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Abstract
Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically
targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during
infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important
role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the
extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the
inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-
Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can
activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and
reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction.
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Targeting Cell-Free DNA in Myocardial
Infarction

Despite our increasing understanding of the pathogenesis of
myocardial infarction, it remains a leading cause of premature
death in the Western world [1, 2]. The widespread adoption of
percutaneous coronary intervention has resulted in a signifi-
cant reduction in the duration of coronary ischaemia once the
clinical diagnosis of coronary artery occlusion and ST eleva-
tion myocardial infarction (STEMI) has been made. Restoring
blood flow to the myocardium promptly can prevent excessive
cardiomyocyte death. Conversely, delaying treatment is asso-
ciated with worse outcome and death. As a consequence of the
success in instigating rapid reperfusion therapy, there has been
an increase in the survival of STEMI patients, but this has led
to a greater incidence of subsequent heart failure [3].
Paradoxically, both ischaemia and the subsequent reperfusion
lead to excessive cardiomyocyte death which results in pro-
found “remodelling” of the heart associated with fibrotic

replacement of the myocardial cytoskeleton, altering the ge-
ometry of the ventricle and resulting in impaired pump func-
tion and heart failure—also called ventricular remodelling [4].

In order to help preserve cardiomyocyte viability after
ischaemia-reperfusion injury, attention has focussed for many
years on trying to understanding the process of cardiomyocyte
death and inflammation after myocardial reperfusion [5–8].
There is increasing evidence that inflammation induced by
ischaemia-reperfusion may actually contribute to cardiomyocyte
death, excessive scar formation, and poor ventricular remodelling
[9, 10]. Unfortunately, the results of the majority of clinical trials
into the use of anti-inflammatory therapies for treating MI have
been disappointing, illustrating our lack of understanding of
ischaemia-reperfusion-induced inflammation in the myocardi-
um. One important target is the process by which
cardiomyocytes, which are viable at the point of reperfusion,
die during reperfusion. This type of cell death differs fromphago-
cytosis or apoptosis in that it is more uncontrolled and results in
the rupture of the sarcolemma and release of the intracellular
contents into the extracellular space. Current well-established
cardioprotective strategies such as ischaemic preconditioning
preserve cardiomyocytes during ischaemia-reperfusion
injury, thereby limiting the release of intracellular debris [10].
During this process, the dying cells propagate the inflammatory
response throughout the reperfusion zone, as the intracellular
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debris act as Danger-Associated Molecular Patterns (DAMPs)
which are ligands for activation of the innate immune system
[11] (Fig. 1). This type of cell death is called “necrosis”.
Examples of DAMPs include mobility group box-1 protein
(HMGB1), heat shock proteins, adenosine, extracellular RNA,
mitochondrial DNA, and interleukin (IL)-1α all of which may
stimulate the innate immune response. Recently, it has been
shown that cells can also undergo a type of programmed necro-
sis, referred to as “necroptosis” or “pyroptosis” [12–14].
Identifying and targeting these DAMPs has provided varying
results in attempts to save myocytes from the deleterious effects
of reperfusion. This is often difficult because many identified
DAMPs such as HMGB1 have complex, multifaceted roles,
and inhibiting their function may instead be detrimental as in-
flammation is important in the process of cardiac repair after an
insult. One potential DAMP that may be a promising target is
DNA itself, which has the benefit of having no suchmultifaceted
effect once outside the cell. There is now some evidence to
suggest that cell death may be propagated by intracellular mate-
rial such as DNA in an extracellular environment, contributing to
excessive myocyte death in the myocardium after ischaemia-
reperfusion injury [15–18]. One potential DAMP that has been
highlighted is DNA and its components. This review aims to
highlight this potentially promising target for future
cardioprotective therapies.

