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ABSTRACT With the rapid growth of the express industry, intelligent warehouses that employ autonomous
robots for carrying parcels have been widely used to handle the vast express volume. For such warehouses,
the warehouse layout design plays a key role in improving transportation efficiency. However, this work
is still done by human experts, which is expensive and leads to suboptimal results. In this paper, we aim
to automate the warehouse layout designing process. We propose a two-layer evolutionary algorithm to
efficiently explore the warehouse layout space, where an auxiliary objective fitness approximation model is
introduced to predict the outcome of the designed warehouse layout and a two-layer population structure
is proposed to incorporate the approximation model into the ordinary evolution framework. Empirical
experiments show that our method can efficiently design effective warehouse layouts that outperform both
heuristic-designed and vanilla evolution-designed warehouse layouts.

INDEX TERMS Evolutionary algorithm, intelligent warehouse, robots.

I. INTRODUCTION

The global express delivery industry has been a trillion mar-
ket, serving people’s daily life around the world. In 2017,
the industry revenue is 248 billion USD [1] and in China,
particularly, the annual gross express volume has surpassed
30 billion USD since 2016 [2]. During the recent two years,
a new type of shipping warehouses, with intelligent robots
sorting thousands of parcels per hour, emerged [3]. As shown
in Figure 1a and 1b, autonomous robots carry parcels across
the warehouse and unload the parcels into the target holes
which connect to the vehicles heading to the target desti-
nations. The layout of the warehouse, i.e. the matching of
the holes and the target destinations, is usually designed by
human experts. It can be challenging and also likely to be
suboptimal, especially when the number of holes is large as
shown in Figure 1b. Moreover, the demand of such warehouse
layout design is not one-off, since the distribution of the
parcel destinations is not fixed and the warehouse layout
design should be adaptive to achieve the best performance.
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In this paper, we present an evolution-based method for
automatically designing warehouse layouts. To tackle the
efficiency issue arising from the time-consuming evaluation
of each designed warehouse layout, we consider training a
neural network to predict outcomes of layouts without actu-
ally running agents in it, which is known as fitness approx-
imation in the context of evolution [4]. We further propose
a novel two-layer population structure to incorporate the
prediction model into the evolution framework for improv-
ing efficiency, which can be categorized as multiple-deme
parallel genetic algorithms [5]. Particularly, the higher layer
consists of layouts that are actually evaluated and occupies
a small fraction of the whole population while the lower
layer contains layouts whose fitnesses are predicted by the
learned model. Compared to existing methods for combining
fitness approximation with evolution [6], [7], the proposed
two-layer evolutionary algorithm explicitly manages evalu-
ated individuals and predicted individuals separately in two
sub-populations and trains the approximation model online
using the samples evaluated by the original fitness function.
As such, the proposed method incorporates fitness function
approximation into the multiple-deme parallel genetic algo-
rithm naturally. Moreover, within an evaluation of a designed
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FIGURE 1. (a) Real-world robotic warehouse for parcel sorting
(screenshot from [3]). (b) Robotic warehouse environment. The triangles
stand for the sources where parcels emerge. The circles stand for the
robots carrying the parcels. The squares stand for the holes for the agents
to put into the parcels. The squares are colored according to which
destination the parcels coming into will go to. The agents repeatedly take
a parcel with a color (destination) from a source to a hole with the same
color. The objective is to maximize the total number of parcels processed
by the agents in a fixed period.

warehouse layout, we can observe not only the final outcome
but also additional agent trajectories that comprise hidden
information about the causes of the outcome. To take advan-
tage of such additional information to improve the quality
of the prediction model, we construct an auxiliary objective,
i.e. to predict the heatmap of the environment where each
individual value is the total number of visits of a point.

Our experiments for designing warehouse layouts demon-
strate improved efficiency and better performance compared
to both manual design and vanilla evolution-based methods
without fitness approximation. Such a two-layer evolution-
based environment optimization framework is promising to
be applied to various environment design tasks.

Il. RELATED WORK

There are many real-world scenarios that can be regarded
as environment design problems, ranging from game-level
design with the desired level of difficulty [8], shopping
space design for impulsing customer purchase and long
stay [9] to traffic signal control for improving transporta-
tion efficiency [10]. In a recent work, [11] formulates these
environment design problems using a reinforcement learning
framework. In this paper, we focus on a new environment
design scenario, i.e. warehouse layout design, emerging from
the rapidly growing express industry.

