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ABSTRACT

Reliable predictions of the Arctic sea ice cover are becoming of paramount importance for Arctic com-

munities and industry stakeholders. In this study pan-Arctic and regional September mean sea ice extents are

forecast with lead times of up to 3 months using a complex network statistical approach. This method ex-

ploits relationships within climate time series data by constructing regions of spatiotemporal homogeneity

(i.e., nodes), and subsequently deriving teleconnection links between them. Here the nodes and links of the

networks are generated from monthly mean sea ice concentration fields in June, July, and August; hence,

individual networks are constructed for each respective month. Network information is then utilized within a

linear Gaussian process regression forecast model, a Bayesian inference technique, in order to generate

predictions of sea ice extent. Pan-Arctic forecasts capture a significant amount of the variability in the satellite

observations of September sea ice extent, with detrended predictive skills of 0.53, 0.62, and 0.81 at 3-, 2-,

and 1-month lead times, respectively. Regional forecasts are also performed for nine Arctic regions. On

average, the highest predictive skill is achieved in the Canadian Archipelago, Beaufort, Chukchi, East

Siberian, Laptev, and Kara Seas, although the ability to accurately predict many of these regions appears to

be changing over time.

1. Introduction

Passive microwave satellite observations since 1979

have shown a consistent decline in pan-Arctic sea ice

extent (SIE) for all months of the year, in direct ac-

cordance with a warming planet as a result of an-

thropogenic CO2 emissions (Notz and Stroeve 2016).

Across all months, September SIE has shown the

fastest decline (Overland andWang 2013; Serreze and

Stroeve 2015) as well as the largest interannual vari-

ability (Stroeve and Notz 2018). Significant anomalies

such as the 1996 maximum and the 2007 and 2012

minima contribute largely to this variability and make

seasonal predictions difficult. The extreme 2007 min-

imum in particular led to the initiation of the Sea Ice

Outlook (SIO) project by the Study of Environmental

Arctic Change (SEARCH), with the initial aim of

providing annual summaries of the expected pan-

Arctic September SIE. In 2014 this was formally

turned in to the Sea Ice Prediction Network through

U.S. interagency funding, and expanded to include

regional forecasts of September sea ice concentration

(SIC), sea ice probability (SIP), first ice-free date, and

first ice-advance date. Starting each May, the SIO

solicits predictions of the September sea ice cover

from the sea ice community based on forecasts made

on the first day of June, July, and August. Approaches
Corresponding author: WilliamGregory, william.gregory.17@

ucl.ac.uk

JUNE 2020 GREGORY ET AL . 793

DOI: 10.1175/WAF-D-19-0107.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/3/793/4924860/w

afd190107.pdf by guest on 03 August 2020

mailto:william.gregory.17@ucl.ac.uk
mailto:william.gregory.17@ucl.ac.uk
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


vary from fully coupled ice–ocean–atmosphere or ice–

ocean dynamical models, to statistical models and

heuristic and/or best guesses. The ability of these

forecast models to accurately capture the variability

of Arctic sea ice, with lead times of days to months, is

becoming increasingly important from an ecological,

economical and societal standpoint. The opening of

the Northern sea route for example has the potential

to reduce the shipping route between Europe and

Asia by 5000 nautical miles in comparison to the Suez

Canal (Lee and Song 2014), hence advanced timing of

this opening, on the order of months, can make for

cost-effective planning (Eguíluz et al. 2016).
While fully coupled climate models are intuitively

the model of choice for sea ice forecasting, with a

number of studies reporting high detrended predic-

tion skill (Chevallier et al. 2013; Sigmond et al. 2013;

Wang et al. 2013; Msadek et al. 2014; Peterson et al.

2015; Bushuk et al. 2017), on average past summaries

of SIO submissions (Stroeve et al. 2014; Hamilton and

Stroeve 2016) have shown that generally dynamical

models do not significantly outperform their statistical

model counterparts. In fact the majority of models

participating in the SIO (both statistical and dynam-

ical) only perform relatively successfully when sea ice

anomalies occur close to the long-term trend. This

leaves a window open to explore statistical models,

which have in some cases shown promise in exploiting

sources of predictability with up to 4-month lead time

(Lindsay et al. 2008; Schröder et al. 2014; Yuan et al.

2016; Stroeve et al. 2016; Petty et al. 2017; Ionita

et al. 2019).

This paper presents a statistical approach that ex-

ploits spatiotemporal variability within the sea ice

record via construction of complex networks based

on monthly mean fields of SIC from June, July,

and August. These networks are then utilized within

a Gaussian process regression (GPR) model in order

to predict both pan-Arctic and regional September

monthly mean SIE, for all years between 1985 and

2019. In the context of real-time forecasts, this would

correspond to forecasts being made on 1 July (June

data), 1 August (July data), and 1 September (August

data), with forecast validation made on 1 October.

Hence forecast lead times extend from 1 to 3 months.

