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Abstract

Staged water infrastructure capacity expansion optimization models help cre-
ate flexible plans under uncertainty. In these models exogenous uncertainty
can be incorporated into the optimization using an a priori hydrological and
demand scenario ensemble. However some water supply intervention un-
certainties cannot be considered in this way, such as demand management
or technological options. In these cases the uncertainty is endogenous or
‘decision-dependent’, i.e., the optimized timing and selection of interventions
determines when and which uncertainties must be considered. We formu-
late a multistage real-options water supply capacity expansion optimization
model incorporating such uncertainty and describe its effect on cost and op-
tion selection.
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1. Introduction1

Water security can be threatened when demand increases and climate2

change reduces supplies. In this case interventions (new infrastructure and/or3

policies) must be made to meet future demands despite the timing and ex-4

tent of supply-demand changes not being known in advance. Furthermore,5

water infrastructures often have long lead-times, such as a decade or more.6

Traditionally water utilities plan system expansion on a cyclical basis (e.g.7

every 5 years) aiming to guarantee the supply-demand balance throughout8

their operating area over a long-term planning period (e.g. 25 years). Gener-9

ally, given the potential large economic costs of water infrastructure, and the10
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uncertainties in both future supplies and demands, formal planning under11

uncertainty techniques aiming for robustness and/or adaptability are war-12

ranted.13

Capacity expansion studies are at the heart of water resources engineer-14

ing (Hsu et al., 2008; Watkins Jr and McKinney, 1998; Guo et al., 2010). In15

the past a typical water utility expansion plan was a cost-effective schedule16

of supply- and demand-side capacity expansion actions over the planning17

horizon (e.g. Padula et al., 2013). The decision-making under uncertainty18

literature has shifted the goal of water supply planning towards identifying19

plans that either perform well under a wide range of plausible future con-20

ditions (via robust decision making (Lempert, 2003; Lempert et al., 2006;21

Matrosov et al., 2013b,a)) or are adaptive (i.e., adjusted progressively as22

new information becomes available (Dupačová, 1995; Ray et al., 2011; Erfani23

et al., 2018; Hui et al., 2018)). While in the first approach the investment24

decisions are insensitive to the source of uncertainty, in the latter case, they25

are optimally activated, delayed and/or replaced so as to meet the supply26

and demand gap. Approaches that are both robust and adaptive can also27

be found in the literature (Lempert and Groves, 2010; Haasnoot et al., 2013;28

Kwakkel et al., 2015).29

Most of the optimized water planning under uncertainty literature deals30

with problems where optimization decisions are independent of the uncer-31

tain parameter. That is, the uncertainty is exogenous ; e.g. climate change32

impact that is independent of decisions and is not affected by them., Exoge-33

nous uncertainties are usually incorporated as a priori into the multistage34

optimization problem via an ensemble of scenarios. The earlier work of the35

authors in Erfani et al. (2018); Pachos et al. (2019) as well as Hall et al.36

(2012); Mortazavi-Naeini et al. (2014); Borgomeo et al. (2016); Padula et al.37

(2013); Matrosov et al. (2013b, 2015) are examples of exogenous uncertainty38

implementation.39

Starting from the seminal work of Pflug (1990) and extended later on40

by the work of Jonsbr̊aten et al. (1998), uncertainty can also be endogenous,41

meaning that decisions and uncertain parameters are interlinked, or otherwise42

said, that some uncertainties are decision-dependent, propagating as decisions43

are made. Based on the work of Pflug (1990); Goel and Grossmann (2006),44

endogenous uncertainty is of two types; these are described below.45
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1.1. Decision-Dependent uncertainty types46

