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A B S T R A C T

The human hippocampus is vulnerable to a range of degenerative conditions and as such, accurate in vivo mea-
surement of the hippocampus and hippocampal substructures via neuroimaging is of great interest for under-
standing mechanisms of disease as well as for use as a biomarker in clinical trials of novel therapeutics. Although
total hippocampal volume can be measured relatively reliably, it is critical to understand how this reliability is
affected by acquisition on different scanners, as multiple scanning platforms would likely be utilized in large-scale
clinical trials. This is particularly true for hippocampal subregional measurements, which have only relatively
recently been measurable through common image processing platforms such as FreeSurfer. Accurate segmenta-
tion of these subregions is challenging due to their small size, magnetic resonance imaging (MRI) signal loss in
medial temporal regions of the brain, and lack of contrast for delineation from standard neuroimaging procedures.

Here, we assess the test-retest reliability of the FreeSurfer automated hippocampal subfield segmentation
procedure using two Siemens model scanners (a Siemens Trio and Prismafit Trio upgrade). T1-weighted images
were acquired for 11 generally healthy younger participants (two scans on the Trio and one scan on the Prismafit).
Each scan was processed through the standard cross-sectional stream and the recently released longitudinal
pipeline in FreeSurfer v6.0 for hippocampal segmentation. Test-retest reliability of the volumetric measures was
examined for individual subfields as well as percent volume difference and Dice overlap among scans and intra-
class correlation coefficients (ICC). Reliability was high in the molecular layer, dentate gyrus, and whole hip-
pocampus with the inclusion of three time points with mean volume differences among scans less than 3%,
overlap greater than 80%, and ICC >0.95. The parasubiculum and hippocampal fissure showed the least
improvement in reliability with mean volume difference greater than 5%, overlap less than 70%, and ICC scores
ranging from 0.78 to 0.89. Other subregions, including the CA regions, were stable in their mean volume dif-
ference and overlap (<5% difference and >75% respectively) and showed improvement in reliability with the
inclusion of three scans (ICC > 0.9). Reliability was generally higher within scanner (Trio-Trio), however, Trio-
Prismafit reliability was also high and did not exhibit an obvious bias. These results suggest that the FreeSurfer
automated segmentation procedure is a reliable method to measure total as well as hippocampal subregional
volumes and may be useful in clinical applications including as an endpoint for future clinical trials of conditions
affecting the hippocampus.
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1. Introduction

The hippocampus supports a wide variety of cognitive functions,
including memory, reward processing, and executive processes (Fortin
et al., 2002; Scoville and Milner, 1957; Winocur et al., 2006). This limbic
region is extremely complex anatomically at the histological level, yet
has major subregions with distinct functional properties and vulnera-
bility to pathologies that can be identified via brain imaging procedures
(Brickman et al., 2011; Hoge and Kesner, 2007; Langston et al., 2010;
Small et al., 2004). These subregions are variably defined yet commonly
include the dentate gyrus, subiculum, parasubiculum, entorhinal cortex,
and the four cornu ammonis (CA) regions (Benarroch, 2013; Horovitz
and Richter-Levin, 2015). Previous studies have demonstrated high
plasticity in the hippocampus and its subfields across the lifespan
(Benarroch, 2013; Ergorul and Eichenbaum, 2004; Fortin et al., 2002;
Horovitz and Richter-Levin, 2015; Leuner and Gould, 2010; Mcewen,
1999) in relation to episodic memory, undergoing a continual process of
strengthening, weakening, and altering (Horner and Doeller, 2017). This
region is also sensitive to a range of negative influences on neural
integrity including hypoxia, stress hormones, and Alzheimer’s disease
(AD) pathology (Brickman et al., 2011; de Flores et al., 2015; Di Paola
et al., 2008; Mcewen, 1999; Teicher et al., 2012). Thus, alterations in the
hippocampus or its subfields have been reported across several neuro-
psychiatric and degenerative disorders, including Schizophrenia (SZD),
posttraumatic stress disorders (PTSD), and Alzheimer’s disease (de Flores
et al., 2015; La Joie et al., 2013; Leuner and Gould, 2010; Scoville and
Milner, 1957; Teicher et al., 2012; Winocur et al., 2006). Given the
critical role of the hippocampus in cognitive health and vulnerability to
disease (Brickman et al., 2011; Ergorul and Eichenbaum, 2004; Fortin
et al., 2002; Hoge and Kesner, 2007; Horner and Doeller, 2017; Leuner
and Gould, 2010; Scoville and Milner, 1957; Small et al., 2004), reliable
measurement of these substructures is a major goal of neuroimaging ef-
forts with clinical applications including tracking of neurodegenerative
disease progression and potential use as a biomarker in the monitoring of
a therapeutic response in large multi-site clinical trials.

