =


1
δ

∫ ·
0 µj(t)dt+ 1

δ

∫ 0
·−δ µj(0)dt on [0, δ)

1
δ

∫ ·
·−δ µj(t)dt on [δ,∞)

, j ∈ {1, · · · , d},

for a fixed constant δ > 0. This moving average process Λ(·) is also included in the
portfolio generating function studied in Schied, Speiser, and Voloshchenko [82]. Then
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YR ER Std SR Wealth TC TR

ITW0 10.14 16.89 0.29 102.2

ETW0 10.31 0.17 [1.57] 16.93 0.30 111.3

ITW0.5 9.73 16.84 0.27 83.5 4.2 0.40

ETW0.5 9.50 -0.23 [-2.13] 16.84 0.26 73.9 7.4 0.77

ITQ0 10.34 16.83 0.31 114.2

ETQ0 10.58 0.24 [2.08] 16.86 0.32 129.0

ITQ0.5 10.20 16.81 0.30 106.5 2.0 0.15

ETQ0.5 10.11 -0.09 [-0.78] 16.81 0.29 101.6 5.8 0.45

TABLE 3.8: Yearly returns (YR) and excess returns (ER) in per-
centage (t-statistics in brackets), standard deviations of yearly re-
turns (Std), Sharpe ratios, the wealth and the cumulative transac-
tion costs (TC) in thousands at the end of the investment period,
and the average ratio of the yearly transaction costs to the be-
ginning of year portfolio wealth (TR) in percentage of the entropy-
weighted portfolio (ET) and the corresponding index tracking port-
folio (IT) under different renewing frequencies and transaction
cost rates tc with d = 100 and daily trading frequency. The sub-
script x corresponds to tc = x% and the superscripts W and Q

indicate weekly and quarterly renewing frequencies, respectively.

the target weights are given by

πj(·) = µj(·)

(
$j(·)−

d∑
i=1

µi(·)$i(·) + 1

)
, j ∈ {1, · · · , d},

where

$j(·) =
α
(
µj(·)

)p−1∑d
i=1 (µi(·))

p
, j ∈ {1, · · · , d}.

To backtest the portfolio, we fix d = 100, the renewing frequency to be quarterly,
and the “diversity degree” p = 0.8. Moreover, we compute the moving average process
Λ(·) using a one-year window. To be more specific, with daily trading frequency, we set
δ = 250; with weekly trading frequency, we set δ = 52. To compute Λ(·) under weekly
trading frequency, we only use market weights µ’s on the days when transactions are
made.
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FIGURE 3.13: The wealth processes of the entropy-weighted
portfolio (ET) and the corresponding index tracking portfolio (IT)
on logarithmic scale under different constituent list sizes d and
transaction cost rates tc with daily trading and monthly renew-
ing frequencies. For both the entropy-weighted and the index
tracking portfolio, the omitted wealth processes of Table 3.9 lie
between the plotted ones.

Varying the convexity weight α and the trading frequency

In Table 3.10, we summarise the wealth processes of the diversity-weighted and the
corresponding index tracking portfolio. These processes are under both daily and
weekly trading frequencies and with three different choices for the convexity weight
α, when there are no transaction costs, i.e., when tc = 0, and when tc = 0.5% and
tc = 1%, respectively.

We first consider the case when there are no transaction costs. Everything else
equal, the daily traded diversity-weighted portfolio performs similarly to the weekly
traded portfolio. Under either trading frequency, the smaller the convexity weight α is,
the worse the portfolio performs. Generating the portfolio with a smaller α is somewhat
alike to trading less frequently, as it assigns less weights on the volatile term µ(·) and
more weights on the stable term Λ(·) when constructing µ(·), and thus makes µ(·) less
volatile.

Next, we consider the case with transaction costs. Under either daily or weekly
trading frequency, a smaller convexity weight α tends to improve the portfolio perfor-
mance when the transaction cost rate tc becomes larger. This can be useful, since
decreasing α partially cancels out the effect of transaction costs. Moreover, when
tc = 1%, the daily traded portfolio with α = 0.2 performs similarly as the weekly traded
portfolio with α = 0.6. This indicates that, instead of trading less frequently in order to
avoid paying transaction costs, one can adjust the convexity weight α to reach a more
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YR ER Std SR Wealth TC TR

IT300
0 10.61 16.57 0.33 132.5

ET300
0 10.89 0.28 [2.24] 16.57 0.34 152.5

IT300
0.5 10.46 16.55 0.32 123.1 2.4 0.16

ET300
0.5 10.43 -0.03 [-0.25] 16.52 0.31 121.2 6.2 0.43

IT500
0 10.83 16.61 0.34 147.2

ET500
0 11.16 0.33 [2.51] 16.66 0.36 173.2

IT500
0.5 10.71 16.60 0.33 139.0 2.3 0.14

ET500
0.5 10.75 0.04 [0.27] 16.62 0.34 141.0 6.4 0.39

TABLE 3.9: Yearly returns (YR) and excess returns (ER) in per-
centage (t-statistics in brackets), standard deviations of yearly re-
turns (Std), Sharpe ratios, the wealth and the cumulative transac-
tion costs (TC) in thousands at the end of the investment period,
and the average ratio of the yearly transaction costs to the be-
ginning of year portfolio wealth (TR) in percentage of the entropy-
weighted portfolio (ET) and the corresponding index tracking port-
folio (IT) under different constituent list sizes d and transaction
cost rates tc with daily trading and monthly renewing frequencies.
The subscript x corresponds to tc = x% and the superscripts 300

and 500 indicate d = 300 and d = 500, respectively.

favourable balance between trading frequently and paying transaction costs.

Dynamic convexity weight α to smooth transaction costs

Instead of fixing α throughout the investment period, we could adjust α dynamically to
speed up or slow down trading. For example, given a baseline portfolio with constant
convexity weight α0, we would choose α < α0 (α > α0) to trade less (more) in the next
period if transaction costs paid in the last period are more (less) than a certain level.
In the remaining part of this example, we fix daily trading frequency and dynamically
adjust α(·).

Let M ≥ 4 denote the total number of quarters in the investment period and let tru,
for u ∈ {1, · · · ,M}, denote the trading days on which the constituent list is renewed.
Moreover, set tr0 = t0. On a specific renewing day tru, for u ∈ {1, · · · ,M}, let T̃C(tru)

denote the averaged fictitious transaction costs relative to the wealth Vα0(·−) of the
baseline portfolio paid in the previous period. More precisely, T̃C(tru) is computed as

T̃C(tru) =
1

κu

∑
t∈[tru−1,t

r
u)

min

{
TCα0(t)

Vα0(t−)
, ξ

}
.
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ITw0 ITw0.5 ITw1 α DWd
0 DWd

0.5 DWd
1 DWw

0 DWw
0.5 DWw

1

0.2 10.36 10.20 10.03 10.36 10.20 10.05

YR
10.34 10.20 10.06

0.6 10.43 10.18 9.93 10.42 10.23 10.03

1 10.54 10.11 9.68 10.51 10.24 9.96

0.2 0.03 0 -0.03 0.02 0.01 -0.01

ER 0.6 0.1 -0.01 -0.13 0.09 0.03 -0.03

1 0.2 -0.09 -0.38 0.18 0.04 -0.09

0.2 16.84 16.81 16.79 16.85 16.83 16.80

Std
16.85 16.83 16.81

0.6 16.84 16.81 16.77 16.86 16.83 16.80

1 16.84 16.79 16.74 16.87 16.83 16.79

0.2 0.31 0.30 0.29 0.31 0.30 0.29

SR 0.31 0.30 0.29 0.6 0.31 0.30 0.28 0.31 0.30 0.29

1 0.32 0.29 0.27 0.32 0.30 0.28

0.2 115.6 106.2 97.6 115.1 106.5 98.5

W
123.4 108.3

94.2 0.6 119.8 105.4 92.8 118.8 107.8 97.8

1 126.2 101.6 81.7 124.3 108.3 94.2

0.2 2.1 4.0 2.0 3.7

TC 3.5 6.3 0.6 3.2 5.9 2.5 4.6

1 5.3 9.0 3.5 6.3

TABLE 3.10: Yearly returns (YR) and excess returns (ER) (with
respect to the index tracking portfolio (IT) summarised here and
in Table 3.1) in percentage (t-statistics in brackets), standard de-
viations of yearly returns (Std), Sharpe ratios (SR), the wealth
(W) and the cumulative transaction costs (TC) in thousands at
the end of the investment period, and the average ratio of the
yearly transaction costs to the beginning of year portfolio wealth
(TR) in percentage of the diversity-weighted portfolio (DW) under
different trading frequencies, convexity weights α, and transac-
tion cost rates tc with d = 100 and quarterly renewing frequency.
The subscript x corresponds to tc = x% and the superscripts d
and w indicate daily and weekly trading frequencies, respectively.
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Here, κu is the number of trading days within the period [tru−1, t
r
u), TCα0(·) is computed

by (3.3) from the baseline portfolio, and ξ is a predetermined level used to make the
estimate more robust. On a trading day t, We regard TCα0(t)/Vα0(t−) > ξ as “ab-
normal” transaction costs relative to Vα0(t−). Such large costs appear, for example,
when the constituent list is changing. The level ξ is determined such that the days,
on which “abnormal” transaction costs occur, only count for a small proportion of all
trading days.

