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Abstract

Background: Based on phenotypic similarities between age-related macular degeneration and the autosomal
disorder Doyne honeycomb retinal dystrophy, we report on a single nanolaser treatment of a patient with
genotype Doyne honeycomb retinal dystrophy confirmation and evidence of disease progression over 12 months.
The case study is the first report of short-term results of subthreshold nanolaser treatment in a patient with Doyne
honeycomb retinal dystrophy.

Case presentation: A 43-year-old Caucasian man with moderate loss of visual acuity in his left eye (20/40) and
normal visual acuity in his right eye (20/20), with clinical Doyne honeycomb retinal dystrophy diagnosis and genetic
confirmation of the common heterozygous mutation (EFEMP1) by genetic testing, underwent nanopulse
subthreshold laser treatment in his left eye.
A safety examination, carried out 7 days after treatment, and clinical follow-up, conducted 60 days following laser
treatment, showed improvement of visual acuity from baseline by two letters and a subjective improvement of
blurring. While no apparent morphological changes were found on fundoscopy, increased autofluorescence in the
treated eye was observed on imaging. In addition, 2 months after nanopulse subthreshold laser treatment, rod-
mediated and cone-mediated full-field electroretinography b-wave amplitudes showed an increase from baseline in
both the treated eye (300%) and untreated eye (50%). At 2 months after nanopulse subthreshold laser treatment,
multifocal electroretinograms showed improvement. Acuity and full-field electroretinography improvement
persisted at 6-month follow-up.

Conclusions: Sustained improvements in retinal function on electroretinography persisted in both eyes 6 months
after treatment, suggesting an enhancement of phototransduction and retinoid recycling induced by nanopulse
subthreshold laser treatment. The functional improvement observed in the untreated eye is hypothesized to arise
from an increased expression and release of metalloproteinases that circulate systemically.
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Background
Doyne honeycomb retinal dystrophy (DHRD), also known as
Malattia Leventinese, Online Mendelian Inheritance in Man
(OMIM) 126600, is an autosomal dominant disorder caused
by a single missense mutation, Arg345Trp (R345W), in the
gene EGF containing fibulin-like extracellular matrix protein
1 (EFEMP1) [1–4].The disease is typically characterized by
early-onset drusenoid deposits involving the posterior pole
and the peripapillary area, often with a radial distribution. It
has been suggested that mutant EFEMP1 may alter
the extracellular matrix in Bruch’s membrane, leading
to the accumulation of basal laminar deposits [1, 3].
Evidence for this lies in in vivo retinal microanatomy
imaging by time-domain optical coherence tomog-
raphy (OCT) showing diffuse alterations of the retinal
pigment epithelium (RPE) and Bruch’s membrane,
with preservation of the neurosensory layers [5–7]. In
addition, mutations in the gene encoding tissue-in-
hibitor metalloproteinase-3 (TIMP3) are tightly linked
to EFEMP1 and are associated with a severe form of
DHRD [8–10]. Likewise, age-related macular degener-
ation (AMD) in its intermediate stage is characterized
by drusen or drusenoid deposits, Bruch’s membrane
thickening, and RPE atrophy (see review, Hulleman
[11]). AMD and DHRD also share pathophysiologic
similarities: two mouse models of DHRD showed
complement activation and RPE atrophy, akin to the
pathology observed in AMD [11, 12].
In 2013, Lenassi et al. showed that low-energy argon

laser treatment performed just outside the drusen

boundaries, but away from the fovea, induced drusen
clearance and improved visual function in patients with
DHRD with confirmed EFEMP1 mutation [13]. Recently,
a low-energy, subthreshold nanosecond laser, the 2RT®
(Ellex, Adelaide, Australia), has been utilized to induce
targeted and controlled RPE injury without significant
retinal neuronal damage or gliosis [14–16]. A clinical
trial in intermediate AMD provided evidence of efficacy
at 12-month follow-up, both in the treated and un-
treated eye, with improvement in flicker sensitivity on
electroretinography (ERG) and reduction in the mean
drusen area [17]. A similar effect was found in the
APoE-null mouse model of AMD [18], with thinning of
Bruch’s membrane and increased expression of matrix
metalloproteinase-2 and matrix metalloproteinase-3 fol-
lowing nanolaser treatments.
Based on the phenotypic similarities between AMD

and DHRD, a single application of nanopulse sub-
threshold laser treatment (NSLT) was attempted in a
patient with Arg345Trp (R345W) genotype confirm-
ation and clear evidence of disease progression over
the previous 12 months. Treatment was delivered in
one eye (the worse eye) with a modification to the
standardized protocol according to Guymer et al.
[17], applying 24 nanosecond laser spots. Retinal
structure and function were assessed before and after
the treatment. Results showed no appreciable changes
in retinal morphology but an increase in autofluores-
cence on imaging in the treated eye. There was also a
functional improvement in both the treated and

Fig. 1 a, b Right eye, autofluorescence and optical coherence tomography imaging before 2RT® laser treatment. c, d Left eye, autofluorescence
and optical coherence tomography imaging after 2RT® laser treatment
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untreated eye on ERG. This is the first report follow-
ing NSLT of DHRD.