Measurement of the hippocampus has been demonstrated to be reli-
able in prior work (Iglesias et al., 2015, 2016; Iglesias et al., 2013;
Mueller et al., 2018; Whelan et al., 2016; Wisse et al., 2016; Worker et al.,
2018; Zou et al., 2004), however, the subregional structures are chal-
lenging to accurately segment and measure in part due to their small size
and lack of appropriate signal contrast with typical structural magnetic
resonance imaging (MRI) acquisitions. Recent developments in acquisi-
tion hardware and sequence technology have increased various aspects
of scan quality including resolution and signal-to-noise ratio (SNR) than
previously possible (Whelan et al., 2016; Worker et al., 2018; Zeineh
et al., 2001), overcoming some of these prior limitations. Furthermore,
novel techniques have recently been developed for segmentation of the
hippocampal subfields from MRI (Adler et al., 2014, 2018; Berron et al.,
2017; DeKraker et al., 2019b; DeKraker et al., 2017; Giuliano et al., 2017;
Iglesias et al., 2015; Pipitone et al., 2014; Sankar et al., 2017; Whelan
et al., 2016; Winterburn et al., 2013; Wisse et al., 2016; Yushkevich et al.,
2010a,b). We examine here the probabilistic atlas-based procedure
released in the FreeSurfer processing stream (version 6.0; http://surfer.
nmr.mgh.harvard.edu). This method has recently been demonstrated to
provide robust discrimination between individuals with AD and cogni-
tively healthy control participants (88% accuracy; Iglesias et al., 2015).
These impressive results highlight the sensitivity and clinical utility of
such procedures yet do not provide information about the reliability, a
necessary parameter for measurement of longitudinal change as well as
potential assessment of a treatment effect in a clinical trial.

Here we examined test-retest reliability at two time points within a
Siemens Trio scanner and an additional time point acquired on a Siemens
Prismafit (Trio upgrade) to determine the utility of hippocampal subfield
measurement for longitudinal studies. The reliability of measures derived
from automated morphometric procedures can be influenced by several
sources of variance, including subject and instrument-related factors,
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such as field strength and scanner manufacturer. Longitudinal and multi-
site studies face additional challenges associated with both subject and
instrument-related factors, such as scanner upgrades and differences in
software and hardware components (De Guio et al., 2016; Han et al.,
2006; Jovicich et al., 2006). This work follows prior studies examining
the reliability of FreeSurfer’s automated hippocampal segmentation al-
gorithm (Mueller et al., 2018; Tamnes et al., 2018; Whelan et al., 2016;
Worker et al., 2018) with an assessment of measurements across scanner
upgrade which has not previously been explored. The standard
cross-sectional processing pipeline in FreeSurfer 6.0 was used for this
work. Additionally, the recently released longitudinal analysis tool in
FreeSurfer 6.0 was used, which references a within-subject template to
enforce consistent segmentation results across time points and reduce the
confounding effects associated with longitudinal analysis. The results
demonstrate that the FreeSurfer longitudinal stream provides a more
reliable measurement of hippocampal subfields than the standard pro-
cessing, and supports the potential use of neuroimaging biomarkers to
track disease progression and as outcome measures in clinical trials to
test therapeutic response in conditions promoting hippocampal
neurodegeneration.

2. Materials and methods

2.1. Participants

Eleven generally healthy young to middle-aged individuals recruited
from the research community participated in this study (age between 22
and 55 years; mean: 30.2 years; SD: 9.43 years. 6 males, 5 females). All
participants received a baseline and a follow-up scan within 2 months
with a range of 7–50 days on a Siemens Trio scanner. Participants were
then scanned approximately 2 months (with a range of 50–70 days) after
their second Trio scan on the upgraded Siemens Prismafit scanner.

The Boston VA Medical Center Institutional Review Board approved
this study and participants provided written informed consent.

2.2. Image acquisition

Each subject underwent 3 scan sessions, twice before and once after
MRI scanner upgrade at approximately 2-month intervals, a total time
span of about 4 months. The upgrade was from a Siemens 3 T Magnetom
Trio scanner to a Magnetom Prismafit, which included the following
major changes: main magnet (both are 3 T, Trio’s length is 215 cm,
Prismafit is 198 cm), gradient system (Trio 40 mT/m at 200 T/m/s,
Prismafit 80 mT/m at 200 T/m/s), and Syngo software upgrade (Trio
B17, Prismafit D13D; Siemens Medical Solutions, Erlangen, Germany).
Although scanner upgrades are coordinated to make minimal changes so
as not to invalidate data, scanner upgrade remains a significant image
acquisition variable. The Siemens Trio and Prismafit are two widely used
scanners in neuroimaging studies. Transitioning between the two is a
major hardware and software upgrade where, essentially, the only thing
that does not change is the main static magnet. Furthermore, sequences
were not identical, which contributes additional variables affecting
image acquisition. For each scan session, the acquisition included two
high-resolution T1-weighted images using Magnetization-Prepared
Rapid Gradient Echo (MPRAGE) volumes with a 20-channel phased-
array head coil and approximately matched parameters (200 Hz/pixel
bandwidth, flip angle ¼ 7 deg, Trio: TR/TE/TI ¼ 2.53 s/3.32 ms/1.1 s,
Prismafit: TR/TE/TI ¼ 2.53 s/3.35 ms/1.1 s). All scans were 3D sagittal
acquisitions with 176 contiguous slices (imaging matrix¼ 256� 176, in-
plane resolution ¼ 1 mm, slice thickness ¼ 1 mm). Acquisition time for
both sequences was 6:02 min.

