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ABSTRACT This paper investigates joint unmanned aerial vehicle (UAV) trajectory planning and time
resource allocation for minimum throughput maximization in a multiple UAV-enabled wireless powered
communication network (WPCN). In particular, the UAVs perform as base stations (BS) to broadcast energy
signals in the downlink to charge IoT devices, while the IoT devices send their independent information in the
uplink by utilizing the collected energy. The formulated throughput optimization problem which involves
joint optimization of 3D path design and channel resource assignment with the constraint of flight speed
of UAVs and uplink transmit power of IoT devices, is not convex and thus is extremely difficult to solve
directly.We take advantage of the multi-agent deep Q learning (DQL) strategy and propose a novel algorithm
to tackle this problem. Simulation results indicate that the proposed DQL-based algorithm significantly
improve performance gain in terms of minimum throughput maximization compared with the conventional
WPCN scheme.

INDEX TERMS Unmanned aerial vehicle (UAV), wireless powered communication network (WPCN),
Internet of Things (IoT), trajectory design, deep reinforcement learning (DRL).

I. INTRODUCTION
The Internet of Things (IoT) ensures the data collection and
exchange by interconnecting heterogeneous smart devices
such as sensors, smart phones, smart transportation sys-
tem, which makes machine-to-machine (M2M) communi-
cation and seamless communication possible [1], [2]. The
massive application scenarios in IoT may generate rigorous
communication requirements such as low latency, high relia-
bility and safety. The Long-Term Evolution (LTE) can’t sup-
port Machine-Type communication (MTC) effectively due to
the fact that they focus on broadband communication [3].
The fifth generation (5G) mobile network brings higher
throughput, lower end-to-end latency and enhanced security
mechanism, which is capable of meeting the massive IoT
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communication demands. Thus, IoT has received significant
research attention in 5G era.

In a conventional scene, the IoT devices are battery-
constrained and can’t handle enormous energy consump-
tion. Radio frequency (RF) based energy harvesting (EH)
can be regarded as a prospective scheme to extend the life-
time of energy-constraint IoT devices [4]. Moreover, massive
ground IoT devices have large and frequent communication
requirements. Wireless powered communication network
(WPCN) [5] which integrates wireless power transfer (WPT)
and wireless information transfer (WIT), provides a feasible
solution for energy-constraint IoT devices. Authors in [6]
proposes a classic protocol named ‘‘harvest-then-transmit’’
(HTT). In this protocol, the ground users get charged by the
downlink energy flow first, and then transmit their uplink
information signals by utilizing the collected energy. More-
over, time division multiple access (TDMA) is adopted as
a typical design for WPCN in [6] and sum-throughput is
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maximized by optimizing time resource allocation. Further-
more, a multi-antenna energy beamforming and space divi-
sion multiple access (SDMA) protocol is employed in [7] for
higher spectrum efficiency. In [8], the authors combine multi-
user multi-in multi-out (MIMO) technology with cognitive
radio and WPCN for maximizing the sum throughput. The
authors in [9] and [10] introduce backscatter communication
mode into HTT-based WPCN for the sake of maximizing
the throughput. However, there is still a challenge named
‘‘doubly-near-far’’ in conventionalWPCN [11], whichmeans
that comparing with devices close to base station (BS),
devices far away from BS harvest less wireless energy in the
downlink but have to consume more to transmit information
in the uplink.

Owing to its high maneuverability and flexibility,
unmanned aerial vehicle (UAV) can provide greater proba-
bility of line-of-sight (LoS) channel and better connectivity
comparing to the conventional fixed BS. Therefore, UAV has
been applied in many research fields of wireless communi-
cation. In [12] and [13], UAVs perform as flying relays in
order to achieve the end-to-end throughput maximization by
jointly optimizing UAV’s trajectory planning and transmit
power control. In [14], the authors introduce UAV into a
conventional WPCN, and propose a channel-weighted path
planning method to maximum the sum throughput, where
UAV performs as an assistant of located BS. In [15], a UAV-
aided WPCN is considered, in which the UAV performs as
the aerial BS in order to provide service to a cluster of ground
users. A joint successive hover-and-fly trajectory design and
wireless resource allocation protocol is proposed in [15] for
throughput maximization. Authors in [16] consider a wireless
network in which multiple UAVs provide wireless communi-
cation service, and the co-channel interference and transmit
power control are discussed. In [17], the authorsmaximize the
number of users in coverage subject to the minimum transmit
power by optimizing 3D placement of UAV.