FIGURE 3.14: Transaction costs TCα0(·) of the baseline portfolio
relative to its wealth Vα0(·−), i.e., TCα0(·)/Vα0(·−), paid when
the constituent list is changed and unchanged, respectively, with
α0 = 0.6, when tc = 0.5%.

Figure 3.14 shows the relative transaction costs TCα0(·)/Vα0(·−) when the con-
stituent list is changed and unchanged, respectively, with α0 = 0.6 and tc = 0.5%.
Transaction costs paid when the constituent list is changed are significantly larger
than when the constituent list remains the same. The days when the constituent list is
changed only account for less than 5% of all trading days, i.e., M/N < 0.05, where N
is again the total number of trading days.

We shall smooth the relative transaction costs TC(·)/Vα0(·−) by dynamically ad-
justing α(·). Starting with α(t0) = α0, the convexity weight α(·) is piecewise constant
and only updated on the renewal dates tru, for u ∈ {4, · · · ,M}. This reduces additional
transaction costs incurred from updating α(·). In particular, for all u ∈ {4, · · · ,M}, we
set

α(tru) = max
{

min
{
α0

(
1− β × TC(tru)

)
, 1
}
, 0
}

with

TC(tru) =
T̃C(tru)

1
4

∑u
ν=u−3 T̃C(trν)

− 1.
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Here, β ≥ 0 is a fixed non-negative constant that controls the sensitivity of α(·). Hence,
we compare the fictitious averaged transaction costs relative to Vα0(·−) within the most
recent quarter to that of the past one year. The value TC(·) is positive (negative) if the
baseline portfolio requires more (less) transaction costs in the most recent quarter
than the last year. This will yield α(·) < α0 (α(·) > α0) and slow down (speed up) the
trading within the next quarter.

Using a baseline portfolio with constant convexity weight α0 = 0.6 and assuming
tc = 0.5%, we now estimate the effects of a dynamic convexity weight α(·) empirically.
Moreover, we set the relative transaction cost level ξ = 10−5, as the fictitious relative
transaction costs TCα0(·)/Vα0(·−) are less than this level on more than 95% of all
trading days. We examine the three cases β ∈ {0, 0.05, 0.1}. Note that β = 0 yields
α(·) = α0. With these choices of β, the portfolio with dynamic α(·) performs similarly
to the baseline portfolio; see column V d

tc_0.5 in Table 3.10 with α = 0.6.
The convexity weight process α(·) corresponding to the sensitivity parameter β is

shown in Figure 3.15. As expected, α(·) fluctuates more rapidly with a larger β. As
mentioned before, increasing α speeds up trading and leads to more transaction costs,
while decreasing α has the opposite effect. Choosing β very large results in a portfolio
far away from the baseline portfolio. This dependence on β is illustrated in Figure 3.16,
which plots the square root of the total quadratic variation of relative transaction costs
TC(·)/Vα0(·−), computed as√√√√ N∑

l=1

(
TC(tl)

Vα0(tl−)
− TC(tl−1)

Vα0(tl−1−)

)2

, (3.11)

for different sensitivity parameters β. The square root of the total quadratic variation
is a measure of volatility with percentage as unit. Figure 3.16 suggests that choosing
β ≈ 0.05 minimises (3.11).

3.4 Conclusion

In this chapter, we empirically study the impact of proportional transaction costs on
systemically generated portfolios. Given a target portfolio, we provide a scheme to
backtest the portfolio using total market capitalization and daily stock return time se-
ries. Implementing this scheme, we examine the performance of the index track-
ing portfolio, the equally-weighted portfolio, the entropy-weighted portfolio, and the
diversity-weighted portfolio. When backtesting, we assume various transaction cost
rates, trading frequencies, portfolio constituent list sizes, and renewing frequencies.

As expected, everything else equal, a portfolio performs worse as transaction costs
are higher and the portfolio renewing frequency of the underlying constituent list is
higher. In the absence of transaction costs, trading under a higher frequency leads
to better portfolio performance. However, in the presence of transaction costs, im-
plementing a higher trading frequency can also result in larger transaction costs and
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FIGURE 3.15: Convexity weight process α(·) for different sensi-
tivity parameters β with α0 = 0.6, when tc = 0.5%.

FIGURE 3.16: Square root of the quadratic variation of relative
transaction costs TC(·)/Vα0(·−) for different sensitivity parame-
ters β with α0 = 0.6, when tc = 0.5%.

reduce the portfolio performance significantly. Hence, trading under an appropriate
frequency is necessary in practice. In addition, with or without transaction costs, a
more diversified portfolio containing more stocks usually performs better.

The empirical results indicate that the equally-weighted portfolio performs well rel-
ative to the index tracking portfolio when there are no transaction costs. However, the
performance of the equally-weighted portfolio is very sensitive to transaction costs.
The entropy-weighted portfolio performs a bit worse than the equally-weighted port-
folio (but still outperforms the index tracking portfolio) when there are no transaction
costs. But the performance of the entropy-weighted portfolio depends much less on
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transaction costs, compared to the equally-weighted portfolio.
Last but not the least, we propose a method to smooth transaction costs. Without

changing the trading frequency, this method is similar to altering the trading speed
dynamically.
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Chapter 4

Leakage of Generalised
Rank-Dependent Trading
Strategies

As mentioned in Section 1.5, Fernholz [29] is the first to analyse portfolios generated
by functions that depend on the ranked market weights. The ranked market weights
have advantages in illustrating the distribution of capital in the market, which is of great
significance in SPT. As in Chapter 3, we analyse portfolios with their constituent lists
containing the top d stocks in the market. Every time we renew the portfolio constituent
list, new stocks (indexed by their names) are introduced into the portfolio to replace
some old stocks. In this sense, these portfolios are not portfolios that invest in fixed
companies, but are actually more close to rank-dependent portfolios. In this chapter,
which is based on Xie [95] , we study the so-called leakage effect resulting from the
change in the constituent list of rank-dependent portfolios.

The following is an outline of this chapter. Section 4.1 introduces the master for-
mula of the wealth of a trading strategy generated either multiplicatively or additively
by a generalised portfolio generation function of a specific group of ranked market
weights. The definition of the leakage comes naturally from the master formula and
is computed theoretically. Section 4.2 provides the method to estimate the leakage in
discreet time. Section 4.3 discusses the procedure of using historical data to back-
test the portfolio performance and estimating the leakage. Section 4.4 studies several
trading strategies empirically.

4.1 Leakage of functionally generated trading strategies

Leakage was first introduced by Fernholz [29] to measure the effect on portfolio return
of stocks dropped from (“leaked” out of) the constituent list when rebalancing. We
apply some of the techniques used in Fernholz [29] and reanalyse this effect with
necessary adjustments. To be more specific, we put ourselves in a frictionless market
M with d ≥ 2 stocks as in Chapter 2. However, this time, we only invest in the top
k < d stocks in terms of the market capitalisation among the d stocks every time when
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rebalancing the portfolio. We denote the market that contains these top k stocks by
Mk.

As before, we still let Λ(·) denote an Rm-valued continuous process of finite varia-
tion on [0, T ], for T ≥ 0 and some m ∈ N. Moreover, we use µ(·) and µ(·) to denote
the ∆d-valued market weight process and the Wd-valued ranked market weight pro-
cess for the d stocks, respectively. Recall the relevant notations from Chapter 1. To
proceed, we define

µ̃i(t) = M(t)µ(i)(t), i ∈ {1, · · · , d}, t ≥ 0, (4.1)

where
M(·) =

1∑k
j=1 µ(j)(·)

represents the process of the multiplier of the market weights from the market M to
the marketMk. Then, the ∆k-valued process µ̃(·) = (µ̃1(·), · · · , µ̃k(·))′ is the market
weights process with respect to the marketMk. Note that

k∑
j=1

µ̃j(t) = 1, t ≥ 0,

by (4.1). In particular, since µ(·) is a d-dimensional continuous semimartingale, µ̃(·) is
a k-dimensional continuous semimartingale by (4.1). Moreover, let W̃ be some open
subset of Rm × Rk such that

P
[
(Λ(t), µ̃(t)) ∈ W̃, ∀ t ≥ 0

]
= 1.

Recall the definition of a generalised regular function from Definition 2.1.1. In this
chapter, we let G̃ : W̃ → R be a generalised regular function for Λ(·) and µ̃(·). To
wit, there exists a measurable function G̃D = (G̃D

1 , · · · , G̃D
k )′ : W̃ → Rk such that the

process ϑ̃(·) = (ϑ̃1(·), · · · , ϑ̃k(·))′ with components

ϑ̃i(·) = G̃D
i (Λ(·), µ̃(·)), i ∈ {1, · · · , k},

is in L(µ̃) (i.e., predictable and integrable with respect to µ̃(·)). Moreover, the continu-
ous, adapted process

Γ(·) = G̃(Λ(0), µ̃(0))− G̃(Λ(·), µ̃(·)) +

∫ ·
0

k∑
j=1

ϑ̃j(t)dµ̃j(t) (4.2)

is of finite variation on the interval [0, T ], for all T ≥ 0. In particular, for the sake of a
better interpretability, we normalise

G̃(Λ(0), µ̃(0)) = 1 (4.3)

in the same manner as in Subsection 2.2.3.
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Similar to (1.7), for a trading strategy ϕ(·) generated either multiplicatively or addi-
tively by a generalised regular function G̃ for Λ(·) and µ̃(·), the wealth process Ṽ ϕ(·)
of ϕ(·) relative to the marketMk is given by

Ṽ ϕ(·) =
k∑
j=1

ϕj(·)µ̃j(·). (4.4)

Recall from (2.9) that Ni(x) represents the number of components of x ∈ ∆d that
coalesce at a given rank i ∈ {1, · · · , d}. Moreover, recall the local time Λ(i,j)(·) from
Definition 1.5.1 and (2.11), for all i, j ∈ {1, · · · , d} with i < j.

