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Camera trapping is widely used in ecological studies to estimate animal density, al-

though these studies are largely restricted to animals that can be identified to the individ-

ual level. The Random Encounter Model, developed by Rowcliffe et al. (2008), estimates

animal density from camera trap data without the need to identify animals. Although

the REM can provide reliable density estimates, it lacks the potential to account for the

multiple sources of variance in the modelling process. The density estimator in REM is a

ratio, and since the variance of a ratio estimator is intractable we examine and compare

the finite sample performance of many approaches for obtaining confidence intervals via

simulation studies. We also propose an integrated Random Encounter Model (iREM)

as a parametric alternative, which is flexible and can incorporate covariates and random

effects. A data example from Whipsnade Wild Animal Park (WWAP), Bedfordshire,

south England is used to demonstrate the application of these methods.
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1 Introduction

Camera trapping can be used to monitor wildlife and obtain information on behaviour,

activity patterns (Ridout and Linkie, 2009; Bridges and Noss, 2011), species interactions

(Barrull et al., 2014), and to determine population density (Rowcliffe et al., 2008; Chan-

dler et al., 2013; Howe et al., 2017). In camera trapping, fixed cameras, triggered by

infra-red sensors (McCallum, 2013), are used to take photos and/or videos of animals or

other objects passing in front of them. If individuals are recognizable, animal abundance

can be estimated using methods that combine camera trapping with spatially explicit

capture-recapture models (Royle and Young, 2008; Efford et al., 2009). In the absence

of individual identification of animals, relative abundance indices such as detection rates

are used as an indirect measure of animal density (Carbone et al., 2001; O’Brien et al.,

2003). These methods, however, lack a functional relationship between the camera index

and animal density (Jennelle et al., 2002), and have been criticized for their simplistic

approaches and implicit assumption that detectability is constant across areas, time and

species (Burton et al., 2015). Rowcliffe et al. (2008) formulated the random encounter

model (REM), which provides estimates of true animal density, accounting for imper-

fect detection without the need for individual identification. The REM assumes that

animals move randomly and independently of each other (Rowcliffe et al., 2013), and

uses functional relationships between encounter rates, the dimensions of the camera’s

sector-shaped detection zone, and the speed of animal movement to estimate the density.

Here, we extend the REM and develop methods that will be broadly applicable to

many species, particularly unmarked species, for density estimation from camera trap

data. We show, in Section 1.1, that the REM estimator can be derived as a maximum

likelihood estimator, assuming that encounters between animals and camera traps follow

a Poisson model. This formulation is flexible, allowing for covariates such as habitat

type to be incorporated in the model, the extension of the REM from a fixed estimate

of animal speed, and for estimation of the variance of the estimated animal density. We

also show that the REM can be modified to account for animals moving in groups.
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The REM is a ratio estimator, where the numerator and denominator are both stochas-

tic in nature (Chaudhary and Stearns, 1996; Van Kempen and Van Vliet, 2000). We ex-

amine and compare the performance of several techniques to find approximate confidence

intervals for animal density in this case. These methods are described in Section 2.

In Section 3, we propose an extension of the REM, termed the integrated random

encounter model (iREM), which combines the REM for encounters with separate speed

data. The iREM builds on the maximum likelihood formulation of REM. Rather than

using a fixed estimate of animal speed of movement as the REM does, the iREM jointly

models the encounters between animals and camera trap and animal speed of movement

data. The iREM utilizes an integrated population modelling approach, which is widely

used to account for overlapping information, and the sampling variability in multiple data

sets (Newman et al., 2014), and which allows for the accurate treatment of precision and

correlation in the estimators (Besbeas et al., 2002; McCrea and Morgan, 2014).

In Section 4, we use simulations to evaluate bias in estimated animal density based on

the REM and the iREM, and compare the performance of several approximate confidence

interval methods. In Section 5, the methods are applied to estimate the density of three

species from Whipsnade Wild Animal Park (WWAP), Bedfordshire, UK.

1.1 Random Encounter Model (REM)

In this section, we describe how the REM leads to a method of moments estimator of

animal density (Rowcliffe et al., 2008). In the REM, animals moving in random directions

at constant speed V are assumed to be detected (encountered) whenever they enter a

sector-shaped detection zone of radius r and angle θ (< π/2) that represents the area

“seen” by the camera. The values of r and θ are assumed to be fixed and known constants.

Let Y denote the number of animals detected by a camera trap during a time period

of length t, and let E(Y ) = λ. Rowcliffe et al. (2008) show that under the REM

λ =
2 + θ

π
rtV ρ, (1.1)

where ρ is the density of animals. Rearranging (1.1) and replacing λ by the mean number
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of camera trap detections, Ȳ , leads to a moment estimator of ρ, assuming that V is known.

In practice, the speed of movement V , and hence the distance travelled, is likely to vary

between animals and over time for individuals, and in these circumstances Hutchinson

and Waser (2007) state that in (1.1) V should be replaced by the expected speed, which

we denote by µ. To test the REM, Rowcliffe et al. (2008) collected separate data on

animal speed to obtain an independent estimate of µ. Suppose we have observed m

speed observations V = {V1, V2, ..., Vm}, with sample mean V̄ . Then the method of

moments estimator of animal density based on (1.1) is

ρ̂ =
Ȳ

KV̄
, where K = (2 + θ)rt/π. (1.2)

1.1.1 Maximum Likelihood Framework for REM

The REM estimator (1.2) can also be derived by assuming that the number of encounters

in a given time period, referred to as counts, follows a Poisson model. Specifically, let us

assume that Yij, the number of animals seen on camera i on day j, where i = 1, 2, ..., c

indexes camera traps, j = 1, 2, ..., n indexes camera trap days, follows a Poisson model

with expected count λ, and that the Yij’s are independent, that is, all animals are captured

independently of each other and independently at each trap. Since λ = KV̄ ρ, then the

maximum likelihood estimator of ρ is given by (1.2), if V̄ is treated as a known constant.

