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Abstract 

Objectives: The UNAIDS 90-90-90 and other cross-sectional metrics can lead to potentially 

counterintuitive conclusions when used to evaluate health systems‘ performance. This study 

demonstrates how time and population dynamics impact UNAIDS 90-90-90 metrics in 

comparison with a longitudinal analogue. 

 

Design: A simplified simulation representing a hypothetical population was used to estimate 

and compare inference from UNAIDS 90-90-90 metrics and a longitudinal metrics based on 

Kaplan-Meier-estimated 2-year probability of transition between stages. 

 

Methods: We simulated a large cohort over 15 years. Everyone started out at risk for HIV, 

and then transitioned through the HIV care continuum based on fixed daily probabilities of 

acquiring HIV, learning status, entering care, initiating ART, and becoming virally 



suppressed, or dying. Within simulations we only varied the probability of ART initiation. 

We repeated the simulation with an increased probability of death. 

 

Results: The cross-sectional probability of being on ART among persons who were 

diagnosed responded relatively slowly to changes in the rate of ART initiation. Increases in 

ART initiation rates caused apparent declines in the cross-sectional probability of being 

virally suppressed among persons who had initiated ART, despite no changes in the rate of 

viral suppression. In some cases, higher mortality resulted in the cross-sectional metrics 

implying improved healthcare system performance. The longitudinal continuum was robust 

to these issues. 

 

Conclusion: The UNAIDS 90-90-90 care continuum may lead to incorrect inference when 

used to evaluate health systems performance. We recommend that evaluation of HIV care 

delivery include longitudinal care continuum metrics wherever possible. 

 

Keywords: cascade; continuum; UNAIDS 90-90-90, longitudinal, cross-sectional 

  



Introduction 

The treatment continuum or cascade of care divides the process by which individuals and 

populations progress from HIV acquisition through ongoing viral suppression into discrete 

steps (1). Cascades are typically represented as the number or proportion of people in a 

population at a given cross-section in time. The United Nations Programme on HIV/AIDS 

(UNAIDS) 90-90-90 targets are ubiquitous continuum of care goals for monitoring and 

evaluating the global HIV response. Achieving high or low proportions in any target is 

generally attributed to successes or gaps in healthcare system specific to transitioning from 

the denominator state to the numerator (2). The targets state that 90% of all people living 

with HIV should know their HIV status, 90% of all people with diagnosed HIV infection 

should receive sustained antiretroviral therapy (ART), and 90% of all people receiving 

antiretroviral therapy should have viral suppression in order to end the AIDS epidemic (3). 

However, because they rely on a cross-sectional framework to describe dynamic, 

longitudinal, and interrelated processes, the UNAIDS 90-90-90 metrics may yield misleading 

inference about health systems performance (4,5). Health systems changes can have 

counterintuitive impacts on cross sectional performance metrics, potentially resulting in 

misinterpretation, poor policy and resource allocation decisions, and adverse mortality and 

morbidity outcomes. 

Longitudinal continuums have been emerging as an approach to address these issues, which 

have been used to evaluate heath systems performance in a variety of settings and 

formulations (1,6–15). While cross-sectional continuums yield a snapshot of the current state 

of a system, longitudinal continuums describe movement between states over time, 

conceptually analogous to prevalence and incidence, respectively. One longitudinal cascade 

approach is the ―HIV testing and treatment cascade,‖ (16) where the denominator is set as 

person-time from entry into the previous stage (10,17). A second approach uses a stage-by-

stage method, where each stage depends on completion of the previous, analogous to the 

UNAIDS 90-90-90 targets (4). In the current paper, we focus on the latter approach to 

conduct a side-by-side comparison of the UNAIDS 90-90-90 metrics against a longitudinal 

analogue. 

The mechanisms by which the UNAIDS 90-90-90 and other cross-sectional metrics may 

yield misleading inference about health systems performance—and how longitudinal 

approaches may resolve these issues—are largely undocumented and poorly understood. We 



focus on four issues with the UNAIDS 90-90-90 metrics: they 1) are relatively slow to 

respond to emerging conditions; 2) can change even when there is no underlying change in 

system performance, 3) are subject to unintuitive and complicated between-stage interactions, 

and 4) are counterintuitively impacted by mortality. 