Lemma 4.1.1. For a given generalised regular function G̃ for Λ(·) and µ̃(·), the corre-
sponding finite-variation process Γ(·) given by (4.2) satisfies

Γ(·) = Γ̃(·) + L(·),

where

Γ̃(·) = G̃(Λ(0), µ̃(0)) +

∫ ·
0

k∑
i=1

d∑
j=1

ϑ̃i(t)M(t)

Ni(µ(t))
1{µj(t)=µ(i)(t)}dµj(t)

− G̃(Λ(·), µ̃(·))−
∫ ·

0

k∑
i,j=1

d∑
ν=1

ϑ̃i(t)µ̃i(t)M(t)
1{µν(t)=µ(j)(t)}

Nj(µ(t))
dµν(t)

+

∫ ·
0

k∑
i,j,ν=1

M2(t)ϑ̃i(t)µ̃i(t)d
[
µ(j), µ(ν)

]
(t)

−
∫ ·

0

k∑
i,j=1

M2(t)ϑ̃i(t)d
[
µ(i), µ(j)

]
(t)

+

∫ ·
0

k∑
i=1

k∑
j=i+1

ϑ̃i(t)M(t)

Ni(µ(t))
dΛ(i,j)(t)−

∫ ·
0

k∑
i=1

i−1∑
j=1

ϑ̃i(t)M(t)

Ni(µ(t))
dΛ(j,i)(t)

−
∫ ·

0

k∑
i,j=1

k∑
ν=j+1

ϑ̃i(t)µ̃i(t)M(t)

Nj(µ(t))
dΛ(j,ν)(t)

+

∫ ·
0

k∑
i,j=1

j−1∑
ν=1

ϑ̃i(t)µ̃i(t)M(t)

Nj(µ(t))
dΛ(ν,j)(t)

(4.5)

is a process of finite variation on [0, T ], for all T ≥ 0, and

L(·) =

∫ ·
0

k∑
i=1

d∑
j=k+1

ϑ̃i(t)M(t)

Ni(µ(t))
dΛ(i,j)(t)

−
∫ ·

0

k∑
i,j=1

d∑
ν=k+1

ϑ̃i(t)µ̃i(t)M(t)

Nj(µ(t))
dΛ(j,ν)(t).

(4.6)
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Proof. By Itô’s lemma and (4.1), we have

dµ̃i(t) = d
(
M(t)µ(i)(t)

)
= M(t)dµ(i)(t) + µ(i)(t)dM(t) + d

[
µ(i),M

]
(t),

for all i ∈ {1, · · · , k}, and

dM(t) = −M2(t)

k∑
j=1

dµ(j)(t) + M3(t)

k∑
i,j=1

d
[
µ(i), µ(j)

]
(t).

The above two equations imply

dµ̃i(t) = M(t)dµ(i)(t)−M(t)µ̃i(t)

k∑
j=1

dµ(j)(t)

+ M2(t)µ̃i(t)

k∑
j,ν=1

d
[
µ(j), µ(ν)

]
(t)−M2(t)

k∑
j=1

d
[
µ(i), µ(j)

]
(t),

(4.7)

for all i ∈ {1, · · · , k}. Then, combining (2.10) and (4.7) yields

dµ̃i(t) =
M(t)

Ni(µ(t))

d∑
j=1

1{µj(t)=µ(i)(t)}dµj(t)−M(t)µ̃i(t)

k∑
j=1

d∑
ν=1

1{µν(t)=µ(j)(t)}

Nj(µ(t))
dµν(t)

+ M2(t)µ̃i(t)

k∑
j,ν=1

d
[
µ(j), µ(ν)

]
(t)−M2(t)

k∑
j=1

d
[
µ(i), µ(j)

]
(t)

+
M(t)

Ni(µ(t))

d∑
j=i+1

dΛ(i,j)(t)− M(t)

Ni(µ(t))

i−1∑
j=1

dΛ(j,i)(t)

− µ̃i(t)
k∑
j=1

M(t)

Nj(µ(t))

d∑
ν=j+1

dΛ(j,ν)(t)− µ̃i(t)
k∑
j=1

M(t)

Nj(µ(t))

j−1∑
ν=1

dΛ(ν,j)(t),

for all i ∈ {1, · · · , k}, which, together with (4.2) and some computation, imply (4.5) and
(4.6). Moreover, since both Γ(·) and L(·) are of finite variation on [0, T ], for all T ≥ 0,
so is Γ̃(·).

Compared with (1.20), our computation of the finite-variation process Γ(·) is differ-
ent from that given by, e.g., Fernholz [29].

Remark 8. The process L(·) given by (4.6) consists of all local time components be-
tween stocks that may leak out of the constituent list and stocks that may be ranked
smaller than or equal to k after rebalancing. Note that, if G̃ is a generalised Lyapunov
function for Λ(·) and µ̃(·) by Definition 2.1.2 (e.g., when G̃ satisfies conditions (aii)
and (bii) in Theorem 2.1.1), L(·) is positive and increasing from 0. In this case, L(·)
measures the contribution to Γ(·) from renewing the portfolio timely by dropping off the
stocks at the same prices as those to be included in the constituent list of the top k

stocks after rebalancing. The stocks dropped become too small and no longer belong
to the top k stocks subsequently.
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However, as one is not able to predict the prices and hence the ranks of stocks, this
timely renewing of the portfolio constituent list is unrealistic. Therefore, L(·) should be
subtracted from Γ(·) and hence the portfolio wealth, as Γ(·) contributes to the portfolio
wealth through the master formulas (2.15) or (2.22). This observation also indicates a
method to estimate the leakage, which is closely linked to L(·), as we will see in the
following.

The financial meaning of L(·) suggested in Remark 8 becomes more clear under
some further assumptions on the regular function G̃ and the market M, as shown in
the following propositions.

Proposition 4.1.2. Give a generalised regular function G̃ for Λ(·) and µ̃(·). If the
corresponding measurable function G̃D is symmetric in the second argument, i.e., if

G̃D
i (λ, x) = G̃D

j (λ, x), λ ∈ Rm, x ∈ ∆k, (4.8)

for all i, j ∈ {1, · · · , k} with xi = xj , then the finite-variation process Γ̃(·) given by (4.5)
simplifies to

Γ̃(·) = G̃(Λ(0), µ̃(0)) +

∫ ·
0

k∑
i=1

d∑
j=1

ϑ̃i(t)M(t)

Ni(µ(t))
1{µj(t)=µ(i)(t)}dµj(t)

− G̃(Λ(·), µ̃(·))−
∫ ·

0

k∑
i,j=1

d∑
ν=1

ϑ̃i(t)µ̃i(t)M(t)
1{µν(t)=µ(j)(t)}

Nj(µ(t))
dµν(t)

+

∫ ·
0

k∑
i,j,ν=1

M2(t)ϑ̃i(t)µ̃i(t)d
[
µ(j), µ(ν)

]
(t)

−
∫ ·

0

k∑
i,j=1

M2(t)ϑ̃i(t)d
[
µ(i), µ(j)

]
(t).

Proof. Since the measurable function G̃D is symmetric in the second argument, by
(4.8) we have

ϑ̃i(t)

Ni(µ(t))
dΛ(i,j)(t) =

ϑ̃j(t)

Nj(µ(t))
dΛ(j,i)(t), i, j ∈ {1, · · · , k}, i 6= j,

which implies

∫ ·
0

k∑
i=1

k∑
j=i+1

ϑ̃i(t)M(t)

Ni(µ(t))
dΛ(i,j)(t) =

∫ ·
0

k∑
i=1

i−1∑
j=1

ϑ̃i(t)M(t)

Ni(µ(t))
dΛ(j,i)(t) (4.9)

and∫ ·
0

k∑
i,j=1

j−1∑
ν=1

ϑ̃i(t)µ̃i(t)M(t)

Nj(µ(t))
dΛ(ν,j)(t) =

∫ ·
0

k∑
i,j=1

k∑
ν=j+1

ϑ̃i(t)µ̃i(t)M(t)

Nj(µ(t))
dΛ(j,ν)(t). (4.10)

Then, combining (4.5), (4.9), and (4.10) yields the desired result.
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Recall the random permutation pt from (1.18).