Deep learning (DL) has been proved to be a powerful
tool for solving non-convex problems and high complexity
issues, which has been widely applied in the optimization of
wireless communication system [18]–[22]. As a kind of deep
reinforcement learning (DRL), deep Q learning (DQL)makes
action strategy by utilizing Deep Neural Network (DNN)
and performs well while dealing with dynamic time-variant
environments [23]. Therefore, DQL provides a promising
technique for UAV’s dynamic control. Authors in [24] adopt
reinforcement learning (RL) for the purpose of acquiring
the optimal hover position of UAVs. In [25], UAVs make
decisions based on deep Q network (DQN) for energy-
efficient data collection while they are deployed in smart
cities. ADRL-basedUAV control strategy is proposed by [26]
for maximizing both the energy efficiency and communica-
tion coverage.

A. MAIN CONTRIBUTIONS
The previous research have investigated the UAV andWPCN
related system, and provide effective solutions for throughput

maximization [15], [16]. However, the work in [15] only
considers a single-UAV based WPCN which is not suitable
for the scene of massive IoT devices. In [16], a multi-UAV
assisted wireless communication network is proposed but the
energy supply of ground devices is not considered. Work
in [17] investigates the 3D placement of UAV for the pur-
pose of maximizing the coverage, but the flexible trajectory
design is not taken into account. In the scenario with a lot of
energy-constraint IoT devices located in a large area, multi-
UAV and downlink WPT are both worth studying. Further-
more, the 3D trajectory design of UAV is necessary in order
to achieve better channel quality. Motivated by the above
research, we put forward a minimum throughput maximiza-
tion problem for multi-UAV enabledWPCNwith jointly opti-
mization of 3D trajectory design and time resource assign-
ment. The contributions of this paper are summarized as
follows.

1) We come up with a WPCN in which multiple UAVs
provide reliable energy supply and communication ser-
vices to IoT devices. Based on the considered model,
our target is to maximize the minimum throughput
by jointly scheduling the UAVs’ trajectory planning
and time resource assignment with the constraint of
maximum flight speed, peak uplink power and flight
area. Nevertheless, the minimum throughput optimiza-
tion problem is not convex which is unmanageable.
In order to tackle this problem, we introduce the con-
cept of DQL.

2) We put forward a multi-agent DQL based strategy
in order to maximize the minimum throughput by
jointly optimizingUAVs’ path design and time resource
assignment. In particular, each UAV owns an indepen-
dent DQN for making action strategy while the other
UAVs are considered as a part of environment. After
each epoch, UAVs receive a reward or penalty based
on the minimum throughput.

3) The simulation results illustrate that our algorithm
accomplishes significant performance improvement in
the field of minimum throughput optimization com-
pared with the traditional schemes.

B. ORGANIZATION
The rest of this paper is organized as follows. In Section II,
the multi-UAV enabled WPCN model is presented, and we
formulate the minimum throughput maximization problem.
In Section III, the multi-agent DQL based algorithm is pro-
posed to jointly design UAVs’ trajectory and time resource
allocation. Our simulation results are provided in Section IV
to demonstrate the effectiveness of the proposed algorithm.
Finally, conclusions is given in Section V.

II. PRELIMINARIES
In this section, we first introduce the system model of the
considered multi-UAV enabled WPCN, and then formulate
the corresponding UAVs’ path planning and time resource
allocation problem.
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FIGURE 1. A multi-UAV enabled WPCN.

A. SYSTEM MODEL
We consider a WPCN system in which multiple UAVs per-
form as aerial BSs to support ground IoT devices in a given
area as shown in Fig. 1. We repartition the IoT devices into
L clusters and each UAV is in charge of a cluster. All the
UAVs are equipped with single antenna and share the same
frequency band. IoT devices in the particular area are denoted
as K = {K1, · · · ,KL}, where devices in the l-th cluster
are denoted as Kl , l ∈ L = {1, 2, · · · ,L}. Then, we have
Kl ∩ Kl′ = ∅, l ′ 6= l, l ∈ L, which means there is no overlap
between the clusters. For any cluster l, l ∈ L, we consider
a UAV-enabled TDMA system which adopts HTT protocol,
where the UAVs travel through the area periodically to charge
the cluster via downlink WPT, and each device utilizes its
collected energy to send the information in the uplink.

