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Abstract
Zero-sum games such as chess and poker are, ab-
stractly, functions that evaluate pairs of agents,
for example labeling them ‘winner’ and ‘loser’.
If the game is approximately transitive, then self-
play generates sequences of agents of increas-
ing strength. However, nontransitive games, such
as rock-paper-scissors, can exhibit strategic cy-
cles, and there is no longer a clear objective – we
want agents to increase in strength, but against
whom is unclear. In this paper, we introduce a
geometric framework for formulating agent ob-
jectives in zero-sum games, in order to construct
adaptive sequences of objectives that yield open-
ended learning. The framework allows us to rea-
son about population performance in nontransi-
tive games, and enables the development of a
new algorithm (rectified Nash response, PSROrN)
that uses game-theoretic niching to construct di-
verse populations of effective agents, producing
a stronger set of agents than existing algorithms.
We apply PSROrN to two highly nontransitive re-
source allocation games and find that PSROrN

consistently outperforms the existing alternatives.

1. Introduction
A story goes that a Cambridge tutor in the mid-19th century
once proclaimed: “I’m teaching the smartest boy in Britain.”
His colleague retorted: “I’m teaching the best test-taker.”
Depending on the version of the story, the first boy was
either Lord Kelvin or James Clerk Maxwell. The second boy,
who indeed scored highest on the Tripos, is long forgotten.

Modern learning algorithms are outstanding test-takers:
once a problem is packaged into a suitable objective, deep
(reinforcement) learning algorithms often find a good solu-
tion. However, in many multi-agent domains, the question
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of what test to take, or what objective to optimize, is not
clear. This paper proposes algorithms that adaptively and
continually pose new, useful objectives which result in open-
ended learning in two-player zero-sum games. This setting
has a large scope of applications and is general enough to
include function optimization as a special case.

Learning in games is often conservatively formulated as
training agents that tie or beat, on average, a fixed set of
opponents. However, the dual task, that of generating useful
opponents to train and evaluate against, is under-studied. It
is not enough to beat the agents you know; it is also impor-
tant to generate better opponents, which exhibit behaviours
that you don’t know.

There are very successful examples of algorithms that pose
and solve a series of increasingly difficult problems for
themselves through forms of self-play (Silver et al., 2018;
Jaderberg et al., 2018; Bansal et al., 2018; Tesauro, 1995).
Unfortunately, it is easy to encounter nontransitive games
where self-play cycles through agents without improving
overall agent strength – simultaneously improving against
one opponent and worsening against another. In this paper,
we develop a mathematical framework for analyzing non-
transitive games, and present algorithms that systematically
uncover and solve the latent problems embedded in a game.

Overview. The paper starts in Section 2 by introducing
functional-form games (FFGs) as a new mathematical model
of zero-sum games played by parametrized agents such as
neural networks. Theorem 1 decomposes any FFG into a
sum of transitive and cyclic components. Transitive games,
and closely related monotonic games, are the natural set-
ting for self-play, but the cyclic components, present in
non-transitive games, require more sophisticated algorithms
which motivates the remainder of the paper.

The main problem in tackling nontransitive games, where
there is not necessarily a best agent, is understanding what
the objective should be. In Section 3, we formulate the
global objective in terms of gamescapes – convex poly-
topes that encode the interactions between agents in a game.
If the game is transitive or monotonic, then the gamescape
degenerates to a one-dimensional landscape. In nontransi-
tive games, the gamescape can be high-dimensional because
training against one agent can be fundamentally different
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from training against another.

Measuring the performance of individual agents is vexed
in nontransitive games. Therefore, in Section 3, we de-
velop tools to analyze populations of agents, including a
population-level measure of performance, definition 3. An
important property of population-level performance is that
it increases transitively as the gamescape polytope expands
in a nontransitive game. Thus, we reformulate the problem
of learning in games from finding the best agent to growing
the gamescape. We consider two approaches to do so, one
directly performance related, and the other focusing on a
measure of diversity, definition 4. Crucially, the measure
quantifies diverse effective behaviors – we are not interested
in differences in policies that do not lead to differences in
outcomes, nor in agents that lose in new and surprising
ways.