Inflammation and Ischaemia-Reperfusion
Injury

Ischaemia causes the cardiomyocytes to switch to anaerobic gly-
colysis to generate ATP, but this increases lactate production
which causes a rapid drop in intracellular pH, driving ion ex-
changers to extrude protons at the expensive of accumulating
intracellular Na and subsequently Ca ions. While the acidic con-
ditions inhibit the opening of the MPTP (mitochondrial perme-
ability transition pore), the cytosolic calcium overload results in
cardiomyocyte hypercontracture. With reperfusion, the arrival of
oxygen permits the re-activation of the electron transport chain,
but also results in a burst of ROS (reactive oxygen species)
production. In combination with Ca overload, ROS induce the
opening of the MPTP, depleting ATP and damaging intracellular
structures. This can either directly cause cellular death via necro-
sis or can cause extensive damage to cell membranes by lipid
peroxidation and enzyme denaturation as well as direct oxidative
damage to DNA, such that the resultant non-viable cell activates
intracellular cell death signalling pathways including pyroptosis.
As a consequence, the necrotic or pyroptotic cell releases its
intracellular contents into the extracellular milieu. At a later
time-point, several hours after reperfusion, the pro-inflammatory
milieu attracts neutrophils which invade the necrotic region [10,
14, 19, 20].

During the process of reperfusion, there is an intense in-
flammatory process activated within the ischaemic area, coor-
dinated by the huge influx of immune cells that circulating
blood brings with it. A crucial aspect of the activated innate
immune response is leukocyte infiltration into the necrotic
myocardium. Leukocytes, the vast majority of which reside
in the circulation or lymphatic tissue, play an important role
during the process of myocardial infarction and repair.
Neutrophils are the most abundant leukocyte and they infil-
trate the injured myocardium early during ischaemia [21, 22].
Within the milieu of the infarcted myocardium, they exert
direct effects such as tissue infiltration [23, 24], proteolysis,
generation of oxygen free radicals [25], the release of pro-
inflammatory cytokines, and stimulation of the complement
cascade [26]. The resulting immune cascade is beyond the
scope of this review; however, its complexity and the presence
of multifunctioning mediators are undoubtedly why an effec-
tive anti-inflammatory therapy is yet to be developed.

Targeting Inflammation to Reduce MI Injury

There have been attempts to target the immune response dur-
ing and after an infarction; however, the results of the majority
of clinical trials have been disappointing. Earlier attempts
were focussed on using corticosteroids, an idea borne out of
cell-based studies showing that they conferred protection up-
on cardiomyocytes during ischaemia [27]. However, despite
this promising theory, clinical trials gave conflicting results
and in some cases raised serious concerns into the use of
corticosteroid therapy post-infarction [28, 29]. Indeed, there
is growing evidence that corticosteroids may impede fibro-
blast function and thus prevent healthy repair [30].

As understanding of the immune process has improved,
more specific immunomodulatory therapies have been trialled
in the setting of ACS. Crucial to neutrophils entering the isch-
aemic zone is the interaction of circulating neutrophils and the
vascular endothelium. One way to block this step is through
inhibiting the binding of leukocyte surface adhesion mole-
cules such as P-selectin [31–33]. Inclacumab, a P-selectin in-
hibitor, was used in a randomised trial of 544 NSTEMI pa-
tients, but the inconclusive results only showed a trend to-
wards a reduction in troponin levels in the treatment arm
[34]. The HALT-MI study looked at antibody-mediated inhi-
bition of the CD11/CD18 integrin receptor on leukocytes in
420 patients with an acute MI; however, treatment with the
antibody to the integrin did not reduce infarct size [35].
Tocilizumab, the antibody to IL-6 receptor, reduced levels of
troponin during in-hospital stay in 117 NSTEMI patients [36].
The APEX-AMI trial looked at using Pexelizumab, a
humanised monoclonal antibody that binds to C5 component
of the complement cascade, during PCI after myocardial in-
farction. A total of 5745 patients were recruited but there was
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no difference in all-cause mortality after 90 days between the
treatment and non-treatment group [37].