Proposition 4.1.3. Let G̃ be a generalised regular function for Λ(·) and µ̃(·) with the
corresponding measurable function G̃D symmetric in the second argument as in (4.8).
Assume that the market weight processes µ1(·), · · · , µd(·) are pathwise mutually non-
degenerate as defined in Definition 1.5.2. Then the finite variation process Γ(·) given
by (4.2) now has the decomposition

Γ(·) = Γ̃(·) + L(·),

where

Γ̃(·) = G̃(Λ(0), µ̃(0))− G̃(Λ(·), µ̃(·)) +

∫ ·
0

k∑
i=1

d∑
j=1

ϑ̃i(t)M(t)1{j=pt(i)}dµj(t)

−
∫ ·

0

k∑
i,j=1

d∑
ν=1

ϑ̃i(t)µ̃i(t)M(t)1{ν=pt(j)}dµν(t)−
∫ ·

0

k∑
i,j=1

M2(t)ϑ̃i(t)d
[
µ(i), µ(j)

]
(t)

+

∫ ·
0

k∑
i,j,ν=1

M2(t)ϑ̃i(t)µ̃i(t)d
[
µ(j), µ(ν)

]
(t)

and

L(·) =
1

2

∫ ·
0

ϑ̃k(t)− k∑
j=1

ϑ̃j(t)µ̃j(t)

M(t)dΛ(k,k+1)(t)

are both of finite variation on [0, T ], for all T ≥ 0.

Proof. By Proposition 4.1.11 in Fernholz [26], when µ1(·), · · · , µd(·) are pathwise mu-
tually non-degenerate, (2.10) becomes

µ(i)(·) = µ(i)(0)+

∫ ·
0

d∑
j=1

1{j=pt(i)}dµj(t)+
1

2

∫ ·
0

dΛ(i,i+1)(t)− 1

2

∫ ·
0

dΛ(i−1,i)(t), (4.11)

for all i ∈ {1, · · · , d}. Then thanks to (4.11), a similar reasoning as in the proof of
Lemma 4.1.1 and Proposition 4.1.2 yields the desired result.

4.1.1 Leakage of multiplicatively generated trading strategies

For a given generalised regular function G̃ for Λ(·) and µ̃(·), let ψ(·) denote the trading
strategy generated multiplicatively by G̃. Then, the wealth process Ṽ ψ(·) can now be
expressed through the master formula introduced in the following theorem.

Theorem 4.1.4. Let ψ(·) be the trading strategy generated multiplicatively by a gen-
eralised regular function G̃ for Λ(·) and µ̃(·) in the same manner of (2.19) and (2.20).
Then the wealth process Ṽ ψ(·) of ψ(·) relative to the market Mk, with initial wealth
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Ṽ ψ(0) = 1, is given by the master formula

log Ṽ ψ(·) = log G̃(Λ(·), µ̃(·)) +

∫ ·
0

dΓ̃(t)

G̃(Λ(t), µ̃(t))
+

∫ ·
0

dL(t)

G̃(Λ(t), µ̃(t))
(4.12)

with Γ̃(·) and L(·) given by (4.5) and (4.6), respectively.

Proof. Since ψ(·) is generated multiplicatively by G̃, the master formula (2.22) implies

log Ṽ ψ(·) = log G̃(Λ(·), µ̃(·)) +

∫ ·
0

dΓ(t)

G̃(Λ(t), µ̃(t))
,

which, together with Lemma 4.1.1, yield the desired result.

The leakage Lψ(·) of the trading strategy ψ(·) is then defined as the negative of
the last term of (4.12), i.e.,

Lψ(·) = −
∫ ·

0

dL(t)

G̃(Λ(t), µ̃(t))
(4.13)

with L(·) given by (4.6). It measures the cumulative lost in the (logarithmic) relative
wealth Ṽ ψ(·) due to untimely renewing the portfolio constituent to stop investing in
the smallest stocks, which are delisted from (“leaks” out of) the portfolio subsequently.
This explanation indicates the method to estimate the leakage Lψ(·), as shown in the
next section.

Remark 9. Our computation for the leakage here is different from, for example, Ex-
ample 4.2 in Fernholz [29]. The method introduced in Example 4.2 in Fernholz [29]
may lead to trading strategies which have positive portfolio weights for stocks of ranks
larger than k for some ranked portfolio generating functions G of µ(·). To see this,
consider a ranked portfolio generating function

G(x) = 1− 1

2

k∑
j=1

x2
(j), x ∈Wd.

Let the trading strategy ψ(·) be generated multiplicatively in the same manner as in
Example 4.2 in Fernholz [29] by a portfolio generating function G of µ(·) with G(x) =

G(R(x)), for all x ∈ ∆d. Recall the random permutation pt from (1.18). Then, ψ(·) has
portfolio weights

πpt(i)(t) =
1 + 1

2

∑k
j=1 µ

2
(j)(t)

1− 1
2

∑k
j=1 µ

2
(j)(t)

µ(i)(t) ≥ 0, i ∈ {k + 1, · · · , d}, t ≥ 0,

where the equality holds if and only if µ(i)(t) = 0, which is in general not the case. To
avoid this problem, instead of using G of µ(·) as the portfolio generating function, we
use G̃ of µ̃(·) to generate the trading strategy.
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4.1.2 Leakage of additively generated trading strategies

As analysed in Subsection 2.2.1, the method of additive functional generation can be
used to generate trading strategies from proper portfolio generating functions. For a
given generalised regular function G̃ for Λ(·) and µ̃(·), let ϕ(·) denote the trading strat-
egy generated additively by G̃. Then, the wealth process Ṽ ϕ(·) can now be expressed
through the master formula introduced in the following theorem.

Theorem 4.1.5. Let ϕ(·) be the trading strategy generated additively by a generalised
regular function G̃ for Λ(·) and µ̃(·) in the same manner of (2.12) and (2.13). Then the
wealth process Ṽ ϕ(·) of ϕ(·) relative to the marketMk, with initial wealth Ṽ ϕ(0) = 1,
is given by the master formula

Ṽ ϕ(·) = G̃(Λ(·), µ̃(·)) + Γ̃(·) + L(·) (4.14)

with Γ̃(·) and L(·) given by (4.5) and (4.6), respectively.

Proof. As ϕ(·) is generated additively by G̃, the master formula (2.15) implies

Ṽ ϕ(·) = G̃(Λ(·), µ̃(·)) + Γ(·),

which, together with Lemma 4.1.1, yield the desired result.

Similar to (4.13), the negative of the last term of (4.14) is interpreted as the leakage
Lϕ(·) of the trading strategy ϕ(·), i.e.,

Lϕ(·) = −L(·). (4.15)

Once again, Lϕ(·) measures the cumulative lost in the relative wealth Ṽ ϕ(·) from keep-
ing investing in the smallest stocks in the portfolio, which should be delisted from the
portfolio already for not being in the top k stocks.

4.2 Estimation of the leakage

While the computation of leakage involves the dynamic of a local time in continuous
time, in practice, inspired by the financial meaning of leakage, we are able to estimate
it directly without calculating the local time.

To this end, we consider a short time period from time 0 to time 1. Assume no trade
is made between time 0 and time 1. In particular, let (p1, · · · , pd) be a permutation of
(1, · · · , d) such that

µpi(0) = µ(i)(0), i ∈ {1, · · · , d}. (4.16)
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Then, the market weight process µ̂(·) = (µ̂p1(·), · · · , µ̂pk(·))′ of the market that consists
of the top k stocks at time 0 has components

µ̂pi(·) =
µpi(·)∑k
j=1 µpj (·)

, i ∈ {1, · · · , k}. (4.17)

Note that
µ̂pi(0) = µ̃i(0) = M(0)µpi(0), i ∈ {1, · · · , k}, (4.18)

by (4.1), (4.16), and (4.17).

4.2.1 Estimating the leakage of multiplicatively generated trading strate-
gies

For a trading strategy ψ(·) generated multiplicatively by a generalised regular func-
tion G̃ for Λ(·) and µ̃(·), we estimate the leakage Lψ(·) at time 1 by considering the
following.

Let us first consider another trading strategy ψ̂(·) which is generated multiplicatively
by G̃ for Λ(·) and µ̂(·). Then, on the one hand, by Proposition 2.2.2, we have

log V̂ ψ̂(1) ≈ log V̂ ψ̂(0) + log G̃(Λ(1), µ̂(1))− log G̃(Λ(0), µ̂(0)) +
Γ̂(1)− Γ̂(0)

G̃(Λ(0), µ̂(0))
, (4.19)

where

V̂ ψ̂(·) =
k∑
j=1

ψ̂j(·)µ̂pj (·)

and

dΓ̂(0) = −dG̃(Λ(0), µ̂(0)) +
k∑
j=1

DiG̃(Λ(0), µ̂(0))dµ̂pj (0).

On the other hand, since ψ̂(0) = ψ(0) by (4.18), if we assume that µ̃(1) = µ̂(1),
Proposition 2.2.2 also implies

log Ṽ ψ(1) ≈ log V̂ ψ̂(0) + log G̃(Λ(1), µ̃(1))− log G̃(Λ(0), µ̂(0)) +
Γ̂(1)− Γ̂(0)

G̃(Λ(0), µ̂(0))
. (4.20)

Then, in the case µ̃(1) 6= µ̂(1), Theorem 4.1.4 suggests that the change in the leak-
age Lψ(·) defined by (4.13) from time 0 to time 1 should be estimated as a correction
term in the portfolio wealth due to untimely renewing the constituent list, such that

log Ṽ ψ(1) + Lψ(1)− Lψ(0) ≈ log V̂ ψ̂(1). (4.21)

Therefore, combining (4.19) to (4.21) yields

Lψ(1)− Lψ(0) ≈ log G̃(Λ(1), µ̂(1))− log G̃(Λ(1), µ̃(1)). (4.22)
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Over an investment horizon [0, T ] with T > 0, the leakage Lψ(T ) is estimated as
the sum of expressions of the form (4.22) for all trading days, on which the portfolio’s
constituent list changes, in [0, T ]. Accordingly, Lψ(·) measures the cumulative net
loss in the (logarithmic) portfolio wealth Ṽ ψ(·) from untimely renewing the portfolio
constituents.