Let us analyze the system within a specific flight period of
the UAVs, represented as t ∈ [0,T ]. We describe the loca-
tions of IoT devices and UAVs in a 3D Cartesian coordinate
system. To be specific, the locations of device kl ∈ Kl and
UAV l are respectively denoted as wkl = (xkl , ykl , 0) and
ql(t) = (xl(t), yl(t), hl(t)), hmin ≤ hl(t) ≤ hmax , hl(t) denotes
the altitude of UAV l. To facilitate the analysis, the flight
period T is discretized into N +1 time slots. In order to make
sure that the UAVs is approximately stationary in a time slot,
the numberN is selected to be adequately large. Suppose vmax
is the maximum speed of UAVs, then the location of UAVs
should satisfy∥∥ql[n]− ql[n− 1]

∥∥ ≤ Vmax · δN , (1)

where δN =
(1− α)T

N
denotes the length of each subslot

for uplink, α stands for the proportion of downlink WPT in a
period.

The channel condition of UAVs and IoT devices in our
system can be regarded as air-to-ground channel, in which
the LoS and non-line-of-sight (NLoS) appear randomly. The
probability of LoS can be expressed as [27]

PLoS (θl,kl ) = b1(
180
π
θl,kl − ζ )

b2 , (2)

where θl,kl [n] = sin−1(
hl[n]
dl,kl [n]

) denotes the elevation angle

from IoT device kl to the UAV l in the n-th time slot,

dl,kl [n] =
√
(xl[n]− xkl )2 + (yl[n]− ykl )2 + hl

2[n] is the
distance between UAV l and device kl . Besides, b1 and b2
stand for constant values representing the environment influ-
ence, ζ is another constant value which is determined by
both the antenna and the environment. Note that, the NLoS
probability is PNLoS = 1− PLoS .

The path loss model for LoS and NLoS links between UAV
l and device kl is given by [28]

Ll,kl =


µ1(

4π fcdl,kl
c

)α, LoS link,

µ2(
4π fcdl,kl

c
)α, NLoS link,

(3)

where µ1 and µ2 are the attenuation coefficients of the LoS
and NLoS links, fc and c denotes the carrier frequency and the
speed of light respectively, α stand for the path loss exponent.
Considering (2) and (3), the channel’s power gain between
UAV l and device kl can be denoted as

gl,kl [n] = [PLoSµ1 + PNLoSµ2]−1(K0dl,kl [n])
−α, (4)

where K0 =
4π fc
c

.
Next, we illustrate the TDMA and HTT transmission pro-

tocol of the UAV-enabled WPCN in detail. As mentioned
above, there are N + 1 time slots in each flight period T .
Specifically, the 0-th time slot is assigned to the downlink
WPT and the n-th time slot, n ∈ N = {1, 2, · · · ,N } is
allocated to the uplink WIT. We use binary variable al[0] to
denote the downlinkWETmode of UAV l, al[0] equaling 1 or
0 respectively represent that the energy is transferred or not
by the l-th UAV; while al,kl [n] is used to represent the uplink
WIT allocation between UAV l and IoT device kl at n-th time
slot. Specifically, al,kl [n] equaling 1 or 0 means IoT device kl
does communicate or does not with the l-th UAV. Since the
TDMAprotocol is employed, the following constraints on the
time resource allocation should be considered

al[0] = {0, 1},∀l ∈ L,
al,kl [n] = {0, 1},∀l ∈ L, kl ∈ K, n ∈ N ,∑

kl∈Kl

al,kl [n] ≤ 1,∀Kl ∈ K, l ∈ L, n ∈ N . (5)

At 0-th time slot of each flight period, the UAVs transmit
the downlink energy signals with the transmit power PD.
Therefore, the collected energy of each IoT device kl at period
T is expressed as

Ekl =
L∑
i=1

η · α · T · ai[0] · gi,kl [0] · P
D, ∀l ∈ L, kl ∈ K,

(6)

where η ∈ (0, 1] denotes the RF-to-direct current(DC) energy
conversion efficiency of each device.