Networks provide a relatively new perspective with

which to extract significant statistical relationships

from the multitude of entangled interactions within

the climate system, and are a useful complement to

standard methods of analyzing patterns of climate

variability (Tsonis and Roebber 2004; Donges et al.

2009; Guez et al. 2012; Radebach et al. 2013; Fountalis

et al. 2014; Boers et al. 2014; Donges et al. 2015;

Dijkstra et al. 2019). These entangled interactions are

more commonly referred to as climatological tele-

connections, which in themselves have been studied

for much of the last century (Walker and Bliss 1932;

Wallace and Gutzler 1981; Glantz et al. 1991), and

also in recent years for the similar purpose of Arctic

sea ice prediction (Yuan et al. 2016; Comeau et al.

2019). GPR is then a natural complement to complex

networks. The construction of kernel functions for

random graphs (networks) has been studied exten-

sively (Kondor and Lafferty 2002; Smola and Kondor

2003; Rasmussen and Williams 2006; Vishwanathan

et al. 2010; Spielman 2010; Urry and Sollich 2013), and

provides the ability to integrate the network infor-

mation directly into the regression model in the form

of Gaussian prior and likelihood distributions (see

section 3b). To our knowledge, this is the first time this

methodology has been implemented for the purpose

of sea ice forecasting.

The paper is structured as follows: section 2 provides

an overview of the data used for this study. Section 3

describes the methodology of both the generation of

complex networks and a GPR model. Results are pre-

sented in section 4, followed by a discussion (section 5)

and conclusions (section 6).

2. Data

For the generation of the complex networks, monthly

mean SIC fields between 1979 and 2018 were extract-

ed from the National Snow and Ice Data Center

(NSIDC) based on the NASA Team sea ice algo-

rithm applied to passive microwave brightness tem-

peratures (Cavalieri et al. 1996). Multiple satellites

comprise this data record: Nimbus-7 SSMR (1979–

87), the DMSP F-8, F-11, and F-13 SSM/Is (1987–

2007), and finally the DMSP F-18 SSM/I (2007–17). To

extend beyond 2018, these data are combined with the

2019 near-real-time daily SIC fields from NSIDC

(Maslanik and Stroeve 1999), which are averaged to

generate the corresponding monthly fields. Datasets

are provided on a polar stereographic 25 km 3 25 km

grid, which are regridded here to a polar stereographic

100 km 3 100 km grid prior to the calculation of the

cell-level network (see section 3a) for computational

reasons. Gridcell area information (used to generate

area-weighted time series, see section 3a) was also

extracted from NSIDC’s pixel area tools library.

Finally, it should be noted that the time-varying polar

hole in the SIC data is filled for the purpose of this study.

This is achieved by simply filling the hole with the mean

SIC value at 0.58 below the hole latitude, for each

respective year.
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To predict SIE on a regional level, the Arctic is

separated into nine geographic areas that surround

the Arctic coastlines and encompass the most likely

maritime navigation routes (Fig. 1)—the data mask

for these areas is also available from NSIDC (Fetterer

et al. 2010). Here SIE is defined as the sum of gridcell

areas for which SIC values are greater than or equal

to 15%. A monthly mean value of extent is pro-

duced for each year by calculating the SIE for each

day in September and then taking an average over

all days.

3. Methods

a. Complex networks

A network can be seen as groups of nodes (vertices)

whereby each node i may be connected to any other

node in the network j via links (edges)—the notation

hereafter follows that i and j are used to index different

network nodes, whereas p and q are used to index

different SIC data grid cells. The reader is also referred

to appendix A where a full list of variable definitions

is given.

In the common example of social networks, people

are represented by nodes and their relationships by

links. The weight of the link then depends on the

strength of the relationship existing between the two

people (nodes). In the case of the climate network, a

network of N nodes can correspond to time series data

X(t)5 fxi(t)gNi51 representing n observations {t1, . . . , tn}

at N fixed geographical locations, and the links can

represent statistical interdependencies between any pair

of nodes xi(t) and xj(t).

The process of generating complex networks from

monthly mean SIC data (for June, July, and August)

follows similar definitions to previous studies involving

climate networks (Donges et al. 2009, 2011; Fountalis

et al. 2014, 2018). We summarize the process here in

three separate steps:

1) A cell-level network (essentially a correlation ma-

trix) is first computed from the linearly detrended

anomaly time series of each SIC grid cell xp(t) via the

linear Pearson cross-correlation metric at zero lag,

for all possible pairs of p and q:

r
pq
5

�
n

k51

x
p
(t
k
)x

q
(t

k
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

�
n

k51

x2p(tk)

��
�
n

k51

x2q(tk)

�s . (1)

2) A clustering algorithm is then used in order to group

grid cells into geographic areas, which effectively

represent regions of homogeneity in terms of SIC

over the length of the time series. The clustering

algorithm uses a greedy approach whereby indi-

vidual cells continuously search for neighbors to

group with providing the correlation between them

exceeds a certain threshold. In the fashion of a

greedy algorithm, this form of local clustering will

be heuristically optimal for the global network in

the sense that small-scale homogeneities identi-

fied with local clustering will scale to large-scale

homogeneity across all network nodes.