Traditional warehouse design problems can be categorized
to three levels, strategic level, tactical level, and operational
level [12]. At the strategic level, long-term decisions are
considered, including the size of a warehouse [13] and the
selection of component systems [14]. At the tactical level,
medium-term decisions are made, such as the layout of a
conventional warehouse [15], [16]. At the operational level,
detailed control policies are studied, e.g. batching [17] and
storage policies [18]. The problem discussed in this paper is
about warehouse layout design, which is at the tactical level
traditionally. However, in the era of big data, the layout of
warehouse could be adaptive to the changes of the exter-
nal environment. Specifically, the layout of the warehouse
could be redesigned at intervals according to the changing
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destination distribution of the parcels. Thus, this problem is
better to be categorized as an operational level problem.

For solving this problem, we adopt evolutionary algo-
rithms. As getting a guiding signal means evaluating the
designed objective in the target task, which would result
in an unacceptable computational resource requirement for
scenarios where evaluation is expensive. To reduce the num-
ber of expensive evaluations on real data needed before
a satisfying result can be obtained, some works propose
to learn a model to predict the outcome of a designed
objective without actually running on real data [19], [20].
A similar idea has been explored in the field of evo-
lution and is known as fitness approximation [4]. Due
to the inaccuracy of fitness approximation, it is essential
to use the approximation model together with the origi-
nal fitness function [21], [22]. To incorporate the fitness
model into the simulation-based evolutionary algorithms,
individual-based [23] and generation-based [22] methods
are studied. Differently, our approach explicitly manages
two sub-populations whose individuals are evaluated by the
approximation model and the original fitness function respec-
tively. Similar approaches are known as multiple-deme par-
allel genetic algorithms [5]. Our work can be classified
as a multiple-deme parallel genetic algorithm with a two-
layer sub-population topology to balance exploitation and
exploration.

Ill. PROBLEM DEFINITION

In this section, we formulate the environment design problem
and introduce a particular robotic warehouse environment.
We fix the agent policy in the robotic warehouse environment
and focus on the remaining task, assigning destinations to
the holes, which can be viewed as an environment design
problem.

A. ENVIRONMENT DESIGN

In many scenarios, there are n agents taking actions in a
designable environment, such as cars running in a trans-
portation system, consumers shopping in a mall, and so
on. Denote the i agent’s policy as 7; and the environ-
ment is parametrized as My = (S, A, Ty, Rg, 1), where
S,A, Ty, Ry, A denote state space, action space, transition
function, reward function and reward discount respectively.
After the agents play in the environment in an episode, a joint
trajectory H = (s1, ai, $2, az, ...) is produced and a cumula-
tive reward G; is given to the ih agent, where s; and a; denote
state and joint action respectively. Moreover, the objective of
the environment designer is given as O(H ), whose function
form can be defined specifically, and the designer intends to
design an optimal environment to maximize the expectation
of its objective

0" = arg max E[O(H)| Mo; 71__n]. (H
o

Note that the randomness of H is derived from the possible
randomness of wr; when selecting actions.
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B. ROBOTIC WAREHOUSE ENVIRONMENT

In this paper, we consider a robotic warehouse environment
abstracted from a real-world express system as shown in Fig-
ure la, where there is a warehouse for sorting parcels from
a mixed input stream to separate output streams according to
their respective destinations. The sorting process is done by
the robots carrying parcels from the input positions (sources)
to the appropriate output positions (holes) in the plane ware-
house as Figure 1b illustrates. Note that Figure 1b simpli-
fies the real scenario in Figure la into a discrete form. The
acceleration and deceleration of the agents are ignored in the
discrete form. In order to maximize the efficiency of sorting,
we should set the robots’ cooperative pathfinding algorithm
and assign the destinations to the holes. In this task, the agents
share a common reward G and the environment also takes
G as its design objective, i.e. O(H) = G. We set 7y as a
joint policy model for the agents. As such, the problem is
formulated as

0%, ¢* = argmax E[G| My, mg]. 2)
6.0
For solving Eq. (2), we should firstly set a sound cooperative
pathfinding algorithm 74+ for the robots. After, we focus on
optimizing the environment parameter 6, i.e. optimizing the
layout of the warehouse (the assignment of the destinations
to the holes) via

0* = argmax E[G|My; my+]. 3)
)

Note that the demand for such environment layout design
is not one-off. Since the external variables (such as the
destination distribution of the parcels) may be changing,
the best layout of the warehouse is changing accordingly.
Thus, the layout of the warehouse should be redesigned at
intervals, which gives a reason to find an efficient layout
design approach.

C. DETAILED ENVIRONMENT DESCRIPTION

The warehouse is abstracted as a grid containing & x w cells.
Among them, ng cells are sources and ny cells are holes,
whose locations ls1 M l;l"n" are given. There are n, robots
available to carrying parcels from sources to holes. Each cell
is only for one robot to stand.