Throughout this research, we assume that each count Yij records the number of en-

counters at a single camera for a fixed period of tij = 1 day. In practice, camera traps

are often left running for longer periods of time, and there is a choice of how, or indeed

whether, to split the total recording period into smaller units for analysis. An advantage

of splitting into smaller time units is that it allows the possibility of extending the model

to incorporate time-varying covariates, such as mean day-time temperature. In the ab-

sence of such covariates, if encounters at each camera occur as a Poisson process, the

choice of splitting does not affect the maximum likelihood estimator of ρ provided that

the E(Y ) is multiplied by the length of the resulting recording period, tij (see Supple-

mentary Material S1.1), and indeed this approach can accommodate varying recording
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periods for different cameras, as usually occurs in practice.

1.1.2 REM estimator for animals moving in groups

Rowcliffe et al. (2008) suggested that (1.2) should be modified for animals that move

in groups, by estimating the density of groups, ρG say, based on the number of groups

encountered and multiplying this by an estimate of expected group size, η, to give an

estimate of individual animal density, ρ. If Y denotes the mean number of groups en-

countered, the right hand size of (1.2) gives an estimate of the density of groups, ρ̂G.

Provided the centre of each detected group lies inside the detection zone and the num-

bers of individuals in these groups can be counted, the sample mean of these counts gives

an estimator of expected group size, η̂ (Buckland et al., 2001), and ρ̂ = ρ̂G × η̂.

2 Confidence Intervals for Animal Density

Rowcliffe et al. (2008) estimated the variance of detection rate by bootstrapping counts

from the camera locations with replacement and taking the variance of a large number

of resampled density estimates. They suggested estimating the variance of density by

combining the variances of detection rate, animal speed and other model parameters using

the delta method. Here, we further explore the delta method for integrating variances,

and present additional methods of forming approximate confidence intervals for animal

density that account for the variability in V̄ .

Large-sample confidence interval for ρ. To account for the sampling variability

in the estimated mean speed, the delta method may be applied to approximate the

variance of the REM estimator (1.2), treating both Ȳ and V̄ as random variables. Here,

cov(V̄ , Ȳ ) = 0 because the counts and speed data used by Rowcliffe et al. (2008) to

test the REM were collected from separate sources and, therefore, are considered to be

independent. The delta method gives

var(ρ̂) =

(
Ȳ

KV̄

)2 [
var(Ȳ )

Ȳ 2
+

var(V̄ )

V̄ 2

]
. (2.1)
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The variances on the right side of (2.1) can be estimated either 1) nonparametrically,

as var(Ȳ ) = S2
Y /n and var(V̄ ) = S2

V /m, where S2
Y and S2

V are the sample variances of

the counts and speed, respectively, and where m is the number of speed observations

and n is the number of camera trap days; or 2) parametrically, if for example, a Poisson

distribution is assumed for the counts, we would estimate var(Ȳ ) = λ̂/n.

Because the delta method uses a linear approximation, confidence intervals for ρ can

be easily calculated if (V̄ , Ȳ ) is assumed to be bivariate normally distributed. This leads

to approximate 100(1− α)% confidence limits of the form

{ρ̂L, ρ̂U} = ρ̂± zα/2 × SE (ρ̂) , (2.2)

where zα/2 denotes the upper α/2 quantile of the standard normal distribution. These

intervals are symmetric about ρ̂ and are always finite (Franz, 2007). While the assumption

of a bivariate normal distribution is reasonable in the case of large samples, it is unlikely

that the distribution of a ratio will follow a well-behaved distribution in general. And,

even if samples are large, the distribution of ρ̂ is likely to be positively skewed if the

coefficient of variation of the denominator of ρ̂ is high (O’Brien et al., 1994). Also, the

approximation will fail when the denominator is close to zero (Gleser and Hwang, 1987).

Large-sample confidence interval for log(ρ). Alternatively, we could work on

the log-scale to obtain 100(1 − α)% log-normal confidence limits for log ρ that can be

back-transformed to obtain an asymmetric interval for ρ. Log-normal confidence intervals

offer potentially improved coverage, particularly for small sample sizes, by allowing for

asymmetric shape of the sampling distribution of ρ̂ (Buckland et al., 2001). In this case,

the delta method gives

var(log ρ̂) =
var(Ȳ )

Ȳ 2
+

var(V̄ )

V̄ 2
. (2.3)

Again, the variances var(Ȳ ) and var(V̄ ) in (2.3) can be estimated based on parametric

models, or nonparametrically. Approximate 100(1− α)% confidence limits for ρ are

{ρ̂L, ρ̂U} = exp
(
log(ρ̂)± zα/2 × SE {log(ρ̂)}

)
. (2.4)
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Fieller’s Theorem . An alternative to the delta method for calculating confidence

intervals for a ratio has been described by Fieller (Fieller, 1944, 1954). Fieller’s method

takes into account the skewness of the ratio estimator (Briggs et al., 1999), and is again

based on the assumption that Ȳ and V̄ follow a bivariate normal distribution. The variate

Ȳ −ρKV̄ in (1.2) is then approximately normally distributed with zero mean and variance

var(Ȳ ) + ρ2K2var(V̄ ). If the variances of Ȳ and V̄ are estimated nonparametrically, as

in (2.1), the pivotal quantity is

T0 =
Ȳ − ρKV̄

S2
Y /n+ ρ2K2S2

V /m
, (2.5)

which follows approximately a t-distribution with degrees of freedom corresponding to

those of the estimated variance. The degrees of freedom are estimated using Satterth-

waite’s approximation method (Satterthwaite, 1946; Sherman et al., 2011).