For grid cells to form an area A, three criteria must

be adhered to

d jAij $ 2,
d "(p, q) 2 Ai, a connected path must exist from

p to q,

d

�
p6¼q2Ai

rpq

jAij(jAij2 1)
. t,

where jAij represents the number of grid cells in area

Ai. The third condition represents the fact that the

average correlation of all grid cells in each area must

be greater than a predefined threshold factor t. Here

the threshold factor is defined as the mean of all

positive correlation values (from the cell-level net-

work) which are significant at the 1% level, deter-

mined by a one-sided t test:

FIG. 1. Regional Arctic areas used for September SIE Forecasting

(from NSIDC). Shown are 1) Baffin Bay, 2) Greenland Sea,

3) Barents Sea, 4) Kara Sea, 5) Laptev Sea, 6) East Siberian

Sea, 7) Chukchi Sea, 8) Beaufort Sea, and 9) Canadian

Archipelago.
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t score5 r
pq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 2

12 r2pq

s
. (2)

The number of areas within the climate network is

also minimized. This is achieved by a similar pro-

cess to the initial generation of areas; except rather

than grid cells searching for neighbors, areas in-

stead search for neighboring areas to determine

whether, if merged, the average correlation be-

tween all the grid cells in a newly merged area

exceeds t. The neighboring area with the greatest

average correlation above t after merging is then

chosen. These areas now form the final nodes of the

complex network.

3) Links between nodes can be seen as a proxy for

teleconnections. The network here is fully connected,

such that each node Ai shares a weighted link with

every other node of the network. The links are then

created by first generating the cumulative anomaly

time series for each network node. This is taken

as the sum of the area-weighted detrended time

series of all grid cells within each respective net-

work node:

x
i
(t)5 �

p2Ai

x
p
(t)

ffiffiffiffiffi
c
p

q
. (3)

The cells are weighted by the square root of their geo-

graphic area c (km2) to account for the fact the data

exist on a polar stereographic grid and hence grid cells

are not equal in area. The link weights wij are then cal-

culated as the temporal covariance between two net-

work node anomaly time series:

w
ij
5

1

n
�
n

k51

[x
i
(t
k
)2 hx

i
(t)i][x

j
(t

k
)2 hx

j
(t)i] . (4)

Note that the weights are not normalized, such that the

weight of the link is proportional to the power of the

anomaly time series xi(t) and xj(t) in nodes Ai and Aj,

rather than just their correlation value (Fountalis et al.

2014). It is also worth noting that the strength (or

weighted degree) of a given network node li is defined

here as the sum of the absolute value of all its associated

link weights (Fig. 2):

l
i
5�

j6¼i

jw
ij
j . (5)

As we use these SIC networks to make predictions of

September SIE for all years between 1985 and 2019, it is

worth commenting on how the network structure varies

over time as new networks are created for each forecast

year. Figure 2 provides a visual illustration of this for

August SIC data as an example. The network structure

appears to vary significantly across the 34-yr period

shown here. Further investigation is required as to

whether this variation is due to actual changes in sea ice

behavior or the fact that the length of the time series

n used to construct each network is not constant. For

example, the network labeled 1986 is constructed with

n 5 8, whereas the network labeled 2019 is constructed

with n 5 41 (time series begin at 1979). This does co-

incide with significant differences in the threshold factor

t, and subsequently the number of network nodes, as

shown in Fig. 3. Networks generated with shorter time

series show a much larger value of t which means that

SIC grid cells will only cluster with neighboring cells if

the correlation between them is significantly large. As

this is only likely to occur for perhaps the first few

neighboring cells, the resultant network hosts a very

large number of nodes which contain a very small

number of grid cells. Indeed it may be necessary to

impose a predefined threshold of t for years with

shorter time series, although this goes beyond the

scope of this study.

b. Gaussian process regression

This section outlines the model setup of a GPR

model specific to this study; however, an accompa-

nying theory is provided in appendix B, for the in-

terested reader.

GPR is a Bayesian inference technique commonly

used to learn about functional relationships between

inputs X and outputs y, and to subsequently make pre-

dictions based on this learning (training). This func-

tional relationship is typically expressed in the form:

y5 f (X)1 «, «;N (0,s2), (6)

where « represents independent identically distributed

Gaussian noise with zero mean and variance s2. In

our case y corresponds to n observations of September

SIE anomalies, and X corresponds to n observations of

the cumulative SIC anomalies in (3) from N network

nodes—to keep the notation uncluttered we use X to

denote X(t). Note that the n observations used for train-

ing extend from (and include) 1979 to the year preceding

the forecast year. For example if the forecast year is 2019

then n 5 40, hence a new SIC network and GPR model

are constructed for each forecast year. The aim of the

model training is therefore to investigate the unknown

relationship between the nodes of a given SIC network

and the target September SIE. Here we assume that this

relationship is linear, such that f(X) can be represented

in the form Xb, and subsequently our implementation

becomes a Bayesian linear regression. As such f(X) is a
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Gaussian process (see appendix B), and can be com-

pletely specified by its mean (which we take to be zero)

and covariance function:

f (X);N (0,K). (7)

The covariance function K can be computed between

training inputsX, test inputsZ, or a combination of both.