Despite these disappointing findings, the search for an ef-
fective anti-inflammatory therapy for acute MI continues. The
exciting results of the recent CANTOS trial in the setting of
atherosclerosis have reignited the hope of developing an
equivalent effective immunomodulatory therapy for
ischaemia-reperfusion injury. In the CANTOS trial,
Canakinumab, a human monoclonal antibody targeting inter-
leukin 1 beta (IL-1β), was administered to patients who had
previously suffered a myocardial infarct and raised circulating
CRP levels. Treatment demonstrated a 15% reduction in rela-
tive risk for the composite primary endpoint of non-fatal MI,
non-fatal stroke, and death from cardiovascular disease [38].

A huge body of animal studies offer further tantalising
hope of identifying new treatment targets in preventing the
inflammatory damage in ischaemia-reperfusion injuries.
Modulating pro-inflammatory cytokines in animal models
have yielded exciting results; IL-1β blockade in a mouse isch-
aemic cardiomyopathy model significantly improved LV
function [39]. Similar studies targeting IL-2 or IL-18 in animal
models have demonstrated significant reduction in cardio-
myocyte death and improvement in LV function [40, 41].
Chemokines [42], inflammasomes, and TGF-β [43] are some
of the other targets that have demonstrated potential benefit in
animal models of ischaemia-reperfusion injury.

However, one avenue that has received limited coverage as
a potential new target is the role of extracellular DNA and the
innate immune system. Innate immunity is the first line of
defence to tissue injury and represents an evolutionary older
branch in comparison with the more specific and targeted
adaptive immunity. The innate immune system first appeared
750 million years ago and has been remarkably conserved
throughout the evolutionary tree of life [44, 45]. A key initia-
tor of an innate immune response is immune stimulation via a
DAMP [11]. Therefore, identification of DAMPs released
during ischaemia-reperfusion injury may lead to the identifi-
cation of a valuable drug target. The appearance of excessive
amounts of intact, high-molecular-weight, extracellular DNA
is one of many differences between controlled cell death path-
ways such as apoptosis and uncontrolled necrotic cell death
[46, 47]. When cells undergo apoptosis, intracellular DNA is
methodically degraded and shielded from the immune system
by retention within plasmamembrane vesicles (apoptotic bod-
ies). However, during ischaemia, cells die primarily via a pro-
cess of necrosis during which DNA is released into the extra-
cellular space and blood. The nucleus of every eukaryotic cell
(except red blood cells, which do not have a nucleus) contains
approximately 6 pg of DNA. Therefore, since the humanmyo-
cardium contains approximately 5 billion cells, a large left
ventricular myocardial infarct could cause the death of ~ 1
billion cardiomyocytes which can potentially release ~ 1 mg
of DNA and DNA fragments into the extracellular space [48,

49]. This huge quantity of DNA is then free to diffuse within
the necrotic milieu of the infarct zone.

Another large source of extracellular DNA during ischaemia
and reperfusion comes from infiltrating leukocytes. In response
to a TLR-dependent process, neutrophils, the most abundant
leukocytes in themyocardium during reperfusion, discharge their
nuclear DNA forming an extracellular net of DNA rich in his-
tones [50]. This process, termed NETosis, ultimately kills the
neutrophil whilst it lays down a histone-rich mechanical mesh
which traps debris. NETs (neutrophil extracellular traps) can
break down and release histones causing further damage to tissue
remote from the initial necrotic site [51]. The NETs also play a
crucial role in thrombosis, platelet aggregation, and occluding
blood vessel further exaggerating coronary ischaemia [52].
Thrombi aspirated from the coronary arteries of patients who
suffered STEMI demonstrate that the burden of NETosis posi-
tively correlates with infarct size and negatively correlates with
ST segment resolution [53].