Section 4 presents two algorithms, one old and one new, for
growing the gamescape. The algorithms can be seen as spe-
cializations of the policy space response oracle (PSRO) in-
troduced in Lanctot et al. (2017). The first algorithm is Nash
response (PSRON), which is an extension to functional-
form games of the double oracle algorithm from McMahan
et al. (2003). Given a population, Nash response creates an
objective to train against by averaging over the Nash equi-
librium. The Nash serves as a proxy for the notion of ‘best
agent’, which is not guaranteed to exist in general zero-sum
games. A second, complementary algorithm is the rectified
Nash response (PSROrN). The algorithm amplifies strategic
diversity in populations of agents by adaptively constructing
game-theoretic niches that encourage agents to ‘play to their
strengths and ignore their weaknesses’.

Finally, in Section 5, we investigate the performance of
these algorithms in Colonel Blotto (Borel, 1921; Tukey,
1949; Roberson, 2006) and a differentiable analog we refer
to as differentiable Lotto. Blotto-style games involve allocat-
ing limited resources, and are highly nontransitive. We find
that PSROrN outperforms PSRON, both of which greatly
outperform self-play in these domains. We also compare
against an algorithm that responds to the uniform distribu-
tion PSROU, which performs comparably to PSRON.

Related work. There is a large literature on novelty search,
open-ended evolution, and curiosity, which aim to continu-
ally expand the frontiers of game knowledge within an agent
(Lehman & Stanley, 2008; Taylor et al., 2016; Banzhaf et al.,
2016; Brant & Stanley, 2017; Pathak et al., 2017; Wang
et al., 2019). A common thread is that of adaptive objec-
tives which force agents to keep improving. For example, in
novelty search, the target objective constantly changes – and
so cannot be reduced to a fixed objective to be optimized
once-and-for-all.

We draw heavily on prior work on learning in games, es-

pecially Heinrich et al. (2015); Lanctot et al. (2017) which
are discussed below. Our setting resembles multiobjective
optimization (Fonseca & Fleming, 1993; Miettinen, 1998).
However, unlike multiobjective optimization, we are con-
cerned with both generating and optimizing objectives. Gen-
erative adversarial networks (Goodfellow et al., 2014) are
zero-sum games that do not fall under the scope of this paper
due to lack of symmetry, see appendix ??.

Notation. Vectors are columns. The constant vectors of
zeros and ones are 0 and 1. We sometimes use p[i] to
denote the ith entry of vector p. Proofs are in the appendix.

2. Functional-form games (FFGs)
Suppose that, given any pair of agents, we can compute the
probability of one beating the other in a game such as Go,
Chess, or StarCraft. We formalize the setup as follows.

Definition 1. Let W be a set of agents parametrized by,
say, the weights of a neural net. A symmetric zero-sum
functional-form game (FFG) is an antisymmetric function,
�(v,w) = ��(w,v), that evaluates pairs of agents

� : W ⇥W ! R.

The higher �(v,w), the better for agent v. We refer to
� > 0, � < 0, and � = 0 as wins, losses and ties for v.

Note that (i) the strategies in a FFG are parametrized agents
and (ii) the parametrization of the agents is folded into �, so
the game is a composite of the agent’s architecture and the
environment itself.

Suppose the probability of v beating w, denoted P (v � w)
can be computed or estimated. Win/loss probabilities can be
rendered into antisymmetric form via �(v,w) := P (v �

w)� 1
2 or �(v,w) := log P (v�w)

P (v�w) .

Tools for FFGs. Solving FFGs requires different methods
to solving normal form games (Shoham & Leyton-Brown,
2008) due to their continuous nature. We therefore develop
the following basic tools.

First, the curry operator converts a two-player game into a
function from agents to objectives
h
� : W ⇥W �! R

i
curry
���!

h
W �!

⇥
W �! R

⇤i

�(v,w) w 7! �w(•) := �(•,w)

Second, an approximate best-response oracle that, given
agent v and objective �w(•), returns a new agent v0 :=
oracle(v,�w(•)) with �w(v0) > �w(v) + ✏, if possible.
The oracle could use gradients, reinforcement learning or
evolutionary algorithms.