4.2.2 Estimating the leakage of additively generated trading strategies

The same technique of estimating the leakage of a trading strategy generated multi-
plicatively can be applied to the estimation of the leakage of a trading strategy gen-
erated additively. For a trading strategy ϕ(·) generated additively by a generalised
regular function G̃ for Λ(·) and µ̃(·), we estimate the change in the leakage Lϕ(·) at
time 1 by

Lϕ(1)− Lϕ(0) ≈ G̃(Λ(1), µ̂(1))− G̃(Λ(1), µ̃(1)). (4.23)

Hence, the leakage Lϕ(T ) over an investment horizon [0, T ] with T > 0 is estimated
by summing expressions of the form (4.23) for all trading days, on which the portfo-
lio’s constituent list changes, in [0, T ]. Once again, the leakage Lϕ(·) measures the
cumulative net loss in the portfolio wealth Ṽ ϕ(·) from untimely renewing the portfolio
constituents.

4.3 Practical considerations of backtesting and estimating
the leakage

In this section, we introduce the method of backtesting the performance and estimat-
ing the leakage of a trading strategy from given market capitalisations S(·) and daily
returns r(·) of all stocks. The empirical analysis is followed in the next section.

We consider a frictionless market Mk, which consists of the largest k stocks in
terms of market capitalisation among all stocks traded. The portfolio is rebalanced and
the constituent list of stocks inMk is renewed simultaneously with a daily frequency.
Note that renewing the constituent list implies trading to replace the old top k stocks
with the new top k stocks.

Assume that there are in total N trading days (exclusive of the start day). For
l ∈ {1, · · · , N}, let tl denote the end of trading day l, at which the end of day market
capitalizations and daily returns for trading day l are available and the portfolio is re-
balanced. In the following, we fix l ∈ {1, · · · , N} and consider the wealth dynamic and
leakage of a trading strategy φ(·) generated either multiplicatively or additively by a
generalised regular function G̃ for Λ(·) and µ̃(·) at time tl. In particular, let {p1, · · · , pk}
and {1, · · · , k} be the indices of stocks in terms of names in the market Mk after
renewing at time tl−1 and time tl, respectively, such that

Spi(tl−1) ≥ Spj (tl−1) and Si(tl) ≥ Sj(tl), i, j ∈ {1, · · · , k}, i ≤ j.
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At time tl, the market capitalisations S(tl) and daily returns r(tl) of all stocks at the
end of the trading day l are known. The market weights µ̂(tl) = (µ̂p1(tl), · · · , µ̂pk(tl))

′

and µ̃(tl) = (µ̃1(tl), · · · , µ̃k(tl))′ are then computed by

µ̂pi(tl) =
Spi(tl−1) (1 + rpi(tl))∑k
j=1 Spj (tl−1)

(
1 + rpj (tl)

) and µ̃i(tl) =
Si(tl)∑k
j=1 Sj(tl)

, (4.24)

respectively, for all i ∈ {1, · · · , k}. Given φ(tl−1) = (φp1(tl−1), · · · , φpk(tl−1))′, the
wealth of φ(·) relative to the marketMk at time tl is computed by

Ṽ φ(tl) =
k∑
j=1

φpj (tl−1)µ̂pj (tl). (4.25)

Multiplicative generation

If φ(·) is generated multiplicatively, then by (4.22), we estimate the leakage Lφ(tl) by

Lφ(tl) = Lφ(tl−1) + log G̃(Λ(tl), µ̂(tl))− log G̃(Λ(tl), µ̃(tl))

with µ̂(tl) and µ̃(tl) given by (4.24).
According to Remark 5, we rebalance the portfolio at time tl to match the target

portfolio weights π(tl) = (π1(tl), · · · , πk(tl))′, which has components

πi(tl) =
µ̃i(tl)

G̃(Λ(tl), µ̃(tl))

ϑ̃i(tl) + G̃(Λ(tl), µ̃(tl))−
k∑
j=1

µ̃j(tl)ϑ̃j(tl)

 , (4.26)

for all i ∈ {1, · · · , k}. As a result, we compute φ(tl) = (φ1(tl), · · · , φk(tl))′ by

φi(tl) =
πi(tl)

∑k
j=1 φpj (tl−1)Spj (tl−1)

(
1 + rpj (tl)

)
Si(tl)

, i ∈ {1, · · · , k}. (4.27)

Additive generation

If φ(·) is generated additively, then the leakage Lφ(tl) is estimated according to (4.23)
by

Lφ(tl) = Lφ(tl−1) + G̃(Λ(tl), µ̂(tl))− G̃(Λ(tl), µ̃(tl))

with µ̂(tl) and µ̃(tl) given by (4.24).
Similarly, as suggested by Remark 4, the portfolio is rebalanced at time tl to match

the target portfolio weights π(tl) = (π1(tl), · · · , πk(tl))′ with components

πi(tl) =
µ̃i(tl)

Ṽ φ(tl)

ϑ̃i(tl) + Ṽ φ(tl)−
k∑
j=1

µ̃j(tl)ϑ̃j(tl)

 , i ∈ {1, · · · , k}, (4.28)



92 Chapter 4. Leakage of Generalised Rank-Dependent Trading Strategies

with Ṽ φ(tl) given by (4.25). Therefore, φ(tl) is computed by (4.27) with π(tl) given by
(4.28).

4.4 Examples and empirical results

In this section, we study two examples empirically and estimate the leakage of trading
strategies involved. We use the same data over the same period that starts January
2nd, 1962 and ends December 30th, 2016, as in Section 3.3. In particular, we consider
the configurations when k = 100, k = 300, and k = 500, respectively. Moreover, we
assume that µ̃k(t) > 0, for all t ≥ 0.

4.4.1 Equally-weighted portfolio

Let ψ(·) be the trading strategy generated multiplicatively by

G̃(λ, x) = λ

 k∏
j=1

xj

1/k

, λ ∈ R+, x ∈ ∆k
+.

Then, by (4.26), the portfolio weights π(·) of ψ(·) are given by πi(t) = 1/k, for all
i ∈ {1, · · · , d} and t ≥ 0. In this sense, ψ(·) is the equally-weighted trading strategy
on the market Mk. For simplicity, we choose the finite-variation process Λ(·) to be
constant 1.

The relative wealth processes Ṽ ψ(·) in logarithm under different constituent list
sizes k are shown in Figure 4.1. As is consistent with the results in Section 3.3,
the portfolio performs better when it invests in a larger set of stocks. The estimated
leakage Lψ(·) corresponding to each trading strategy plotted in Figure 4.1 is presented
in Figure 4.2.

4.4.2 Entropy-weighted portfolio

As studied in Example 2.4.1 as well as Subsection 3.3.3, the entropy-weighted portfo-
lio is generated by the portfolio generating function

G̃(λ, x) = −λ
k∑
j=1

xj log xj , λ ∈ R+, x ∈ ∆k
+. (4.29)

Here, we let the finite-variation process Λ(·) be constant 1 for simplicity.
Let ψ(·) be the trading strategy generated multiplicatively by (4.29). The relative

wealth processes Ṽ ψ(·) in logarithm and the corresponding estimated leakage Lψ(·)
are shown in Figures 4.3 and 4.4, respectively, under different constituent list sizes k.
Compared with the equally-weighted portfolio, although the entropy-weighted portfolio
performs worse under the same configurations, the leakage effect is also less due to
a smaller trading volume. Moreover, in contrast to the equally-weighted portfolio, the
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FIGURE 4.1: The wealth processes of the equally-weighted port-
folio (EW) in logarithm relative to the market Mk under different
constituent list sizes k.

FIGURE 4.2: The estimated leakage of Lψ(·) the equally-
weighted portfolio (EW) under different constituent list sizes k.

leakage Lψ(·) of the the entropy-weighted portfolio is smaller (in absolute value) when
ψ(·) is implemented within the marketMk that contains more stocks.

For the trading strategy ϕ(·) generated additively by (4.29), its relative wealth pro-
cesses Ṽ ϕ(·) and the corresponding estimated leakage Lϕ(·) under different con-
stituent list sizes k are shown in Figures 4.5 and 4.6, respectively.
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FIGURE 4.3: The wealth processes of the multiplicatively gener-
ated entropy-weighted portfolio (ET) in logarithm relative to the
marketMk under different constituent list sizes k.

FIGURE 4.4: The estimated leakage Lψ(·) of the multiplicatively
generated entropy-weighted portfolio (ET) under different con-
stituent list sizes k.
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FIGURE 4.5: The wealth processes of the additively generated
entropy-weighted portfolio (ET) relative to the market Mk under
different constituent list sizes k.