Case presentation
A 43-year-old Caucasian man presented with a mod-
erate loss of visual acuity in his left eye (20/40) and
normal right eye acuity (20/20). His medical, family,
and psychosocial history was irrelevant. He did not
have a history of medication use or previous diseases
other than common childhood infectious diseases. For
12 months he complained of blurring, progressive al-
teration of night vision, and reduced contrast sensitiv-
ity in both eyes, with a much more pronounced effect
in his left eye. Clinical diagnosis of DHRD was made
after full ophthalmologic examination and detailed
retinal imaging. Figure 1 shows OCT and fundus au-
tofluorescence in both eyes. ERG, including mesopic
and photopic full-field ERGs as well as multifocal

Table 1 Summary of the clinical ophthalmological testing
performed during follow-up
OD Baseline 2 Months 6 Months

Visual acuity 84 85 85

OCT (CRT) 266 275 282

Autofluorescence No change No change No change

Mesopic 8.59 5.36 10.26

Photopic 10.06 11.67 11.36

PHNR 5.72 6.18 6.08

OS Baseline 2 Months 6 Months

Visual acuity 59 61 61

OCT (CRT) 323 331 274

Autofluorescence No change No change No change

Mesopic 3.93 11.11 19.84

Photopic 8.51 11.54 14.49

PHNR 6.21 8.8 6.06

CRT central retinal thickness OCT optical coherence tomography, OD right eye, OS left eye,
PHNR photopic negative response

Fig. 2 a, b Mesopic and photopic electroretinography b-wave responses before 2RT® laser treatment. c, d Mesopic and photopic
electroretinography b-wave responses 6 months after 2RT® laser treatment. Notice the large increase in the b-wave amplitude. e, f Optical
coherence tomography imaging of the patient before and 1 month after 2RT®laser treatment, respectively. No significant changes in
microanatomy were observed. g, h Autofluorescence imaging of the patient before and 1 month after 2RT®, respectively. A moderate increase in
retinal autofluorescence was observed
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ERGs (mfERG), were performed at baseline and 7 days
after treatment. Genetic analysis confirmed the com-
mon heterozygous DHRD mutation in EFEMP1:
(2p16.1) (p.R345W; c.1033C > T).
He was offered NSLT for his left eye. After written

informed consent and full explanation of methods
and procedure were completed, he underwent the
treatment in his left eye, which applies ultra-low en-
ergy laser pulses in 24 spots around the macula of
one eye (0.15–0.45 mJ), using 400 μm diameter laser
spots, 3 nanosecond pulse length, 532 nm wavelength
and energy titrated to the patient. Clinical follow-up
was conducted at 60 and 180 days after treatment.
Table 1 summarizes the clinical ophthalmological test-
ing performed during follow-up. Visual acuity im-
proved from baseline by two letters. There was a
subjective improvement in blurring in his left eye. No
morphological changes were apparent on fundoscopy,
but increased autofluorescence in the treated eye was
observed on imaging (Fig. 2). Rod-mediated and
cone-mediated ERG b-wave amplitudes showed an in-
crease from baseline in both the treated eye (300%)
and fellow eye (50%) (Fig. 2). mfERG amplitudes did
not change significantly from baseline, but the impli-
cit time of the main positive component decreased by
8 milliseconds compared to baseline in the treated
eye and by 5 milliseconds in the fellow eye (Fig. 3).

Subjective and clinical improvements persisted un-
changed at 6-month follow-up. The rod-mediated and
cone-mediated ERG b-wave amplitude remained un-
changed (300% increase) in the treated eye and
returned to the pre-treatment value in the fellow eye.

Discussion and conclusion
To the best of our knowledge, this is the first report de-
scribing the short-term results of NSLT in DHRD. The
treatment was well tolerated and transpired without ad-
verse events or complications up to the 6-month
post-intervention time point, with sustained improvement
in retinal function on ERG in both eyes. The improvement
in ERG testing suggests enhanced phototransduction and
retinoid recycling and aligns with the mechanism of action
of this treatment, which in preclinical models was shown
to reduce the thickness of Bruch’s membrane and increase
the expression of metalloproteinases, thus resulting in im-
proved retinoid recycling. The functional improvement
observed in the untreated eye is consistent with other
studies on this device and is hypothesized to arise from an
increased expression and release of metalloproteinases
that circulate systemically. The present results encourage
further long-term studies with the subthreshold nanosec-
ond laser as a potential treatment of retinal and RPE ab-
normalities associated with DHRD and similar conditions
such as AMD.

Fig. 3 a Multifocal electroretinography in the right eye (fellow-eye). On top: amplitude and implicit time before 2RT® laser treatment in the left
eye (contralateral eye treated). Bottom: 2 months after treatment in the left eye (contralateral eye treated). b Multifocal electroretinography in left
eye (treated eye). On top: amplitude and implicit time before 2RT® laser treatment in the left eye (treated eye). Bottom: 2 months after treatment
in the left eye (treated eye). OD right eye, OS left eye
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