2.3. Image analysis

2.3.1. Standard FreeSurfer processing pipeline
All T1-weighted images were visually inspected for motion artifact
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and gray-white contrast. The single acquisition with less motion artifact
from each scan session was used so as not to introduce noise from the
additional volume. Cortical reconstruction and volumetric segmentation
was performed with version 6.0 of the FreeSurfer image analysis suite,
which is documented and freely available for download online (http
://surfer.nmr.mgh.harvard.edu). The technical details of these proced-
ures are described in prior publications (Dale et al., 1999; Dale and
Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al.,
1999; Fischl et al., 2002, 2004; Han et al., 2006; Jovicich et al., 2006;
Reuter et al., 2010; Reuter et al., 2012; S�egonne et al., 2004). Briefly, this
processing includes motion correction and averaging (Reuter et al.,
2010) of multiple volumetric T1 weighted images (when more than one
is available), removal of non-brain tissue using a hybrid water-
shed/surface deformation procedure (S�egonne et al., 2004), automated
Talairach transformation, segmentation of the subcortical white matter
and deep gray matter volumetric structures (including hippocampus,
amygdala, caudate, putamen, ventricles) (Fischl et al., 2002; 2004), in-
tensity normalization (Sled et al., 1998), tessellation of the gray matter
white matter boundary, automated topology correction (Fischl et al.,
2001; S�egonne et al., 2007), and surface deformation following intensity
gradients to optimally place the gray/white and gray/cerebrospinal fluid
borders at the location where the greatest shift in intensity defines the
transition to the other tissue class (Dale et al., 1999; Dale and Sereno,
1993; Fischl and Dale, 2000). FreeSurfer morphometric procedures have
been demonstrated to show good test-retest reliability across scanner
manufacturers and across field strengths (Han et al., 2006; Reuter et al.,
2012). After all subjects were run through the standard processing
stream, the data was manually inspected and edited for accuracy of the
gray/white and gray/pial surfaces. Minimal edits were necessary for
these subjects. Images were then run through second reconstruction,
beginning at the point where edits were applied.

2.3.2. Longitudinal processing
A significant challenge in longitudinal studies is the within-subject

variability and lower reproducibility of repeated MRI scanning often
due to subject or instrument-related factors (De Guio et al., 2016; Kruggel
et al., 2010). However, using a longitudinal-specific approach can limit
the variability and avoid the confounding effect associated with common
methods, such as registering all follow-ups to the baseline scan. To
extract reliable volume and thickness estimates, images were automati-
cally processed with the longitudinal stream (Reuter et al., 2012) in
FreeSurfer v6.0. Specifically, an unbiased within-subject template space
and image is created using robust, inverse consistent registration (Reuter
et al., 2010). Several processing steps, such as skull stripping, Talairach
transforms, atlas registration as well as spherical surface maps and par-
cellations are then initialized with common information from the
within-subject template, significantly increasing reliability and statistical
power (Reuter et al., 2012). Using this method, a within-subject template
is referenced to enforce consistent segmentation results across time
points and thereby reducing the confounding effects associated with
longitudinal analysis which improves the robustness and sensitivity of
the overall analysis (Iglesias et al., 2016). The longitudinal processing
was performed with the inclusion of scans from all three time points, and
repeated for two time points both within scanner (Trio-A and Trio-B) and
across scanners (Trio-B and Prismafit).

2.3.3. Hippocampal subfields
A pipeline for automated hippocampal subfield segmentation

released as part of FreeSurfer v6.0 was applied to the reconstructed im-
ages produced by the cross-sectional pipeline, which yielded volumetric
estimations of each subregion. FreeSurfer v6.0 has also released a hip-
pocampal subfield segmentation algorithm for longitudinal segmentation
that is applied to each within-subject template produced by the longi-
tudinal pipeline wherein the processing steps are initialized for each time
point with common information from the subject template. The details of
these steps are described in the original paper of this method (Iglesias
3

et al., 2016). Briefly, the algorithm for segmentation of individual sub-
regions uses Bayesian inference based on observed image intensities and
a probabilistic atlas built from a library of in vivo manual segmentations
and ultra-high resolution (~0.1 mm isotropic) ex vivo labeled MRI data
(Iglesias et al., 2016; Van Leemput, 2009). The longitudinal pipeline uses
a binary mask of the hippocampus that has been extracted from the
automated segmentation of each subject’s base template using soft seg-
mentation of the hippocampus. The resulting mesh is then deformed to
the same within-subject automated segmentation. This deformed mesh is
used to initialize the positions of nodes within the base template as well
as the time points. Additionally, the whole brain segmentation is used to
improve the estimation of Gaussian parameters for particular tissue
classes. See Fig. 1 for visualization of hippocampal subfield segmentation
and Fig. 2 for a 3D rendering.

A whole hippocampal volume estimate was also used from this tool
based on the binary mask from the standard pipeline and a soft seg-
mentation of this subfield pipeline. This volume estimate is different
from the FreeSurfer standard whole brain segmentation, as the estimates
were found to be more accurate for AD discrimination in the original
paper (Iglesias et al., 2016).

2.4. Statistical methods

2.4.1. Percent volume difference and dice overlap
Mean percent volume differences and Dice overlap were calculated to

determine volumetric correspondence of each subregion given by
Equations (1) and (2).

Percent volume difference¼ jA� Bj�
AþB
2

� � 100 (1)

Dice overlap ¼ jAj \ jBj�
AþB
2

� � 100 (2)

Note. Additional variable C was used to denote the third scan (A-B; B–C;
A-C).

In these equations, A represents a given subfield measurement from
the first scan on the Trio scanner, and B represents the same subfield from
the second scan on the Trio. An additional variable C was used to
represent the subfield measurement provided by the Prismafit scanner.
Equation (1) was used to estimate the mean percent volume difference
between three time points across the two scanners (Trio-A to Trio-B; Trio-
B to Prismafit-C; Trio-A to Prismafit-C) where an optimal value of zero
would indicate no difference between volumes and increasing values
indicate greater volume difference.