In each time-step, each robot is able to take a move
to an adjacent cell. When an empty robot moves into a
source, it loads a new parcel whose destination follows a
distribution over n, destinations (cities) with the proportions
D1,P2, .., Pny- On the other hand, when a loaded robot
moves into a hole with the destination that is as the same as the
loading parcel’s, it unloads the parcel into that hole. That is
to say, the rates of input and output flows are not restricted in
our setting. Parcels are always sufficient when a robot moves
into a source.

Our objective is to sort as many parcels as possible in
a given time period 7. We could achieve this objective by
designing the layout of the warehouse, i.e. assigning the
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proper destinations to the holes. Specifically, we should deter-
mine the parameter 6 = (61, 62, ..., ,,) of the environment
Mg, where 6; € {1..n4} for i = 1..ny,. Intuitively, the assign-
ment of the destinations to the holes will affect the robots’
paths and hence the efficiency of the whole warehouse.

The notations defined in this section are listed in Table 1.

TABLE 1. Notations and descriptions.

Notation | Description Type
h Height of warehouse Input
w Width of warehouse Input
Ng Number of source cells Input
np Number of hole cells Input
li""s Locations of source cells Input
l}ll“nh Locations of hole cells Input
Ny Number of robots Input
ng Number of parcel destinations Input
Pl..ngy Proportions of parcel destinations Input
Length of timestep Input

01..n N Assignment of destinations to holes | Output

D. PROBLEM COMPLEXITY

For the problem defined above, the scale of the layout
assignment space is nZ", where n;, denotes the number of
the holes and ny denotes the number of the parcel desti-
nations. Since the robot pathfinding algorithm works like
a black box to evaluate each layout assignment, it is hard
to determine a global optimum without exploring the solu-
tion space completely. Thus, this optimization problem is an
exponential time problem. Even for a small setting, such as
ny = 20, ng = 5, the number of the assignments is as large as
about 100 trillion, which is hard to be explored completely.

E. ROBOT PATHFINDING ALGORITHMS

In our problem, the robot pathfinding algorithm is fixed.
As the robots are quite dense in the real-world warehouse, jam
prevention is the key point. We considered two cooperative
pathfinding algorithms with jam prevention design. The first
one adopts WHCA* [24] as a planner, which searches the
shortest path from an origin to a destination for each robot
in turn and ensures non-collision. The second algorithm is
a greedy one, which guides the robots by a lookup table
in each position and reduces conflicts by setting one-way
roads in the map as illustrated in Figure 2a. We studied these
two algorithms and the results showed that the greedy one
has a significant advantage on time complexity and a minor
disadvantage on performance. Due to the large simulation
demand for testing environment parameter, we selected the
time-saving greedy algorithm as the agent policy in our
experiments. However, the proposed warehouse layout design
solution can work with other robot pathfinding algorithms
as well.

IV. SOLUTION

In this section, we first introduce an evolution frame-
work for automatically designing warehouse layout and then
present the auxiliary objective fitness approximation and the
two-layer population structure for improving the efficiency.
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FIGURE 2. (a) An illustration of one-way roads: i) the odd-row cells
allow moving right and forbid moving left, while the even-row cells
allow moving left and forbid moving right; ii) the odd-column cells allow
moving down and forbid moving up, while the even-column cells allow
moving up and forbid moving down. The left-down cell is in Row 1 and
Column 1. (b) A layout sample as an individual in the evolutionary
algorithm. (c) An example of the heatmap.

A. EVOLUTION WITH ROBOT POLICY SIMULATION

Under the evolution framework, we maintain a population
containing n warehouse layout individuals, i.e. assignments
of the destinations to the holes (Figure 2b), and evolve
the population for n, generations. Within each generation,
we perform crossover, mutation, and selection in the order:

o In the crossover phase, we randomly select ¢ pairs
of samples. For each pair of samples, we splice their
holes from two matrices to two lines respectively. Then,
we randomly select a common breakpoint for both
lines and cross the two lines just like chromosomal
crossover. Finally, we generate two square matrices by
reshaping the two lines.

o In the mutation phase, we randomly select m; sam-
ples generated in the crossover phase. For each sample,
we randomly select my holes and randomly permute
their destinations.

o In the selection phase, we evaluate the generated
samples in the crossover and mutation phases by robot
policy simulations, then merge the original and the gen-
erated samples. The best n ones are selected for the next
generation.