Test inputs are used to make predictions after the model

training and are given here as the nth 1 1 entries that X

would have if it were continued by another year (i.e.,

SIC anomalies of the year being forecast). We can

therefore define a series of covariance functions for all

training and test inputs as follows:

K(X,X)5XSXT 1s2I ,

K(Z,Z)5ZSZT 1s2 ,

K(X,Z)5XSZT ,

K(Z,X)5ZSXT . (8)

FIG. 2. Network nodes and teleconnection links derived from linearly detrended monthly mean August SIC data. The length

of the time series used to create each network extends from 1979 to the years marked above each image. Each network area

node Ai can be represented by a single (black) node point, whose size is proportional to �p2Ai

ffiffiffiffiffiffi
cp

q
. The thickness of each of the

links here is proportional to the link weight wij between each pair of nodes, where black(white) links signify positive(negative)

covariance. Only links that are significant at the 10% level are shown here to aid visualization. See (5) for the definition of

node strength.
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Here, S is given as a random walk matrix (Urry and

Sollich 2013; see references therein) that takes the form

S5aexp(‘M). The term M is then a symmetric transi-

tion matrix with off-diagonal elements containing the

absolute teleconnection weights wij between nodes of

the SIC network (4), and diagonal elements containing

the negative strength of a given node (5):

M
ij
5 jw

ij
j, for i 6¼ j; M

ii
52l

i
52�

j6¼i

jw
ij
j (9)

The remaining undefined variables (‘, a, s2)—commonly

referred to as hyperparameters—are considered as free

parameters and play an important role in theminimization

of overfitting during the model training (see appendix B

for more details). We optimize these hyperparameters

here by the widely used empirical numerical optimization

approach of type II maximum likelihood [see (B7)]. This is

achieved by first defining ~s2 5s2/a and working with the

set of hyperparameters u5 (‘, a, ~s2). This way we can

optimize a analytically to obtain a5 n21yT ~K21y, where
~K5X exp(‘M)XT 1 ~s2I (Sollich 2005), such that only ‘

and ~s2 need to be optimized numerically.

With the optimal hyperparameters found, the GPR

model is then fully determined and forecasts of September

SIE anomalies f and their corresponding variance s2
f

(forecasts are Gaussian) are given by

f 5K(Z,X)K(X,X)21y

s2
f 5K(Z,Z)2K(Z,X)K(X,X)21

K(X,Z). (10)

4. Results

a. Pan-Arctic September SIE forecast

Forecasts of pan-Arctic September SIE are per-

formed for all years between 1985 and 2019, based on

monthly mean SIC fields from June, July, and August.

Each forecast is performed by GPR as explained

above, with X representing linearly detrended SIC data

(for all network nodes) taken in the relevant month

(June, July, or August), and y the corresponding pan-

Arctic September SIE. As explained in the previous

section, for each forecast a new network of area nodes

and hence a GPR model is constructed in order to

ensure predictors capture the variability of the sea ice

record over the period leading up to the year being

forecast. Accordingly, optimal hyperparameters for

the GPR are also determined separately for each

forecast.

Before presenting the results, we give the definition of

detrended forecast skill S as the explained variance in

the target variable y (observed detrended pan-Arctic

September SIE) relative to the detrended forecast result

f from (10). Explicitly, 1 2 S is the ratio of the mean

squared prediction error (MSE) to the variance of these

targets around their mean y:

S5 12

1

n
�
n

k51

(y
k
2 f

k
)
2

1

n
�
n

k51

(y
k
2 y)2

. (11)

Furthermore, as we will make comparisons to other

studies, we give the definition of the anomaly correla-

tion coefficient (ACC) as the linear Pearson cross-

correlation metric between f and y from (1), which we

restate here:

ACC
fy
5

�
n

k51

f
k
y
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

�
n

k51

f 2k

��
�
n

k51

y2k

�s . (12)

FIG. 3. For networks based on linearly detrended monthly mean SIC data from June, July,

and August, the variation in the number of network nodesN and also the threshold factor t are

shown here for all years between 1985 and 2019.
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Figure 4 displays the results of the pan-Arctic September

SIE forecasts. The detrended result shows remark-

able skill of 0.53 at 3-month lead time using a single-

layer predictor (in the sense that GPR can be viewed

as a single-layer SIC network), and increasing skill

thereafter of 0.62 and 0.81 at 2 and 1 months, re-

spectively. Furthermore it is apparent from Fig. 4

that each of the three forecasts appear to have per-

formed better in the latter section of the time series

(i.e., after approximately 1992). Therefore if we cal-

culate the detrended skill between 1993 and 2019 we

see an increase in skill for all lead times; from (0.53,

0.62, 0.81) to (0.58, 0.66, 0.88), respectively.