Third, given a population P of n agents, the (n⇥ n) anti-
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symmetric evaluation matrix is

AP :=
n
�(wi,wj) : (wi,wj) 2 P⇥P

o
=: �(P⌦P).

Fourth, we will use the (not necessarily unique) Nash equi-
librium on the zero-sum matrix game specified by AP.

Finally, we use the following game decomposition. Sup-
pose W is a compact set equipped with a probability mea-
sure. The set of integrable antisymmetric functions on W
then forms a vector space. Appendix D shows the following:
Theorem 1 (game decomposition). Every FFG decomposes
into a sum of a transitive and cyclic game

FFG = transitive game� cyclic game.

with respect to a suitably defined inner product.

Transitive and cyclic games are discussed below. Few games
are purely transitive or cyclic. Nevertheless, understanding
these cases is important since general algorithms should, at
the very least, work in both special cases.

2.1. Transitive games

A game is transitive if there is a ‘rating function’ f such
that performance on the game is the difference in ratings:

�(v,w) = f(v)� f(w).

In other words, if � admits a ‘subtractive factorization’.

Optimization (training against a fixed opponent). Solv-
ing a transitive game reduces to finding

v⇤ := argmax
v2W

�w(v) = argmax
v2W

f(v).

Crucially, the choice of opponent w makes no difference to
the solution. The simplest learning algorithm is thus to train
against a fixed opponent, see algorithm 1.

Algorithm 1 Optimization (against a fixed opponent)
input: opponent w; agent v1

fix objective �w(•)
for t = 1, . . . , T do
vt+1  oracle

�
vt,�w(•)

�

end for
output: vT+1

Monotonic games generalize transitive games. An FFG is
monotonic if there is a monotonic function � such that

�(v,w) = �
�
f(v)� f(w)

�
. (1)

For example, Elo (1978) models the probability of one agent
beating another by

P (v � w) = �
�
f(v)� f(w)

�
for �(x) =

1

1 + e�↵·x

for some ↵ > 0, where f assigns Elo ratings to agents. The
model is widely used in Chess, Go and other games.

Optimizing against a fixed opponent fares badly in mono-
tonic games. Concretely, if Elo’s model holds then training
against a much weaker opponent yields no learning signal
because the gradient vanishes rv�(vt,w) ⇡ 0 once the
sigmoid saturates when f(vt)� f(w).

Self-play (algorithm 2) generates a sequence of opponents.
Training against a sequence of opponents of increasing
strength prevents gradients from vanishing due to large skill
differentials, so self-play is well-suited to games modeled
by eq. (1). Self-play has proven effective in Chess, Go and
other games (Silver et al., 2018; Al-Shedivat et al., 2018).

Algorithm 2 Self-play
input: agent v1

for t = 1, . . . , T do
vt+1  oracle

�
vt,�vt(•)

�

end for
output: vT+1

Self-play is an open-ended learning algorithm: it poses and
masters a sequence of objectives, rather than optimizing a
pre-specified objective. However, self-play assumes transi-
tivity: that local improvements (vt+1 beats vt) imply global
improvements (vt+1 beats v1,v2, . . . ,vt). The assumption
fails in nontransitive games, such as the disc game below.
Since performance is nontransitive, improving against one
agent does not guarantee improvements against others.

2.2. Cyclic games

A game is cyclic if
Z

W
�(v,w) · dw = 0 for all v 2W. (2)

In other words, wins against some agents are necessarily
counterbalanced with losses against others. Strategic cycles
often arise when agents play simultaneous move or imper-
fect information games such as rock-paper-scissors, poker,
or StarCraft.
Example 1 (Disc game). Fix k > 0. Agents are W = {x 2
R2 : kxk22  k} with the uniform distribution. Set

�(v,w) = v|
·

✓
0 �1
1 0

◆
·w = v1w2 � v2w1.