B. TWO-LAYER EVOLUTIONARY ALGORITHM WITH
FITNESS APPROXIMATION

In this section, we propose a novel evolutionary algorithm
that trains an auxiliary objective fitness function to evaluate
a large population for providing promising individuals to a
small population evaluated by simulations.

1) AUXILIARY OBJECTIVE FITNESS APPROXIMATION

In practice, the simulation of robots performing in the envi-
ronment is time-consuming. A promising way to reducing
the simulation time is to use an approximation function to
compute fitness:

f6(0) = G ~ E[G|My; mp+], 4

where fg is the fitness approximation function, 6 is a sample
of environment parameter and G is the predicted fitness of 6,
whose learning target is the expectation of the reward G.
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Moreover, since a simulation generates a trajectory H in
addition to the reward G, we consider utilizing H to help
training fitness function fi. Although G is the exact objective
for fitness function to learn, we may extract additional infor-
mation /(H) from H that helps training the fitness function,
under the assumption that G and [ are correlated. We set
an auxiliary training objective and use a neural network to
capture this:

£©O) = (O, falfx @) = (I, G) Q)
~ (E[I(H)| Mg, 4], E[GI My, m4+]),

where f is a neural network consisting of three sub-networks:
fx is the bottom network that captures the common features
and outputs X; f7 and fi are the two separate networks on the
top of X that predict Tand G respectively.

In the robotic warehouse layout design problem, 6 rep-
resents the assignment of the destinations to the holes and
H represents the movements of the robots. Furthermore,
we define / as the heatmap of the movements as Figure 2¢
shows. Intuitively, the distribution of busy areas should be
correlated with the efficiency of sorting and the reward. The
process of learning the fitness function in the warehouse
layout problem is illustrated in Figure 3.

Predicted
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FIGURE 3. An illustration of the process of evaluating an assignment
sample 0. First, the latent representation X is learned via shared deep
layers. Then based on X, separated layers are built to predict heatmap /
and reward G respectively. Two loss functions are calculated based on the
difference between the prediction and the simulated results.

Since obtaining simulation samples is time-consuming,
we train the fitness model online. Specifically, the fitness
model is trained with the samples simulated along the process
of the evolutionary algorithm. There is no pre-training in our
approach.

2) TWO-LAYER POPULATION
The fitness model provides a less accurate but more speedy
evaluation than the simulation. This property indicates that
the simulation is better to find the local optimum exactly and
the fitness model is better to explore the global space speedily.
For the standard simulation-based evolution, mutation rate
is usually set small enough to ensure convergence within
an acceptable time, thus the search space is relatively local.
Therefore, we consider incorporating the fitness model into
the standard simulation-based evolution as an additional part
of exploring the global space.

Specifically, we maintain two sub-populations. The first
one is of the same size as the population set in the standard
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Algorithm 1 Two-Layer Evolutionary Algorithm With Fit-
ness Approximation (A Literal Expalnation of Figure 4)

Require: noble population N, civilian population C,
untrained fitness model f, empty simulation sample set
S
1: for each generation do
2 generate N1 from N by crossover and mutation;
3: generate C| from C by crossover and mutation;
4 rank C U Cj by f to generate top population C»,
middle population C3 and bottom population Cy;
5: evaluate N1 and C; by simulation and add the results
toS;
6: rank N UN; U C; by the simulation score to generate
top population N, and bottom population N3;
7 generate random population R and discard Cy;
: pass N> to the next generation as N;
9: pass N3 U C3 U R to the next generation as C;
10: update f using S.
11: end for

simulation-based evolution. Also, the individuals in the first
sub-population are evaluated by simulations. The second
sub-population is multiple times larger than the first one
and the samples in it are evaluated by the fitness model.
We view the second sub-population as a candidate population
whose top individuals have a chance of joining the first sub-
population. On the other hand, the bottom individuals in
the first sub-population may be moved to the second sub-
population. We name the first-layer sub-population noble and
the second civilian. Noble population and civilian population
evolve separately while keeping a channel for migration.

In detail, the two-layer population evolves as Figure 4 and
Algorithm 1 show. In general, N and C maintain individuals
evaluated by the simulation and the fitness model respec-
tively. In each generation, migration takes place. Specifically,
C, from the civilian layer go up to the noble layer and N3
from the noble layer go down to the civilian layer. In addi-
tion, the civilian layer discards the worst population C4 and
absorbs a randomly generated population R.