The crucial role of DNA breakdown in normal physiology
is highlighted by the fact that mice lacking the DNA cleaving
enzyme DNAse II die shortly after birth [54]. Furthermore,
deficiencies in the normal biological process of DNA diges-
tion and processing are linked to diseases with inappropriately
active innate immune systems or autoimmunity [55–57].
Elevated levels of circulating DNA are also associated with
a variety of conditions from trauma, tumour malignancy, and
sepsis, all of which are themselves associated with a degree of
immune activation or inflammation [58, 59]. Each DNA nu-
cleosome core consists of superhelical DNAwound around an
octamer of histones, composed of two copies of each of the
core histones H2A, H2B, H3, and H4 [60]. The linker histone
H1 binds to the complete nucleosome core particle and forms
higher order structures [61]. After a necrotic event, cellular
DNA may be released either as DNA fragments or as nucleo-
somes, both of which are well-recognised DAMPs [18]. The
extent to which mammalian DNA components are cytotoxic
was first investigated by Xu et al., who showed that intrave-
nous injection of isolated histones into mice caused death
through sepsis within minutes [62]. Curiously, administration
of intact nucleosomes did not have this effect. It has now been
shown that this effect is mediated through the toll-like recep-
tors TLR2 and TLR4, two crucial receptors involved in acti-
vation of the innate immune system [63]. Unlike human
DNA, foreign microbial DNA has also long been accepted
as a potent stimulator of the innate immune system [64]. A
heterogeneous group of pattern recognition receptors on im-
mune cell surfaces detects foreign microbial nucleic acids,
including TLR3, TLR7–TLR9 [65, 66].

A certain quantity of cell-free, circulating DNA is under-
stood to be part of the normal physiological state in both
humans and rodents; its concentration is tightly controlled by
extracellular DNAases [67]. It is now believed that during nor-
mal cellular process such as cell division, the amount of
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extracellular DNA remains manageable through continuous
degradation to maintain a level below the immuno-
stimulatory threshold [68, 69]. If, however, the threshold is
breached in conditions such as necrotic cell death, the DNA
may act on the same pathogenic receptor pathways stimulating
an innate immune response [70–72]. Awell-documented find-
ing in auto-inflammatory conditions is the presence of circulat-
ing cell-free DNA incorporated into immune complexes [73],
confirming the ability of DNA to act as an auto-antigen.
Previously, it was believed that the presence of unmethylated
CpG dinucleotides in microbial DNA conferred foreign DNAs
ability to interact with TLR9 and stimulate the innate immune
response. Mammalian purified DNA dinucleotides are mostly
methylated so in theory they should not exhibit an immuno-
stimulatory response, but mammalian complexed DNA, either
within histones or DNA-binding proteins, has been demonstrat-
ed to induce TLR9-mediated signalling [74, 75]. Extracellular
mammalian DNA has been shown to have this effect both by
interacting with TLR9 [76] to activate the innate immune sys-
tem and by TLR-independent mechanism which increase the
transcription of type 1 interferons a potent pro-inflammatory
cytokine [77–79]. Unlike naked DNA, cell-free chromatin con-
tains abundant proteins that may expose epitopes for helper T
cells to identify them as foreign. Indeed, the appearance of
antibodies to chromatin precedes the occurrence of anti-DNA
antibodies suggesting chromatin plays a crucial role in devel-
oping an auto-inflammatory response to self-DNA [59].

The Role of Extracellular Histones in Innate
Immunity

Apoptotic or necrotic cells induced by ischaemia release his-
tones [80] either as part of nucleosome fragments or on their
own. These extracellular histones have also been shown to
trigger inflammation and cell death, either by stimulating
pro-inflammatory cytokines resulting in the activation of cell
death pathways or through the process of neutrophil extracel-
lular traps. In human observational studies, raised histone se-
rum levels have been demonstrated inmultiple trauma patients
and correlate with severity of coagulopathy, endothelial dam-
age, and inflammation [81]. A large body of evidence demon-
strates that histone-induced cell toxicity plays a crucial role in
cell death during ischaemia-reperfusion injury of the myocar-
dium. Histones are known to activate TLR2 and TLR4; fur-
thermore, TLR knockout mice are protected from the lethal
effects of histones [63]. In an ischaemic stroke model, histone
infusion is correlated with large infarct size and conversely
histone neutralisation via an antibody infusion results in a
reduction in infarct size [82]. In a toxic liver injury model,
free histones mediated cytotoxicity of liver cells via a TLR-
dependent process—an effect that was abrogated by anti-
histone antibodies [63]. Furthermore, in liver cells, histone-