The skill value of anomaly persistence between

1985 and 2019 is given here as 0.18, 0.52, and 0.88 at

3-, 2-, and 1-month lead times, respectively; hence,

the GPR model outperforms persistence at 3 and

2 months, although at 1 month the skill of persistence

is greater. Comparing our forecast results to recent

statistical studies, Lindsay et al. (2008), Schröder
et al. (2014), Petty et al. (2017), and Ionita et al.

(2019) each presented skill scores for statistical fore-

casts of pan-Arctic September SIE. Skill values for

each respective study were given as [0.63, 0.81, and

0.96 (with trend) at 3, 2, and 1 months, respec-

tively], [0.41 (detrended) at 3–4 months], [0.45,

0.49, and 0.59 (detrended) at 3, 2, and 1 months,

respectively], and [0.78 and 0.81 (detrended) at 3

and 2 months, respectively]. Similarly, Yuan et al.

(2016) reported detrended ACC scores of [0.75,

0.82, and 0.90 at 3, 2, and 1 months, respectively];

the detrended ACC scores for our forecasts are

similar at (0.77, 0.83, 0.90) for the same respective

lead times.

Looking to dynamical forecast comparisons, Sigmond

et al. (2013), Wang et al. (2013), Msadek et al. (2014),

and Bushuk et al. (2017) each presented detrended

ACC scores for various coupled model forecasts of

pan-Arctic sea ice. Approximate results for each re-

spective study were given as (0.55, 0.75, 0.90), (0.55,

0.65, 0.75), (0.60, 0.70, 0.81), and (0.50, 0.60, 0.70) for

lead times of 3, 2, and 1 months, respectively.

FIG. 4. Predictions of pan-Arctic September SIE based on networks of monthly mean

SIC data from June, July, and August SIC (3-, 2-, and 1-month lead time, respectively).

(a) Detrended forecast f showing predictive skills from (11) of 0.53, 0.62, and 0.81 for forecasts

based on June, July, andAugust SIC networks, respectively. (b) Forecasts with trend, with skills

of 0.84, 0.87, and 0.92, respectively. The shaded areas in both plots represent the forecast

standard deviation sf.
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It should be noted that forecast skills presented above

are not directly comparable as the period of analysis is

not consistent between all studies. However, given

that our skill results outperform the majority of the

studies above, and that our analysis is conducted

over a longer time period should give an indication as

to the exceptional performance of the combined

complex network–GPR approach, for the presented

lead times.

b. Regional September SIE forecasts

Regional forecasts of September SIE are also per-

formed to assess the model’s performance beyond the

single pan-Arctic metric and to be more in-line with

stakeholder needs. As stated previously, nine geo-

graphic regions have been chosen (Fig. 1). These ex-

clude the Bering Sea, Sea of Okhotsk, and Hudson

Bay, as these regions are ice free in September. In a

similar vein, the Central Arctic has also been excluded

as this is generally the location of the core ice pack,

such that predictions there would be of limited use for

stakeholders.

Similar to section 4a, a new SIC network is con-

structed for each forecast year and the hyperparameters

for the GPR are optimized separately for each forecast

year and region.

Figure 5 displays the results of the regional September

SIE forecasts. Across all lead times, predictions are

generally most successful in regions toward the Pacific

sector, with highest detrended skill achieved in

the Canadian Archipelago, Beaufort, Chukchi, East

Siberian, and Laptev Seas. Beyond 1-month lead time

the GPR model consistently achieves poor prediction

skill in Baffin Bay, and both Greenland and Barents

Seas, with Baffin Bay showing poor predictability for

all lead times. Predictability appears to suffer in re-

gions which have undergone significant changes in

behavior over the satellite record. For example, in the

Kara Sea, the GPR model achieves very high de-

trended skill between 1985 and 2006 (0.52, 0.59, and

0.68 at 3-, 2-, and 1-month lead time, respectively);

however, between 2007 and 2019 this skill drops sig-

nificantly (21.25, 20.44, and 0.35 for the same re-

spective lead times), ultimately having a negative

impact on the overall score. This change in predict-

ability is likely due to a sudden change in the inter-

annual variability of SIE in the Kara Sea after 2007

(see Fig. 5b), such a change, which would be ex-

tremely difficult for a statistical model to adapt to.

The opposite can be said for other regions, in that

the dominant window of predictability lies in the

latter half of the time series record (i.e., after 2007).

Regions such as the Canadian Archipelago, Beaufort,

Chukchi, and East Siberian Seas show significantly

higher detrended prediction skill between 2007 and

2019 than between 1985 and 2006 (Fig. 6). See also

Table 1 for a summary of the detrended prediction

skills for each region, and between different time

windows.