In dynamic optimization problems where decisions are optimized over47

time, such as the classical capacity expansion problem, there are two types48

of decision-dependent uncertainty (also known as ‘endogenous uncertainty’).49

In the first type, intervention options’ activation decision variables and50

the statistical distribution from which the uncertain parameters are derived51

are dependent. That is, the value of the decision variables cause the alteration52

of the statistical distribution. This is relevant in water resource management53

for example for addressing reservoir effects, i.e., when increasing water supply54

leads to higher water demands which eventually reduce the reservoir’s initial55

water supply improvement (Di Baldassarre et al., 2018). Another example is56

the application of socio-hydrological models exploring the interplay between57

the impact of human interventions on drought and flood events and human58

responses to hydrological extremes (Di Baldassarre et al., 2015, 2017).59

In the second type, intervention option activation decisions expressed as60

binary variables determine when the uncertainty has to be considered (i.e.,61

the binary variables equal one at activation at which point the uncertainty62

is considered via pre-sampled scenarios). Notable work in this area includes63

Goel and Grossmann (2004) on oil field development, Viswanath et al. (2004)64

on network traversal problem, process planning application by Lappas and65

Gounaris (2016), disaster management by Poss (2014), Nohadani and Sharma66

(2018), and Peeta et al. (2010), and finally clinical trials modeling by Colvin67

and Maravelias (2008).68

In this paper we modify the adaptive ‘real options’ water infrastructure69

planning formulation described by Erfani et al. (2018) to include endoge-70

nous uncertainty of the second type where intervention options’ activation71

time determine when their uncertainty must be considered. From now on in72

this paper, all mentions of ‘endogenous uncertainty’ refer to this endogenous73

uncertainty of the second type.74

2. Problem description and formulation75

Figure 1 shows examples of scenario tree structures for a single problem76

with two options O1 and O2. As can be seen, uncertainty implied by the77

conditions of O1 and O2 propagates as and when the activation decisions are78

made resulting in different scenario tree structures.79

To model this problem, we proceed as follows. Let the planning time80

horizon be a set of discrete time period t. Set I covers the sources of endoge-81
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Figure 1: Uncertainty realization for two water development options as endogenous uncer-
tain parameters. In (a) O2 is activated in t1 with uncertainty over two possible realizations
while O1 is never activated accounting for two scenarios. In (b) O1 is activated in t1 and
O2 is activated in t2 both with two possible realizations showing three scenarios. In (c)
both options are activated in t1 and hence produces four scenarios. These activations are
during the course of optimization and are not known a priori.

nous uncertainty and θi represents the uncertain parameter associated with82

source i ∈ I. A discrete set of realizations of θi is represented by Θi. The83

resolution of uncertainty in uncertain parameter θi depends on the decision84

variable dSit. That is, the uncertainty in θi is resolved in time period t if and85

only if dSit = 1 and dSiτ = 0 for τ < t. Individual scenario are indexed by86

w ∈ Ω where Ω is the set of all scenarios, and θwi is the realization of θi in87

scenario w. The multi-stage stochastic programming model with endogenous88

uncertainty can be formulated as below.89

min e =
∑

w∈Ω,t∈T,i∈I

pw
(1 + r)t

[cCi × (dSwt,i − dSwt−1,i) + fCi × dSwt,i + vCi × Swt,i],

(1)

s.t.∑
i∈I

Swt,i + eSwt ≥ Dt, ∀w ∈ Ω, t ∈ T, (2)

Swt,i ≤ dSwt,i × cSwi , ∀w ∈ Ω, t ∈ T, i ∈ I, (3)

dSwt+1,i ≤ dSwt,i, ∀w ∈ Ω, t ∈ T, i ∈ I, (4)

dSw1,i = dSv1,i, ∀w, v ∈ Ω, i ∈ I, v 6= w (5)

dSwt+1,i = dSvt+1,i ⇔
∧

i∈D(w,v)

∧
l<t

(
1− dSwl,i

)
, ∀w, v ∈ Ω, i ∈ I, v 6= w

(6)
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where w is a scenario with probability of occurrence of pw, t denotes time90