There are 9 parameters related to the proposed two-layer
evolutionary algorithm. They are noble population number
|N|, civilian population number |C|, crossover rate cy, cc,
mutation rate my, mc, |Cz| for the number of civilian

€rossove \ran;( by :

N .
[N]o| ana |]ni] "lsimulatio :

mutation, Training :

meley ﬁ E

/ top: C; :

crossove;

and

mutation

v
Cec] [Rp)

FIGURE 4. The process of the two-layer population evolutionary
algorithm in a single generation. The yellow and grey squares stand for
the populations who have been (or will be) evaluated by simulation and
the fitness model respectively.
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individuals migrate to the noble layer, |R| for the number
of the randomly generated individuals, and 7, for the num-
ber of model updates in each generation. Other variables
can be determined by these parameters. In each generation,
IN1| + |C>| simulations, n, model updates and |C| model
predictions are performed. Since the time cost of training
the network and use it to predict is negligible compared
to the simulations (see Table 4), the time complexity of
the two-layer evolutionary algorithm for n, generations is
O(ng(IN1] + | C2]).

V. EXPERIMENT

We set up a virtual intelligent warehouse environment based
on real-world settings and test our proposed approach com-
paring to the baselines.

A. EXPERIMENT SETTINGS

Environment: We test our proposed approach in 20 x 20
maps. The positions of the sources and holes are set as
real-world scenarios. The detailed parameters are given
in Table 2. The destination distributions are set according
to long-tail functions to reflect reality. In our experiments,
the reward is defined as the sum of parcel loading times and
unloading times (roughly two times as the number of parcels
processed).

TABLE 2. Environment parameter settings.

hlw|ns | ny|ne| na T Pl.ny
20 [ 20 | 12 | 20 | 60 | 5 1000 | 0.367,0.267,0.2,
0.133,0.033

Robots: As introduced, we adopt a greedy algorithm as
the cooperative pathfinding algorithm for the robots. Firstly,
we set one-way roads in the map as Figure 2a shows
to avoid opposite-directional conflicts, while right-angled
conflicts are avoided by setting priority. On the one-way
roads, the robots decide moves by a look-up table con-
taining h X w X (ng 4+ np,) records, each of which indicates
the first step towards a particular source or hole from a
particular cell.

Baselines: We test 5 baselines to compare with our pro-
posed two-layer evolutionary algorithm (TLEA). Random:
The holes are assigned with random destinations uniformly.
Heuristic: Destinations select holes in turns according to
their proportions. For example, if 10% parcels are going to
destination A, then A select 10% of the holes. This process
starts from the destination with the most proportion. Each
destination greedily selects each hole that minimizes the sum
of the average distance from the sources to the selected holes.
Simu: The evolutionary algorithm with simulations as intro-
duced in the Solution section. Simulnd: An implementation
of the individual-based evolution control algorithm [23]. This
approach maintains a single large population for evolution

1our experiment is repeatable and the source code is provided on the
GitHub: shorturl.at/gmBI9.
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FIGURE 5. Environments designed by Random, Heuristic, Simu and TLEA.

whose individuals are evaluated by the fitness model. In each
generation, the best individuals evaluated by the fitness model
are evaluated by the simulation once again. The fitness model
is trained online with the samples produced by the simula-
tions. SimuGen: An implementation of the generation-based
evolution control algorithm [22]. This approach also main-
tains a single large population as Simulnd. The difference is
that SimuGen uses the simulations intensively in a generation
and uses the fitness model in the next several generations.

Hyper-Parameters: To ensure fairness, for Simu, Simulnd,
SimuGen, and TLEA, the number of generations is set as
60 and the number of simulations in each generation is set
as 200. The model update and prediction times are also
fixed as 5000 and 10000 respectively for Simulnd, Simu-
Gen and TLEA. The population of Simu is 100; in each
generation, 200 individuals are generated by crossover; 50
of them are mutated. For Simulnd and SimuGen, the pop-
ulations are 5000; 10000 are generated by crossovers
in each generation; 2500 of them are mutated. For the
TLEA, |N|, |C|, cn, cc, my, mc, |Ca|, |R|, n, are set to be
100, 5000, 1, 1, 0.25, 0.25, 50, 2500, 5000 respectively.

Fitness Model: Our network is composed of three
sub-networks fx, f7, fg. The output of fx is used for the input
of f; and fi. fx has two fully connected layers whose output
is a vector that can be reshaped to match the size of the map.
Then, a 2D transposed convolution layer follows.f; has one
transposed convolution layer to generate the heat map. And
fc contains three fully connected layers to predict the reward.
All the layers except the output layers have a ReL.U activation
function. The loss functions for the two outputs are set to be
MSE. The first two fully connected layers have 128, 400 units
respectively. The first 2D transposed convolution layer has
16 filters. And the second one has one filter. The three fully
connected layers for reward prediction have 256, 128 and
1 unit respectively.