A confidence interval for ρ is obtained as the set of ρ values for which the null hy-

pothesis H0 : Ȳ − ρKV̄ = 0 is not rejected at the (1− α) level, denoted by tq. Hence, we

obtain the confidence interval

(
Ȳ /KV̄

)
±
{[
−
(
Ȳ /KV̄

)]2 − (1− tqS2
V /mV̄

2
) [(

Ȳ /KV̄
)2 − tqS2

Y /K
2nV̄ 2

]}1/2(
1− tqS2

V /mV̄
2
) (2.6)

(see Supplementary Material S2). In order to have two real roots, Sherman et al.

(2011) stated that a > 0. If the denominator is significantly different from zero (i.e.,

mV̄ 2/S2
V > tq), we obtain finite confidence intervals. In addition, Fieller’s confidence

interval may be the complement of a finite interval (b2 − 4ac > 0, a < 0) or the whole

real line (b2 − 4ac < 0, a < 0) (Dufour, 1997; Sherman et al., 2011). We use the ttestratio

function in the R package mratios to calculate (2.6) (R Core Team, 2017).

Nonparametric Bootstrap. An alternative approach involves sampling from the

data with replacement to provide approximate confidence intervals for ρ̂. Nonparametric

bootstrap makes no assumptions about the distribution for the data (Zhou et al., 2019).

We use the percentile and bias-corrected percentile bootstrap methods, which are suit-

able for estimating confidence interval of ratio estimators (Briggs et al., 1999; Chaudhary
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and Stearns, 1996). The bootstrap procedures are given in Supplementary Material S3.

3 The Integrated Random Encounter Model (iREM)

Here, we propose an integrated random encounter model (iREM) for estimating animal

density. The iREM is an alternative to the REM, which accounts for multiple sources

of variance in the data in a single framework. Integrated models of this type allow

for improved precision of parameter estimates and reduced correlation (Besbeas et al.,

2002; McCrea and Morgan, 2014) as well as allowing estimation of parameters that are

otherwise inestimable (Cole and McCrea, 2016).

Suppose we observed m independent and identically distributed animal speed obser-

vations, Vl (l = 1, 2, ...,m), with probability density function f(Vl | µ, ν), where µ is

expected animal speed, and ν represents any additional parameters of the speed distribu-

tion. If the counts, Yij, for camera trap i = 1, 2, ..., c and camera trap day j = 1, 2, ..., n,

have probability mass function h(Yij | ρ, µ, τ), where ρ and µ are animal density and ex-

pected speed, respectively defined in equation (1.1) and where τ represents any additional

parameters of the count distribution, the joint log-likelihood is

`(ρ, µ, τ, ν) =
c∑
i=1

n∑
j=1

log h(Yij | ρ, µ, τ) +
m∑
l=1

log f(Vl | µ, ν), (3.1)

assuming that encounters between animals and cameras are independent, and that the

counts and speed data are independent. This method allows the variability of parameter

estimates to be estimated using standard methods, such as the inverse of the negative

Hessian matrix (Morgan, 2008). The function h(·) in (3.1) can also be reparameterised as

h(Yij | λ, τ) (see Supplementary Material S4). This approach allows each component of

(3.1) to be maximized separately, where the first component is maximized at (λ̂, τ̂) and

second component at (µ̂, ν̂). This approach is attractive as it involves smaller-dimensional

optimization problems. The estimator of ρ from maximizing (3.1) with h(Yij | λ, τ) is

ρ̂ =
λ̂

Kµ̂
. (3.2)

8



Using the delta method, the variance of (3.2), on the log-scale, can be estimated as

var(log ρ̂) =
var(λ̂)

λ̂2
+

var(µ̂)

µ̂2
, (3.3)

where var(λ̂) and var(µ̂) are estimated using the inverse of the negative Hessian matrix.

The iREM estimator (3.2) and REM estimator (1.2) will coincide whenever the fol-

lowing conditions hold: 1) the maximum likelihood estimator of λ is λ̂ = Ȳ , and 2) the

maximum likelihood estimator of µ is µ̂ = V̄ . The first condition is true when the counts

follow a Poisson (λ) distribution (as shown in Section 1.1.1) or a negative binomial (NB)

distribution with a likelihood

L(Yij;λ, κ) =
c∏
i=1

n∏
j=1

Γ(κ+ Yij)

Γ(Yij + 1)Γ(κ)

(
κ

λ+ κ

)κ(
λ

λ+ κ

)Yij
, (3.4)

which has NB-2 form (Hilbe, 2011). This parametrization is in terms of the mean λ and

auxiliary parameter κ, where the variance is var(Yij) = λ+(1/κ)λ2 and 1/κ is the disper-

sion parameter. This form allows non-integer values of 1/κ. The second condition, µ̂ = V̄ ,

is true if animals are constantly moving during the trapping period and their speeds are

assumed to follow a gamma distribution, or if some species stopped altogether and zero

speeds of movement are recorded, as in Rowcliffe et al. (2008), and a zero-adjusted gamma

distribution (ZAGA) is assumed for speed of movement (see Supplementary Material S1

and S6, and S7 for proof of the first and second conditions, respectively).