FIGURE 4.6: The estimated leakage Lϕ(·) of the additively gen-
erated entropy-weighted portfolio (ET) under different constituent
list sizes k.
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Chapter 5

Duality in Functional Generation

In this chapter, we explore the connection between the dual of a portfolio generating
function and the method of functional generation. In a discrete-time and model-free
setup, we measure the profitability of a trading strategy in the long run by its intrinsic
value. This value consists of the wealth of the trading strategy on the next trading day
and the potential gain or loss of the wealth afterwards due to the change of degree
of the market diversification. Then we show that implementing a trading strategy gen-
erated additively by a Lyapunov function in the manner of (2.12) is an optimal way to
invest, in that it has nonnegative intrinsic value even in the worst scenario. Therefore,
such a trading strategy is expected to generate profits in the long run. Next, we review
the application of duality in analysing the relation between the method of functional
generation and optimal transport. In addition, we propose an alternative approach
from the one of Vervuurt [88] in solving a specific optimal transport problem equivalent
to additive functional generation.

To be more specific, Section 5.1 recalls the definition of the conjugate function of a
concave function and illustrates the process of computing the conjugate with two ex-
amples. Section 5.2 introduces a measure of the degree of market diversification and
defines the intrinsic value of a trading strategy associated with this measure. The in-
trinsic value of an additively generated trading strategy is also analysed in Section 5.2.
Section 5.3 first reviews the link between the method of functional generation and the
optimal transport problem. Then it studies the role played by the conjugate of a port-
folio generating function in the optimal transport problem corresponding to additive
functional generation.

5.1 Conjugate of a concave function

Recall the definition of ∆d and ∆d
+ from (1.3). Consider a concave function G : U → R

with U an open subset of Rd such that ∆d ⊂ U . Then the concave conjugate function
G∗ : Rd → R of G on ∆d is defined as

G∗(λ) = inf
x∈∆d


d∑
j=1

λjxj −G(x)

 , λ ∈ Rd. (5.1)
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For given λ ∈ Rd, G∗(λ) can be computed by solving the minimisation problem

min
x∈Rd


d∑
j=1

λjxj −G(x)

 , (5.2)

subject to
d∑
j=1

xj = 1 and xi ≥ 0, i ∈ {1, · · · , d}. (5.3)

Assume that G is strictly concave and differentiable on ∆d
+. To solve (5.2) subject

to (5.3), we consider the Lagrange function

L(x, γ, ρ) =

d∑
j=1

(λj − ρj)xj −G(x) + γ

1−
d∑
j=1

xj


with Kuhn-Tucker conditions

Lxi = λi − ρi −
∂G

∂xi
(x)− γ = 0, i ∈ {1, · · · , d}, (5.4)

Lγ = 1−
d∑
j=1

xj = 0, (5.5)

and
Lρi = −xi ≤ 0, ρi ≥ 0, ρixi = 0, i ∈ {1, · · · , d}. (5.6)

Let x∗ = (x∗1, · · · , x∗d)
′ be the solution of (5.4)-(5.6). The objective function

x 7→
d∑
j=1

λjxj −G(x)

is convex on Rd. The inequality constraints x 7→ xi are continuously differentiable
convex functions, for all i ∈ {1, · · · , d}. The equality constraint

x 7→ 1−
d∑
j=1

xj

is an affine function. Therefore, x∗ is indeed an optimal solution to the minimisation
problem (5.2) (see Martin [62]). For given λ ∈ Rd, we have

G∗(λ) =

d∑
j=1

λjx
∗
j −G (x∗) . (5.7)

In the following, we provide two examples to illustrate the method of computing the
conjugate function G∗ corresponding to G.
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Example 5.1.1. Consider the concave quadratic function

G(x) = 1− 1

2

d∑
j=1

x2
j , x ∈ ∆d. (5.8)

Lemma 5.1.1. For given λ ∈ Rd, denote

λ = max
i∈{1,··· ,d}

λi;
d∑
j=1

(λi − λj) 1λj≤λi ≤ 1

 and λ̂ =

∑d
j=1 λj1λj≤λ + 1∑d

j=1 1λj≤λ
.

Then for given λ ∈ Rd, the concave conjugate function G∗ of G given by (5.8) is
computed by

G∗(λ) =
1

2
λ̂2

d∑
j=1

1λj≤λ −
1

2

d∑
j=1

λ2
j1λj≤λ − 1. (5.9)

Proof. Fix λ ∈ Rd. We claim that (5.4)-(5.6) are solved with

γ = λ̂, (5.10)

xi =
(
λ̂− λi

)
1λi≤λ, i ∈ {1, · · · , d}, (5.11)

and
ρi =

(
λi − λ̂

)
1λi>λ, i ∈ {1, · · · , d}. (5.12)

Now we show that the claim actually holds. By (5.10)-(5.12) and some basic com-
putations, one can check that (5.4) and (5.5) are indeed satisfied.

The definition of λ implies

d∑
j=1

(
λj − λ

)
1λj≤λ ≥ −1.

Then for all i ∈ {1, · · · , d},

(
λ̂− λi

)
1λi≤λ ≥

∑d
j=1

(
λj − λ

)
1λj≤λ + 1∑d

j=1 1λj≤λ
1λi≤λ ≥ 0,

i.e., xi given by (5.11) are indeed nonnegative.
In the case λ = maxi∈{1,··· ,d} λi, we have ρi = 0, for all i ∈ {1, · · · , d}. Hence, (5.6)

holds immediately. In the case λ < maxi∈{1,··· ,d} λi, denote

λ = min
i∈{1,··· ,d}

{
λi;λi > λ

}
.

The definition of λ implies

d∑
j=1

(λ− λj) 1λj≤λ =

d∑
j=1

(λ− λj) 1λj≤λ > 1.
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Then, for all i ∈ {1, · · · , d},

(
λi − λ̂

)
1λi>λ ≥

∑d
j=1 (λ− λj) 1λj≤λ − 1∑d

j=1 1λj≤λ
1λi>λ > 0,

i.e., ρi given by (5.12) are indeed nonnegative. Therefore, (5.6) is satisfied.
According to (5.7), (5.8) and (5.11) yield

G∗(λ) =

d∑
j=1

λj

(
λ̂− λj

)
1λj≤λ − 1 +

1

2

d∑
j=1

(
λ̂− λj

)2
1λj≤λ

=
1

2

d∑
j=1

(
λ̂− λj

)(
λ̂+ λj

)
1λj≤λ − 1,

which yields the desired result.

Example 5.1.2. Consider the “measure of diversity” for some fixed p ∈ (0, 1), defined
as

G(x) =

 d∑
j=1

xpj

1/p

, x ∈ ∆d. (5.13)

Note that G is concave on ∆d.

Lemma 5.1.2. For given λ ∈ Rd, the concave conjugate function G∗ of G defined by
(5.13) on ∆d is computed by

G∗(λ) =

∑d
j=1 λj (λj − γ)1/(p−1) − 1∑d

j=1 (λj − γ)1/(p−1)
,

where γ = γ(λ) < mini∈{1,··· ,d} λi is a root of the function

y 7→
d∑
j=1

(λj − y)p/(p−1) − 1. (5.14)

Proof. Fix λ ∈ Rd. We claim that

xi =
(λi − γ)1/(p−1)∑d
j=1 (λj − γ)1/(p−1)

> 0 and ρi = 0, i ∈ {1, · · · , d}, (5.15)

with γ = γ(λ) < mini∈{1,··· ,d} λi a root of function (5.14) solve (5.4)-(5.6).
To prove the claim, first note that, as y increases from −∞ to mini∈{1,··· ,d} λi, the

LHS of
d∑
j=1

(λj − y)p/(p−1) = 1

is a continuous function of y and strictly increasing from 0 to ∞. Therefore, function
(5.14) indeed has a root γ with γ < mini∈{1,··· ,d} λi.
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By (5.15), we have x ∈ ∆d
+, hence (5.5) and (5.6) hold. For z ∈ ∆d

+, we have

∂G

∂zi
(z) = (G(z))1−p zp−1

i , i ∈ {1, · · · , d},

which implies

∂G

∂xi
(x) =

(∑d
j=1 (λj − γ)p/(p−1)

)(1−p)/p

(∑d
j=1 (λj − γ)1/(p−1)

)1−p
λi − γ(∑d

j=1 (λj − γ)1/(p−1)
)p−1 = λi − γ.

Therefore, (5.4) is also satisfied.
By (5.15) and (5.7), we have

G∗(λ) =

∑d
j=1 λj (λj − γ)1/(p−1)∑d
j=1 (λj − γ)1/(p−1)

−

(∑d
j=1 (λj − γ)p/(p−1)

)1/p

∑d
j=1 (λj − γ)1/(p−1)

,

which yields the desired result.

5.2 Conjugate of a diversification measure

Now consider a frictionless market with d stocks. Recall Section 1.2 for definitions
relating to the market. In the remaining of this chapter, let the trade be made only at
time 0 and time 1. In particular, we assume µ(0) ∈ ∆d

+.
Let U be an open subset of Rd such that ∆d ⊂ U . For a convex function H :

U → R, assume that H is symmetric for all x ∈ ∆d, i.e., H(x) = H(p(x)), where
(p(x)) = (p(x1), · · · , p(xd)) is any permutation of (x1 · · · , xd). Then, such a function
H can be used as a measure of the market diversification at time 1. This is the case
since H(µ(1)) is minimised if µi(1) = 1/d, for all i ∈ {1, · · · , d}, i.e., when the total
capitalisation of the market is equally spread among all stocks. Meanwhile, H(µ(1))

is maximised if, for some i ∈ {1, · · · , d}, µj(1) = 1j=i, for all j ∈ {1, · · · , d}, i.e., the
total capitalisation of the market is concentrated on a single stock. Hence, the smaller
H(µ(1)) is, the more diverse the market is.