Equation (2) was used to estimate the Dice overlap between the two
scans, where an optimal value of 100 is achieved for identical volumes,
and a decrease in values indicates less overlap. Dice overlap is a well-used
metric for verifying some volumetric correspondence exists between the
ground truth and the estimated labels. This was repeated for the two time
points provided by the Trio scanner, and then again across the two
scanners.

All subfields will be correlated with total hippocampal volume to
some degree as these are dependent measures (Elman et al., 2019;
Greenspan et al., 2016; Patel et al., 2017). However, we examined the
correlation between volumes of left and right hippocampal subfields with
ipsilateral hippocampal volume by calculating Pearson’s correlation and
p-values.

Additionally, we have included Bland-Altman plots to visualize the
reliability of the subfields across time points and processing pipelines.
These plots can be found in the supplementary material.

2.4.2. Intra-class correlation coefficient (ICC)
Percent volume difference and Dice overlap; however, are insufficient
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Fig. 1. Visualization of the hippocampal subfield segmentations for a single subject and color key. GC-DG (Granule cell layer of the dentate gyrus), HATA (Hippocampal-
amygdaloid transitional area), CA (Cornu ammonis).

Fig. 2. 3D rendering of the hippocampal subfield segmentations for a sin-
gle subject.
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methods to examine reliability alone, because volume difference does not
measure variability both within-subject and between subject, and Dice
does not account for variability in ground truth labeling, which is
essential to determine whether a method can be considered “good
enough.” In test-retest data, the intra-class coefficient (ICC) can be used
to measure within-subject variability relative to between-subject vari-
ability. The third form of the ICC (ICC3,1), as defined in previous litera-
ture (Shrout and Fleiss, 1979), was applied to each subfield by
hemisphere to estimate the agreement of measures between the three
scans across two scanners. This calculation was repeated to estimate
agreement for two scans provided by the same scanner. The ICC analysis
4

was modelled by a two-way mixed-effects model; random subject effects
and fixed sessions effects, with absolute agreement. A statistical package
“irr” designed for ICC analysis implemented using R was used to calculate
ICCmax values from the mean volumes of each subregion (Gamer et al.,
2012). In order to assess the reliability of the hippocampal segmentation
pipeline both cross-sectionally and longitudinally, we have reported
measures for both processing pipelines.

As a speculative analysis to determine the power of this segmentation
tool in detecting effects on hippocampal atrophy, we evaluated power
denoted as sample sizes required for a proposed therapeutic intervention
to reduce rates of hippocampal atrophy between an Alzheimer and
control group.

3. Results

3.1. Volumetric correspondence

Fig. 3 displays the percent volume difference processed with the
standard FreeSurfer pipeline and the longitudinal pipeline including all
three time points. Values represent the mean volume difference between
each session comparison (Trio-A to Trio-B; Trio-B to Prismafit-C; Trio-A to
Prismafit-C). The whole hippocampus, molecular layer, dentate gyrus,
and CA1 show the most consistency across time points with less than 3%
mean volume difference bilaterally between time points when processed
through the longitudinal pipeline. While the fissure, parasubiculum, and
fimbria show the least consistency with a greater than 5% mean volume
difference between time points. The volume difference values from Trio-
A to Trio-B are consistently lower than those across scanner, which
suggests that within-scanner sessions performed better overall.

Fig. 4 displays the mean percent volume difference for two time
points, both within-scanner and across-scanner processed through the
standard and longitudinal FreeSurfer pipelines. The whole hippocampus,



Fig. 3. Longitudinal processing substantially increases test-retest reliability in all regions. Mean percent volume difference and standard error bars for each subregion across
three time points. (a) Cross-sectional (b) Longitudinal, healthy control subjects scanned at baseline (A) and 2 months (B) on a Siemens Magnetom Trio scanner, and 4
months (C) on a Siemens Magnetom Prismafit scanner. An optimal value of zero indicates no difference, therefore higher bars indicate worse performance. Trio-A to Trio-B
bars (light blue) are consistently lower than darker blue bars, indicating within scanner performance is better than across scanner.

Fig. 4. Longitudinal processing substantially increases test-retest reliability in all regions. Mean percent volume difference and standard error bars for two time points. (Cross)
ectional (red) vs (Long)itudinal (blue), healthy control subjects scanned at baseline and 2 months on a Siemens Magnetom Trio (a), and scanned at 2 months and 4 months
from a Siemens Magnetom Trio to Siemens Magnetom Prismafit (b). An optimal value of zero indicates no difference, therefore higher bars indicate worse performance.
Longitudinal processing (blue) produced lower volume difference values. The within scanner bars (a) are consistently lower than the across scanner volumes, indicating
within scanner performance is better than across scanner. The inclusion of an additional scan may add noise and therefore the longitudinal estimates may be affected.

E.M. Brown et al. NeuroImage 210 (2020) 116563
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molecular layer, and dentate gyrus remained stable with the inclusion of
two time points. However, the volume differences within scanner are
consistently lower than those across scanners, indicating within scanner
measurement performed better. Differences in percent volume difference
across time points and processing between the left and right hippocampal
subfields were not significant (p> 0.05). This suggests the inclusion of an
additional scan may add noise and therefore the longitudinal estimates
may be affected.

Fig. 5 displays the Dice overlap coefficients processed with the stan-
dard and longitudinal pipeline including all three time points. Values
represent the Dice overlap between each session comparison. The whole
hippocampus, subiculum, presubiculum, and hippocampal tail demon-
strate the most consistency across time points with a greater than 75%
overlap bilaterally between time points when processed through the
cross-sectional and longitudinal pipeline. Only the fissure remains the
least consistent with a less than 70% mean volume overlap between time
points. The Dice coefficients consistently increased with longitudinal
processing with most subregions achieving scores greater than 80%.