3.1 Adding animal group size data

We can extend (3.1) to include data for animals that move in groups. Using counts of

randomly sampled groups, one can estimate average group size and hence the density of

individuals. Suppose that group size, sj (j = 1, ..., S), is assumed to follow some discrete

distribution whose support is the set of positive integers. The joint log-likelihood is

`(ρ, τ, µ, ν, φ) =
c∑
i=1

n∑
j=1

log h(Yij | ρ, µ, τ)+
m∑
l=1

log f(Vl | µ, ν)+
S∑
j=1

log k (sj | φ) , (3.5)
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assuming that group sizes are small and counts of the number of individuals can be made

(Buckland et al., 2001). In (3.5), k(·) is the probability mass function of the group size

data and φ represents the unconditional mean of the discrete distribution. Here, we

consider a zero-truncated Poisson model (ZTP) for the group size data, with expected

mean η = φ/
(
1− e−φ

)
. Similar to (3.1), it is possible to reparameterize h(·) in (3.5) in

terms of λ, where the first component is maximized at (λ̂, τ̂), the second component at

(µ̂, ν̂) and the third component at (φ̂) (see Supplementary Material S4.1).

3.2 Adding covariates and random effects

We might wish to add habitat type or random effects to iREM for several reasons. For

example, if animals spend more time in some habitats than others or are restricted to

partially overlapping home ranges, a habitat-specific covariate accounts for the variability

in abundance. The REM requires that camera traps be placed randomly in the study

area, with respect to animal movement. Therefore, a camera random effect could be

incorporated in the model to account for any unobserved variability.

We could model animal density as a function of a linear model via the log link function

such that the expected encounter rate becomes:

λ =

(
2 + θ

π
µrt

)
exp(Xβ), (3.6)

where βH×1 is a vector of regression parameters and β1 is the constant term; and Xn×H

is a matrix of H − 1 covariates, where x1j = 1 is the first explanatory variable. Here,

we consider habitat covariates and refer to this model as iREM with habitat. Generally,

estimates of the regression parameters, β, cannot be obtained analytically, so numerical

methods must be employed to approximate these estimates (Green, 1984). Once these

are obtained, the mean animal density over all habitats, ρmean, is computed as

ρmean =
H∑
k=1

Akexp(βk)

AT
=

∑H
k=1 Akρk
AT

, (3.7)

where Ak (k = 1, 2, ..., H) is the area of habitat k in the surveyed area; and AT =
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A1 +A2 + ...+AH is the total area. Estimating average density in this way works only for

categorical covariates. Our motivating example did not use continuous covariates, but we

briefly note here that estimating average density in this case would require values of the

covariates to be known across all grid cells of the sampling area (Miller et al., 2013). We

use the optim function in the R software with BFGS optimisation method (R Core Team,

2017), to obtain estimates of βk. The variance of ρmean can be estimated directly if the

variances of ρk or βk are known (Supplementary Material S5).

As with the covariate model (3.6), the camera random effects can be included via a

log-linear link on the expected encounter rate:

λij =

(
2 + θ

π
µrt

)
exp{log(ρ) + bi}, (3.8)

where λij are the expected counts for the jth (j = 1, 2, ..., n) day on the ith (i = 1, 2, ..., c)

camera, ρ is the density and bi is a vector of camera random effects, which are assumed to

be independently normally distributed with variance σ2
b . We use Gauss-Hermite quadra-

ture to approximate the marginal likelihood of the counts (Winkelmann, 2008). Assuming

the counts Yij and speed observations Vl are independent, and that animals encounter

camera traps independently of each other, the joint log-likelihood is

`(µ, ν, σb) ≈
c∑
i=1

log

Q∑
q=1

ni∏
j=1

wqhij(
√

2σbxq)√
π

+
m∑
l=1

log f(Vl | µ, ν), (3.9)

where hij(
√

2σbxq) = h(yij | bi =
√

2σbxq; ρ, µ) is the conditional density function of the

counts evaluated at bi, wq are weights, xq are evaluation points, and Q is the number of

quadrature points. This model is referred to as the iREM with random effect. One could

also combine models (3.6) and (3.8) to determine the effect on animal density. We refer

to this model as the iREM with habitat and random effect.

11



4 Simulation Study

We evaluate the performance of the REM estimator and iREM estimator using simu-

lation studies. We generate scenarios in which the true animal density and expected

animal speed are plausible ecologically for our motivating Whipsnade Wild Animal Park

(WWAP) data set, described in Section 5. Confidence intervals of the density are esti-

mated using the relevant methods discussed in Section 2.

4.1 Evaluation of the REM and iREM Estimators

Several researchers such as Briggs et al. (1999), Dinh and Zhou (2006) and Polsky et al.

(1997), have compared different methods of forming confidence intervals for ratios through

simulation studies. We examine the coverage properties and interval widths of the relevant

methods described in Sections 2 and 3 of calculating confidence intervals for ρ.