Then, we consider the WIT mode for IoT device kl ∈ K at
time slot n. Let PUkl [n] denotes the uplink power of device kl
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at n-th time slot, then the available energy Ekl [n] of device kl
in n-th time slot can be represented as

Ekl [n] = Ekl −
n−1∑
j=1

al,kl [j] · δN · P
U
kl [j]. (7)

Therefore, the upper bound of uplink power for IoT device kl
should satisfy

al,kl [n]δNP
U
kl [n] ≤ Ekl [n],

N∑
j=1

al,kl [j] · δN · P
U
kl [j] ≤ Ekl . (8)

Accordingly, the received SINR γkl [n] of UAV l connected
to IoT device kl at time slot n is given by

γkl [n] =
PUkl [n]gl,kl [n]

Ikl [n]+ σ 2 , (9)

where σ 2
= BklN0, N0 represents the power spectral density

of the additivewhite Gaussian noise (AWGN) at the receivers.

Moreover, Ikl [n] =
L∑

j=1,j 6=l
PUkj [n]gl,kj [n] is the inference

received by UAV l from cluster j, j ∈ L, j 6= l.
Then the instantaneous throughput Rkl [n] of IoT device kl

can be represented as

Rkl [n] = Bkl log2(1+
PUkl [n]gl,kl [n]

Ikl [n]+ σ 2 ). (10)

Therefore, the average throughput Rkl of IoT device kl of the
flight cycle T can be denoted by

Rkl =
1
T

N∑
n=1

al,kl [n]Rkl [n]

=
1
T

N∑
n=1

al,kl [n]Bkl log2(1+
PUkl [n]gkl [n]

Ikl [n]+ σ 2 ). (11)

B. PROBLEM FORMULATION
Let A = {al[0], al,kl [n],∀l, kl, n}, P

U
= {PUkl [n],∀kl, n},

Q = {ql[n],∀l, n}. In this work, our optimization objective
is to maximize the minimum average throughput of a multi-
UAV enabled WPCN by jointly optimizing the IoT devices’
association {al[0], al,kl [n]}, the uplink power {PUkl [n]}, and
the UAVs’ 3D trajectory {ql[n]}. Therefore, the throughput
optimization problem can be mathematically formulated as
follows

(P1) max
Rmin,A,PU ,Q

Rmin

s.t. Kl ∩ Kl′ = ∅, l ∈ L, (12.1)

hmin ≤ hl[n] ≤ hmax ,∀l ∈ L, (12.2)

al[0], al,kl [n] = {0, 1},∀l ∈ L, kl ∈ K, n ∈ N ,
(12.3)∑

kl∈Kl

al,kl [n] ≤ 1,∀Kl ∈ K, l ∈ L, n ∈ N , (12.4)

N∑
j=1

al,kl [j] · δN · P
U
kl [j] ≤ Ekl , (12.5)

Rkl ≥ Rmin,∀kl ∈ K, (12.6)∥∥ql[n]− ql[n− 1]
∥∥ ≤ Vmax · δN . (12.7)

Constraint (12.1) indicates that each device belongs to a
non-overlapping cluster and associates with a specific UAV.
Constraint (12.2) indicates the flight range of UAVs. Con-
straint (12.3) and (12.4) represent the time resource allocation
restrictions. Equation (12.5) qualifies the peak uplink power
constraint of each IoT device. Constraint (12.6) indicates the
minimum rate requirement of each IoT device. Constraint
(12.7) represents the maximum speed constraint of UAVs.

It can be observed that there exist two reasons making it
difficult to solve problem (P1). First, equations (12.3) and
(12.4) have binary constraints on al[0] and al,kl [n]. Besides,
constraints (12.5) and (12.6) have complicated energy and
rate functions with respect to coupled variables al[0], al,kl [n],
PUkl [n], ql[n]. Therefore, problem (P1) is mixed-integer non-
convex, and we can’t obtain a feasible solution by general
methods. As a result, we come up with a DQL based strategy
for the purpose of optimizing the minimum throughput.