Fig. 6 displays the Dice overlap coefficients for two time points, both
within-scanner and across-scanner processed through the standard and
longitudinal FreeSurfer pipelines. The whole hippocampus, CA4, and
hippocampal tail remained stable with the inclusion of two time points.
The overlap consistently increased with longitudinal processing with
most subregions achieving scores of 75% or greater. Differences in Dice
overlap values across time points and processing between the left and
right hippocampal subfields were not significant (p > 0.05). However,
the Dice overlaps within scanner are consistently higher than those
across scanners, indicating within scanner measurement performed bet-
ter. This further suggests the inclusion of an additional scan may add
noise and affect the longitudinal assessment.

Fig. 7 displays whole hippocampal plots for two time points within
and across scanner using both processing pipelines. Whole hippocampal
Fig. 5. Longitudinal processing substantially increases test-retest reliability in all regions. D
(a) Cross-sectional (b) Longitudinal, healthy control subjects scanned at baseline (A)
Siemens Magnetom Prismafit scanner. An optimal value of 100 indicates no differen
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volumes were paired by hemisphere to observe the raw value reliability
across scanner. The stronger correlation in the graphs plotting longitu-
dinal processing shows significant stabilization of noise through this
pipeline.

Table 1 reports correlation coefficients for regional associations of
subfield volumes to ipsilateral hippocampal volume across processing
pipelines with the inclusion of all three time points across scanners. Both
the left and right subfield volumes were positively correlated with whole
hippocampal volume. Bilaterally, the subiculum, CA1, and molecular
layer demonstrate the strongest correlation with their respective hemi-
spheric hippocampal volume (r > 0.90, p < 0.001), whereas the lowest
correlation coefficients were the left and right fissure, and the right
parasubiculum (r< 0.50, p< 0.001). Given that there is a broad range of
correlation values (0.32–0.99), we observed a range of ways the sub-
regions relate to the total hippocampal volume.
3.2. Test-retest reliability

Reliability was generally high among subregions ranging from 0.74 to
0.98 cross-sectionally and 0.92–0.99 after longitudinal processing with
the inclusion of all three time points (Table 2). Variability of percent
volume difference was observed in regions while maintaining high reli-
ability in the molecular layer, dentate gyrus, and whole hippocampus
(>0.98), and moderately high in the fissure, parasubiculum, fimbria, and
CA3 (>0.92). The variability observed is assumed to be due to sensitivity
to inter-subject variation. With the inclusion of all three time points, all
regions achieved ICC scores greater than 0.90 with longitudinal pro-
cessing. ICC values of the longitudinal stream were significantly higher
than for the cross-sectional stream in the right CA1, fissure, right dentate
gyrus, right CA3, right CA4, fimbria, right HATA and whole hippocam-
pus. We observed higher reliability in the left hippocampal subregions
compared to the right, which was statistically significant different for
ice overlap and standard error bars for each subregion across three time points.
and 2 months (B) on a Siemens Magnetom Trio scanner, and 4 months (C) on a
ce, therefore lower bars indicate worse performance.



Fig. 6. Longitudinal processing substantially increases test-retest reliability in all regions. Dice overlap and standard error bars for two time points. (Cross)ectional (red) vs
(Long)itudinal (blue), healthy control subjects scanned at baseline and 2 months on a Siemens Magnetom Trio (a), and scanned at 2 months and 4 months from a
Siemens Magnetom Trio to Siemens Magnetom Prismafit (b). An optimal value of 100 indicates no difference, therefore lower bars indicate worse performance. The
within scanner bars (a) are consistently higher than the across scanner volumes, indicating within scanner performance is better than across scanner. The inclusion of
an additional scan may add noise and therefore the longitudinal estimates may be affected.
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cross-sectional (p < 0.05). However, there was no significant difference
in reliability coefficients between hemispheres for time points processed
through the longitudinal pipeline (p > 0.05).

With the inclusion of only two time points across scanner (Table 3),
subregions were relatively stable with most achieving ICC scores over
0.90, with the exception of the right fissure and right CA3 remaining
below 0.80. Although these regions were less consistent, they also
increased significantly with longitudinal processing. There was no sta-
tistically significant difference of reliability coefficients between hemi-
spheres for two time points processed through the cross-sectional or
longitudinal pipeline (p > 0.05).

To visualize the reliability of the subfield volume estimations across
time points and processing pipelines, we have included Bland-Altman
plots in the supplementary material. Each subregion is plotted by mean
and volume difference between time points across three time points,
processed with the cross-sectional and longitudinal pipelines. The lon-
gitudinal pipeline substantially reduced volume differences across all
subregions. With volume differences and mean remaining in consistent
locations across time points. However, the volume differences were often
higher for assessments across scanner, which again suggests the inclusion
of an additional scan may add noise.
3.3. Sample size estimation

To determine the power of a FreeSurfer segmentation-based atrophy
assessment in detecting effects on hippocampal volume loss over time,
we estimated the sample size needed in a proposed therapeutic inter-
vention of 25% reduction in atrophy over a 12-month trial with 6-month
assessment intervals at 80% confidence and 0.05 significance. This sec-
ondary analysis was performed for whole hippocampal volume only as
there is a limited number of publications reporting individual subfield
7

atrophy rates. A power calculation was performed using a mix-effects
regression model for the outcome variable (assumed mean rate of
decline) as a function of time. The estimated sample sizes are presented
in Table 4. When processed using the longitudinal method, we observed
significantly reduced percent volume difference and standard error be-
tween time points compared to the cross-sectional method. Furthermore,
the required sample size for a hypothetical therapeutic intervention also
reflected this difference. Given a variation of 3% difference for the whole
hippocampus bilaterally when using the longitudinal method while
considering standard error, the FreeSurfer segmentation method should
be able to detect about a 1.5% difference between diagnostic groups with
80% power at a 0.05 level of significance.