We simulate speed observations from a ZAGA model and counts from a negative

binomial REM with auxiliary parameter κ = 2. We set the parameter values to be

similar to those estimated from the WWAP data. Specifically, the expected speed was

set to µ = 0.71 (km day−1) and variance var(V ) = 1.275, with probability of zero response

ω = 0.30; and r = 0.012 km, θ = 0.175 radians and t = 1 day throughout (Rowcliffe

et al., 2008). We fit the REM, a Poisson iREM or negative binomial iREM to these data.

The performance of the interval estimation methods were evaluated for two scenarios: 1)

fixed and small sample sizes of camera trapping days (n) and speed observations (m), and

2) varying sample sizes for fixed parameters. We repeated the simulations 1000 times,

which gives reasonable estimates of coverage without being overly computer-intensive,

and with 1000 nonparametric replications in the bootstrap methods following recommen-

dations by Carpenter and Bithell (2000). The confidence intervals from the bootstrap

methods were computed by resampling both the counts and speeds. The criteria used

to evaluate the performance of the relevant methods for computing confidence intervals

for the REM or iREM estimators are the estimated coverage probability. That is, the

proportion of samples in each simulation experiment where the true animal density fell
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within the estimated confidence interval, and the mean interval length.

Table 1 gives the estimated coverage probability of the different confidence interval

methods based on the REM and iREM estimators. Recall that the REM and iREM

estimators will coincide under certain conditions and, whether we assume a Poisson or

NB model for the counts, the maximum likelihood estimator of the expected encounter

rate is the sample mean (see Section 3 above). For scenario 1 (fixed sample sizes),

the coverage probability of the estimated 95% large-sample confidence interval for animal

density based on the REM estimator was estimated between 90% and 92% across different

true values for ρ, indicating poor coverage. However, on the log-scale, the estimated

confidence probabilities were closer to the nominal value. The log-scale method also gave

the shortest mean interval width compared with all methods, except for the large-sample

interval for ρ̂, but as noted, that method had poor coverage. A similar performance of

coverage probability was achieved by Fieller’s method, but with considerably wider mean

interval widths than the other methods. In addition, there were incidences of infinite

confidence intervals from Fieller’s method but these were low (ranging from 0% to 0.3%

and increasing with density). For the bootstrap methods, the bias-corrected method

generally performs better than the percentile method, as is expected, since it adjusts for

the bias and skewness of the sampling distribution of ρ̂. The coverage probabilities of

the estimated 95% large-sample and log-scale confidence intervals from using the iREM

estimator were similar on average to the REM estimator, but the mean interval widths

were generally larger.

Increasing sampling effort (scenario 2) resulted in finite confidence intervals from

Fieller’s method for all experiments, but the log-scale and bias-corrected bootstrap meth-

ods gave better coverage probabilities than Fieller’s method, particularly for small ρ.

Although the log-scale method gave better coverage on average than the other methods,

with differences from nominal coverage shrinking to zero quickly with increasing sample

sizes, the mean interval widths were wider. In general, there is little to choose between the

methods for large sample sizes based on the REM estimator. The coverage probability of

the estimated 95% large-sample and log-scale confidence interval when using the iREM
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estimator is slightly better than that from the REM, particularly for large ρ (Table 1).

4.2 Evaluation of Camera Random Effect on Animal Density

We also investigate the importance of accounting for the unobserved variability from

camera random effects that may affect ρ̂. We simulate counts from a negative binomial

with auxiliary parameter κ = 2 and expected counts λij defined in (3.8), and we fit a

Poisson or negative binomial iREM with random effect and a Poisson or negative binomial

iREM. We set animal density, ρ = 75 (km2), expected speed, µ = 0.71 (km day−1) and

σb = 0.10 or σb = 0.60. The number of camera traps is set to 10, and for simplicity

we assume each camera is functioning for the same number of days. We set the number

of counts and speed observations n = m = 25 or n = m = 100, and the number

of quadrature points Q = 20, following recommendations by Cole et al. (2003) and

simulation studies (see Supplementary Material S8). Animal speed data is simulated

from a ZAGA model, and we a fit a ZAGA model to these speed observations repeating

each experiment 100 times and taking the average of the parameter estimates and their

estimated standard errors, standard deviation (Sd), root mean square error (RMSE) and

the percentage bias of the estimators. When camera random effect is small, the difference

in estimated animal density between the iREM with random effect and the iREM is

marginal (Table 2). Also, for both methods the bias in animal density is negligible (less

than 4% of the true population density, on average for small sample sizes, and less than 2%

for larger sample sizes). Increasing the camera random effect results in a large difference

in estimated animal density between the two methods, and the bias is substantial for the

iREM. As sample sizes increase, the precision in estimated σb improves.

5 Application to Whipsnade Wild Animal Park (WWAP) Data

The data used to test the REM and iREM estimators is a small data set from Whipsnade

Wild Animal Park (WWAP), Bedfordshire, UK (Rowcliffe et al., 2008). The WWAP

survey was conducted over a 6 week period from 13 June - 24 July, 2005 for a total of

n = 42 camera trap days. The park houses several free-ranging species and Rowcliffe
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et al. (2008) considered four of these species. For the purposes of analyses we consider

only three of these species that had observed zero speeds in the data: 1) wallaby, 2)

water deer and 3) mara. The park was divided into four areas of contrasting habitat.