III. JOINT MULTIPLE UAVS’ 3D TRAJECTORY PLANNING
AND TIME RESOURCE ASSIGNMENT ALGORITHM
Since the throughput optimization problem is non-convex
which is complicated to resolve directly, we bring in the
DQL algorithm in this section to solve the minimum through-
put maximization problem. In particular, we introduce the
background of DQL first and then describe the proposed
throughput optimization strategy in detail.

A. DEEP Q LEARNING
ARLproblem can be described as aMarkovDecision Process
(MDP), which is defined by a 4-tuple < S,A,P,R >.
In particular, S = {s1, s2, · · · , sm} represents the state space,
A = {a1, a2, · · · , am} denotes action space. R denotes the
reward function and particularly R(s, a) represents the reward
for executing action a at state s.P is the transition probability
matrix. The optimal policy is obtained through the interaction
between RL agent and the environment. To be specific, an RL
agent observes the environment and then obtains the current
state st ∈ S. The next state of agent st+1 can be obtained
after choosing and executing an action at ∈ A. At the end
of a cycle, the agent receives a reward rt according to the
environment.
RL is designed to find a optimal policy π (s) for maximiz-

ing the cumulative expectation of rewards. The cumulative
reward at t-th step by executing action a at state s on the basis
of policy π can be represented by

Qπ (s, a) = E[
∞∑
k=0

γ krt+k |st , at , π], (13)

where γ ∈ [0, 1] is the discount factor.
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As a kind of model free RL, Q learning (QL) evaluates
the value of action a executed at state s without building the
environment transition model. The Q value determined by the
state-action pair is stored in a look-up table and is updated as
follow

Q(s, a)= (1−α)Q(s, a)+α(R(s, a)+λmax
a′

Q(s′, a′)), (14)

where α ∈ (0, 1] is the learning rate, s′, a′ are respectively
the next state and next action. It’s proved that Q learning can
converge to Q∗ in the case where state and action spaces are
discrete and finite.

However, since the UAVs fly flexibly in a 3D area, our
model has a large and continuous state space. The storage
and search of the Q-table becomes impractical and the con-
vergence rate might become slow. Function approximation
is adopted in several research to tackle this problem [29].
As a kind of non-linear function approximation, deep neu-
ral network (DNN) has been widely applied for large-scale
reinforcement learning [23], [30], i.e. Q(s, a) ≈ Q(s, a,w),
where w represents the weight parameters of neural network.
In DQL, the distribution of Q value function is approximated
by DNN, and the DNN is trained by means of optimizing the
loss function

L(w) = E[(yt − Q(s, a,w))2], (15)

where yt is the target Q value which is set as a label and can
be denoted by

yt = r + γ max
a′

Q(s′, a′,w). (16)

As a combination of RL and DL, DRL might be unstable
because of two reasons. First, the training samples in RL are
relevant and can’t meet the independent and identical distri-
bution demand of DL. Besides, a slight update of Q parameter
may cause a huge oscillation in the strategy, which will bring
a variation in the distribution of training samples. Experience
replay and target network mechanism are developed in order
to solve these issue [31]. In particular, replay buffer is applied
to store the state transition samples (s, a, r, s′) generated
at each episode which can be randomly sampled for learn-
ing. Due to the randomness of the samples, the correlation
between these data can be eliminated. In addition, target
network own the same structure as the online network but
different weight parameters. In particular, the parameters in
target network remain unchanged and will be duplicated from
online network periodically, thus the stability of the target can
be ensured.

Since multiple agents interact simultaneously with envi-
ronment and potentially with each other, it’s more complex
to learn in a multi-agent environment than in the single-
agent case. In [32], authors first introduce an independent
Q learning (IQL) strategy for multi-agent scenario. Based on
this work, the authors in [33] combine DQN and IQL and dis-
cuss the phenomena such as cooperation, communication and
competition in reinforced multi-agent systems. In [33], each
agent learns the action strategy with its independent DQN

and executes the action separately, and the other agents are
seen as part of environment. The Markov Property becomes
invalid in this approach and the environment is not stationary.
Despite these disadvantages, IQL achieves great results with
low complexity.

B. PROPOSED DQL-BASED SOLUTION
In our proposed multi-agent DQL-based algorithm, the IoT
devices are uniformly distributed at an area, which can be par-
titioned into L clusters by K-means [34]. Each agent stands
for a UAV, which owns an independent DQN and performs
action respectively. Meanwhile, the agents share the state
with others and regard the others as a part of environment.
After each epoch, agents get a reward or penalty based on the
shared environment.