4. Discussion

To our knowledge, this is the first study to assess the test-retest reli-
ability using percent volume difference, Dice overlap, and ICC of auto-
mated hippocampal subfield segmentation applied to cross-sectional and
longitudinal data using FreeSurfer’s pipeline with scanner upgrade
consisting of three separate time points across two scanners. Most of the
hippocampal subregions were found to be highly stable and all regions
achieve high ICC values after longitudinal processing and scanner up-
grade (ICC>0.9). These results are consistent with previous findings
assessing reliability of FreeSurfer’s automated hippocampal subfield
segmentation pipeline (Mueller et al., 2018; Tamnes et al., 2018; Whelan
et al., 2016; Worker et al., 2018), with substantially increased reliability
due to the updated processing in the most stable regions both within
scanner and across scanners, whilst the fissure and fimbria were the least
stable. The hippocampal fissure lies between the molecular layer and the
dentate gyrus, an area difficult to manually segment even in histological
studies as it is also vulnerable to signal loss and distortion especially in



Fig. 7. Longitudinal processing substantially decreases noise in whole hippocampal volume across scanner. Plots of correlation between whole hippocampal volumes by
hemisphere paired for each subject from a Siemens Trio scanner to a Siemens Prismafit scanner from FreeSurfer segmentation. Left hemisphere is presented in red and
the right hemisphere in green.

Table 1
Correlation coefficients for hippocampal subfield volume associations with
whole hippocampal volume at three time points across scanner upgrade (Trio-A
to Trio-B to Prismafit) processed cross-sectionally and longitudinally. All subfield
volumes showed a significant correlation between ipsilateral hippocampal vol-
ume (p < 0.001).

Subregion Cross-sectional Longitudinal

Left R2 Right R2 Left R2 Right R2

Hippocampal tail 0.75 0.77 0.86 0.72
Subiculum 0.93 0.94 0.96 0.96
CA1 0.89 0.93 0.96 0.91
Fissure 0.21 0.52 0.10 0.32
Presubiculum 0.82 0.90 0.70 0.89
Parasubiculum 0.79 0.58 0.75 0.45
Molecular layer 0.97 0.98 0.96 0.99
GC-DG 0.80 0.89 0.58 0.70
CA3 0.67 0.91 0.65 0.86
CA4 0.83 0.87 0.57 0.70
Fimbria 0.39 0.57 0.75 0.68
HATA 0.60 0.58 0.86 0.63
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lower contrast images which contributes to the lower reliability (Olsen
et al., 2019; Van Leemput, 2009; Whelan et al., 2016;Worker et al., 2018;
Yushkevich et al., 2015; Yushkevich et al., 2010a,b). Other regions with
observed lower reliability are among the smallest of the subregions,
making them susceptible to partial volume effects.

Although standard 1 mm resolution is a likely common nature of
acquisition and is widely supported in open source software suites for
8

image processing (e.g., FreeSurfer), these findings suggest that there are
additional factors to consider, primarily how this resolution can be
accurately localized from ex vivo data. The segmentation version used in
this study has improved by considering differing contrast properties in ex
vivo and in vivo data, although questions remain as to the appropriate
protocols for segmentation of the hippocampus, even at the cytoarchi-
tectonic level (DeKraker et al., 2019b; DeKraker et al., 2019a; de Flores
et al., 2019; Olsen et al., 2019; Yushkevich et al., 2015). The progress to
date in consensus for histological subfield determination demonstrates
the challenges of applying such labeling at the in vivo scale. Without an
established method to map in vivo to ex vivo data precisely due to
differing contrast properties of tissue between resolution, or a gold
standard method obtained by non-imaging methods such as histology,
validation must be an assessment of reliability or reproducibility (Zou
et al., 2004). Some of these factors for further validation can be addressed
by including an additional T2-weighted or proton-density volume
co-registered with the standard resolution data to ensure accurate la-
beling and possibly improve the degree of overlap in the subregions
(Iglesias et al., 2015). The methods used for test-retest reliability, how-
ever, do not account for variability in the ground truth labeling, which is
essential to determine whether a method can be considered “good
enough.” Power assessment of the current volume estimation can be
achieved by the inclusion of an additional dataset, or assessing utility of
the subfields as seed and target regions on diffusion and functional MRI
(Iglesias et al., 2016).

This data is preliminary and will require further validation with a
larger dataset that includes data across different sites and resolution,



Table 2
Intraclass correlation coefficients for hippocampal subregion volumes at three time points across scanner upgrade (Trio-A to Trio-B to Prismafit) processed cross-
sectionally and longitudinally with 95 confidence intervals.