The game is cyclic, see figure 2A.
Example 2 (Rock-paper-scissors embeds in disc game). Set
r✏ =

p
3✏
2 (cos 0, sin 0), p✏ =

p
3✏
2 (cos 2⇡

3 , sin 2⇡
3 ) and s✏ =p

3✏
2 (cos 4⇡

3 , sin 4⇡
3 ) to obtain

A{r✏,p✏,s✏} =

2

4
0 ✏2 �✏2

�✏2 0 ✏2

✏2 �✏2 0

3

5 .
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Varying ✏ 2 [0, 1] yields a family of r-p-s interactions that
trend deterministic as ✏ increases, see figure 2B.

Our goal is to extend self-play to general FFGs. The success
of optimization and self-play derives from (i) repeatedly
applying a local operation that (ii) improves a transitive
measure. If the measure is not transitive, then applying a
sequence of local improvements can result in no improve-
ment at all. Our goal is thus to find practical substitutes for
(i) and (ii) in general FFGs.

3. Functional and Empirical Gamescapes
Rather than trying to find a single dominant agent which
may not exist, we seek to find all the atomic components
in “strategy space” of a zero-sum game. That is, we aim to
discover the underlying strategic dimensions of the game,
and the best ways of executing them. Given such knowl-
edge, when faced with a new opponent, we will not only be
able to react to its behavior conservatively (using the Nash
mixture to guarantee a tie), but will also be able to optimally
exploit the opponent. As opposed to typical game-theoretic
solutions, we do not seek a single agent or mixture, but
rather a population that embodies a complete understanding
of the strategic dimensions of the game.

To formalize these ideas we introduce gamescapes, which
geometrically represent agents in functional form games.
We show some general properties of these objects to build
intuitions for the reader. Finally we introduce two critical
concepts: population performance, which measures the
progress in performance of populations, and effective di-
versity, which quantifies the coverage of the gamescape
spanned by a population. Equipped with these tools we
present algorithms that guarantee iterative improvements in
FFGs.

Definition 2. The functional gamescape (FGS) of � : W⇥
W ! R is the convex set

G� := hull
⇣n

�w(•) : w 2W
o⌘
⇢ C(W,R),

where C(W,R) is the space of real-valued functions on W .

Given population P of n agents with evaluation matrix AP,
the corresponding empirical gamescape (EGS) is

GP :=
�

convex mixtures of rows of AP

 
.

The FGS represents all the mixtures of objectives implicit in
the game. We cannot work with the FGS directly because we
cannot compute �w(•) for infinitely many agents. The EGS
is a tractable proxy (Wellman, 2006). The two gamescapes
represent all the ways agents can-in-principle and are-
actually-observed-to interact respectively. The remainder of
this section collects basic facts about gamescapes.

Optimization landscapes are a special case of gamescapes.
If �(v,w) = f(v)�f(w) then the FGS is, modulo constant
terms, a single function G� =

�
f(•) � f(w) : w 2 W

 
.

The FGS degenerates into a landscape where, for each
agent v there is a unique direction r�w(v) = rf(v) in
weight space which gives the steepest performance increase
against all opponents. In a monotonic game, the gradient
is r�w(v) = �0

·rf(v). There is again a single steepest
direction rf(v), with tendency to vanish controled by the
ratings differential �0 = �0�f(v)� f(w)

�
� 0.

Redundancy. First, we argue that gamescapes are more
fundamental than evaluation matrices. Consider

2

4
0 1 �1
�1 0 1
1 �1 0

3

5 and

2

664

0 1 �1 �1
�1 0 1 1
1 �1 0 0
1 �1 0 0

3

775 .

The first matrix encodes rock-paper-scissors interactions;
the second is the same, but with two copies of scissors.
The matrices are difficult to compare since their dimensions
are different. Nevertheless, the gamescapes are equivalent
triangles embedded in R3 and R4 respectively.
Proposition 2. An agent in a population is redundant if it
is behaviorally identical to a convex mixture of other agents.
The EGS is invariant to redundant agents.

Invariance is explained in appendix E.

Dimensionality. The dimension of the gamescape is an in-
dicator of the complexity of both the game and the agents
playing it. In practice we find many FFGs have a low di-
mensional latent structure.