Hardware: We use two computers with an Intel core
i7-4790k and an Intel core 17-6900k respectively. The one
with 4790k also has an extra Nvidia Titan X GPU.
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FIGURE 6. (a) Learning curves averaged over 10 runs. The Y-axis is the
reward received by the best individual in each population. (b) Impact of
the civilian population for a particular run. Initially, the purity of each
individual in the noble population is set to be 1 and each civilian is set to
be 0. During the evolution, each child’s purity is the mean of its parents’
purity.

B. RESULTS

We perform the baselines and TLEA. The results are shown
in Table 3. We find Heuristic is fairly high compared to
Random but is inferior to evolutionary algorithms. Moreover,
TLEA outperforms all the baselines.

TABLE 3. Performance of Random, Heuristic, Simu, Simulnd, SimuGen
and TLEA. The algorithms are repeatedly performed for 10 runs. The
reward samples pass the Shapiro-Wilk test to be normal. T-tests are
performed for TLEA against Simu, Simulnd and SimuGen. The statistical
results show that the superiority of TLEA is significant.

Reward | T Score P-Value
Random 4757 - -
Heuristic 5386 - -
Simu 5572 58778 | 7x107°
Simulnd 5605 277708 | 6.3 x 10~ 2
SimuGen 5499 5.8782 7x 106
TLEA 5646 - -

Figure 5 shows the layouts designed by the baselines and
TLEA with the heatmaps. We can see that the tracks of the
robots running in the maps of TLEA are better balanced,
indicating that there are fewer traffic jams.

Figure 6a shows the learning curves. Since Simulnd and
SimuGen mix the individuals evaluated by the simulation
and the fitness model, their current best individuals may
be the over-estimated ones by the inaccurate fitness model,
which may lead to discarding the real best individuals. TLEA
solves this problem by separating the two populations and
ensure that the real best individual is always kept in the noble
population.

In addition, TLEA and Simu are more stable than Simulnd
and SimuGen, because the temporary best individual may
be evaluated by the fitness model in Simulnd and SimuGen,
which may be corrected by the simulation in later generations.
The slight fluctuations of Simu and TLEA are caused by the
variance of the simulations, which results in that the best sam-
ples can be over-estimated (which is much slighter than the
fitness model) and would be averaged by extra simulations in
later generations.

C. DISCUSSIONS
Time Cost: The time costs of the tested algorithms are listed
in Table 4. It shows that the time cost proportion of the fitness
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TABLE 4. Time cost comparison. The average time costs for simulation,
model update and model predicting are 2.62s, 2.42ms and 1.06ms
respectively. The number of generations is 60 for all the algorithms.

Simu | Simulnd | SimuGen | TLEA
Simulation 12k 12k 12k 12k
Model Update 0 300k 300k 300k
Model Predicting 0 600k 600k 600k
Time 8.73h 9.11h 9.11h 9.11h

model is less than 5%. In our experiment, we just ignore the
time difference between Simu and other algorithms.

Effectiveness of Heatmap: We evaluate randomly gener-
ated samples by the simulations and use them to train the
fitness functions with and without heatmaps as auxiliary
objective. We compare MSE and Pearson Correlation of them
in Table 5, which shows that heatmap provides significant
improvement to the fitness function.

TABLE 5. Comparison of fitness functions with and without heatmap.

Sample MSE Pearson Correlation

Number | w/o Heatmap w/o Heatmap
5000 436 | 2.89(-33.72%) | 0.277 | 0.519(+87.36%)
10000 | 2.75 | 1.59(-42.18%) | 0.405 | 0.687(+69.63%)
20000 | 1.67 | 0.69(-58.68%) | 0.766 | 0.908(+18.54%)

Simulation Allocation: Since simulations are scarce
resources when running the evolutionary algorithm, the allo-
cation of simulations between the noble layer and the civilian
layer is important. Moreover, it also determines the mi%ra—
tion rate between the two layers. We test different wllfiﬁ’
the ratio of simulations allocated to the noble layer, and find
that 0.75 is a proper setting (see Table 6), which means three
fourths simulations are allocated to ensure the accuracy of the
noble layer and one fourth simulations are allocated to give

chances to the civilian layer.

TABLE 6. Simulation allocation analysis.

Noble Proportion | 0.25 0.5 0.75 1
Reward 5629 | 5634 | 5646 | 5581

Impact of Civilian Population: We are interested in
how much contribution has the civilian population made
to the evolution of the noble population. We calcu-
late a number named purity that measures how much
the evolved noble population inherits from the initial
noble population. As Figure 6b shows, the purity of the
noble population declines rapidly along with the increas-
ing of the reward (fitness). Finally, the civilian pop-
ulation contributes more than 70 percent to the noble
population.