stimulated TLR activation results in activation of the intracel-
lular NLRP3 inflammasome and subsequent pyroptosis [83].
Histones have been shown to mediate endothelial cell cyto-
toxicity, resulting in acute lung haemorrhage, thrombosis, and
oedema [84]. Similar cytotoxic effects of histones have been
demonstrated in kidney injury [85], sepsis [62], and even hair
follicle death [86]. There is also increasing evidence that his-
t o n e s c a n c au s e cy t o t ox i c i t y i n d ep end en t o f
immunostimulation, damaging endothelial cells and stimulat-
ing an influx of intracellular calcium and subsequent necrosis
[84]. Thus, increasing evidence suggests free histones func-
tion as DAMPs, leading to both inflammatory and toxic re-
sponses culminating in cell death.

DNA and Cell Death (Inflammasome
Activation and Pyroptosis)

It has been shown that extracellular DNA and histones could
function as an alarmin or DAMP by causing activation of
TLRs. As well as playing a crucial role in the innate immune
system, activation of TLR can activate cell death pathways
such as pyroptosis. It is now believed that during ischaemia
and reperfusion, pyroptosis may contribute to infarct size and
subsequent poor remodelling of the myocardium [12, 87, 88].
This has culminated in a great deal of interest in targeting
intracellular cell death pathways to limit the degree of cell
death during myocardial infarction [8, 89, 90].

During ischaemia, necrotic cell debris including DNA frag-
ments circulate in the extracellular matrix creating a pro-
inflammatory milieu. Activation of the TLRs on surviving
cardiac cells in the border zone of the infarct area leads to
activation of downstream intracellular signalling pathways,
which convene to result in NF-κB mediated expression of
the protein components that make up the NLRP3
inflammasome [91, 92]. Following a secondary trigger, the
individual protein components which now exist in the cyto-
plasm of the cell aggregate to form a multiprotein oligomer
also called the inflammasome complex [93, 94]. This complex
is now able to interact with pro-caspase-1 and leads to its
conversion into its active caspase-1 form [95]. Caspase-1 be-
gins the subsequent autocatalytic activation of the pro-
inflammatory cytokines IL-1β and IL-18 [96]. An additional
substrate of caspase-1 is the cytosolic protein, gasdermin D
(GSDMD) [97–99]. Following cleavage by caspase-1, the N-
terminal fragments of GSDMD (GSDMD-N) oligomerise
within the cell membrane to form pores. These pores result
in loss of cell membrane integrity, leading pyroptotic cell
death [100]. The pores also increase membrane permeability
to IL-1β and IL-18 leading to their extracellular release, and
these cytokines amplify the inflammatory response and medi-
ate further injury [42, 87, 88, 101–108].
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Evidence for a Role of Extracellular DNA
in Ischaemia-Reperfusion Injury
of the Myocardium

A number of animal studies have proven that self-DNAmay be
an effective target to inhibit inflammation and myocyte death
during ischaemia-reperfusion injury. In a murine model, it was
demonstrated that histones caused cardiomyocyte toxicity and
an in vivo heart ischaemia-reperfusion model, DNAse 1 treat-
ment, disrupted extracellular cytotoxic chromatin resulting in a
reduction myocardial histone concentration [17]. This correlat-
ed with a significant improvement in left ventricular remodel-
ling and cardiomyocyte survival. Ge et al. supported this find-
ing in a murine model of ischaemia-reperfusion showing that
DNAse with the addition of recombinant tissue-type plasmino-
gen activator resulted in a reduction of infarct size as well as
decreasing the density of neutrophil-associated NETs [109].
This also leads to an improvement in left ventricular remodel-
ling. Curiously, this effect was not observed when DNAse or rt-
PAwas administered on its own [109]. Savchenko et al. admin-
istered DNAse to PAD4-/- mice which do not produce NETs as