Figure 1 depicts evaluation matrices of four populations
of 40 agents. Although the gamescapes could be 40-dim,
they turn out to have one- and two-dim representations. The
dimension of the EGS is determined by the rank of the
evaluation matrix.
Proposition 3. The EGS of n agents in population P can
be represented in Rr, where r = rank(AP)  n.

A low-dim representation of the EGS can be constructed via
the Schur decomposition, which is the analog of PCA for
antisymmetric matrices (Balduzzi et al., 2018b). The length
of the longest strategic cycle in a game gives a lower-bound
on the dimension of its gamescape:
Example 3 (latent dimension of long cycles). Suppose n

agents form a long cycle: P = {v1
beats
���! v2 ! · · · !

vn
beats
���! v1}. Then rank(AP) is n � 2 if n is even and

n� 1 if n is odd.

Nash equilibria in a symmetric zero-sum game are (mix-
tures of) agents that beat or tie all other agents. Loosely
speaking, they replace the notion of best agent in games
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Figure 1. Low-dim gamescapes of various basic game structures. Top row: Evaluation matrices of populations of 40 agents each;
colors vary from red to green as � ranges over [�1, 1]. Bottom row: 2-dim embedding obtained by using first 2 dimensions of Schur
decomposition of the payoff matrix; Color corresponds to average payoff of an agent against entire population; EGS of the transitive game
is a line; EGS of the cyclic game is two-dim near-circular polytope given by convex hull of points. For extended version see Figure 6 in
the Appendix.

where there is no best agent. Functional Nash equilibria, in
the FGS, are computationally intractable so we work with
empirical Nash equilibria over the evaluation matrix.

Proposition 4. Given population P, the empirical Nash
equilibria are

NP = {p distribution : p|AP ⌫ 0}.

In other words, Nash equilibria correspond to points in the
empirical gamescape that intersect the positive quadrant
{x 2 GP : x ⌫ 0}. The positive quadrant thus provides a
set of directions in weight space to aim for when training
new agents, see PSRON below.

The gap between the EGS and FGS. Observing r-p inter-
actions yields different conclusions from observing r-p-s
interactions; it is always possible that an agent that appears
to be dominated is actually part of a partially observed cycle.
Without further assumptions about the structure of �, it is
impossible to draw strong conclusions about the nature of
the FGS from the EGS computed from a finite population.
The gap is analogous to the exploration problem in rein-
forcement learning. To discover unobserved dimensions of
the FGS one could train against randomized distributions
over opponents, which would eventually find them all.

3.1. Population performance

If �(v,w) = f(v)� f(w) then improving performance of
agent v reduces to increasing f(v). In a cyclic game, the
performance of individual agents is meaningless: beating
one agent entails losing against another by eq. (2). We
therefore propose a population performance measure.

Definition 3. Given populations P and Q, let (p,q) be
a Nash equilibrium of the zero-sum game on AP,Q :=
�(v,w)v2P,w2Q. The relative population performance is

v(P,Q) := p|
·AP,Q · q =

n1,n2X

i,j=1

Aij · piqj .

Proposition 5. (i) Performance v is independent of the
choice of Nash equilibrium. (ii) If � is monotonic then
performance compares the best agents in each population

v(P,Q) = max
v2P

f(v)�max
w2Q

f(w).

(iii) If hull(P) ⇢ hull(Q) then v(P,Q)  0 and
v(P,R)  v(Q,R) for any population R.

The first two properties are sanity checks. Property (iii)
implies growing the polytope spanned by a population im-
proves its performance against any other population.

Consider the concentric rock-paper-scissors populations in
figure 2B and example 2. The Nash equilibrium is (0, 0),
which is a uniform mixture over any of the populations.
Thus, the relative performance of any two populations is
zero. However, the outer population is better than the inner
population at exploiting an opponent that only plays, say,
rock because the outer version of paper wins more determin-
istically than the inner version.