Limitation of the Algorithm: In general, the proposed
TLEA can be used in environment design problems that have
massive environment parameters. Although the algorithm
is able to work with simple hyper-parameters, the optimal
hyper-parameters rely on problem domain knowledge and
need fine-tuning.
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VI. CONCLUSION

In this paper, we study the problem of automatic warehouse
layout design. The proposed two-layer evolutionary algo-
rithm takes advantage of a fitness approximation model, aug-
mented with an auxiliary objective of predicting the heatmap.
Our approach enhances the exploration of the evolutionary
algorithm with the help of the fitness model. The exper-
iments demonstrate the superiority of our approach over
the heuristic and the traditional evolution-based methods.
For future work, we would apply the proposed two-layer
evolutionary algorithm to other environment design scenar-
ios, such as shopping mall design, game design, and traffic
light control.

REFERENCES

[1] IBISWorld. (2018). Global Courier & Delivery Services Industry—Market
Research Report. [Online]. Available: goo.gl/h6fdWq

[2] W.Fan, M. Xu, X. Dong, and H. Wei, “Considerable environmental impact
of the rapid development of China’s express delivery industry,” Resour.,
Conservation Recycling, vol. 126, pp. 174-176, Nov. 2017.

[3] C.People’s Daily. (2017). Robots Sorting System Helps Chinese Company
Finish at Least 200,000 Packages a Day in the Warehouse. [Online].
Available: goo.gl/hLbYhV

[4] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft Comput., vol. 9, no. 1, pp. 3—12, Jan. 2005.

[5] E. Canti-Paz, “A survey of parallel genetic algorithms,” Calculateurs
Paralleles, Reseaux Syst. Repartis, vol. 10, no. 2, pp. 141-171, 1998.

[6] E. D. de Jong, D. Thierens, and R. A. Watson, ‘“Hierarchical genetic
algorithms,” in Proc. Int. Conf. Parallel Problem Solving Nature. Berlin,
Germany: Springer, 2004, pp. 232-241.

[7] Y.-S. Hong, H. Lee, and M.-J. Tahk, “Acceleration of the convergence
speed of evolutionary algorithms using multi-layer neural networks,” Eng.
Optim., vol. 35, no. 1, pp. 91-102, 2003.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, ‘“‘Search-
based procedural content generation: A taxonomy and survey,” IEEE
Trans. Comput. Intell. Al in Games, vol. 3, no. 3, pp. 172-186, Sep. 2011.

[9] A. Penn, “The complexity of the elementary interface: Shopping space,”
in Proc. 5th Int. Space Syntax Symp., vol. 1, 2005, pp. 25-42.

[10] H. Ceylan and M. G. H. Bell, “Traffic signal timing optimisation based
on genetic algorithm approach, including drivers’ routing,” Transp. Res.
B, Methodol., vol. 38, no. 4, pp. 329-342, 2004.

[11] H.Zhang,J. Wang, Z. Zhou, W. Zhang, Y. Wen, Y. Yu, and W. Li, “Learn-
ing to design games: Strategic environments in reinforcement learning,” in
Proc. IJCAI 2018, pp. 3068-3074.

[12] B. Rouwenhorst, B. Reuter, V. Stockrahm, G.-J. van Houtum, R. J. Man-
tel, and W. H. M. Zijm, “Warehouse design and control: Framework
and literature review,” Eur. J. Oper. Res., vol. 122, no. 3, pp. 515-533,
2000.

[13] Y. Roll, M. J. Rosenblatt, and D. Kadosh, “Determining the size of a
warehouse container,” Int. J. Prod. Res., vol. 27, no. 10, pp. 1693-1704,
1989.

[14] A. Keserla and B. A. Peters, “Analysis of dual-shuttle automated stor-
age/retrieval systems,” J. Manuf. Syst., vol. 13, no. 6, pp. 424-434, 1994.

[15] Y. Bassan, Y. Roll, and M. J. Rosenblatt, “Internal layout design of a
warehouse,” AIIE Trans., vol. 12, no. 4, pp. 317-322, 1980.

[16] J. R. Berry, “Elements of warehouse layout,” Int. J. Prod. Res., vol. 7,
no. 2, pp. 105-121, 1968.

[17] E. A. Elsayed and R. G. Stern, “Computerized algorithms for order pro-
cessing in automated warehousing systems,” Int. J. Prod. Res., vol. 21,
no. 4, pp. 579-586, 1983.