well as wild type mice [110].The study demonstrated that myo-
cardial ischaemia-reperfusion injury caused an increase in nu-
cleosomes, neutrophil infiltration, and histone H3 at the site of
injury. Treatment with DNAse improved cardiac contractile
function to a similar degree in both wild type and PAD4-/-

deficient mice. This suggests that DNA fragments contribute
to cardiomyocyte dysfunction during reperfusion irrespective
of NETs, possibly by acting as a DAMP. Using an in vivo rat
model, Downey’s group have made similar findings, demon-
strating that DNAse administered after 30 min of coronary ar-
tery occlusion resulted in a significant reduction in infarct size
[111]. Interestingly, the addition of mitochondrial DNA inhib-
itor with DNAse resulted in a greater reduction in infarct size
then that which was seen with DNAse alone [111]. This would
suggest that nuclear DNA could be acting through a different
pathway than the well-recognised DAMP, mitochondrial DNA.

Endothelial dysfunction plays a crucial role in ischaemia-
reperfusion injury, contributing to myocardial stunning, mi-
crovascular obstruction, and exposing the myocytes to toxic
stimuli which contribute to lethal myocardial injury
[112–114]. Heparin consists of a high volume of negatively

Fig. 1 During necrosis, the cell membrane breaks down and the
fragmented intracellular contents enter the extracellular space. Here,
certain components such as DNA, heat shock proteins and histones can
act as danger-associated molecular patterns (DAMPs), further activating
intracellular cell death pathways via toll-like receptor (TLR). TLRs
trigger an intracellular signaling cascade that culminates in the
translocation of NF-κB to the nucleus where it stimulates the synthesis
of proteins including the components of the inflammasome complex, pro-
IL-1β and pro-caspase-1. Inflammasome activation is dependent on a

secondary signal. Extracellular DAMPs such as ATP can trigger K+

efflux, triggering the formation and activation of the inflammasome
complex. This facilitates autocatalytic activation of pro-caspase-1 into
caspase-1 and cleavage of the pro-IL-1β into IL-1β. The active
caspases contribute to pyroptosis and cell membrane rupture. The
subsequent release of intracellular contents including DNA into the
extracellular space results in this debris functioning as additional
DAMPs, thereby propagating a wave of cellular injury and death
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charged sulphated proteoglycans, binds to histones, and inac-
tivates them through high-affinity electrostatic interactions
[115]. It has long been shown that heparin protects the coro-
nary endothelium and myocardium from ischaemia-
reperfusion injury [116–119]. Both heparin and chondroitin
sulphate have both been shown to protect vascular endothelial
cells from histone-induced cytotoxicity in vitro [120, 121].
Furthermore, heparin derivatives reduce infarct size in a rat
model of ischaemia-reperfusion by inhibiting caspase-depen-
dent, cell death pathways [122].

Summary

In the quest to protect cardiomyocytes from the deleterious
effects of ischaemia-reperfusion injury, identification of
pyroptosis as a contributing factor to infarct size has revealed
a target for future cardioprotective therapies. Extracellular
DNA fragments from dead cells and neutrophils are potent
instigators of TLR-dependent inflammasome activation and
subsequent pyroptosis. The use of DNAse and DNA-
neutralising therapies has shown some promise in animal
models of preventing the damaging effects of ischaemia-
reperfusion injury. Identification and targeting the instigators
of pyroptosis may provide benefit in limiting cell death post-
infarction and preventing the morbidity and mortality associ-
ated with ischaemia and reperfusion injury.
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