Let us illustrate the definition of state space, action space
and reward function of agents in our algorithm.

• The state space of each agent is made up of three parts:

1) ql[n]: the location of UAV l;
2) {al,kl [n]}: the number of times that each device

communicates with UAV l;
3) {Rkl [n]}: the average throughput of devices in l-th

cluster.

• The action space contains 27 elements which are defined
by (x, y, z): (x, y, z) varying from (−1,−1,−1) to
(1, 1, 1). To be specific, x = −1 stands for that the
UAV turns to the left; x = 1 signifies that the UAV flies
towards right; y = −1 implies the UAV flies backward;
y = 1 means the UAV flies forward; z = −1 repre-
sents the UAV descends; z = 1 means the UAV rises;
(x, y, z) = (0, 0, 0) indicates the UAV remains still.
After flying to the next location, UAV broadcasts energy
flow or selects the device that owns the best channel
condition in its cluster for uplink communication.

• The reward function is defined as follows:

1) If UAV flies beyond the border after performing
action, then the UAV receives a penalty of −1 and
will be located at the boundary.

2) At each time step, if there is a cross between the
trajectory of UAV i and UAV j, then UAV i and
UAV j receive a penalty of −1 and stay at the
previous location.

3) After each epoch, if the throughput of device in
communication does not increase, which means
that the device communications with UAV too
many times, its energy is exhausted and thus the
UAV only receives the interference, in this situ-
ation the UAV receives a penalty of −1; if the
device’s throughput increases, then the UAV gets
a reward of 1.

4) After each epoch, if theminimum average through-
put of devices in a cluster is 0, which means that
some devices do not communication with the UAV
in this epoch, then the UAV receive a penalty
of −2.
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5) After each epoch, if theminimum average through-
put of all devices does not increase, then all the
UAVs receive a penalty of −1; if the minimum
averaget throughput increases, all UAVs receive a
reward of 1.

Algorithm 1 Proposed 3D Trajectory Design and Time
Resource Allocation Solution Based on DQL
1: Initialize target network and online network;
2: Initialize UAVs’ location and IoT devices’ location;
3: for episode = 1, · · · , M, do
4: for time slot t = 1, · · · , T, do
5: for UAV i = 1, · · · , L, do
6: Choose action with ε-greedy, while ε increases;
7: Get UAV i’s next location;
8: if UAV i flies beyond the border then
9: UAV i stays at the border, and gets a penalty of

−1;
10: end if
11: end for
12: for UAV i = 1, · · · , L, do
13: if UAV i and UAV j’s trajectory exists cross then
14: UAV i and UAV j stay at the previous location,

and get a penalty of −1;
15: end if
16: Execute action, and get next state;
17: if device t’s throughput does not increase then
18: UAV i gets a penalty of −1;
19: end if
20: end for
21: if time slot t = T then
22: if minimum throughput of all devices in a cluster

equals zero then
23: The UAV get a penalty of −2;
24: end if
25: if minimum throughput of devices does not

increase then
26: All UAVs get a penalty of −1;
27: end if
28: end if
29: Store (s,a,r,s’) into replay buffer;
30: Randomly select a minibatch of H samples from

replay buffer;
31: Train the network, and update weight;
32: end for
33: end for

The complete algorithm to solve the minimum throughput
optimization problem for multi-UAV enabled WPCN system
with DQL technique is summarized in Algorithm 1.

IV. SIMULATION RESULTS
In this section, we present numerical results to validate the
effectiveness and superiority of our proposed strategy in the
field of minimum throughput maximization.

For our simulations, it’s assumed that 25 IoT devices are
uniformly distributed within a 50m × 50m district. For ease
of analysis, the flight period of UAVs is set as T = 1s. The
transmission power for UAVs’ downlink and peak power for
IoT devices’ uplink transmit are respectively PD = 40dBm
and PUmax = −20dBm. The uplink power of IoT device is
defined by the available energy and average available time
slots. The maximum speed of UAVs is set as Vmax = 6m/s,
and the height of UAVs are constraint within [10, 20]m. The
energy conversion efficiency of devices is set to η = 0.1 [35].
Other simulation parameters are presented in Table 1.