(stages), i is a water resources development decision, r is the discount rate,91

cCi, fCi and vCi are respectively the undiscounted capital, fixed, and vari-92

able operational costs of investment i. The optimization model minimizes93

the expected cost of intervention options discounted back to the present.94

Constraint 2 is a mass balance constraint to make sure the sum of existing95

supplies at time t, eSwt and the supply from water resource option i meets the96

water demand in time t, Dt. Constraint 3 allows intervention option i to be97

used up to its maximum capacity (cSwi ). Constraint 4 forces an irreversible98

action once activated to remain active until the end of the planning horizon.99

Constraint 5 and 6 introduce the endogenous uncertainty. They represent100

the non-anticipativity constraints (NAC) enforcing that the decisions at time101

t only utilize any information that is available up to that stage. They do so102

by linking distinguishable and indistinguishable scenarios. Two scenarios103

are indistinguishable if they are identical for all uncertain parameters’ value104

that have been manifested up until time t. A NAC requires that for those105

scenarios that are indistinguishable at time t, their decisions are the same.106

Constraint 5 ensures that at the beginning of the first time period t1 when107

no realization of uncertainty has occurred, all scenarios are indistinguishable.108

Constraint 6 is related specifically to endogenous uncertainty modeling and109

its implication is explained next.110

2.1. Conditional non-anticipativity constraints111

Constraint 6 is called the Conditional Non-anticipativity Constraint (c-112

NAC). This set of constraints formulates the relationship between the indis-113

tinguishable scenarios and the intervention options’ decisions. c-NAC ensure114

that if scenarios are indistinguishable, then NAC is enforced and if not, they115

are ignored. To do so we define the set D in constraint 6 for scenario v and116

w in Ω as:117

D(w, v) = { i |i ∈ I, θwi 6= θvi } . (7)

D represents a set of decisions in which scenario w and v differ in their118

possible realization. Under constraint 6, if there is no activation decision in119

those i that distinguish scenario w and v by time t, w and v are marked120

indistinguishable using dS∗i,t.121

Due to constraint 6, the proposed formulation is a logical disjunctive122

programming model. The logical constraint is due to the conditionality of123
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the NAC, and the disjunctive constraint is because of the distinguishability of124

scenarios. Such a model can be reformulated to mixed integer programming125

using the convex hull reformulation described in Williams (2013).126

3. Application to a water resource planning problem127

To illustrate an application of the above formulation we consider a water128

company with three investment decisions to implement with a five time-step129

planning horizon. We consider the case in which the demand growth and ex-130

isting supply projection are known (Table 1). However, the intervention op-131

tions include both demand management and supply expansion options (Table132

2). The extra capacity added to the system is achieved via demand manage-133

ment (decreasing the water demand) and supply expansion options. The for-134

mulation is a least-cost aggregate supply-demand, as per Erfani et al. (2018).135

The uncertainties implied by the water supply-demand intervention options136

follow a triangular distribution. We use three realizations and mark each137

level as low, medium and high shown in Table 2. The distribution reflects all138

the possible scenarios of future realization of water availability at the time139

an intervention is selected. In practice such distributions of how much water140

a source can supply are estimated via joint hydrological and water resource141

systems modeling (Padula et al., 2013).142

Table 1: Existing water availability and demand growth projection

t1 t2 t3 t4 t5

Demand (Ml/d) 2010 2024 2042 2050 2060
Water availability (Ml/d) 2000 2000 2000 2000 2000

Table 2: Decision dependent uncertainty implied by the investment options

Water availability by expanding capacity (Ml/d)

Intervention high medium low Mean

o1 60 42 40 47
o2 25 20 5 17
o3 20 18 15 18
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Figure 2: (a) Solution structure for capacity expansion by considering endogenous un-
certainty, (b) Utilization of options by considering endogenous uncertainty, (c) Capacity
expansion deterministic solution, and (d) Utilization of options activated in deterministic
solution
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4. Results and discussion143

The optimal activation of options and their utilization are shown in Fig-144

ure 2. We compare the solutions of the proposed model with those of the145

deterministic one where the mean value of the uncertain parameter is used146

for all development options. The deterministic solution (shown in Figure 2.c)147

suggests investing in option 1 at the beginning of the planning period and148

to supplement the portfolio with o3 from time period 3 onwards. In contrast149

to the deterministic solution in which o3 is always activated in time period 4150

and 5, commitment to o3 is only required as an optimal recourse decision in151

the endogenous uncertainty model (Shown in Figure 2.a) if either o1 and o2152

are realized at low level or o1 is at its medium level. In addition, compared to153

the deterministic solution in which option activation in o2 is never suggested,154