Looking again to comparison studies of regional sea

ice forecasting using statistical models, Lindsay et al.

(2008) made regional predictions of the September

mean SIE at 3-month lead time. Reported skill values

(with trend) were given as: 0.77, 0.74, 0.18, 0.08,

and 20.67 for the Barents, Kara, Laptev, East Siberian,

and Beaufort Seas, respectively. Our skill values (also

with trend) for the same respective regions at 3-month

lead time are given as 0.04, 0.54, 0.45, 0.66, and 0.65.

Ionita et al. (2019) made similar predictions in the

East Siberian Sea, with detrended skill of 0.69, and

0.78 at 3- and 2-month lead time, respectively. Our

skill is given as 0.48 and 0.47 at 3- and 2-month lead

time, respectively.

In terms of regional dynamical forecasts, Bushuk

et al. (2017) reported detrended ACC scores for all

Arctic regions in a coupled model forecast. Here,

other than the Greenland Sea at 3-month lead time,

our equivalent detrended ACC scores exceed theirs

in all regions for each of the three respective lead

times.

Note that similar to the pan-Arctic skill comparison,

these skill metrics are not completely comparable due to

different analysis periods.

5. Discussion

Several studies have linked sea ice persistence to

high forecast skill of the pan-Arctic SIE metric with

lead times ranging from 1 to 3 months (Drobot et al.

2006; Lindsay et al. 2008; Petty et al. 2017; Ionita

et al. 2019). In this study, forecasts of pan-Arctic SIE

outperform the majority of both statistical and dy-

namical forecast models presented in the previous

section despite the poor performance between 1985

and 1993, which is likely due to lack of observa-

tions in the GPR model training. Indeed heuristic

‘‘rules-of-thumb’’ are available for deciding the min-

imum number of observations required to effectively

model a given statistical problem (Bishop 2006), al-

though here we could pragmatically say that this

minimum number should equate to the point after

which the model is able to make accurate and precise

future predictions. Nevertheless with increasing de-

mand for reliable forecasting of useful sea ice com-

ponents, which is the focal point of the Phase 2 of

the Sea Ice Prediction Network (SIPN2), arguably
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regional forecasts of SIE and alternative metrics hold

more importance than those of a single pan-Arctic

extent. Therefore while skillful forecasts have been

achieved for pan-Arctic SIE, this must be transfer-

able to other regions to be useful for stakeholders,

industry and Arctic communities alike. Here regional

forecasts of SIE have proven to be relatively suc-

cessful at 3-month lead time. Regions with high de-

trended forecast skill (Canadian Archipelago and

Beaufort, Chukchi, East Siberian, Laptev, and Kara

Seas) coincide with areas which have been shown to

contribute most to the decline in September SIE from

1979 (Onarheim et al. 2018). Similarly, regions with

relatively poor detrended forecast skill (Barents Sea,

Greenland Sea, and Baffin Bay) are those which show

little variability in their September extents and in fact

have been shown to contribute most to the decline in

March SIE from 1979 (Onarheim et al. 2018). In any

case, future work must move to accurate predictions

of spatiotemporal trends and derivation of metrics

FIG. 5. Predictions of regional September SIE based on networks of monthlymean SIC data from June, July, andAugust SIC (3-, 2-, and

1-month lead time, respectively). (a) Detrended forecast f . (b) Forecasts with trend. The shaded areas in all plots represent the forecast

standard deviation sf.
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such as the location of the sea ice edge, and sea ice

probability (SIP)—in line with stakeholder require-

ments and the SIPN2 mission statement. On this note,

we have tested increasing the present methodology to

4-month lead time (May SIC data); however, the re-

sultant detrended prediction skill is very poor for both

the pan-Arctic and regional cases. This may be in part

related to the spring predictability barrier that has

been observed in model studies (Bushuk et al. 2017;

Bonan et al. 2019); however, we have not investigated

this in any detail as of yet. Irrespective of this, the

methodology presented here can be advanced in order

FIG. 6. Skill by Arctic region for predictions of detrended September SIE based on networks of monthly mean SIC data from

June, July, and August (3-, 2-, and 1-month lead time, respectively). (a) Detrended skill calculated between 1985 and 2019.

(b) Detrended skill calculated between 1985 and 2006. (c) Detrended skill calculated between 2007 and 2019. See Table 1 for

values.
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to achieve improved sea ice predictability. In terms of

the GPR model the prior covariance function can be

adapted such that we move away from a strictly linear

system and instead allow for fully nonparametric and

nonlinear fits (Sollich and Halees 2002; Girard et al.

2003; Rasmussen andWilliams 2006; Sarkar et al. 2019).

Furthermore one could provide an alternative Gaussian

prior than the typical uniform zero mean that is cur-

rently given to all network nodes. In the alternative case

each node is assigned a different prior as necessary.