Finding a population that contains the Nash equilibrium
is necessary but not sufficient to fully solve an FFG. For
example, adding the ability to always force a tie to an FFG

makes finding the Nash trivial. However, the game can still
exhibit rich strategies and counter-strategies that are worth
discovering.
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Rock

Paper

Scissors

A B

Figure 2. The disc game. A: A set of possible agents from the disc
game is shown as blue dots. Three agents with non-transitive rock-
paper-scissors relations are visualized in red. B: Three concentric
gamescapes spanned by populations with rock-paper-scissor inter-
actions of increasing strength.

3.2. Effective diversity

Measures of diversity typically quantify differences in
weights or behavior of agents but ignore performance. Ef-
fective diversity measures the variety of effective agents
(agents with support under Nash):
Definition 4. Denote the rectifier by bxc+ := x if x � 0
and bxc+ := 0 otherwise. Given population P, let p be
a Nash equilibrium on AP. The effective diversity of the
population is:

d(P) := p|
· bAPc+ · p =

nX

i,j=1

b�(wi,wj)c+ · pipj .

Diversity quantifies how the best agents (those with support
in the maximum entropy Nash) exploit each other. If there
is a dominant agent then diversity is zero.

Effective diversity is a matrix norm, see appendix F.2. It
measures the `1,1 volume spanned by Nash supported agents.
In figure 2B, there are four populations spanning concentric
gamescapes: the Nash at (0, 0) and three variants of r-p-s.
Going outwards to large gamescapes yields agents that are
more diverse and better exploiters.

4. Algorithms
We now turn attention to constructing objectives that when
trained against, produce new, effective agents. We present
two algorithms that construct a sequence of fruitful local
objectives that, when solved, iteratively add up to transitive
population-level progress. Importantly, these algorithms
output populations, unlike self-play which outputs single
agents.

Concretely, we present algorithms that expand the empir-
ical gamescape in useful directions. Following Lanctot
et al. (2017), we assume access to a subroutine, or ora-
cle, that finds an approximate best response to any mix-

ture
P

i pi�i(wi) of objectives. The subroutine could be
a gradient-based, reinforcement learning or evolutionary
algorithm. The subroutine returns a vector in weight-space,
in which existing agents can be shifted to create new agents.
Any mixture constitutes a valid training objective. However,
many mixtures do not grow the gamescape, because the
vector could point towards redundant or weak agents.

4.1. Response to the Nash (PSRON)

Since the notion of ‘the best agent’ – one agent that beast all
others – does not necessarily exist in nontransitive games, a
natural substitute is the mixture over the Nash equilibrium
on the most recent population Pt. The policy space response
to the Nash (PSRON) iteratively generates new agents that
are approximate best responses to the Nash mixture. If
the game is transitive then PSRON degenerates to self-play.
The algorithm is an extension of the double oracle algorithm
(McMahan et al., 2003) to FFGs, see also (Zinkevich et al.,
2007; Hansen et al., 2008).

Algorithm 3 Response to Nash (PSRON)
input: population P1 of agents
for t = 1, . . . , T do
pt  Nash on APt

vt+1  oracle
�
vt,

P
wi2Pt

pt[i] · �wi(•)
�

Pt+1  Pt [ {vt+1}

end for
output: PT+1

The following result shows that PSRON strictly enlarges the
empirical gamescape:
Proposition 6. If p is a Nash equilibrium on AP andP

i pi�wi(v) > 0, then adding v to P strictly enlarges
the empirical gamescape: GP ( GP[{v}.

A failure mode of PSRON arises when the Nash equilibrium
of the game is contained in the empirical gamescape. For
example, in the disc game in figure 2 the Nash equilibrium
of the entire FFG is the agent at the origin w = (0, 0). If
a population’s gamescape contains w = (0, 0) – which
is true of any r-p-s subpopulation – then PSRON will not
expand the gamescape because there is no ✏-better response
to w = (0, 0). The next section presents an algorithm that
uses niching to meaningfully grow the gamescape, even
after finding the Nash equilibrium of the FFG.