As is well known since Markowitz [60], a portfolio benefits from a diversified market,
in that it helps to minimise the risk of capital loss in the portfolio. The profitability of
a trading strategy is enhanced (weakened) when the market becomes more (less)
diversified. Hence, when examining the profitability of a trading strategy, we should
take the effect of potential change in market diversification into consideration. To this
end, given µ(0) and the initial wealth V , we define the function

Υϕ(x) =

d∑
j=1

ϕjxj +H(x), x ∈ ∆d (5.16)
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as the intrinsic-value function of a trading strategy ϕ ∈ V at time 1. Here, V is the
collection of all trading strategies with initial wealth V , defined as

V =

η ∈ Rd;
d∑
j=1

ηjµj(0) = V

 .

To interpret (5.16), when µ(1) is known at time 1, we have

Υϕ(µ(1)) =
d∑
j=1

ϕjµj(1) +H(µ(1)).

Here, Υϕ(µ(1)) consists of two parts: the portfolio wealth and the measure of market
diversification at time 1. A larger H(µ(1)) yields a larger Υϕ(µ(1)), as it implies that
the market is less diverse at time 1, and is expected to be more diverse and benefits
the portfolio in the future. Therefore, Υϕ(µ(1)) is interpreted as the intrinsic value of ϕ
at time 1.

To proceed, define G = −H, then G is concave on ∆d. Specifying a trading strat-
egy ϕ ∈ V, we can compute the value of the intrinsic-value function Υϕ corresponding
to ϕ in the worst scenario by

inf
x∈∆d

Υϕ(x) = inf
x∈∆d


d∑
j=1

ϕjxj +H(x)


= inf

x∈∆d


d∑
j=1

ϕjxj −G(x)

 = G∗(ϕ),

(5.17)

where G∗ : V → R is the concave conjugate of G on ∆d, as defined by (5.1). In this
sense, we interpret the concave conjugate G∗ as the worst intrinsic value of a given
trading strategy with initial wealth V .

We want to implement a trading strategy such that it is profitable in the long run.
To this end, with given initial wealth V , we choose a trading strategy ϕ ∈ V such that
the worst intrinsic value G∗(ϕ) is maximised, i.e., we solve the problem

sup
ϕ∈Rd

G∗(ϕ) subject to
d∑
j=1

ϕjµj(0) = V. (5.18)

For the sake of simplicity, we assume G is strictly concave and differentiable on ∆d
+.

The following proposition gives the trading strategy which has maximised worst
intrinsic value. This strategy is exactly the one generated additively from the function
G, as we shall discuss after the proof of this proposition.
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Proposition 5.2.1. The trading strategy ϕ∗ = (ϕ∗1, · · · , ϕ∗d)′ with

ϕ∗i =
∂G

∂xi
(µ(0)) + V −

d∑
j=1

∂G

∂xj
(µ(0))µj(0), i ∈ {1, · · · , d}, (5.19)

solves the maximisation problem (5.18). Moreover, we have

G∗(ϕ∗) = V −G(µ(0)).

Proof. First of all, note that the function F : Rd → V with

F (λ) =

λ1 + V −
d∑
j=1

λjµj(0), · · · , λd + V −
d∑
j=1

λjµj(0)

′ , λ ∈ Rd, (5.20)

is a surjection. Then, with the definition of G∗ given by (5.17), we claim that

sup
ϕ∈V
G∗(ϕ) = sup

ϕ∈V
inf
x∈∆d


d∑
j=1

ϕjxj −G(x)


= sup

λ∈Rd
inf
x∈∆d


d∑
j=1

Fj(λ)xj −G(x)

 = sup
λ∈Rd

G∗(F (λ)).

(5.21)

Hence, solving the maximisation problem (5.18) is equivalent to finding λ∗ ∈ Rd such
that

G∗(F (λ∗)) = sup
λ∈Rd

G∗(F (λ)) = sup
ϕ∈V
G∗(ϕ).

In this case, we have
ϕ∗ = F (λ∗). (5.22)

We proof (5.21) by contradiction. Let

ϕ∗ = arg sup
ϕ∈V

G∗(ϕ) and λ∗ = arg sup
λ∈Rd

G∗(F (λ)).

Assume that
G∗(ϕ∗) > G∗(F (λ∗)). (5.23)

Since F is surjective, there exists λ′ ∈ Rd such that F (λ′) = ϕ∗. Then, (5.23) yields
G∗(F (λ′)) > G∗(F (λ∗)), which contradicts λ∗ = arg supλ∈Rd G∗(F (λ)). Similarly, if
we have G∗(ϕ∗) < G∗(F (λ∗)), then there exists ϕ′ ∈ V with ϕ′ = F (λ∗) such that
G∗(ϕ′) > G∗(ϕ∗), which contradicts ϕ∗ = arg supϕ∈V G∗(ϕ).

To proceed, consider the primal and the dual problems given in the following. In
the primal problem, given η ∈ Rd, we want to find µ∗ ∈ ∆d such that

µ∗ = arg inf
x∈∆d


d∑
j=1

ηjxj −G(x)

 , i.e., G∗(η) =
d∑
j=1

ηjµ
∗
j −G(µ∗),



104 Chapter 5. Duality in Functional Generation

where G∗ is given by (5.1). In the dual problem, given x∗ ∈ ∆d, we want to find η∗ ∈ Rd

such that

η∗ = arg inf
η∈Rd


d∑
j=1

ηjx
∗
j −G∗(η)

 , i.e., G∗∗(x∗) =

d∑
j=1

η∗jx
∗
j −G∗(η∗),

where

G∗∗(x) = inf
λ∈Rd


d∑
j=1

λjxj −G∗(λ)

 , x ∈ ∆d, (5.24)

is the concave conjugate of G∗.
Since G is strictly concave and differentiable on ∆d

+, given µ(0) ∈ ∆d
+ for the dual

problem, by Conditions (a) and (b∗) of Theorem 23.5 in Rockafellar [76], we have

G∗∗(µ(0)) =
d∑
j=1

∂G

∂xj
(µ(0))µj(0)−G∗(∂G(µ(0))) (5.25)

and
η∗ = ∂G(µ(0)), (5.26)

where ∂G denotes the gradient of G on ∆d
+. Then, by Condition (b) of Theorem 23.5

in Rockafellar [76], (5.25) yields

G∗∗(µ(0)) =
d∑
j=1

∂G

∂xj
(µ(0))µj(0)−

 d∑
j=1

∂G

∂xj
(µ(0))µj(0)−G(µ(0))


= G(µ(0)).

(5.27)

Now, by (5.17) and (5.20), for given λ ∈ Rd, we have

G∗(F (λ)) = inf
x∈∆d


d∑
j=1

Fj(λ)xj −G(µ)


= inf

x∈∆d


d∑
j=1

λjxj −G(x)

+ V −
d∑
j=1

λjµj(0)

= G∗(λ) + V −
d∑
j=1

λjµj(0),

which, together with (5.24) and (5.27), imply

G∗(F (λ∗)) = sup
λ∈Rd

G∗(F (λ)) = − inf
λ∈Rd


d∑
j=1

λjµj(0)−G∗(λ)− V


= V −G∗∗(µ(0)) = V −G(µ(0))
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with λ∗ given by (5.26). Moreover, by (5.22), we have

ϕ∗i = λ∗i + V −
d∑
j=1

λ∗jµj(0) =
∂G

∂xi
(µ(0)) + V −

d∑
j=1

∂G

∂xj
(µ(0))µj(0), i ∈ {1, · · · , d},

as desired.

Worst intrinsic value of additively generated trading strategy

In Subsection 2.2.1, we discuss the method of additive functional generation. Here,
let ϕ ∈ V be the trading strategy generated additively by a strictly concave function
G : U → (0,∞) in the manner of (2.14) (Λ(·) is chosen to be a vector of appropriate
constants in this case). We assume that G is differentiable on ∆d

+ and symmetric on
∆d. Note that such a trading strategy ϕ has components given by (5.19).

Similar to the master formula (2.15) for additive functional generation in continuous
time, in discrete time, we have

V ϕ(0) = G(µ(0)) = V and V ϕ(1) = G(µ(1)) + ΓG, (5.28)

where

ΓG = G(µ(0))−G(µ(1)) +
d∑
j=1

∂G

∂xj
(µ(0))µj(1)−

d∑
j=1

∂G

∂xj
(µ(0))µj(0)

= Υϕ(µ(1)),

(5.29)

i.e., ΓG is the intrinsic value of ϕ at time 1, by (5.16) and (5.28).
Then, by (5.17), (5.28), and Proposition 5.2.1, we have

inf
x∈∆d

Υϕ(x) = 0,

which implies Γ ≥ 0, for all possible values of µ(1) at time 1. Therefore, addition func-
tional generation may lead to trading strategies that are profitable in the long run, in
that they can have non-negative intrinsic values. To guarantee a non-negative intrinsic
value, ϕ needs to be generated by a function G that is Lyapunov for µ(·), as what we
have in this section thanks to our assumptions. The non-negativity of Υϕ is consistent
with the process ΓG(·) of a Lyapunov function G being non-decreasing, as suggested
by Definition 2.1.2. An alternative argument is that Υϕ given by (5.29) is the Bregman
divergence of the convex function −G, which is non-negative.