In terms of the network framework, this also has

the ability to grow in terms of complexity. Currently the

implementation is rather simplewith a single-layer network

of SIC being used as a predictor. With the incorporation

of multilayer networks (Boccaletti et al. 2014) comes the

ability to incorporate multiple climate variables within

the regression forecasts. This may in turn lead to in-

creasing the forecast lead time and skill.

6. Conclusions

Forecast submissions to the SIO project have shown

that statistical models still have the ability to be

competitive with their dynamical model counterparts,

within the interannual time frame (Stroeve et al. 2014;

Hamilton and Stroeve 2016). Although with apparent

increasing temporal variability in the sea ice record

(Holland et al. 2010) these statistical models need to

be sufficiently complex in order to remain competi-

tive. Not only this, the sea ice record shows signifi-

cant spatial variability that can be seen across the

observed SIE records (Fig. 5). Complex networks

are a method that exploits such spatiotemporal vari-

ability for purposes ranging from improving under-

standing of climatological teleconnections, to time

series forecasting; as presented here. Forecasts of pan-

Arctic September SIE have shown to be successful

within a GPR forecast model and result in competitive

detrended skill values with the literature to date: 0.53,

0.62, and 0.81 at 3-, 2-, and 1-month lead time, re-

spectively. Regional forecasts made across the same

time frame also show competitive detrended skill in

the Canadian Archipelago, Beaufort, Chukchi, East

Siberian, Laptev and Kara Seas, with skill values

typically greater than 0.3. Improving forecast skill be-

yond 3 months requires development of the complex

network and GPR methodology. The predictability of

summer sea ice conditions using only concentration has

been shown to diminish beyond 3months (Drobot et al.

2006; Lindsay et al. 2008; Petty et al. 2017; Ionita et al.

2019). Extending the forecast window to 6 months or

even to 1 year would require the incorporation of mul-

tiple climate variables (hence multilayered networks)

to capture sources of predictability such as ocean heat

advection effects on summer sea ice conditions (Serreze

and Stroeve 2015) and possibly sea ice reemergence

patterns (Blanchard-Wrigglesworth et al. 2011; Bushuk

et al. 2014), among many others.
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APPENDIX A

List of Variables

Table A1 contains a list of variables that appear in

this paper.

TABLE 1. Detrended regional forecast skill values for predictions of September SIE based on monthly mean SIC data from: June, July,

andAugust. Skill values from (11) are calculated between three periods: 1985–2019, 1985–2006, and 2007–19.DetrendedACC scores from

(1) are also given for the period 1985–2019. Labels 1–9 correspond to area labels in Fig. 1.

Skill: 1985–2019, 1985–2006, 2007–2019

(ACC: 1985–2019) June data July data August data

Pan-Arctic 0.53, 0.32, 0.65 (0.77) 0.62, 0.43, 0.73 (0.83) 0.81, 0.63, 0.91 (0.90)

Baffin Bay (1) 0.11, 0.07, 0.30 (0.35) 0.15, 0.38, 20.95 (0.51) 0.25, 0.24, 0.30 (0.51)

Greenland Sea (2) 20.17, 20.09, 20.51 (20.23) 0.30, 0.29, 0.30 (0.56) 0.74, 0.72, 0.82 (0.88)

Barents Sea (3) 0.10, 0.10, 0.07 (0.34) 0.29, 0.27, 0.31 (0.54) 0.69, 0.67, 0.77 (0.83)

Kara Sea (4) 0.40, 0.52, 21.25 (0.67) 0.53, 0.59, 20.44 (0.74) 0.67, 0.68, 0.35 (0.83)

Laptev Sea (5) 0.25, 0.22, 0.16 (0.52) 0.53, 0.46, 0.62 (0.73) 0.62, 0.52, 0.84 (0.80)

East Siberian Sea (6) 0.48, 0.34, 0.64 (0.70) 0.47, 0.48, 0.44 (0.70) 0.63, 0.62, 0.63 (0.82)

Chukchi Sea (7) 0.26, 0.12, 0.46 (0.54) 0.31, 0.18, 0.48 (0.65) 0.56, 0.53, 0.59 (0.79)

Beaufort Sea (8) 0.34, 20.07, 0.57 (0.71) 0.51, 0.36, 0.59 (0.77) 0.71, 0.63, 0.76 (0.86)

Canadian Archipelago (9) 0.33, 0.03, 0.57 (0.59) 0.40, 0.12, 0.62 (0.65) 0.66, 0.47, 0.82 (0.84)
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APPENDIX B