Response to the uniform distribution (PSROU). A
closely related algorithm is fictitious (self-)play (Brown,
1951; Leslie & Collins, 2006; Heinrich et al., 2015). The
algorithm finds an approximate best-response to the uni-
form distribution on agents in the current population:P

wi2Pt
�wi(•). PSROU has guarantees in matrix form

games and performs well empirically (see below). However,
we do not currently understand its effect on the gamescape.
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Paper

Rock

Scissors Gradients 
against P

Gradients 
against

R
Gradients 
against

 S

Gradients 
against R

Gradients 
against

 S

Gradients 
against P

A B C

Figure 3. A: Rock-paper-scissors. B: Gradient updates obtained
from PSROrN, amplifying strengths, grow gamescape (gray to
blue). C: Gradients obtained by optimizing agents to reduces their
losses shrink gamescape (gray to red).

4.2. Response to the rectified Nash (PSROrN)

Response to the rectified Nash (PSROrN), introduces game-
theoretic niches. Each effective agent – that is each agent
with support under the Nash equilibrium – is trained against
the Nash-weighted mixture of agents that it beats or ties.
Intuitively, the idea is to encourage agents to ‘amplify their
strengths and ignore their weaknesses’.

A special case of PSROrN arises when there is a dominant
agent in the population, that beats all other agents. The Nash
equilibrium is then concentrated on the dominant agent, and
PSROrN degenerates to training against the best agent in the
population, which can be thought of as a form of self-play
(assuming the best agent is the most recent).

Algorithm 4 Response to rectified Nash (PSROrN)
input: population P1

for t = 1, . . . , T do
pt  Nash on APt

for agent vt with positive mass in pt do
vt+1  oracle

�
vt,

P
wi2Pt

pt[i] · b�wi(•)c+
�

end for
Pt+1  Pt [ {vt+1 : updated above}

end for
output: PT+1

Proposition 7. The objective constructed by rectified Nash
response is effective diversity, definition 4.

Thus, PSROrN amplifies the positive coordinates, of the
Nash-supported agents, in their rows of the evaluation ma-
trix. A pathological mode of PSROrN is when there are
many extremely local niches. That is, every agent admits
a specific exploit that does not generalize to other agents.
PSROrN will grow the gamescape by finding these exploits,
generating a large population of highly specialized agents.

Rectified Nash responses in the disc game (example 1).
The disc game embeds many subpopulations with rock-
paper-scissor dynamics. As the polytope they span expands
outwards, the interactions go from noisy to deterministic.

Figure 4. Performance of PSROrN relative to self-play, PSROU

and PSRON on Blotto (left) and Differentiable Lotto (right). In
all cases, the relative performance of PSROrN is positive, and
therefore outperforms the other algorithms.

The disc game is differentiable, so we can use gradient-
based learning for the oracle in PSROrN. Figure 3B depicts
the gradients resulting from training each of rock, paper and
scissors against the agent it beats. Since the gradients point
outside the polytope, training against the rectified Nash
mixtures expands the gamescape.

Why ignore weaknesses? A natural modification of
PSROrN is to train effective agents against effective agents
that they lose to. In other words, to force agents to improve
their weak points whilst taking their strengths for granted.
Figure 3C shows the gradients that would be applied to each
of rock, paper and scissors under this algorithm. They point
inwards, contracting the gamescape. Training rock against
paper would make it more like scissors; similarly training
paper against scissors would make it more like rock and
so on. Perhaps counter-intuitively, building objectives us-
ing the weak points of agents does not encourage diverse
niches.

5. Experiments
We investigated the performance of the proposed algorithms
in two highly nontransitive resource allocation games.

Colonel Blotto is a resource allocation game that is often
used as a model for electoral competition. Each of two
players has a budget of c coins which they simultaneously
distribute over a fixed number of areas. Area ai is won by
the player with more coins on ai. The player that wins the
most areas wins the game. Since Blotto is not differentiable
we use maximum a posteriory policy optimization (MPO)
(Abdolmaleki et al., 2018) as best response oracle. MPO
is an inference-based policy optimization algorithm; many
other reinforcement learning algorithms could be used.