The first two areas are open grasslands with scattered scrub: 1) Downs with a steep

scarp slope; 2) Institute Paddock (IP ) with gentle slopes; 3) Old Farm (OF ), which

is an area of rough grassland and thicket on largely level but highly broken ground; and

4) Central Park (CP ), which is an area of mixed lawns, roads, buildings and enclosures

housing large animals with scattered trees. To investigate how well the method works a

census, counting the number of animals, was carried at the end of the trapping period

between 09:30 and 14:00. Since the census was taken over a specific time period, and

animals moved among habitats there were observed zero census count in some habitats

for some species, even though cameras recorded all species in all habitats.

The REM estimator of animal density requires estimates of average speed of movement

and average group size, if animals are found in pairs or family groups. Rowcliffe et al.

(2008) used day range as an approximate estimator of speed. Rowcliffe et al. (2008)

arbitrarily selected 10 individuals following each individual for 30 minutes recording the

distance moved as the sum of all straight-line movements. A total of 10 focal watches were

conducted between 08:00 and 18:00 (in order to control for any variation in movement

patterns over the day) and day range for each species was calculated as the mean across

all focal watches for that species. During these focal watches it was observed that some

animals did not move during the period they were watched, hence, a zero speed was

recorded. Average group sizes were estimated by systematically recording the numbers

of individuals in groups encountered along transects through the study area. Since the

speeds and counts were collected from separate sources, they are considered independent.

Table S9.1 in Supplementary Material S9 provides a summary of the WWAP data.

5.1 The REM and iREM Estimators

In this section, we fit the REM and iREM to WWAP data, providing estimates of den-

sity in heterogeneous habitats and the overall mean density of each species over habitats.
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Rowcliffe et al. (2008) estimated animal density in each habitat separately, but we can es-

timate these densities simultaneously using the maximum likelihood formulation of REM,

obtaining confidence intervals from using the large-sample or nonparamteric bootstrap

methods. Here, we estimate ρ in each habitat separately as in Rowcliffe et al. (2008) us-

ing the REM, and confidence interval estimates of ρ̂ are computed using the large-sample

method for log(ρ) and nonparametric bootstrap (1000 resamples) by resampling both the

speeds and the counts from the REM estimator. For the iREM estimator, large-sample

confidence interval estimates are computed from the estimated standard errors of β̂. We

assume average group size and speed to be constant over all habitats. Table 3 compares

estimates of animal density in each habitat and mean animal density with the census

density for the three species.

For wallaby, the difference between the estimated mean animal density and census

density is less than 28%, and the estimated mean animal density from the census (in-

cluding estimated animal density from the census in each habitat) is captured within an

approximate 95% confidence interval from all confidence interval methods. In all cases,

except for estimated mean animal density, the log-scale method gave the shortest interval

widths based on the REM estimator. For water deer, the difference in estimated animal

density and mean density from the census is 59% but the mean density from the census

is captured within an approximate 95% confidence interval from all methods. Habitat-

specific density estimates for water deer differed dramatically (more than three-fold) from

census values in some cases, however, it must be remembered that animals were free to

move between habitats. The camera-based estimates effectively integrate across any such

movements, whereas the census occurred at a single point in time, which may not have

been representative of the longer survey period. In terms of which is the best method

for estimating variability of the density of the water deer based on the REM, we would

recommend the log-scale method as it gave the shortest interval widths for all estimates.

The estimated mean animal density of mara is very different from that of the mean

census density (Table 3), and the density from the census is not captured within an

approximate 95% confidence interval calculated using any of the three methods (log-
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scale, bias-corrected or percentile bootstrap). This result coincides with estimates from

Rowcliffe et al. (2008) who showed that the REM performed well in extracting absolute

densities from encounter rate data, and the estimated densities for all species, except

mara, did not differ significantly from the census results. The problem with the mara

estimates is a result of poor survey design. The mara like to inhabit open areas, and

during the WWAP survey the mara were mostly seen in Central Park, which is an open

area most frequented by people. So in order to avoid crowding camera traps with too

many human photographs, camera traps were located away from these crowded areas,

and where the mara did not graze frequently. Hence, limited capture data were recorded,

leading to the severe underestimation of the density. The percentile bootstrap method

has the shortest confidence interval widths for estimated density in Downs and IP, while

the log-scale gave the shortest confidence widths for estimated animal density for the

other habitats and the estimated mean animal density.

With regards to estimated standard errors from the large-sample and bootstrap meth-

ods based on the REM, the bootstrap standard error estimates are considerably larger.

But, one could easily compare these on the log-scale and see clear similarities between

the two methods since both methods are attempting to capture the variability that comes

from using an estimate of the mean speed (see Table S9.2 in Supplementary Material S9).

The REM and iREM gave a similar performance as in our simulation example, where

estimated large-sample interval widths from the iREM are larger than those estimated

from the REM. As shown in Section 4.1, the iREM performed slightly better than the

REM, particularly for large ρ and large sample sizes. At WWAP, there were large numbers

of camera records and large census densities recorded for wallaby and water deer (see

Table S9.1).