The following example extends Example 5.1.1.

Example 5.2.1. Let ϕ ∈ V be the trading strategy generated additively by the concave
quadratic function G given by (5.8). By (2.14), we have

ϕi = −µi(0) + V +

d∑
j=1

µ2
j (0), i ∈ {1, · · · , d}. (5.30)
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Then by Proposition 5.2.1, the worst intrinsic value G∗(ϕ) of ϕ at time 1 is 0.
Alternatively, G∗(ϕ) can be computed by (5.9). To this end, first observe that (5.30)

implies

d∑
j=1

(ϕi − ϕj) =
d∑
j=1

(µj(0)− µi(0)) = 1− dµi(0) ≤ 1, i ∈ {1, · · · , d}.

Hence, we have

ϕ = max
i∈{1,··· ,d}

ϕi;
d∑
j=1

(ϕi − ϕj) 1ϕj≤ϕi ≤ 1

 = max
i∈{1,··· ,d}

ϕi

and

ϕ̂ =

∑d
j=1 ϕj1ϕj≤ϕ + 1∑d

j=1 1ϕj≤ϕ
= V +

d∑
j=1

µ2
j (0).

Then, (5.9) and (5.30) yield

G∗(ϕ) =
d

2
ϕ̂2 − 1

2

d∑
j=1

ϕ2
j − 1 =

d

2
ϕ̂2 − 1

2

d∑
j=1

(ϕ̂− µj(0))2 − 1

= −1

2

d∑
j=1

µ2
j (0)− 1 + ϕ̂ = V − 1 +

1

2

d∑
j=1

µ2
j (0)

= G(µ(0))−G(µ(0)) = 0,

which is consistent with Proposition 5.2.1.

5.3 Functional generation and optimal transport

5.3.1 Literature review

Remaining an active area of research, the Monge-Kantorovich optimal transportation
problem (optimal transport problem) is formalised by Gaspard Monge in the 18th cen-
tury and developed greatly by Kantorovitch [48]. The problem aims to find an optimal
probability measure to minimise the expected cost incurred from transporting between
two positions in two separable metric spaces, respectively. We refer to Villani [90] for
detailed formulation and a literature review of the optimal transport problem.

Pal and Wong [72] treat the basic results of SPT in discrete time and analyse the
relative arbitrage via a pathwise approach. Based on this work, Pal and Wong [74]
were the first to connect the method of functional generation in SPT with the solution
of the optimal transport problem. They introduce an alternative definition of multi-
plicative functional generation and extend the concept of relative arbitrage to the so-
called “pseudo-arbitrage” in discrete time. Consequently, they manage to link pseudo-
arbitrages with solutions of a particular optimal transport problem with specified cost
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function. To be more specific, these solutions are given by gradient maps of expo-
nentially concave functions, which are used as portfolio generating functions. In this
sense, a portfolio generated multiplicatively can be viewed as a map that minimises
the total cost of transporting from the market weights to the portfolio weights.

Vervuurt [88] strengthens the connection between functional generation and opti-
mal transport developed by Pal and Wong [74]. He verifies the correspondence be-
tween optimal transport and the method of additive functional generation formalised by
Karatzas and Ruf [51]. In particular, he shows that each pair of initial and terminal dis-
tributions of the optimal transport problem implies a unique and deterministic optimal
transport map, which defines a portfolio generated either additively or multiplicatively.
This relation, together with the result of Pal and Wong [74], establishes an equivalence
between the method of functional generation and optimal transport problem.

Based on their construction of the specific optimal transport problem in Pal and
Wong [74], Pal and Wong [73] continue to study the so-called L-divergence of expo-
nentially concave, smooth portfolio generating functions. They induce a new geometric
structure on ∆d that has duality closely related to the duality of the corresponding op-
timal transport problem. L-divergence plays a crucial role in quantifying gains and
losses of a portfolio generated multiplicatively via a pathwise decomposition of the
portfolio wealth. A generalised Pythagorean theorem for L-divergence is then shown
by them to argue that, even without transaction costs, rebalancing a portfolio gener-
ated multiplicatively as frequently as possible in discrete time is not always the best.

The results of Pal and Wong [73] are complemented by Wong [93]. He shows that,
analogous to the connection between L-divergence and a multiplicatively generated
portfolio, Bregman divergence plays a similar role in a pathwise decomposition of the
wealth of a portfolio generated additively. In this case, an analogical conclusion on
the optimal rebalancing frequency of a portfolio generated additively is valid due to
another generalised Pythagorean theorem for Bregman divergence (see, for example,
Theorem 1.2 in Amari [2]). Moreover, the connection between the methods of additive
functional generation and multiplicative functional generation is also explored by him
through analysing a general framework of functional portfolio construction. We refer to
Wong [92] for a summary of results achieved so far in this topic.

5.3.2 Conjugate of a portfolio generating function and optimal transport

The optimal transport problem considered in our content is introduced in Chapter 3 in
Vervuurt [88]. The problem is as follows. Let (X ,P) and (Y,Q) be two given Polish
probability spaces and c : X ×Y → R ∪ {∞} be a measurable function that measures
the cost of transporting between X and Y. Moreover, let Π(P,Q) be the collection of
all probability measures on X ×Y with marginals P and Q. Then the optimal transport
problem is to find H∗ ∈ Π(P,Q) such that∫

X×Y
c(x, y)dH∗(x, y) = min

H∈Π(P,Q)

∫
X×Y

c(x, y)dH(x, y). (5.31)
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It has been shown in Vervuurt [88] and summarised by Wong [93] that the method
of additive functional generation is equivalent to an optimal transport problem with
certain choices of (X ,P), (Y,Q), and c. To be more specific, consider

X = ∆d
+, Y = Rd, (5.32)

and

c(x, y) =
d∑
j=1

xjyj , (x, y) ∈ X × Y. (5.33)

Let G be a portfolio generating function for µ(·), which is strictly concave and differ-
entiable on ∆d

+, and let ∇G : ∆d
+ → Rd denote the map of partial derivatives of G,

i.e.,

∇G(x) =

(
∂G

∂x1
(x), · · · , ∂G

∂xd
(x)

)′
, x ∈ ∆d

+.

Moreover, fix t ≥ 0 and assume µ(t) ∈ ∆d
+ in the following. Let

µ(t) ∼ P and ∇G(µ(t)) ∼ Q. (5.34)

Then, with (X ,P), (Y,Q), and c given by (5.32) to (5.34), (5.31) now can be computed
by ∫

X×Y
c(x, y)dH∗(x, y) =

∫
X
c(x,∇G(x))dP(x). (5.35)

The above result can be shown by using the cyclical monotonicity of the cost func-
tion c as defined by Definition 5.1 and Theorem 5.10 in Villani [90]; see Vervuurt [88]
for details. Alternatively, a similar argument on the conjugate of G leads to another
approach on computing (5.31), as shown in the following.

An alternative approach by using the conjugate of G

Still choosing (X ,P) and (Y,Q) given by (5.32) and (5.34), we define the space

R =
{
y; y = ∇G(x), x ∈ ∆d

+

}
. (5.36)

Since G is strictly concave and differentiable on ∆d
+, its conjugate G∗ given by (5.1) is

strictly concave and differentiable on R. Accordingly, the map of partial derivatives of
G∗, ∇G∗ : R → ∆d

+, is a bijection. Moreover, we denote the graph of ∇G∗ on R by

R∗ = {(∇G∗(y), y)| y ∈ R} . (5.37)

Then (5.34), (5.36), and (5.37) imply H(R∗) = 1, for all H ∈ Π(P,Q).
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Let (θn)n∈N be any sequence in R with θm+1 = θ1, for some m ∈ N. Since G∗ is
concave and differentiable on R, we have

G∗(θn+1) ≤ G∗(θn) +
d∑
j=1

∂G∗

∂yj
(θn)

(
θn+1
j − θnj

)
, n ∈ N. (5.38)

Since θm+1 = θ1, summing both sides of (5.38) with respect to n from 1 to m yields

m∑
n=1

G∗(θn+1) =
m∑
n=1

G∗(θn) ≤
m∑
n=1

G∗(θn) +
m∑
n=1

d∑
j=1

∂G∗

∂yj
(θn)

(
θn+1
j − θnj

)
,

which implies
m∑
n=1

d∑
j=1

∂G∗

∂yj
(θn)θnj ≤

m∑
n=1

d∑
j=1

∂G∗

∂yj
(θn)θn+1

j . (5.39)

Then, with the cost function c given by (5.33), (5.39) yields

m∑
n=1

c(∇G∗(θn), θn) ≤
m∑
n=1

c(∇G∗(θn), θn+1). (5.40)

By Definition 5.1 in Villani [90], (5.37) and (5.40) suggest that R∗ is c-cyclically mono-
tone. As a result, compared with (5.35), a similar argument of Lemma 3.3.2 in Vervuurt
[88] implies ∫

X×Y
c(x, y)dH∗(x, y) =

∫
R
c(∇G∗(y), y)dQ(y). (5.41)

To conclude, the duality in the portfolio generating function G and its conjugate G∗

leads to the two different approaches given by (5.35) and (5.41) in solving (5.31).
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