in the endogenous uncertainty model, investment in o2 is either delayed to155

the last stage, if o1 and o3 are realized at medium and low level, respectively,156

or, o1 is at its low level. This flexibility in options’ activation is valuable157

because by not selecting an investment option now and deferring it to the158

next planning period, asset managers avoid its cost until more information is159

available. Indeed, the expected cost of the proposed formulation is 10% lower160

than the deterministic one suggesting the economic value of flexibility in our161

case study. This highlights the value of including endogenous uncertainty,162

and how much it is worth to postpone a decision until more information is163

available. By not committing to o3 in time period 3, planners can postpone164

investment until later, when and if it is required. For the application of the165

proposed method to a real case study it could be useful to explore the sen-166

sitivity of optimal pathways to the selection of the probability distributions,167

which cannot be assumed to be exact.168

5. Extended formulation169

In order to simplify the explanation of endogenous uncertainty our syn-170

thetic case-study assumed no exogenous uncertainties such as the one de-171

scribed by Erfani et al. (2018). That is, in the illustrious example provided172

here projections of existing supply capacity and demand growth are deter-173

ministic. To make this approach applicable for a problem with both types of174

uncertainties, for any individual realization of exogenous uncertain parameter175

(through the scenarios), all possible realizations of endogenous parameters176

should be included. To formalize this, assume that ξt is the vector of ex-177

ogenous uncertain parameters associated with time period t. Ξ is discrete178
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set of possible realizations for vector ξ = (ξ1, . . . , ξT ) represents the set of179

all exogenous uncertainty scenarios. The scenario in a problem formulation180

with both exogenous and endogenous uncertainty elements corresponds now181

to one possible realization for vector (ξ1,. . .,ξT , θ1,. . .,θI). With this amend-182

ment, Ω is now a set of all the endogenous and exogenous scenarios given183

by the Cartesian product of both exogenous and endogenous scenario sets Ω184

= (×i∈I)Θi) × Ξ; i.e., for any realization of the vector of exogenous parate-185

mers ξ, the set of scenarios includes scenarios corresponding to all possible186

combinations of realizations for the endogenous parameters. θwi and ξwt will187

represent the realizations of θi and ξt, respectively, in scenario w. Note that188

θi is not time (but decision) dependant while ξt is independent of decisions189

and is resolved on given time t. We add the following set of equations to190

problem of section 2 to include both exogenous and endogenous uncertainty:191

dSwt+1,i = dSvt+1,i, ∀w, v ∈ Ξ, t ∈ T, i ∈ I, v 6= w (8)

where constraint 8 is the NAC for exogenous uncertainty. If we do not192

have endogenous uncertainty, then Θ is an empty set and the above problem193

reduces to exogenous model (as explained in Erfani et al. (2018)). Similarly,194

if there is no exogenous parameters, then we have Ξ = ∅, Ω = Θ, and model195

reduces to the endogenous model (as explained by the model in Section 2).196

Adding both uncertainties would increase the size of the problem mainly due197

to the fact that the non-anticipativity constraints, which account for most198

constraints, grow quadratically with the number of scenarios. The size of the199

problem could be reduced using different theoretical approaches including the200

property of the set D, referring to the work of Gupta and Grossmann (2011),201

where an asymmetric structure of matrix D proves many NACs redundant.202

6. Conclusion203

This paper proposed an extension to an adaptive multistage real options204

water infrastructure planning optimization problem formulation for when205

some uncertainties are endogenous. That is, problems where water resource206

system intervention decisions control when additional uncertainties associ-207

ated with new options must be introduced. The proposed formulation is208

demonstrated on a synthetic problem with a small number of options show-209

ing how endogenous uncertainty propagates when making planning decisions210
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over time. The results are compared with the deterministic formulation in211

terms of option activations and the expected present value of the cost; the212

formulation with endogenous uncertainty saves 10%. For simplicity in pre-213

senting the endogenous uncertainty concept, the case-study assumed no ex-214

ogenous uncertainties and referred the challenge of applying the extended215

formulation to cases with both exogenous and endogenous uncertainties to216

future work. This includes dealing with a larger multistage optimization217

problem as well as the correlation between uncertain parameters.218
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