We also show the implications of using Fieller’s method in practice when certain con-

ditions (see Section 2) are not met. Table S9.3 in Supplementary Material S9 presents the

results from Fieller’s method. Fieller’s method gave infinite (unbounded, UB) confidence

intervals for wallaby. Franz (2007) state that to avoid this situation a necessary and

sufficient condition must be satisfied: the (1− α) confidence interval of the denominator
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(KV̄ ) must not contain zero. If this condition is not met, then its confidence interval

allows values arbitrarily close to zero and the confidence sets are unbounded. Fieller’s

method also provides negative confidence limits for some species. Since the distribution

of ρ̂ is positively skewed this indicates poor coverage (Buckland et al., 1993). The cases

where negative confidence intervals are estimated arise when the data are rather limited;

in this case, the numbers of mara recorded by camera traps were 3, 1, 2, and 3 in the

Downs, IP, OF and CP, respectively (see Table S9.1 in Supplementary Material S9).

5.2 Model Comparison

Here, we apply the iREM, the iREM with habitat, the iREM with random effect and the

iREM with habitat and random effect to the WWAP data set. Models are compared in

Table 4 using AIC. Animal density from the census is compared with estimated animal

density of the three species from the four iREM models. Estimated standard error from

the Hessian matrix is given in parentheses. We also give the parameter estimates from

the best model based on AIC in Table 5. The results (Table 4) show that the best method

for the wallaby and water deer is the iREM with habitat and camera random effect. For

the wallaby, the difference in estimated animal density from the iREM with habitat and

random effect decreased by at least 90% compared with the simpler iREM method. For

the water deer, estimated animal density from the iREM with habitat and random effect

was closer to the census density than the estimate from the iREM with habitat alone.

Model comparison based on ∆AIC indicates that the iREM with random effect is the

best model for mara, even though the other models provide estimates of animal density

that are slightly closer to the census density. Except for the mara, the estimated camera

random effects σ̂b < 1.

6 Discussion and Conclusions

In this research, we have developed new approaches for estimating animal density from

camera trap data. The random encounter model developed by Rowcliffe et al. (2008) for

animal density estimation is a ratio estimator, which is simple and easy to use. We showed
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that this estimator can be derived using maximum likelihood estimation, by assuming the

counts follow a Poisson distribution. To determine the precision of the ratio, we examined

five different methods for calculating confidence intervals, five of which are relevant for

the REM moments estimator. These methods include: large-sample confidence interval

for animal density (delta), log-scale, bias-corrected bootstrap, percentile bootstrap and

Fieller’s method. Our simulation example shows that these five different methods for

calculating confidence intervals can produce different confidence intervals. We found

that confidence intervals derived from using the log-scale method were more dependably

accurate than those constructed from the other methods. In particular, the log-scale

method gave shorter interval widths, on average, compared with the other methods,

except for the delta method for small sampling effort. This result is also evident in the

real data analysis, and is substantiated by Buckland et al. (2001).

Fieller’s method can produce reasonably accurate coverage, but it gave the widest

confidence interval width for all experiments, and in some cases, failed to produce finite

confidence intervals. These results are also obtained in the real data analysis, particularly

for the wallaby data where confidence intervals were unbounded. The delta method

performed the poorest in terms of coverage, but it gave the shortest confidence interval

width, on average. For Fieller’s method (Franz, 2007) and the delta method (O’Brien

et al., 1994) mis-coverage would occur for small sample sizes as the distribution of the

ratio is unlikely to follow a well-behaved distribution (a result seen in our simulation

example for sample sizes < 200). Furthermore, it is not guaranteed for ratios that the

delta method or Fieller’s method would give exact confidence intervals when sample sizes

are large since the denominator of the ratio may not be significantly different from zero

(Franz, 2007). This is evident in our simulation example from Fieller’s method when

animal density and sample sizes are large.

Of the bootstrap methods, no clear patterns emerged in terms of rank of ordering of

performance in coverage and confidence interval width. The bias-corrected method was

designed to adjust for the bias and skew of the sampling distribution (Puth et al., 2015)

but also to give similar performance where the percentile method does relatively well as
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shown by our simulation example, and thus can be favoured. As regards which method to

adopt, we recommend the log-scale method as the method we would choose for estimating

variability of animal density from the REM estimator. The log-scale method is designed

to give better coverage than the other methods by allowing for the asymmetric shape of

the sampling distribution of the density (Buckland et al., 2001).

As an alternative to the REM estimator, one could use the integrated Random En-

counter Model (iREM) to obtain estimates of animal density and its variance. Both the

REM and the iREM are simple and easy to use if the density of animals in a study area is

required or if one also wishes to account for the variability in animal density in heteroge-

neous habitats. We have shown that it is not essential to use the integrated log-likelihood

to obtain the variance of animal density in these cases, as the counts and speeds could be

modelled separately and the variances of these could simply be combined to determine

the uncertainty of estimated animal density. This makes the iREM attractive, as it leads

to smaller dimensional optimization problems. However, if more complicated modelling

is required, for example to account for unobserved variability in animal density, we would

recommend the joint-likelihood for estimating animal density and its variance. These are

difficult to obtain analytically, so numerical approximation are required and therefore, the

iREM estimator is favoured over the simple REM estimator or modelling of the counts

and speed separately. The iREM is also flexible to estimate density of animals moving

in groups, providing that some assumptions of estimating this density of animals moving

in groups from camera trap data are met. Camera traps are similar to point transects

in distance sampling (Buckland et al., 2001), which are both fixed at a given position,

recording images of passing animals. However, there are inherent difficulties with the

use of camera traps in assessing group sizes. If the detection probability is dependent

on both the distance from the point (in this case the camera trap) and group size, there

would be difficulties in obtaining an unbiased estimate of the expected group size. This

dependence arises because large groups are more likely to be detected further away from

the camera, while small groups might remain undetected. This phenomenon would cause

an overestimation of the expected group size because too few small groups are detected,
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i.e., they are under-represented in the sample. Another complication arises as distances

should be measured from the point to the geometric centre of the group (see Buckland

et al., 2001, Ch. 1). In camera trapping, the distance from the camera to the centre of

the group is unobservable, and it becomes impossible to quantify the detection zone, par-

ticularly for larger, more dispersed groups and estimation of the density becomes difficult