We designed this study to examine and demonstrate how summarizing a longitudinal, 

interrelated set of dynamic processes using cross-sectional proportions can impact the 

UNAIDS 90-90-90 metrics in unintuitive ways. We also demonstrate how longitudinal 

approaches may provide more direct, robust, and reliable metrics for evaluating HIV systems 

performance. 

Methods 

We developed a stochastic, individual-based simulation model to represent a stylized 

introduction and expansion of ART, changing only the ART initiation rate over time. We 

simulate two scenarios: one with relatively low mortality rates (baseline rates) and one with 

relatively high (5x the baseline) mortality rates, sustained over the entire simulated fifteen-

year period. We compared cross-sectional and longitudinal continuum metrics both within 

and between the simulated periods and scenarios to assess their responses to the changing 

ART and mortality conditions. 

Simulation structure and baseline parameters 

 

The simulation was based on a Markov chain process, modelled after the ―HIV States and 

Transitions Framework‖ (18). The model classifies each individual into one of the following 

ordinal states at each point in time: at risk for HIV, living with HIV, knows status, in care, on 

ART, virally suppressed, or dead. The simulations begin with every person being at risk for 

HIV. At daily time steps, each simulated person in the model may remain in the same state, 

transition to the next state, or die, according to defined probabilities that are evaluated 

stochastically for each person at each time step. Transition rates are assumed to be identical 

for all persons for any given transition. For simplicity, the model did not include any skipping 

of stages, ―side door‖ (19) entry into the continuum, reversion to previous stages, churning 

statuses (20), or viral suppression without treatment (21,22). 

Figure 1 summarizes the model states and transitions, including the annual probabilities used 

in the simulations. The simulation structure and parameters used in this simulation were 



generated and selected primarily to aid conceptual and visual clarity for the demonstration 

purposes. While we believe them to be broadly plausible, they do not necessarily represent 

any specific populations, country, or time period. 

Scenarios 

We generated two separate simulation scenarios: a baseline (relatively low) and a high 

mortality scenario. The baseline mortality scenario was designed to demonstrate how the 

main continuum metrics respond to conditions even without substantial mortality, while the 

high mortality scenario demonstrates the additional complications that occur with increased 

mortality when people are removed from cross-sectional metrics due to death, a competing 

event. 

Each scenario had three periods, each five years long: a low ART period, a normal ART 

period, and a second low ART period. In Period 1, the ART initiation rate (0.05 per year) was 

set to be 1/10
th

 the baseline rate. In Period 2, we increased the ART initiation rate (0.50 per 

year) to represent introduction of wide scale ART availability. In Period 3, we returned to the 

lower ART initiation rate (0.05 per year). This last period may conceptually represent a 

supply shortage or reversion to prior policies. In all periods, mortality rates pre-viral 

suppression were twice that as post-viral suppression. 

Additional model runs with slightly altered parameters were generated on an ad-hoc basis to 

test the sensitivity of model outcomes to parameter changes, including modifying the 

mortality rate, viral suppression rate, and period lengths. 

Continuum metrics 

For each scenario we compared two different continuum metrics from the simulated data: 1) 

cross-sectional continuum metrics based on the UNAIDS 90-90-90 targets, and 2) stage-by-

stage longitudinal continuum metrics analogous to the UNAIDS targets. Stage entry and 

completion events are the events that define the denominator and numerator of a given 

metric, respectively. 

UNAIDS 90-90-90 metrics 

The UNAIDS 90-90-90 metrics were based on cross-sectional proportions. The denominator 

for each of the three stages was the number of people who were alive and had completed the 

entry event by the measurement date, and the numerator was the number of people who were 

alive and had completed both the stage entry and stage completion event by the measurement 

date. This yielded three probabilities on each date: the proportion of people who knew their 



status out of those who were living with HIV and alive; the proportion of people who had 

initiated ART out of those who had been diagnosed and were alive; and the proportion of 

people who were virally suppressed out of those who had initiated ART and were alive.  

Longitudinal 90-90-90 metrics 

The longitudinal 90-90-90 metrics measured the flow of people as they passed between 

stages. We used Kaplan-Meier (KM) curves (23) to estimate the cumulative incidence of a 

stage completion event, where day 0 was the day on which the stage entry event occurred. 