[18] M. Goetschalckx and H. D. Ratldff, “Optimal lane depths for single and
multiple products in block stacking storage systems,” IIE Trans., vol. 23,
no. 3, pp. 245-258, 1991.

[19] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural archi-
tecture search using performance prediction,” 2018, arXiv:1705.10823.
[Online]. Available: https://arxiv.org/abs/1705.10823

[20] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘“Progressive neural architecture
search,” 2017, arXiv:1712.00559. [Online]. Available: https:/arxiv.org/
abs/1712.00559

VOLUME 7, 2019



H. Zhang et al.: Layout Design for Intelligent Warehouse by Evolution With Fitness Approximation

IEEE Access

[21] D. E. Grierson and W. H. Pak, “Optimal sizing, geometrical and topo-
logical design using a genetic algorithm,” Struct. Optim., vol. 6, no. 3,

pp. 151-159, 1993.

[22] A. Ratle, “Accelerating the convergence of evolutionary algorithms by
fitness landscape approximation,” in Proc. Int. Conf. Parallel Problem
Solving Nature. Berlin, Germany: Springer, 1998, pp. 87-96.

[23] L. Bull, “On model-based evolutionary computation,” Soft Comput.,
vol. 3, no. 2, pp. 76-82, 1999.

[24] D. Silver, “Cooperative pathfinding,” in Proc. AIIDE, vol. 1, 2005,

pp. 117-122.

VOLUME 7, 2019

HAIFENG ZHANG received the B.S. degree in
computer science from Peking University, the sec-
ond bachelor’s degree in economics from Peking
University, in 2012, and the Ph.D. degree from
Peking University, in 2018, under the supervision
of Prof. W. Li. He is currently a Research Fellow
with University College London, under the super-
vision of Prof. J. Wang. His research areas include
reinforcement learning, game Al, game theory, and
computational advertising.

ZILONG GUO received the bachelor’s degree
from Shanghai Jiao Tong University. He is cur-
rently pursuing the master’s degree with the
University of Southern California. His research
interests include artificial intelligence, machine
learning, and reinforcement learning.

WEINAN ZHANG is currently an Assistant Pro-
fessor with the Department of Computer Science,
Shanghai Jiao Tong University. He has published
50 research articles on conferences and journals,
including KDD, SIGIR, AAAL, WWW, WSDM,
ICDM, JMLR, and IPM. His research interests
include machine learning and data mining, partic-
ularly, deep learning and reinforcement learning
techniques for real-world data mining scenarios.

HAN CAl received the B.S. and M.S. degrees from
the School of Electronics Information and Electri-
cal Engineering, Shanghai Jiao Tong University,
in 2016 and 2019, respectively. He is currently
pursuing the Ph.D. degree with the Massachusetts
Institute of Technology. He has over ten publi-
cations, including AAAI, NIPS, and ICLR. His
research interests are mainly in the areas of
machine learning, reinforcement learning, and
AutoML.

CHRIS WANG received the B.S. degree from the
University of Alberta, Canada. He is currently
pursuing the master’s degree with Peking Univer-
sity. His research interests include artificial intelli-
gence, machine learning, and robotics.

YONG YU is currently a Professor with the Depart-
ment of Computer Science, Shanghai Jiao Tong
University. His research interests include infor-
mation systems, web search, data mining, and
machine learning. He has published over 200 arti-
cles and a dozen of other related conferences (e.g.,
NIPS, ICML, SIGIR, and ISWC) in these fields.
He served as PC Member for several conferences,
including WWW and RecSys.

WENXIN LI received the B.S., M.S., and Ph.D.
degrees from the Department of Computer Sci-
ence and Technology, Peking University, in 1990,
1993, and 2001, respectively, and the second Ph.D.
degree from the Department of Computing, The
Hong Kong Polytechnic University, in 2004. She
has been the Associate Dean of the School of
EECS, since 2010. She is currently a Professor
with the Department of Computer Science and
Technology, School of EECS. Her research inter-

ests include biometrics, image processing, pattern recognition, content-based
image retrieval, and education.

JUN WANG is currently a Chair Professor of
computer science with University College Lon-
don and the Founding Director of the M.Sc.
Web science and big data analytics. He is also a
Co-Founder and the Chief Scientist with Medi-
aGamma Ltd., a UCL start-up company focusing
on Al for intelligent audience decision making.
His main research interests are in the areas of
Al and intelligent systems, including (multiagent)
reinforcement learning, deep generative models,

and their diverse applications on information retrieval, recommender systems
and personalization, data mining, smart cities, bot planning, and computa-
tional advertising.

166317