TABLE 1. Simulation parameters.

FIGURE 2. Uplink minimum throughput with respect to iteration number.

First, we illustrate the converge property of the proposed
joint trajectory design and time resource allocation algorithm
in a special case with L = 3 UAVs. In order to observe the
results more intuitively, we make an average of throughput
for every 60 periods. As shown in Fig. 2, the minimum
throughput converges to a stable value after 400 iterations for
the proposed algorithm.

Afterwards, we investigate the minimum throughput maxi-
mization performance of the proposed DQL-based algorithm
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under different number of UAVs. Moreover, we compare our
proposed algorithm with the following strategies [36].

• Static: UAVs are fixed right above the centroid of its
cluster c = (xc, yc), while the height of UAVs are set
as H = 15m. The IoT devices communication with its
UAV in sequence.

• Circular trajectory: UAVs fly at a plane with altitude
of 15m, and follow a circular trajectory scheme. In this
scenario, the center c = (xc, yc) is set at the centroid
of a cluster and the radius r = min(rc, rv), in which

rc =
1
Kl

∑Kl
k=1 ‖c− uk‖ and r

v
=
vmax · T

2π
respectively

indicate the average distance between centroid and IoT
devices and the maximal radius determined by speed
constraint. Same as the static scheme, the IoT devices
are served by its UAV in sequence.

FIGURE 3. Maximum minimum throughput with respect to the number of
UAVs.

The parameters of constraints are identical as previous in
this simulation. The number of UAVs varies from 2 to 7.
From Fig. 3, it’s seen that comparing to the static WPCN,
the proposed method can achieve better minimum through-
put performance, which demonstrates that the flexibility of
UAV can improve the communication quality of WPCN.
Furthermore, for our proposed DQL, the minimum through-
put increases when the number of UAV increases from 2 to 3,
but decreases afterwards. This is because as the number of
agents increase, the cooperation between agents becomes
more complicated. On the other hand, as shown in circular
and static scheme, the throughput does not increase any more
when the number of UAVs is greater than 5. This is because
as the number of UAVs increases, the number of devices in
a cluster decreases, thus the harvested energy and time of
allocated uplink communication increase whereas the dis-
tance between UAVs gets closer and thus the co-interference
increases. In the end, the gains and interference offset each
other. Overall, our proposed DQL-based algorithm provides

FIGURE 4. Trajectories of UAVs optimized by the proposed algorithm for
UAV = 3.

FIGURE 5. Trajectories of UAVs optimized by the proposed algorithm for
UAV = 5.

better performance in maximizing the minimum throughput
of UAV-enabled WPCN.

The optimized flight trajectories of multiple UAVs for
UAV = 3 and 5 are respectively represented in Fig. 4 and
Fig. 5. For ease of observation, we choose to observe the
trajectory in a 2-dimensional coordinate system. The star
represents the IoT devices, and the triangle represents the
centroid of a cluster. As it can be seen in Fig. 4, it can be
observed that the UAVs attempted to cover all the devices
by flying around the centroid of cluster. Moreover, the UAVs
hover close with the devices in its cluster to improve the chan-
nel quality and stay away from each other as far as possible
to reduce the co-interference. In a word, the optimization
algorithm tends to make a balance between good channel
condition and existing co-interference. As shown in Fig. 5,
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the above rules are also applicable to the trajectory when
5 UAVs are deployed. These simulation results represent that
the proposed algorithm can plan the trajectory excellently no
matter how many UAVs there are.

V. CONCLUSION
In this paper, we investigate the throughput maximization
problem for multi-UAV enabled WPCN in which UAVs
act as wireless charger and information receiver to support
ground IoT devices. Our target is to maximize the mini-
mum throughput while satisfying several constraints includ-
ing maximum flying speed, maximum uplink transmit power,
time resource allocation. The formulated jointly UAVs’ 3D
trajectory design and time resource assignment optimization
problem is non-convex, which is difficult to solve straight-
forward. A multi-agent DQL based algorithm is proposed
for a feasible solution. Numerical results illustrate that the
proposed strategy surpasses the traditional strategies in the
field of maximizing the minimum throughput of multi-UAV
enabled WPCN, which confirms the advantage of adopt-
ing UAVs’ trajectory design and time resource allocation in
WPCN system.
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