Individuals who had not transitioned into a subsequent stage by the last date of the 

measurement period were right censored on that date. Death was considered a failure to 

achieve the completion event (a competing event) rather than a censorship event. As such, 

people who had died remained in the ―at-risk‖ population to reflect that they died before 

transitioning, avoiding the issue of death inflating the probability of transitioning to 

subsequent stages. This approach is effectively equivalent to the Aalen-Johnson cumulative 

incidence function in the presence of the competing risk of death, given that they are strictly 

hierarchical and censorship occurs for both potential risks at the same time (24,25). 

Estimates for each stage were restricted to persons who completed the stage entry event 

within two years prior to the measurement date; thus, the time-horizon of measurement was 

up to two years from the stage entry event to the stage exit event. For example, the 

longitudinal continuum metrics for the transition between knowing status and initiating ART 

at the end of year 5 would consider only those individuals who learned their status for the 

first time in years 4 or 5, include only ART initiation events occurring before the end of year 

5, and would censor individuals who were alive but had not yet initiated ART by the end of 

year 5. As a result, the longitudinal continuum metrics in this analysis do not reflect events 

that occur more than two years from the stage entry event. 

Analysis 

The state of each cascade was measured and given at the last day of each simulated year. For 

the UNAIDS 90-90-90 metrics, this was the cross-sectional status of the continuum, or a 

repeated cross-section similar to the approach of Nosyk et al., 2014 (26). For the longitudinal 

metrics, these were the cumulative incidence curves for each of the three transitions from the 

two years prior to the last day of each simulated year. 

All analyses were performed in R v3.6.1 (27). The longitudinal continuum metrics were 

generated using the longitudinalcascade package, v0.3.2.1 (28), which was developed by the 



first author for public use prior to this simulation study. All code and simulated data are 

included as supplements to this manuscript. 

Results 

Total population proportions from the simulation are shown in Appendix 1, 

http://links.lww.com/QAD/B684 and Appendix 2, http://links.lww.com/QAD/B684 with daily 

continuum comparisons available in a video supplement, http://links.lww.com/QAD/B683. 

Standard mortality scenario 

UNAIDS 90-90-90 metrics 

 

The cross-sectional UNAIDS 90-90-90 metrics are shown as a series of annual, end-of-year 

cross-sections for years 4-12 of the simulation in Figure 2, with numerical values in 

Appendix 3, http://links.lww.com/QAD/B684.  

The top row shows the first of the three UNAIDS 90-90-90 metrics: the percentage of 

persons living with HIV know their status out of those who are alive and living with HIV. 

This proportion rose slowly over time in all periods, reflecting the steady accumulation of 

HIV diagnoses via the constant HIV diagnosis rate against a background where the mortality 

rate was lower than the HIV incidence rate. 

The proportion of those who are on ART of those who know their status was slow to respond 

to the changes in ART initiation probabilities between model periods, as seen in the second 

row of Figure 2. At the end of year 5, only 4% of people who knew their status were on ART, 

reflecting the very low probability of any diagnosed individual initiating ART. Once ART 

rates were raised to ―normal‖ levels, the proportion who were on ART jumped to 27% at the 

end of year 6, reflecting rapid uptake from the backlog of individuals built up by this point 

who knew their status but had not yet initiated ART. The proportion of individuals who had 

initiated ART increased steadily to 58% at the end of year 10, but then decreased only slowly 

in period 3 despite the rapid drop in ART initiation probabilities at the start of year 11. 

The proportion of people who had become virally suppressed out of those who have initiated 

ART appears in the bottom row of Figure 2. The initial dip in the proportion who have 

achieved viral suppression in year 6 when ART roll-out began was largely caused by 

improving conditions in other periods; as more people initiated ART, the denominator grew, 

and it took time for the numerator to catch up. Despite no change in the viral suppression rate 

http://links.lww.com/QAD/B684
http://links.lww.com/QAD/B684
http://links.lww.com/QAD/B684
http://links.lww.com/QAD/B684


after ART initiation, the dip in year 6 leads to the impression that viral suppression was a 

substantial bottleneck in the continuum at that time. That impression could lead to erroneous 

conclusions, such as ‗the people being reached with expanded ART access have worse 

adherence than those who were initiated ART in prior periods‘ or ‗adherence counseling 

should be prioritized for funding.‘ As Period 2 continued, the proportion of people who were 

virally suppressed continued to increase as this initial influx people who had initiated ART 

subsequently achieved viral suppression, again despite no actual changes in the viral 

suppression rate among those who are on ART. 