Subregion Hemi Cross-sectional Longitudinal

Mean ICC Lower ICC Upper ICC Mean ICC Lower ICC Upper ICC

Hippocampal tail Left 0.98 0.94 0.99 0.99 0.96 0.99
Right 0.97 0.90 0.99 0.99 0.99 0.99

Subiculum Left 0.97 0.91 0.99 0.98 0.92 0.99
Right 0.96 0.87 0.99 0.99 0.97 0.99

CA1 Left 0.93 0.77 0.98 0.96 0.87 0.99
Right 0.86 0.58 0.97 0.96 0.88 0.99

Fissure Left 0.89 0.64 0.97 0.97 0.90 0.99
Right 0.78 0.33 0.95 0.92 0.75 0.98

Presubiculum Left 0.92 0.76 0.98 0.99 0.97 0.99
Right 0.93 0.80 0.98 0.98 0.95 0.99

Parasubiculum Left 0.96 0.87 0.99 0.99 0.96 0.99
Right 0.91 0.65 0.98 0.96 0.87 0.99

Molecular layer Left 0.96 0.87 0.99 0.98 0.95 0.99
Right 0.91 0.72 0.98 0.98 0.94 0.99

GC-DG Left 0.97 0.92 0.99 0.99 0.97 0.99
Right 0.88 0.63 0.97 0.99 0.96 0.99

CA3 Left 0.91 0.72 0.98 0.99 0.96 0.99
Right 0.74 0.17 0.94 0.98 0.93 0.99

CA4 Left 0.97 0.90 0.99 0.99 0.97 0.99
Right 0.84 0.51 0.96 0.99 0.96 0.99

Fimbria Left 0.86 0.56 0.97 0.97 0.89 0.99
Right 0.93 0.79 0.98 0.96 0.86 0.99

HATA Left 0.94 0.80 0.99 0.95 0.84 0.99
Right 0.86 0.57 0.96 0.95 0.86 0.99

Whole Left 0.96 0.89 0.99 0.99 0.95 0.99
Right 0.92 0.76 0.98 0.99 0.96 0.99

Note. GC-DG (Granule cell layer of the dentate gyrus), HATA (Hippocampal-amygdaloid transitional area). Whole hippocampus represented the measure of whole
hippocampal volume produced by the pipeline.

Table 3
Intraclass correlation coefficients for hippocampal subregion volumes at two time points across scanner upgrade (Trio-B to Prismafit) processed cross-sectionally and
longitudinally with 95 confidence intervals.

Subregion Hemi Cross-sectional Longitudinal

Mean ICC Lower ICC Upper ICC Mean ICC Lower ICC Upper ICC

Hippocampal tail Left 0.96 0.82 0.99 0.99 0.97 0.99
Right 0.91 0.60 0.98 0.97 0.88 0.99

Subiculum Left 0.94 0.72 0.99 0.97 0.87 0.99
Right 0.87 0.48 0.97 0.99 0.94 0.99

CA1 Left 0.91 0.61 0.98 0.98 0.92 0.99
Right 0.67 0.21 0.92 0.94 0.75 0.99

Fissure Left 0.71 0.36 0.94 0.93 0.67 0.98
Right 0.43 0.15 0.87 0.78 0.35 0.95

Presubiculum Left 0.82 0.21 0.96 0.97 0.85 0.99
Right 0.87 0.45 0.97 0.96 0.81 0.99

Parasubiculum Left 0.93 0.71 0.98 0.98 0.92 0.99
Right 0.82 0.08 0.96 0.89 0.37 0.98

Molecular layer Left 0.93 0.73 0.99 0.98 0.85 0.99
Right 0.74 0.01 0.94 0.95 0.76 0.99

GC-DG Left 0.97 0.85 0.99 0.99 0.94 0.99
Right 0.62 0.37 0.91 0.85 0.41 0.97

CA3 Left 0.89 0.54 0.98 0.99 0.88 0.99
Right 0.32 0.22 0.85 0.54 0.25 0.90

CA4 Left 0.95 0.78 0.99 0.99 0.94 0.99
Right 0.51 0.14 0.89 0.80 0.02 0.95

Fimbria Left 0.65 0.48 0.92 0.85 0.29 0.97
Right 0.89 0.51 0.98 0.88 0.48 0.97

HATA Left 0.94 0.06 0.99 0.94 0.77 0.99
Right 0.70 0.30 0.93 0.83 0.25 0.96

Whole Left 0.96 0.89 0.99 0.99 0.95 0.99
Right 0.92 0.76 0.98 0.99 0.96 0.99
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which is currently underway in validation studies. However, it is
important for studies that combine data acquired across multiple sites to
understand and adjust for instrument-related differences, such as soft-
ware and hardware components, as well as scanner manufacturer and
field strength (Han et al., 2006; Jovicich et al., 2006). These results
suggest there are additional factors to consider that may influence
9

reliability. Significant differences between acquisitions within-scanner
can be primarily assumed to be due to the algorithm, whereas signifi-
cant differences between the within-scanner values (Trio to Trio) and the
across scanner values (Trio to Prismafit) can be assumed to be due to
scanner. Subsequent studies could model this bias and use it as a
correction in analyses, or use a scanner covariate in a model. To limit the



Table 4
Estimations of sample size for each processing method in a proposed therapeutic
intervention trial for Alzheimer’s disease to detect a 25% reduction in atrophy
with 80% power and α ¼ 0.05. Based on MRI scans at baseline, 6 months, and 12
months. Processed cross-sectionally and longitudinally.