(Rowcliffe et al., 2011). In particular, large groups near the camera would be detected,

but their centres may lie outside of the detection zone given the narrow width of the

detection zone near the camera trap. Buckland et al. (2001, pp 75-76) suggest that the

problems of estimating average group size may be avoided by taking the sampling unit to

be the object, not the group. However, in this case, the independence assumption would

be violated. Alternative resampling methods such as the bootstrap can be used to pro-

vide valid variance estimation in this case, but analytical variance estimation and model

selection procedures would not be valid. This remains an avenue for future research.

Both the REM and the iREM can give reliable estimates related to animal abundance

and answer key ecological questions, but the REM lacks the potential to account for the

sampling variability in the speed of movement and camera random effects. Although

the iREM is flexible to incorporate multiple sources of variability, model fitting can

be complex and computer-intensive, especially the iREM with both random effects and

habitat covariates. It is also possible to test the robustness of both the REM and iREM

since long term camera trap data sets, designed for population estimation do exist (e.g.,

Barro Colarado (BCI), Panama) (Rowcliffe et al., 2011). However, the sampling design

differs from the WWAP data set and would require applications of distance sampling

theory for animal density estimation, which is outside the scope of this work.
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Table 2: Average estimates from the iREM with random effect and the iREM for Q = 20 quadrature
points (average standard error in parentheses). The Standard deviation (Sd), Root Mean Square Error
(RMSE) and percentage bias are given.

Sample sizes True Values iREM with random effect iREM
ρ µ σb ρ̂ µ̂ σ̂b ρ̂ µ̂

n = m = 25
75 0.71 0.10 79.92 (19.92) 0.70 (0.13) 0.08 (0.23) 80.78 (18.95) 0.70 (0.13)

Sd 20.62 0.13 0.13 20.70 0.14
RMSE 19.82 0.13 0.23 19.81 0.13
%bias +6.56% −1.75% −20.30% +7.71% −1.75%

75 0.71 0.60 85.95 (25.36) 0.71 (0.13) 0.51 (0.24) 99.86 (23.37) 0.70 (0.13)
Sd 27.02 0.14 0.25 33.25 0.14

RMSE 27.63 0.13 0.25 34.13 0.13
%bias +14.60% −2.10% −14.70% +33.15% −2.10%

n = m = 100
75 0.71 0.10 76.13 (9.08) 0.71 (0.07) 0.06 (0.12) 76.53 (8.80) 0.71 (0.07)

Sd 9.77 0.07 0.08 9.81 0.07
RMSE 9.15 0.07 0.13 8.93 0.07
%bias +1.50% −0.16% −35.48% +2.04% −0.16%

75 0.71 0.60 77.40 (14.72) 0.71 (0.07) 0.54 (0.13) 89.59 (10.31) 0.71 (0.07)
Sd 18.35 0.07 0.17 21.03 0.07

RMSE 14.91 0.07 0.15 17.87 0.07
%bias +3.20% +0.63% −10.79% +19.45% 0.63%
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Table 4: Model comparison of the four methods proposed above using AIC: iREM, iREM with
haitat, iREM with random effect and iREM with habitat and random effect. Density from the
census ρ and its estimate ρ̂ or ρ̂mean(in km2) are also given for each method (estimated standard
error in parentheses).

Species Census iREM
iREM

with habitat
iREM

with random effect
iREM

with habitat and random effect
ρ ρ̂ ∆AIC ρ̂ ∆AIC ρ̂mean ∆AIC ρ̂mean ∆AIC

wallaby 468 816 (337.58) 27.98 595 (247.45) 20.74 768 (325.51) 28.9 497 (223.21) 0

water deer 119 155 (76.58) 69.34 190 (96.23) 19.20 61 (34.19) 11.64 160 (90.87) 0

mara 68 3 (1.70) 1.24 8 (5.23) 5.76 1 (1.74) 0 5 (5.20) 5.02

Table 5: Estimated density ρ̂ (km2) and census density ρ of wallaby and water deer in
each habitat (standard errors are in parentheses), along with model parameter estimates
for expected speed µ, random effect variance σb, and probability of zero-response category ω.

Habitat
CP Downs IP OF ρ̂mean µ̂ σ̂b ω̂

wallaby

ρ 96 1101 760 803 468

ρ̂ 271 (163.49) 684 (782.36) 1133 (1338.99) 561 (677.79) 497 (223.21) 0.71 (0.28) 0.62 (0.15) 0.20 (0.16)
water deer

ρ 72 73 36 577 119

ρ̂ 214 (133.00) 58 (65.09) 8 (11.84) 272 (296.68) 160 (90.87) 1.17 (0.56) 0.68 (0.21) 0.40 (0.26)
mara

ρ 108 30 7 0 68

ρ̂ 7 (8.45) 3 (6.28) 2 (4.72) 3 (6.44) 5 (5.20) 2.56 (1.21) 1.13 (0.67) 0.30 (0.21)
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