The comparable chart for the longitudinal 90-90-90 metrics is shown in Figure 3. Each row 

reflects the cumulative incidence function for the transition from one stage to the next over 

the prior two years, rather than the total accumulation of people who have reached each stage 

to date. Because the cumulative incidence function is determined almost exclusively by the 

transition probabilities corresponding to each stage, the first and last rows of the longitudinal 

90-90-90 continuum remain virtually unchanged over time, reflecting the fact that the 

underlying rates of HIV acquisition, learning status, viral suppression remained constant 

throughout the simulation. 

Just as the top and bottom rows of Figure 3 properly reflect the constant transition 

probabilities underlying their corresponding metrics, the middle row properly captures the 

changing probability of ART initiation across calendar periods. The response to the changing 

ART initiation probabilities was nearly immediate. This feature of the longitudinal continuum 

is largely due to its explicit consideration of only recent transitions from stage to stage, as 

opposed to a cross-sectional metric that reflects prevalence arising from transitions that had 

occurred at any point in the past. 

The longitudinal metrics also yield some additional insight in the form of person-time. The 

cross-sectional metrics showed relatively high prevalence of being on ART and being virally 

suppressed at the end of period 2, seemingly suggesting relatively high rates of ART 

initiation and viral suppression. These cross-sectional metrics would have continued to 

increase had the ―normal ART‖ conditions persisted, reaching the full UNAIDS 90-90-90 

targets despite no improvements in health systems performance after the switch to higher 

ART initiation probabilities at the start of year 6. However, the longitudinal metrics reveal a 

large amount of person-time between those transitions, reflecting the time in which 



individuals remained virally unsuppressed and highlighting the remaining gaps for 

intervention.  

High mortality scenario 

Increasing mortality had a complex and potentially counterintuitive impact on the health 

systems performance implied by the UNAIDS 90-90-90 metrics, as shown in the dotted lines 

in Figure 2. The UNAIDS 90-90-90 metrics were largely unresponsive to the five-fold 

increase in the annual mortality rate. In the case of the first and second components, we 

observe implied overall decreases in health systems performance. However, the third 

component appears to imply improved health systems performance with higher mortality. The 

reason for this observed increase in viral suppression is that a higher proportion of people 

were dying and being removed from the denominator as compared with the low mortality 

scenario. Additional sensitivity tests show that this effect is exacerbated when the mortality 

rate is increased and/or when the viral rate suppression is reduced. 

The longitudinal 90-90-90 metrics resulted in unambiguous decline in the measurements of 

health systems performance of all stages when mortality increased, as shown in Figure 3. The 

proportion of people who had died before transitioning into the next stage is shown in the red 

area at the top of each panel, which is visually larger for all pre-viral suppression stages in the 

continuum under the high mortality scenario. Furthermore, higher mortality also results in an 

unambiguous reduction in the proportion of people transitioning into the next stage for all 

three metrics. The non-ambiguity of mortality in the longitudinal 90-90-90 metrics is due to 

people remaining in the denominator even after dying, as death was treated as a failure to 

achieve an even through the competing risk of death rather than failure to observe an event 

(censorship). 

Discussion 

Metrics used to evaluate health systems performance should be highly responsive to and 

reflective of current conditions, independently identify performance between stages, and 

avoid implying higher performance in scenarios with poorer outcomes. The longitudinal 

continuum metrics performs better than the UNAIDS 90-90-90 metrics on all three of these 

criteria in our simulation. The cross-sectional UNAIDS 90-90-90 metrics were relatively 

slow to respond to changes, reflected changes in stage transition rates other than the primary 

stage transition event under study, and implied improvements in health systems performance 

under higher mortality rates. By contrast, the longitudinal continuum was quick to respond, 



maintained relative independence in reflecting stage transitions, and unambiguously indicated 

lower performance with higher mortality. 

Although we used a simplistic model, more realistic conditions would not resolve the issues 

with the UNAIDS 90-90-90 illustrated here. Perhaps the least realistic aspect of our 

simulation was having discrete periods with sharp discontinuities instead of gradual changes 

over time. A more realistic simulation could incorporate demographics, viral load, disease 

stage, and different propensities for moving through the continuum according to these factors. 