Study Design Cross-sectional Longitudinal

Two scans; 0–6 months 1 440 505
Two scans; 0–12 months 467 251
Three scans; 0-6-12 months 470 242
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sources of variance introduced by acquisition on multiple scanner plat-
forms, having matched groups on both scanners can reduce the bias
introduced by group and scanner. Having large sample sizes on both
scanners can also limit the variability and analyses can be statistically
modelled correctly. Additionally, the lack of sub-mm resolution in stan-
dard imaging procedures is a significant limitation and regions with
lower reliability should be used cautiously. Previous publications discuss
such procedures with regard to reliability of cortical thickness and
subcortical volume measures (Han et al., 2006; Jovicich et al., 2006);
however, it would be beneficial for both study design and interpretation
to apply these methods to subfields of smaller limbic regions that are
more susceptible to partial volume effects that may be influenced by the
factors outlined above.

Despite these limitations, Iglesias and colleagues have improved upon
an already robust atlas, which continues to provide additional informa-
tion regarding individual subregions. Although most regions were stable
and remained reliable after longitudinal processing and scanner upgrade,
some regions varied in their reliability.

Application of this FreeSurfer software suite tool has demonstrated
increased sensitivity and reliability of classification between healthy and
neurodegenerative disorders such as AD than using a whole hippocampal
volume assessment (Iglesias et al., 2016; Mueller et al., 2018; Worker
et al., 2018). There is increasing interest in volumetric studies reporting
higher rates of hippocampal volume loss in patients with Alzheimer’s
disease (AD) than in elderly controls (Ledig et al., 2018; Schuff et al.,
2009; van der Flier et al., 2004; Zhao et al., 2019). However, global
hippocampal volumetry has demonstrated moderate sensitivity and low
specificity to AD diagnostic classification. Therefore, measurement of the
substructures has become of great interest to clinical aging studies of
therapeutic interventions to not only increase sensitivity to follow the
progression of atrophy, but to also evaluate the atrophy in different
substructures (Bocchetta et al., 2018; La Joie et al., 2013; Ledig et al.,
2018; Maruszak and Thuret, 2014; Wolz et al., 2010; Yushkevich et al.,
2010a,b; Zhao et al., 2019). In order to establish the clinical utility of a
FreeSurfer subfield segmentation-based atrophy estimation as well as
index the efficacy of a therapeutic intervention, it is necessary to consider
effect size when interpreting volumetric assessments. When comparing
controls and a mild cognitive impairment (MCI) or AD population, pre-
vious studies have determined the mean rate of atrophy of the whole
hippocampus on the standard outcome for AD treatment trials to be
around 4% per year (Ard and Edland, 2011; Caroli et al., 2015; de Flores
et al., 2015; Holland et al., 2009; Ledig et al., 2018; Schuff et al., 2009;
Wolz et al., 2010; Yushkevich et al., 2010a,b). Although our results are
consistent with previous work showing that power of a hippocampal
volume assessment increases with greater inter-scan interval (Caroli
et al., 2015; Schuff et al., 2009), this is caveated by the fact that these
results are based on data from a small sample size of generally young,
healthy adults, and do not report power for each subregion. Future work
would require subregional measurements in a large cohort of older adults
of MCI or AD populations, preferably longitudinal in nature, to validate
clinical utility. Results from such work would establish sensitivity and
power within each region with a population that is particularly vulner-
able. Furthermore, future directions would include assessing inter-scan
interval effect sizes which can create negligent power increases, and
the inclusion of other biomarkers such as ApoE4 status which can directly
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influence statistical power (Ard and Edland, 2011; Caroli et al., 2015;
Schuff et al., 2009). Our results suggest that assessment of hippocampal
subfield volume is attainable and given the limited variability in mea-
sures across scanner upgrade, this could apply to multicenter studies.
Previous literature has demonstrated distinct functional properties and
vulnerabilities of the substructures, including the dentate gyrus where
neurogenesis has been shown to persist into adulthood, and therapies
such as exercise and drug intervention have shown to increase neuro-
genesis (Leuner and Gould, 2010; Mcewen, 1999). Automated segmen-
tation procedures offer the opportunity to reliably measure neurogenesis
and regional susceptibility to therapeutic interventions.

Measuring the substructures that make up the hippocampus has been
a key challenge in neuroimaging research due to their small size, signal
loss in the medial temporal regions of the brain, and low contrast in se-
quences, therefore studies have been limited to modeling the hippo-
campus as a homogenous structure (Schuff et al., 2009; Van Leemput,
2009; Wisse et al., 2016; Worker et al., 2018; Yushkevich et al., 2015;
Zeineh et al., 2001), or manually segmenting the regions (Adler et al.,
2014, 2018; Berron et al., 2017; Di Paola et al., 2008; Hsu et al., 2002;
Wisse et al., 2016). Modeling the hippocampus as a homogenous struc-
ture can sacrifice critical information, while manual tracing is often
labor-intensive and inconsistent across studies. Therefore, a reliable
automated segmentation procedure would have valuable applications to
disease progression and clinical trials designed to assess the effects of
pharmacological intervention.

5. Conclusion

The results presented here reflect the test-retest reliability of auto-
mated hippocampal subfield measures estimated from T1-weighted
scans. Using intra-class correlation coefficients, percent volume differ-
ence, and Dice overlap, we were able to quantify the reliability of the
volumes, and our results show most regions are highly stable with very
small difference between subjects and sessions. However, we found that
inclusion of additional scans influenced the reliability. Within scanner
reliability (Trio-A to Trio-B) was worse when including the Prismafit scan
in the longitudinal processing compared to only including the Trio scans
in the processing. These results may suggest the need for matching of
longitudinal points across subjects for longitudinal studies.

In conclusion, the results indicate that the methods applied are
robust, and with further validation, could support the potential use in
clinical trials to measure therapeutic response in conditions promoting
hippocampal neurogenesis.
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