Differentiable Lotto is inspired by continuous Lotto (Hart,
2008). The game is defined over a fixed set C of c ‘cus-
tomers’, each being a point in R2. An agent (p,v) =�
(p1,v1), . . . , (pk,vk)

 
distributes one unit of mass over
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Figure 5. Visualizations of training progress in Differentiable Lotto experiment. Left: Comparison of trajectories taken by each algorithm
in the 2-dim Schur embedding of the EGS; a black dot represents first agent found by the algorithm and a dashed line represents the
convex full. Shaded blue region shows area of the convex hull of PSROrN. Notice the PSROrN consistent expansion of the convex hull
through ladder-like movements. See Figure 7 for an extended version. Right: Area of convex hull spanned by populations over time.
Note that only PSROrN consistently increases the convex hull in all iterations.

k servers, where each server is a point vi 2 R2. Roughly,
given two agents (p,v) and (q,w), customers are softly
assigned to the nearest servers, determining the agents’ pay-
offs. More formally, the payoff is

�
�
(p,v), (q,w)

�
:=

c,kX

i,j=1

�
pjvij � qjwij

�
,

where the scalars vij and wij depend on the distance be-
tween customer i and the servers:

(vi1, . . . , wik) := softmax(�kci�v1k
2, . . . ,�kci�wkk

2).

The width of a cloud of points is the expected distance from
the barycenter. We impose agents to have width equal one.
We use gradient ascent as our oracle.

Experimental setups. The experiments examine the per-
formance of self-play, PSROU, PSRON, and PSROrN. We
investigate performance under a fixed computational budget.
Specifically, we track queries made to the oracle, following
the standard model of computational cost in convex opti-
mization (Nemirovski & Yudin, 1983). To compare two
algorithms, we report the relative population performance
(definition 3), of the populations they output. Computing
evaluation matrices is expensive, O(n2), for large popula-
tions. This cost is not included in our computational model
since populations are relatively small. The relative cost of
evaluations and queries to the oracle depends on the game.

In Blotto, we investigate performance for a = 3 areas and
c = 10 coins over k = 1000 games. An agent outputs a vec-
tor in R3 which is passed to a softmax, ⇥10 and discretized
to obtain three integers summing to 10. Differentiable Lotto
experiments are from k = 500 games with c = 9 customers
chosen uniformly at random in the square [�1, 1]2.

Results. Fig 4 shows the relative population performance,
definition 3, between PSROrN and each of PSRON, PSROU

and self-play: the more positive the number is, the more

PSROrN outperforms the alternative method. We find that
PSROrN outperforms the other approaches across a wide
range of allowed compute budgets. PSROU and PSRON

perform comparably, and self-play performs the worst. Self-
play, algorithm 2, outputs a single agent, so the above com-
parison only considers the final agent. If we upgrade self-
play to a population algorithm (by tracking all agents pro-
duced over), then it still performs the worst in differentiable
Lotto, but by a smaller margin. In Blotto, suprisingly, it
slightly outperforms PSRON and PSROU.

Figure 5 shows how gamescapes develop during training.
From the left panel, we see that PSROrN grows the polytope
in a more uniform manner than the other algorithms. The
right panel shows the area of the empirical gamescapes
generated by the algorithms (the areas of the convex hulls).
All algorithms increase the area, but PSROrN is the only
method that increases the area at every iteration.

6. Conclusion
We have proposed a framework for open-ended learning
in two-player symmetric zero-sum games – where strate-
gies are agents, with a differentiable parametrization. We
propose the goal of learning should be (i) to discover the
underlying strategic components that constitute the game
and (ii) to master each of them. We formalized these ideas
using gamescapes, which geometrically represent the latent
objectives in games, and provided tools to analyze them.
Finally, we proposed and empirically validated a new al-
gorithm, PSROrN, for uncovering strategic diversity within
functional form games.

The algorithms discussed here are simple and generic, pro-
viding the foundations for methods that unify modern gra-
dient and reinforcement-based learning with the adaptive
objectives derived from game-theoretic considerations. Fu-
ture work lies in expanding this understanding and applying
it to develop practical algorithms for more complex games.
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