Further, the longitudinal continuum model itself could be made more complex with skipped 

and out-of-order transitions, ―churn‖ in and out of states of care retention and viral 

suppression (10,20,29), and/or ―side doors‖ (19). While these nuances are important to 

include and integrate into performance metrics in real-world settings, we have no reason to 

believe that simulating them would have any notable impact on the qualitative conclusions 

from this study. 

The simplicity implementing the UNAIDS 90-90-90 metrics belies its complex and 

potentially misleading interpretation when used as a health systems performance indicator. 

Describing the current status of the HIV care continuum with cross sectional measures can 

obscure how past periods impacted the current cross-section. Repeated cross-sectional data 

over time can help improve inference by hinting at transition rate changes, but still 

necessitates sophisticated understanding and modelling of population dynamics, as seen in 

comparing cross sectional and longitudinal metrics using real world data over the ART roll 

out in KwaZulu-Natal, South Africa (4). 

While the longitudinal metrics proposed here are better able to evaluate current systems 

performance by directly reflecting transition times, they also have tradeoffs. Firstly, they 

require large and sustained investment in data collection, cleaning, and analysis efforts which 

are difficult to achieve at scale (30,31) and may be limited to particular geographic regions. 

In the case of the first metric, determining the date of the stage HIV acquisition, data 

collection would require frequent repeated testing of a representative population. Secondly, 

longitudinal metrics require more complicated analysis and interpretation because they 

include time. This potential limitation can be mitigated or eliminated by choosing easily 

interpretable metrics, as discussed below, and/or standardizing analysis methods. Thirdly, 

longitudinal metrics do not necessarily capture all relevant time horizons. In the example we 

present in this paper, the two-year data collection and time horizon inherently ignores persons 



whose transition times exceed longitudinal time horizons. This issue can be mitigated by 

extending the stage eligibility period, at the cost of the results being less specific to recent 

conditions. 

Target setting using the longitudinal continuum metrics can be as simple as adding a ―within 

X time‖ component to existing percentage goals, provided appropriate time thresholds (32). 

More comprehensive targets could utilize area under the survival curve, or restricted mean 

survival time (33) metrics. Alternatively, targets can be measured along the reverse axis and 

measure median or other percentile time to transition, noting that these percentiles may never 

be reached in many cases. Longitudinal continuum metrics may also include loss of person-

time due to churning states, depending on how they are defined. 

We recommend utilizing a hybrid of longitudinal and cross-sectional continuum metrics for 

health systems evaluation and target setting. Setting precise definitions and presentation style 

for international agendas requires coordination between a diverse set of stakeholders, but a 

plausible example set of targets could leverage the best and most practical aspects of both. 

The first two metrics might be cross-sectional targets based on the population living with 

HIV: 90% of people who are living with HIV should be diagnosed and engaged with care; 

and at least 73% of people who are living with HIV should be virally suppressed. Although 

these two targets are likely to be relatively unresponsive in real time, they do not run the risk 

of issues related to between-stage denominator interactions over time that impact current 

UNAIDS 90-90-90 metrics. The second target collapses the original 90-90-90 to directly 

assess its original purpose: keeping viral suppression sufficiently high to dampen spread of 

HIV. In addition, two longitudinal targets could replace the latter two targets in the current 

UNAIDS 90-90-90. In keeping with the ―90-90-90‖ theme: 90% of people who are newly 

linked to care should be on ART within 90 days of linking to care, and 90% of people who 

are newly on ART should be virally suppressed within 90 days of starting ART. These two 

longitudinal measures allow stage-specific assessments of health systems performance. 

We strongly recommend that existing cross-sectional continuum measurements be viewed 

with a critical understanding of their limitations, and that longitudinal metrics be incorporated 

in evaluation of progress and decision-making around HIV policies and strategies wherever 

possible. We further recommend that major funders invest in systematic data collection 

efforts to allow longitudinal analysis and calculation of longitudinal care continuum metrics, 

including expanding existing regional cohort data, introducing new longitudinal HIV 



monitoring efforts, coordinating across existing monitoring efforts, and expanding and 

incorporating clinical data networks (34). 
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