Gaussian Process Regression Theory

In Bayesian linear regression a functional relationship

f(X) which relates inputs X and outputs y can be ex-

pressed in the form Xb, where b corresponds to a set of

regression parameters. In this case, the aim of the model

training is to derive a posterior distribution for the

regression parameters b rather than point estimates

as is done in classical statistical regressions. This is

achieved through Bayes’s Law by computing the likeli-

hood function p(yjX, b), which can be regarded as the

probability of the observations for a given set of model

parameters b, and combining this with a prior distribu-

tion over the model parameters themselves p(b):

p(bjy,X)5 p(yjX,b)p(b)
p(yjX) , (B1)

where p(yjX) corresponds to the normalizing term, the

marginal likelihood:

p(yjX)5
ð
p(yjX,b)p(b) db. (B2)

The Gaussian prior is a powerful tool in Bayesian in-

ference. It incorporates belief about the behavior of f(X)

prior to any data analysis and plays an important role in

the prevention of overfitting. Consider specifically a ge-

neric Gaussian prior p(b) with zero mean and covariance

matrix S, such that b;N (0, S). This prior over b also

provides a Gaussian prior over functions f(X), and so our

method fits into the broader scope of Gaussian process

regression (GPR). Furthermore, as this prior over f(X)

has zero mean, it is fully specified by its covariance be-

tween the function values for two arbitrary inputs:

f (F)f (F0)5FTSF0 , (B3)

where F and F0 can be training inputs (columns of XT)

or test inputs Z. The prior covariance matrix between

the function values for all training inputs is then sim-

ply K(X, X)5XSXT 1s2I.

We can also see how, for this prior over b, one

obtains a posterior over b that is also Gaussian:

p(bjy,X)} exp

�
2

1

2s2
(y2Xb)T(y2Xb)

�

3 exp

�
2
1

2
bTS21b

�
, (B4)

with mean ~m5 (XTX1s2S21
)21XTy. Here we notice

that the maximization of the logarithm of (B4):

lnp(bjy,X)52
1

2s2
(y2Xb)T(y2Xb)

2
1

2
bTS21b1 const , (B5)

is equivalent to the minimization of the regularized least

squares error function of ridge regression (Hoerl and

Kennard 1970):

E
ridge

5
1

2
(y2Xb)T(y2Xb)1

v

2
bTb , (B6)

the analytical solution of which is given as bridge 5
(XTX 1 vI)21XTy. In ridge regression, it is v which

TABLE A1. List of variables.

Symbol Description

xp(t) The linearly detrended SIC anomaly data of the

pth grid cell

Ai The ith network node (area)

xi(t) The linearly detrended cumulative SIC anomaly

data of the ith network node

rpq Linear Pearson correlation between linearly

detrended SIC grid cells p and q

t The threshold factor required for grid cells to

cluster to form a network node (area)

wij Weighted link (temporal covariance) between

network nodes i and j

li Strength of a given network node i

cp Area (km2) of the pth SIC data grid cell

N Number of network nodes

n Length of SIC or SIE time series

T Matrix transpose

y Linearly detrended SIE time series (pan-Arctic

or regional)

X n 3 N design matrix containing linearly

detrended cumulative SIC anomaly time series

for all network nodes, also X(t)

Z Vector of detrended network SIC anomalies used

for prediction

f(X) The function defining the Gaussian process

b Parameters of the GP function f(X)

« Gaussian noise, with variance s2

(‘, a, ~s2) Hyperperameters

K Covariance kernel of the Gaussian process

function

F Substituted variable for either X or Z

S Covariance matrix of the Gaussian prior

M Stochastic matrix containing weighted links of all

network nodes

I Identity matrix

f Mean of the predictive distribution (September

SIE forecast value)

s2
f Variance of the predictive distribution (error on

the September SIE forecast)

S Forecast skill

y Mean of the detrended September SIE time

series

v Regularization coefficient of ridge regression
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minimizes overfitting by controlling the effectiveness of

the quadratic penalty term vbTb/2. For large values of

v, b becomes very small; thus reducing the number

of effective regression parameters. In our Bayesian ap-

proach the penalty term becomes bTS21b/(2s2); the

effectiveness of which is controlled by the model hy-

perparameters, in our case (‘, a, ~s2 5s2/a). A way to

optimize these hyperparameters, and hence minimize

overfitting, is through the empirical numerical optimi-

zation approach of type II maximum likelihood, which

maximizes the normalized log of (B2):

1

n
lnp(yjX,u)52

1

2n
yTK(X,X)21y2

1

2n
lnjK(X,X)j

2
1

2
ln(2p) , (B7)

Intuitively, this procedure chooses hyperparameters in

such a way as to make the probability of the observa-

tions (X, y) under the model prior as large as possible,

across all possible sets of hyperparameters. The maxi-

mization can also be performed using the gradients:

› ln p(yjX, u)
›u

5
1

2
yTK(X,X)21›K(X,X)

›u
K(X,X)21y

2
1

2
tr

�
K(X,X)21›K(X,X)

›u

�
. (B8)

Once the optimal hyperparameters have been derived

the GPR model is fully determined. Generating pre-

dictions then corresponds to averaging over all the re-

gression parameters b which have been weighted by

their posterior probability, for the given test inputs Z, as

given by (10).
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